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Dynamics, wakes, and regime transitions of a fixed angular particle
in an unbounded inertial flow. I. Regular tetrahedron angular position
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We investigate the unbounded inertial flow of a Newtonian fluid past a fixed regular tetra-
hedron, the Platonic polyhedron with the lowest sphericity, in the range of Reynolds num-
ber 100 � Re � 500. Three angular positions of the tetrahedron are considered: a face fac-
ing the flow (TF), an edge facing the flow (TE), and a vertex facing the flow (TV). We an-
alyze and determine the two well-known regime transitions: loss of symmetry of the wake
structures and loss of stationarity of the flow as a function of the Reynolds number Re. In
the steady regime, we show that the symmetry of the wake structure is closely related to the
number of edges on the particle front surface. For the unsteady flows, we find a new sym-
metric double-hairpin vortex shedding regime in the edge facing the flow (TE) cases due to
its unique angular position. The dominant frequency of this double-hairpin vortex shedding
is twice that of the single-hairpin vortex shedding in the flow past a sphere, a cube, or a
tetrahedron at other angular positions. Furthermore, we present a force analysis attempting
to explain the wake transitions in connection to the drag and lift force evolution. Eventu-
ally, we provide the critical Reynolds numbers for the regime transitions from steady to
unsteady flows, which are highly dependent on the angular position of the tetrahedron.

DOI: 10.1103/PhysRevFluids.8.064304

I. INTRODUCTION

Multiphase flow is ubiquitous in environmental, biological, and other industrial applications in
which rigid particles, droplets, or bubbles of various shapes are carried in a fluid [1–3]. Over the
past decades, there have been sustained research activities on the flow interaction with a three-
dimensional bluff body due to its importance in, e.g., particulate air pollution [4], river sedimenta-
tion [5], ocean dynamics [6], liquid fuel in engines [7], and fire-mitigation spray systems [8]. The
interactions between the dispersed and the carrier phase lead to rich and complex flow dynamics.

Numerous studies investigated the basic configuration of a fixed sphere in a unidirectional flow,
revealing the intricacy of regime transitions and vortex structures in the particle wake region [9–12].
Due to its omnidirectional symmetry, the sphere has been chosen as an ideal dispersed particle.
In 1961, Magarvey et al. used dye visualization experiments to investigate the regime transition
phenomena of a flow past a sphere [13]. In 1999, a symmetry-breaking process was proposed and
explained in the systematic analysis of Johnson et al. [14]. They showed good agreements between
the experimental results and the numerical results from steady to unsteady flows. Afterward, the
instability of the flow in the sphere wake region has been extensively investigated both numerically
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and experimentally [15,16]. A more complete wake regime transition mechanism was proposed by
Jenny et al. [17]. The sphere wake flow becomes separated at Re ≈ 24, and then an axisymmetric
toroidal vortex region appears [9]. This vortex region keeps expanding with increasing Reynolds
number until Re ≈ 212, where the wake structure undergoes the first regular bifurcation to a
planar symmetric state, characterized by a pair of counter-rotating vortex filaments extending
downstream of the sphere [17]. Small-amplitude oscillations without vortex shedding were observed
experimentally in the wake region at Reynolds number slightly less than Re = 270 [18]. Then,
through a secondary Hopf bifurcation [14,19,20], the periodic hairpin vortex shedding turns up,
along with the planar symmetric wake structures. Experimental flow visualization shows that the
hairpin vortices are always on the same side [21]. However, high-fidelity numerical simulations
reveal the two-sided vortex shedding originating from different sources. One side results from the
shedding of the vortex ring attached to the rear of sphere [20], and the opposite side is due to the
interaction of the near-wake region with the outer flow [14].

It was estimated that at least 70% of the raw material particles used in industries are nonspherical,
among which many have angular edges [22]. Flow interaction with a particle of complex geometry
such as a cylinder [23,24], an ellipsoid [25,26], or a cube [27,28], has been receiving more and
more attention over the past 20 years. For example, the dynamics of the flow past a cube at low
and intermediate Reynolds numbers has been the subject of several works [29–32]. Raul et al.
[33] performed numerical simulations of the flow past a fixed cube in the range of 100 � Reedge �
400, where Reedge denotes the Reynolds number using the cube edge as the length scale. As the
first systematic research, the sequence of regime transitions of a steady laminar flow past a fixed
cube was carefully investigated by Saha et al. [29,34]. It was reported that the wake conserves
symmetry about two orthogonal planes at Reynolds number up to Reedge = 216 ∼ 218. Similar
to the flow past a fixed sphere, four pairs of opposite-signed vortices were noticed in the wake
region of the cube. Then, two leglike counterrotating vortex threads identified using Q criterion
were observed after the first regular bifurcation [29]. The drag coefficient Cd decreases with Re for
the investigated flow regimes, and one component of the lift coefficient increases once the symmetry
of the wake structure breaks down. Subsequently, Klotz et al. [20] studied experimentally the wake
transitions behind a cube with a face facing the flow at moderate Reynolds numbers 100 � Reedge �
400. Two flow bifurcation mechanisms were confirmed, and the vortices in the wake region were
observed to originate from the four rear corners of the cube for the flow regimes studied. Landau’s
instability model was applied to determine the onset of the two bifurcations based on highly sensitive
experimental visualization data. Recently, Meng et al. [35] performed highly resolved body-fitting
direct numerical simulations for the flow past a fixed isolated cube at small and moderate Reynolds
numbers 1 � Re � 400 to elucidate the physical characteristics of the flow, especially in the particle
wake region. Four regimes, including the orthogonal steady-symmetry (OSS), the planar steady-
symmetry (PSS), the hairpin-vortex shedding (HS), and the chaotic vortex shedding (CS) regimes
were observed and thoroughly discussed. The critical Reynolds numbers of regime transitions were
reported to be ReRT

cr = 207 for the first regular bifurcation and ReHT
cr = 252 for the Hopf bifurcation.

Unlike the sphere, angular particles will experience forces due to their angularity and angular
position in the flow [36]. The effects of the particle shape on drag, lift, and torque coefficients for
different nonspherical particles are usually characterized by empirical correlations obtained from
experimental or high-fidelity numerical simulation results. Based on experimental data, Haider and
Levenspiel [37] established a widely used correlation of the drag coefficient Cd for nonspherical
particles as a function of the Reynolds number Re and the particle sphericity φ, i.e., the ratio between
the surface area of the volume equivalent sphere and the surface area of the nonspherical particle.
In this correlation, the drag coefficient data of the free-settling tetrahedron are extracted from the
experimental measurements of Pettyjohn et al. [38]. Regardless of having a good agreement with
experimental results, this correlation using only sphericity as an input parameter fails to account
for the particle angular position, which has a significant impact on wake flow dynamics [39,40].
Drag coefficients were found to be significantly affected by the orientation of nonspherical particles
such as ellipsoids and cubes [26]. Ganser et al. [41] extended the work of Ref. [39] and established
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an empirical correlation for the drag coefficient Cd of isometric particles considering the crosswise
sphericity, which is defined as the ratio between the streamwise cross-sectional area of the volume
equivalent sphere and that of the nonspherical particle. Based on a similar idea, Hölzer et al.
[42,43] proposed another correlation for the drag coefficient Cd of the nonspherical particles using
both crosswise and lengthwise sphericity to consider the particle orientation [38,44]. Although the
correlation of Refs. [42,43] was reported to have good accuracy for general nonspherical particles,
Haider’s correlation seems to be the most accurate correlation for isometric particles.

In contrast to the cube, there is a lack of investigations in the open literature on the flow
interaction with other angular particles, such as a tetrahedron. As one of the few works on the flow-
tetrahedron interaction, Rahmani et al. reported that a freely settling tetrahedron has remarkably
different wake vortex structures compared to a settling cube at the same Galileo number Ga and
mass density ratio m. The Magnus force plays a less critical role in the lateral motion of a settling
tetrahedron than in the lateral motion of a settling cube [30]. Recently, Zhang et al. [45] investigated
and drew a new correlation for the drag coefficient Cd of the Platonic polyhedrons in the supercritical
water. They reported good agreement with the available correlations for the flow past a fixed Platonic
polyhedron placed with a face facing the upstream flow. However, the effects of particle angular
position on the flow structures and regime transitions remain an open question. We attempt to fill
the identified knowledge gap on the regime transitions of the flow past a tetrahedron, the most
angular among the Platonic polyhedrons, at different angular positions, and investigate the flow
past other Platonic polyhedrons in Part II of this work [46]. The current study uses a high-fidelity
finite volume fictitious domain method implemented on an adaptive octree grid to perform direct
numerical simulations. We explore the flow in the range of Reynolds number 100 � Re � 500 and
obtain wake structures in different regimes along with force analysis.

The following is how this paper is structured: Sec. II discusses the governing equations, the nu-
merical method, the involved dimensionless numbers, as well as the numerical setup of simulations;
validations and simulation parameters are presented in Sec. III; Sec. IV discusses different flow
regimes and transitions in terms of Reynolds number, the symmetry of the particle wake structures,
along with an analysis on the drag, lift coefficients, the vortex shedding frequency, and the length of
recirculation region; finally, the main conclusions, as well as the prospects for future work are given
in Sec. V.

II. MATHEMATICAL FORMULATION AND NUMERICAL METHODS

The distributed Lagrange multiplier/fictitious domain (DLM/FD) method describes a rigid body
immersed in a fluid by representing its space with a fictitious domain forced to behave like a rigid
body. In this paper, we use the ∗ superscript to denote dimensional quantities. Inside the cubic
computational domain � with boundary �, we consider a single stationary rigid particle, i.e., an
obstacle, in an incompressible fluid with density ρ∗

f and viscosity μ∗
f . We denote P as the rigid

particle subdomain and � \ P the fluid subdomain to distinguish the dispersed solid phase and the
carrier phase (� \ P

⋂
P = 0). The main features of the fictitious domain method employed were

comprehensively presented in many previous works [47–51]. Appendix A provides a summary of
the main steps of the DLM/FD method, as well as details on its numerical implementation. For the
sake of brevity, we do not repeat this detailed presentation here.

A. Governing equations for the fluid flow

The motion of the incompressible Newtonian fluid is governed by the Navier-Stokes equation and
the continuity:

ρ∗
f

(
∂u∗

∂t∗ + u∗ · ∇u∗
)

= −∇p∗ + μ∗
f �u∗ in � \ P, (1)

∇ · u∗ = 0 in � \ P, (2)

where u∗ denotes the velocity vector and p∗ the pressure.
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We refer to the cubic computational domain boundaries (i.e., the cube faces) as left and right
in the x direction, top and bottom in the y direction and front and behind in the z direction such
that � = left ∪ right ∪ top ∪ bottom ∪ front ∪ behind. u∗ satisfies Dirichlet boundary conditions on
the left, top, bottom, front, and behind boundaries as well as on the surface ∂P∗ on the stationary
particle, and homogeneous Neumann boundary conditions on the right boundary. Denoting U ∗

0 the
inlet velocity magnitude, the complete set of boundary and initial conditions reads as follows:

u∗(x∗, t∗) = (U ∗
0 , 0, 0) on � \ right, (3)

u∗(x∗, t∗) = (0, 0, 0) on ∂P, (4)

∂u∗

∂x∗ (x∗, t∗) = (0, 0, 0) on right, (5)

u∗(x∗, 0) = (U ∗
0 , 0, 0) in � \ P, (6)

where x∗ = (x∗, y∗, z∗) is the position vector. We also assign an arbitrary zero reference value to the
pressure p∗ at the right boundary.

B. Dimensionless numbers

The current study involves the following essential dimensionless quantities: (i) the particle
Reynolds number Re and the particle angular position as input parameters and (ii) the drag
coefficient Cd , the lift coefficient Cl and the Strouhal number St as output parameters.

The particle Reynolds number Re is defined as

Re = ρ∗
f U

∗
0 D∗

sph

μ∗
f

, (7)

where D∗
sph is the equivalent volume sphere diameter, namely the diameter of a sphere which has

the same volume as the tetrahedron:

D∗
sph =

(
6

π
V ∗

tetra

)1/3

, (8)

where V ∗
tetra is the volume of the tetrahedron.

The drag coefficient Cd is defined as

Cd = 8F ∗
x

ρ∗
f U

∗,2
0 πD∗,2

sph

, (9)

where F ∗
x denotes the streamwise component of the hydrodynamic force F∗ exerted on the tetrahe-

dron defined as follows:

F∗ =
∫

∂P
[−p∗I + μ∗

f (∇u∗ + ∇u∗,T )] · n̂dS =
∫

P
λ∗dx, (10)

where n̂ denotes the outward-oriented unit normal vector to the particle surface ∂P. Please note that
in the context of the DLM/FD method and for a stationary particle [52], F∗ is computed as the
integral of the Lagrange multipliers over P in Eq. (10).

In the transverse direction, the lift coefficients can be defined similarly to the drag coefficient, as
Cl,y and Cl,z along the y and z axis, respectively:

Cl,y = 8F ∗
y

ρ∗
f U

∗,2
0 πD∗,2

sph

, Cl,z = 8F ∗
z

ρ∗
f U

∗,2
0 πD∗,2

sph

, (11)

where F ∗
y and F ∗

z denote the two transverse components of the hydrodynamic force.
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FIG. 1. Numerical setup: A fixed tetrahedron located in a cubic computational domain of side length
L = 40, the streamwise direction is x and the flow is from left to right.

As a measurement of the fluid rotation, the three components of the dimensionless vorticity are
defined by

ωx = ω∗
x D∗

sph

U ∗
0

, ωy = ω∗
y D∗

sph

U ∗
0

, ωz = ω∗
z D∗

sph

U ∗
0

, (12)

with ω∗
x (ω∗

y , ω∗
z ) the corresponding component of the physical vorticity in the x (y, z) direction.

The Strouhal number describes the flow oscillating mechanism in the wake region of the particle:

St = f ∗
c D∗

sph

U ∗
0

, (13)

where f ∗
c denotes the dominant frequency of the vortex shedding. Note that the Strouhal number St

is therefore the dimensionless frequency using U ∗
0 /D∗

sph as the characteristic frequency scale, i.e.,
the inverse of the advective timescale, to make f ∗

c dimensionless.

C. Numerical setup

We consider a rigid tetrahedron inside a cubic computational domain of edge length L =
L∗/D∗

sph = 40. To reduce the unphysical impact of the boundaries of the finite-size computational
domain on the flow-particle interaction, we need to select a large enough computational domain
relative to the particle size. According to our previous work [53], the choice of L = 40 is deemed to
be reasonable to model a flow in an unbounded domain and to avoid any major unphysical influence
of the finite size of the domain on the computed solution. The Newtonian fluid enters the box and
flows past a fixed tetrahedron located at (xp, yp, zp) = (10, 20, 20) with different angular positions
as depicted in Fig. 1. The particle is centered in the two transverse y and z directions and slightly
shifted to the left such that the wake flow properly develops over 30 without any artificial disturbance
coming from the outflow condition on the right boundary. Such a computational domain is large
enough to properly model an infinite domain of a flow at 100 � Re � 500.

In the Cartesian octree adaptive grid strategy implemented in Basilisk, the grid refinement in the
discrete regions of interest is achieved through slicing a parent cubic cell into eight subcubes [51,54].
Between two successive levels, in the hierarchical grid, the cell size differs by exactly a factor of
2. Thus, the minimal cell size of the grid ought to be �x = L/2nl , with nl the maximal refinement
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x

y

FIG. 2. Snapshot of wake structures in the early transient of the flow, identified by the isosurface of
λ2 = −1 and colored by ux in the flow past the TE tetrahedron at Re = 500 with adaptive octree grid shown in
the x-y plane located at z = 20.

level. At each time step, the Cartesian octree grid is dynamically adapted by refining the grid in
regions of strong gradient variations of any field of interest. Here the primary field of interest is the
flow velocity field. We also use a phase indicator field (0 in the fluid and 1 in the solid) to guarantee
that the neighborhood of the particle surface is always at the finest grid resolution. Using both the
velocity field and the phase indicator field for the grid adaption in Basilisk, we ensure that the flow
features in both the boundary layer around the particle and the wake region are well captured. A
snapshot of the Cartesian octree grid and the tetrahedron position is depicted in Fig. 2, together with
the vortex structures identified by the lambda-2 isosurface [55] λ2 = −1 in the wake region of the
flow at Reynolds number Re = 500, colored by the magnitude of the streamwise velocity ux. The
highest level of the adaptive grid refinement (AMR) is nl = 12 in Fig. 2, which guarantees enough
grid points (1/�x = 102) per equivalent diameter of the particle.

We performed a total of 120 computations, corresponding to 3 angular positions and 40 values
of Re. Each computation ran on 128 cores over 12 days on average. The whole study required
128 × 12 × 24 × 120 ≈ 4.5 million core-hours.

D. Particle surface points

We use a collocation point (CP) method [47,50,56] to impose the rigid body motion constraint
in the particle at the discrete level on the grid. The complete set of points is the union of interior
points chosen as grid nodes located inside the particle and surface points. The parallel point set
is used to distribute the Lagrangian points as uniformly as possible on the tetrahedron surface
[50]. In the parallel point set, surface points are located over lines parallel to the edges and this
distribution technique also applies to other Platonic polyhedrons [53]. In the specific case of the
regular tetrahedron, the faces are equilateral and the parallel point set forms the vertices of a regular
equilateral triangular mesh of each face of the tetrahedron.

We illustrate the surface Lagrangian point distribution on the regular tetrahedron in Fig. 3. The
uniform point-to-point distance, denoted lpp, is determined by the maximal refinement level nl and
equals twice the smallest size of the grid cells lpp = 2�x. Consequently, the number of surface
points grows with the refinement level nl , providing a more accurate depiction of the particle surface.
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FIG. 3. Outline, surface, and Lagrangian point distribution of the tetrahedron.

E. Particle angular positions

For a tetrahedron of a given volume, we compute its edge length and its vertex coordinates in
a (arbitrary but convenient) reference angular position with respect to its center of mass located at
the origin of the coordinate system. We then left multiply the vertex coordinates by the appropriate
rotation matrix to yield a given angular position of the tetrahedron. Finally we translate the particle
with a specific angular position to (xp, yp, zp) = (10, 20, 20).

Denoting θ, ϕ and ξ the rotation angle about x, y, and z axis (right-hand rule, see Fig. 4), the
corresponding rotation matrices Rx, Ry, and Rz read:

Rx(θ ) =
⎡
⎣1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦, Ry(ϕ) =

⎡
⎣ cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

⎤
⎦,

Rz(ξ ) =
⎡
⎣cos ξ − sin ξ 0

sin ξ cos ξ 0
0 0 1

⎤
⎦. (14)

For a general rotation (θ, ϕ, ξ ), the rotation matrix can be obtained by matrix multiplication:

R(θ, ϕ, ξ ) = Rx(θ ) · Ry(ϕ) · Rz(ξ )

=
⎡
⎣cos θ cos ϕ cos θ sin ϕ sin ξ − sin θ cos ξ cos θ sin ϕ cos γ + sin θ sin ξ

sin θ cos ϕ sin θ sin ϕ sin ξ − cos θ cos ξ sin θ sin ϕ cos γ + cos θ sin ξ

− sin ϕ cos ϕ sin ξ cos ϕ cos ξ

⎤
⎦.

(15)

x

y

z

θ

ϕ

ξ

O

FIG. 4. Definition of rotation angles θ , ϕ, and ξ with respect to the three coordinate axes.
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FIG. 5. Geometric features in the y-z plane of the tetrahedron in its three angular positions: 3D view,
projection of edges (Edges), projection of outline (Proj.), and crosswise cross-sectional surface area ratio
Spp,x = S∗

pp,x/S∗
sph.

Using the rotation matrix (θ, ϕ, ξ ), we explore the three following specific angular positions of
the tetrahedron: face facing the flow (TF), edge facing the flow (TE), and vertex facing the flow
(TV). For simplicity, a complete listing of the coordinates of the tetrahedron vertices with respect
to its mass center is given in Table V of Appendix B.

Figure 5 lists the tetrahedron geometric features along the streamwise direction (x+-direction, in
the y-z plane). A 3D image in the y-z plane depicts the front surface of the tetrahedron as seen by the
incoming fluid flow. The edges of the tetrahedron are highlighted as pink lines in the fourth column
(Edges) of Fig. 5. A projected view (Proj.) reveals the outline of the tetrahedron and the crosswise
cross-section. The surface area of the crosswise cross-section is denoted S∗

pp,x. The last column gives
the ratio Spp,x of the particle crosswise cross-sectional surface area of the tetrahedron S∗

pp,x to that of

the volume-equivalent sphere S∗
sph = πD∗,2

sph/4. Spp,x of the edge facing the flow tetrahedron (TE) is
found to be larger than that in the other two angular positions, while Spp,x of the face facing the flow
tetrahedron (TF) and Spp,x of the vertex facing the flow tetrahedron (TV) are equal.

The side views of the tetrahedron at the three angular positions (TE, TF, TV) are shown in Fig. 6.
We show the outline of the projected tetrahedron in the x-z and the x-y planes. We also provide the
ratio of the tetrahedron lateral cross-sectional surface area to that of the volume-equivalent sphere in
the y direction, denoted Spp,y and in the z direction, denoted Spp,z. The lateral cross-sectional surface
area Spp,y of the tetrahedron along the y axis (x-z plane) is almost identical (difference less than
0.1%) at the three angular positions. Along the z axis (x-y plane), the lateral cross-sectional surface
area Spp,z changes slightly more. Figures 5 and 6 provide a clear visualization of the three orthogonal
projections of the tetrahedron (TE, TF, TV) and help to comprehend the three-dimensional flow-
particle interaction.

FIG. 6. Geometric features in the x-z and x-y planes of the tetrahedron in its three angular positions:
projection of outline and lateral cross-sectional surface area ratios Spp,y = S∗

pp,y/S∗
sph, Spp,z = S∗

pp,z/S∗
sph.
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FIG. 7. Time-time-averaged drag coefficient Cd as a function of Re in the flow past a fixed sphere at
1 � Re � 500 ( ), comparison with numerical results of Selçuk et al. [51] ( ) and the Schiller-Naumann
correlation ( ).

III. VALIDATIONS

A. Flow past an obstacle

We first perform computations of the flow past a fixed isolated sphere at small and moderate
Reynolds numbers 1 � Re � 500. We plot in Fig. 7 the evolution of the time-averaged drag
coefficient Cd of the sphere as a function of Reynolds number Re. In agreement with the large
body of work in the literature, see, e.g., Refs. [14,51], the drag coefficient Cd decreases with Re.
Please note that the results from [51] were obtained with the same DLM/FD method but with a
slightly different numerical setup. Overall, we obtain a very satisfactory agreement between our
computed results and results in the literature. The maximum relative error with respect to the
Naumann-Schiller correlation is less than 3% in the range 1 � Re � 500. This confirms prior
validations from [51,53], the reliability of our numerical method and its implementation in Basilisk.

The particle wake flow structures are identified by the lambda-2 isosurface [55] λ2 = −1, as
shown in Fig. 8. In Figure 8(a), Re = 210 and the flow is in the axisymmetric regime without any
vortex formed in the wake region. When Re increases to 220, as shown in Fig. 8(b), two long leglike

(a) (b) (c) (d)

FIG. 8. Wake structures identified by the isosurface of λ2 = −1 and colored by ux in the flow past a fixed
sphere: (a) axisymmetric regime (Re = 210), (b) beginning of planar-symmetric regime (Re = 220), (c) end
of planar-symmetric regime (Re = 270), and (d) periodic hairpin vortex shedding regime (Re = 280).
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TABLE I. Comparison of Cd if the flow at different Re past a TF tetrahedron. Note that Cd at the same Re
are highlighted in the same color.

Code

This work
This work
This work
PeliGRIFF
PeliGRIFF
PeliGRIFF

tails appear as reported in the work of Ref. [14]. Our results therefore reproduce well the transition
of the flow past a sphere from axisymmetric to planar symmetric regime when 210 < Re < 220. We
observe a second transition when the Reynolds number increases from Re = 270 to Re = 280. The
two long leglike tails begin to fluctuate, and our results feature hairpin vortex shedding at Re = 280,
as shown in Figs. 8(c) and 8(d). Thus, we capture well the transition to the vortex shedding regime
that happens at a Re between 270 and 280. These two transitions in Fig. 8 are well documented in
the literature and in particular were confirmed by the experimental work of Klotz et al. [20]. The
case of the flow past a sphere validates the robustness of our numerical code and provides reference
values for the grid refinement settings.

As a second validation step, we perform computations of the steady flow past a face facing the
flow tetrahedron (TF) at different Reynolds numbers Re = 10, 50, 100. Table I shows the compar-
ison of results computed by the present DLM/FD numerical method implemented on octree grids
to results computed by PeliGRIFF (parallel efficient library for GRains in fluid flow), our legacy
code that features a DLM/FD method implemented on regular fixed Cartesian grids [49,50]. Table I
provides the dimensionless size of the computational domain (Lx, Ly, Lz ) and the corresponding
number of smallest grid cells per volume-equivalent sphere diameter 1/�x. The tetrahedron is
discretized with at least 40 (in the PeliGRIFF simulations at Re = 10 and Re = 50) grid cells per
D∗

sph and this relatively coarse grid resolution is deemed to supply an accurate enough solution for
the purpose of validation.

We find an excellent agreement between the two solvers using two different types of grid. The
relative errors for Cd of the flow at Re = 10 ( ), Re = 50 ( ), and Re = 100 ( ) are 0.84%,
1.6%, and 1.03%, respectively. We reasonably speculate that with a higher spatial resolution in
the regular fixed Cartesian grid computations in PeliGRIFF, the relative errors would be even
smaller. The small discrepancy may also be attributed to a slightly different transverse size of
the computational domain (16 versus 24, see Table I), at least at the lowest Re = 10, without
being really significant. Consequently, we have sufficient confidence to accurately compute and
analyze the more challenging problem of the flow past a tetrahedron at higher Re. The adaptive
mesh refinement (AMR) of octree grids saves a tremendous amount of computational resources at
higher Re compared to a regular fixed Cartesian grid with the same spatial resolution.

B. Grid and time resolution

1. Grid resolution

In this section, we choose the smallest grid resolution �x to properly capture the flow structures
in the flow domain especially for the unsteady flows at high Re. We select the pyramid configuration
(depicted in Fig. 4, dimensionless vertex coordinates given in Table V) at Re = 300 and perform a
series of computations with an increasing maximum level of refinement 8 � nl � 12. The Cartesian
octree grid in Basilisk provides a practical and efficient arrangement for dynamic grid refining and
coarsening in particular in the particle boundary layer and the wake region. The Cartesian octree grid
is more efficient than the classical multigrid technique and its uniform spatial resolution [57]. In the
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TABLE II. Spatial convergence of Cd with grid refinement. L denotes the domain size normalized by
equivalent diameter, nl the adaptive grid refinement level, Ncell the total number of cells, and 1/�x number
of cells per equivalent diameter.

L nl Ncell 1/�x Cd

40 8 1.95 × 105 6 2.295
40 9 7.45 × 105 12 1.887
40 10 3.16 × 106 25 1.662
40 11 1.17 × 107 51 1.624
40 12 3.24 × 107 102 1.578

computational domain, the Cartesian octree grid features a variable resolution, with the maximum
level of refinement denoted nl and the smallest grid size determined by: �x = L/2nl .

We report Cd as a function of the grid refinement level nl in Table II. We also provide the
corresponding smallest grid resolution in terms of the number of points per equivalent diameter
1/�x and the total number of cells in the computational domain Ncell. On a uniform grid, Ncell would
be multiplied by 8 when the grid size �x is divided by 2. This is not the case for a Cartesian octree
grid that features variable grid resolution in the flow and dynamically refines the grid in the region
of interest. Thus, Ncell increases at a much lower rate than in a uniform grid. With nl increasing
from 8 to 12 (total number of cells from 1.95 × 105 to 3.24 × 107), Cd decreases monotonically.
From nl = 11 (1/�x = 51), Cd does not vary much with �x and the drag coefficient Cd converges
smoothly to the value 1.578 at nl = 12.

To get a more quantitative picture of grid resolution convergence, we fit the drag coefficient Cd

data in Table II with a function of the form Cd,ref + α�xnp . The intercept Cd,ref, the slope α and
the power np are determined by nonlinear regression. The best fitting curve for the data comes
with α ≈ 7.18 and np ≈ 1.22. Figure 9(a) shows a solid linear correlation between Cd and �x1.22

with a coefficient of determination R2 = 0.997. Subsequently, we take the intercept of the linear
fitting curve with the y axis as the reference value of the drag coefficient, and obtain Cd,ref ≈ 1.55.
Alternatively, we can present results in terms of the (relative) error with respect to the reference

(a) (b)

FIG. 9. Spatial convergence of Cd as a function of the minimal grid size �x for the flow past a pyramid
tetrahedron: simulation results ( ) and fitting curve ( ).
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value Cd,ref ≈ 1.55 defined as

err = |Cd − Cd,ref|
Cd,ref

. (16)

Assuming that err has the form of a power function α̃�xñp , we deduce the convergence rate ñp

through linear regression of log10(err ) versus log10(�x) as shown in Fig. 9(b). Ideally, we should
get np = ñp but the best fitting curve in Fig. 9(b) only gives np � ñp. Considering that the former
regression is nonlinear using the original data set while the latter is a linear regression of log10-
transformed data, the two values np = 1.22 and ñp = 1.18 are deemed to be close enough.

Consequently, our numerical results converge well with increasing grid resolution and the order
of convergence lies between 1.1 and 1.3, in line with earlier findings [50,53]. We also confirm that
selecting nl = 12 as the maximum level of refinement with a corresponding smallest grid resolution
of 1/�x = 102 delivers satisfactory results that are almost insensitive to further grid refinement.
Therefore, we safely use (nl = 12, 1/�x = 102) for all computations in the work. The generated
data set with such a spatial resolution is now physically analyzed in a reliable manner exempt from
major biases stemming from spatial errors in the computations.

2. Time resolution

We choose the advective timescale t∗
ref = D∗

sph/U ∗
0 as the characteristic timescale. In all our

simulations, the time step �t = �t∗/t∗
ref is selected to satisfy the two following constraints:

(1) the dimensionless time step �t is bounded by 10−3 to make the operator splitting error
negligible;

(2) the Courant-Friedrich-Levy condition is satisfied to guarantee the numerical stability of the
explicit treatment of the advection term in the momentum conservation equation.

In the mathematical form, the time step �t is dynamically updated at each discrete time by

�t = min

{
10−3, min

m

0.8�xm

|um|
}
, (17)

where m is an index spanning all grid cells. Most of our simulations run up to at least t = t∗/t∗
ref =

300. Some cases run up to t = 800, especially for 150 � Re � 200 when the lift coefficients rise and
the flow takes a long time to become unsteady. Computing the flow over such long physical times
guarantees the complete establishment of the flow regimes and enables us to perform a reliable
statistical analysis of the time behavior of the flow in unsteady cases.

IV. RESULTS

A. Flow regime transition

We discuss the regime transitions of the flow past a fixed tetrahedron at three angular positions
(TE, TF, TV) with 41 different Re in the range of 100 � Re � 500. Table III shows the compre-
hensive regime map as a function of the Reynolds number Re for the three angular positions of the
tetrahedron. The flow regimes are determined by different aspects of the wake structure using the
λ2 criterion, vorticity and vortex shedding frequency. Cases in the same regime are highlighted in
the same color. Starting from a steady regime at relatively low Re, the flow past a tetrahedron turns
unsteady and starts a hairpin vortex shedding regime before the wake region becomes chaotic at
higher Re. The critical Reynolds numbers Recr for regime transitions vary with the angular position
of the tetrahedron.

In the TE case, we find a new symmetric double-hairpin vortex shedding regime (DHS) that
begins at Re = 190. Unlike the regime transitions of a sphere or a cube, the double-hairpin vortex
shedding appears before the breakup of the planar symmetry in the wake region. For 190 � Re �
280, the double-hairpin vortex shedding (DHS-I) keeps a quasiorthogonal symmetry with respect
to both the x-y plane and the x-z plane. With increasing Re, the vortex structure symmetry with
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TABLE III. Regime map of the flow past a tetrahedron at the three angular positions (A.P.): multiaxis steady
symmetry ( ), planar steady symmetry ( ), periodic vortex shedding ( ), and chaotic vortex shedding
( ).

A.P. Regime I Regime II Regime III Regime IV

TE

TF

TV

respect to the x-z plane breaks down and keeps a planar symmetry with respect to the x-y plane at
290 � Re � 330. We notice that the planar symmetric structure becomes broken and unsteady from
Re = 340. The double-hairpin vortex structure persists in the range 340 � Re � 360 and we denote
it DHS-II regime in Table III. Once the symmetry of the wake structure breaks down, we observe a
quick transition from the DHS regime to a chaotic vortex shedding regime (CS) at Re = 370.

In the TF case, the triplanar steady symmetry (TSS) breaks at a relatively low Re = 130. After a
short range of Re where the wake shows planar steady symmetry (PSS), the hairpin vortex shedding
(HS) begins at Re = 150. Note that the flow still remains steady (OSS) at Re = 150 in the TE case.
This clearly shows the effects of the angular position on regime transitions. Finally, the chaotic
vortex shedding (CS) starts from Re = 240. The TV case exhibits a similar sequence of regimes as
the TF case, except that the Recr are all slightly higher. We take a closer look at these regimes in the
following discussion.

B. Vorticity and wake symmetry

The regime transitions can be well depicted by the three components of the vorticity ω in the
y-z plane. Figures 10–12 all show the vorticity distribution in the wake region of the tetrahedron

FIG. 10. Symmetry of the vortex structure (identified by ωx , ωy, and ωz, positive in red, negative in blue,
and near-zero in white) in the wake region of the TE tetrahedron in the y-z plane located at x = xp + 1.5.
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FIG. 11. Symmetry of the vortex structure (identified by ωx , ωy, and ωz, positive in red, negative in blue,
and near-zero in white) in the wake region of the TF tetrahedron in the y-z plane located at x = xp + 1.5.

in the y-z plane at x = xp + 1.5 (the vorticity distribution is consistent and can also be discerned
at a larger distance in the wake) and depicts the flow structure evolution with increasing Re.
Please note that in the cases where the flow is unsteady, the vorticity distribution shown in the
aforementioned figures corresponds to a snapshot at a time when the flow regime is established. In
the DHS regime, we choose instantaneous fields that distinctly exhibit the double-hairpin structure.
In the chaotic regime, we randomly select a time that properly illustrates the chaotic nature of
the wake structures. To highlight the vortex structures, we observe that the spatial average of all
components of ω is approximately 0 at any time. Consequently, we plot in Fig. 10 in red regions
where ωi,max/100 � ωi � ωi,max, i = x, y, z where ωi,max > 0 is the maximum value of ωi, in blue
regions where ωi,min � ωi � ωi,min/100, i = x, y, z, where ωi,min < 0 is the minimum value of ωi.
Regions in white therefore correspond to the narrow range ωi,min/100 � ωi � ωi,max/100 where we
can consider that ωi ≈ 0.

We present the distribution of the vorticity components in the wake region of a TE tetrahedron
at different Re in Fig. 10. All three vorticity components exhibit a symmetric pattern at low Re,
e.g., at Re = 100. The streamwise component of the vorticity ωx exhibits an orthogonal symmetric
pattern with respect to the y axis and the z axis, which is similar to the orthogonal steady symmetry
regime (OSS) of the flow past a fixed cube [35]. The transverse component ωz has a sandwich
pattern, where the positive and negative layers of ωz appear alternatively and remain symmetric
to the z axis. Similarly, the ωy remains symmetric to the y axis in the steady flow regimes. With
increasing Re, the hairpin vortex shedding appears at 180 < Re < 190, as shown by the streamwise

FIG. 12. Symmetry of the vortex structure (identified by ωx , ωy, and ωz, positive in red, negative in blue,
and near-zero in white) in the wake region of the TV tetrahedron in the y-z plane located at x = xp + 1.5.
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component of the vorticity ωx. At Re = 180, the wake flow structure is steady and orthogonal-
symmetric. Then, we can see two crescent moon structures emerging from the two rear corners
of the edge tetrahedron as shown in ωx at Re = 190. We remind the readers that the rear edge
of TE is parallel to the y axis as shown in Fig. 5. As a direct consequence of the hairpin vortex
shedding, these small crescents, or the legs of the hairpin vortices, move periodically along the y
axis. The crescent structure length increases with Re. In the first stage of the DHS-I regime, the flow
structures in the TE wake region are quasiorthogonal symmetric. The length of the crescent vortex
pairs on the opposite sides of the z axis is slightly different at some specific times and then again
almost equal at some other times. Thus, this orthogonal symmetry is not perfect but still remarkable.
Then in the second stage of the DHS-I regime, the symmetry with respect to the z axis becomes
slightly degenerated and the vortex structure in ω is symmetric with respect to the y axis only at
290 � Re � 330 in Fig. 10. At Re = 340, we see that the vortex structure in ω fluctuates spatially
and the planar symmetry starts to break down while keeping the double-hairpin vortex structure
(DHS-II). The flow past the TE tetrahedron transitions from the double-hairpin vortex shedding
(DHS) to the chaotic vortex shedding (CS) when Re reaches 370. The periodic shedding ends and
the temporal evolution of the ωx flow structure in the y-z plane develops a visible unorganized and
chaotic pattern. Compared to the streamwise component ωx, the transverse components ωy and ωz

seem to show less information about the vortex structures in the steady regime. For example, we
can only observe a planar symmetric pattern on the ωy and ωz plots at Re = 100. Since there are no
hairpin structures in ωz, the transition from OSS to DHS cannot be elucidated on the ωz plot from
Re = 180 to Re = 190. These two parameters are however good markers of the transition from the
DHS regime to the CS regime as they also lose their planar symmetry over this transition.

We present the distribution of the vorticity components in the wake region of a TF tetrahedron
at different Re in Fig. 11. In the steady regime, e.g., Re = 100, the vorticity components are all
symmetric with respect to the z axis and ωx shows a triaxis symmetric pattern where a pair of
opposite-signed vortices ωx originate from each edge of the tetrahedron front surface, leading to six
petals of the same size. With the increase of Re, the ωx triaxis symmetry breaks down to a single-
axis symmetry (or single planar symmetry in three dimensions) as shown at Re = 130. Then for
Re > 150, the planar steady symmetry (PSS) regime transitions to a single-hairpin vortex shedding
(HS) regime. The hairpin vortices behind the TF tetrahedron originate from the rear corner. The
interval of Re over which HS occurs is relatively narrow compared to the TE case. Starting from
Re = 240, the vortex shedding becomes chaotic.

We present the distribution of the vorticity components in the wake region of the TV tetrahedron
at different Re in Fig. 12. While the TV tetrahedron opposes a different front surface geometry to
the flow than that opposed by the TF tetrahedron, the TV tetrahedron exhibits vortex structures that
resemble those of the TF tetrahedron in the particle wake region. Similar to what we observed in
the other two angular positions (TE, TF), the streamwise vorticity component ωx provides more
details about the wake structure symmetry and regime transitions in the flow past a TV tetrahedron.
The steady triaxis symmetry regime exists until Re = 150, and then some small structures appear
on the rim of the ωx plot while keeping a planar symmetry at Re = 160. The HS regime begins at
Re = 190 and the shedding originates from the center of the rear face of the TV tetrahedron. Please
note that the planar symmetry in the particle wake region breaks down immediately after the onset
of the hairpin vortex shedding in the TF and TV cases (e.g., Re = 150 in Fig. 11 and Re = 190 in
Fig. 12). Finally at Re = 270, the CS regime takes place. An example of the vorticity components
in the CS regime is given for the flow at Re = 500.

Figure 13 presents three-dimensional side views of the streamwise vorticity ωx as a function
of Re in the form of isosurfaces of ωx = ±0.03 for the three angular positions of the tetrahedron.
The regime transitions with increasing Re discussed in the above are visually further emphasized.
In the steady regime, the TE tetrahedron has four opposite-signed vortex tails in the wake region
originating from the tetrahedron front edge. With increasing Re, all tails grow longer until Re = 180
when we start to notice some small periodic fluctuations on the long tail surfaces. From Re = 190
in the DHS-I regime, periodic vortices start shedding in the particle wake region. In Fig. 13(a), the
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Re100 Re180 Re190 Re240 Re330 Re340 Re400 Re450 Re500

(a)

Re120 Re140 Re150 Re180 Re230 Re240 Re300 Re450 Re500

(b)

Re160 Re170 Re190 Re200 Re250 Re260 Re300 Re450 Re500

(c)

FIG. 13. Side view of the wake structures identified by the isosurfaces ωx = ±0.03 as a function of Re.
(a) TE tetrahedron, (b) TF tetrahedron, and TV tetrahedron.

alternately shed vortices have the shape of small mushrooms instead of hairpins. We see that these
mushroom vortices remain symmetric with respect to the y axis from Re = 240 to Re = 330 and
then spatially fluctuate in the far wake at Re = 340, indicating the onset of the DHS-II regime.
These vortex structures were already observed in two dimensions in Fig. 10 in the y-z plane behind
the tetrahedron. For Re > 370, the vortex structures progressively stretch when they move farther
and farther away from the particle in the wake.

For the TF and TV tetrahedrons, we notice six tails in the wake region of the particle in the
multiaxis steady regime. The three pairs of opposite-signed vortex tails originate from the three
front edges of the tetrahedron (the three edges of the front face perpendicular to the flow in the
TF case and the three edges originating from the front tip in the TV case), which are bundled,
relatively thin and short compared to that of the TE tetrahedron. Hence, they are more sensitive to
flow fluctuations and their length becomes uneven when Re increases. The HS regime begins and
exhibits periodic alternate vortex shedding in the particle wake at Re = 150 for the TF tetrahedron
and at Re = 190 for the TV tetrahedron. The alternately shed vortices are intertwined and mixed
up during the periodic shedding starting from Re = 180 for the TF tetrahedron. We notice that the
vortex structures in the TV case are slimmer than that in the TF case. The periodic alternate vortex
shedding is still observed at Re = 250 in the TV case. Then the vortex structures eventually become
intertwined as well. In both the TF and TV cases, the angular position in the y-z plane of the shedding
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plane that always contains the x axis and splits the wake into alternating vortices depends on Re and
also slightly oscillates in time around an average angular position. We get a glimpse of this variable
angular position of the shedding plane by comparing Re = 180 and Re = 240 in Fig. 13(b) and
Re = 200 and Re = 260 in Fig. 13(c), where the shedding planes are clearly different in the same
HS regime. The oscillation of the vortex shedding plane directly impacts the transverse force time
evolution. Once the HS regime ends at higher Re, the vortex structures become chaotic.

Generally, vorticity isosurfaces are a suitable tool to visualize the flow structures in the tetrahe-
dron wake region. The streamwise component is clearly able to elucidate the symmetry of the wake
region and the regime transition from steady to unsteady flows. It is less efficient in explaining the
vortex shedding structures, that can be better understood using the λ2 criterion.

C. Loss of stationarity and vortex shedding

Figure 14 presents the evolution of the vortex structures identified by the isosurface λ2 = −1 in
the flow past the TE tetrahedron at different Re. The flow structures are shown in three dimensions
but the view is perpendicular to the x-z plane on the left half and to the x − y plane on the right
half in Fig. 14. Similar to the ωx isosurfaces, the steady flow at low Re = 140 features four straight
vortex tails of the same length in the particle wake region. At Re = 180, some small amplitude
spatial oscillations appear on the vortex tails in the far-wake region, but the flow remains steady.
Then, a clear symmetric DHS pattern manifests in the x-y plane at Re = 190. The unique form of
the DHS is due to the same relative angle between the two faces forming the front surface and the
two faces forming the rear surface of the TE tetrahedron. First separated by the two front faces, the
fluid flow is guided to converge smoothly by the two rear faces. The streamlines are stretched at a
minimal level and thus keep a high level of symmetry in the wake region. Double-hairpin vortices
are generated simultaneously from the two rear corners of the TE tetrahedron, as depicted in the x-y
plane of Fig. 14.

Three remarkable features are noticed for the double-hairpin vortex shedding (DHS-I and DHS-
II) regime:

(1) The double-hairpin vortex presents a high level of symmetry in an unsteady flow. Con-
sidering Re = 240 as an illustrative example, we see that the double-hairpin vortices have a
quasiorthogonal symmetry with respect to the y and z axis. Then, the double vortices become
slightly staggered in the x-y plane at Re = 330 but still keep a planar symmetry in the x-z plane
with respect to the y axis.

(2) Compared to the single vortex shedding in the wake region of a sphere, a cube or the
tetrahedron at the other two angular positions (TF, TV), the dominant frequency of DHS is almost
twice. We see from Fig. 14 that the shedding frequency does not change significantly throughout
the DHS regime.

(3) The hairpin legs always have a leading position compared to the hairpin heads which makes
the double-hairpin structure inverse to the single hairpin structure. A clear comparison can be found
in Figs. 14 and 16. The span of the double-hairpin vortex in the x-y plane is almost twice as large as
that in the x-z plane. We observe a flat vortex shedding mode in the TE case, although the tetrahedron
is a perfectly isometric angular particle.

At Re = 340, the double-hairpin vortex loses its planar symmetry in the x-y plane and the lift
coefficient Cl starts increasing in the DHS-II regime. For larger Re > 370, the flow regime becomes
chaotic and we notice the entanglement of the coherent structures but the trace of the double-hairpin
vortices is still partially observable.

Figures 15 and 16 present the wake structures identified by the isosurface λ2 = −1 in the TF case
and in the TV case, respectively. At low Re < 150, the λ2 criterion shows some vortex fragments in
the wake region. Please note that these two angular positions of the tetrahedron break the orthogonal
symmetry of the flow and thus lead to a nonzero lift force even in the low Re steady regime. The
lengths of the vortex tails become uneven at Re = 130 in the TF case and at Re = 160 in the TV
case. Correspondingly, the lift coefficient further increases due to the contribution of these vortex
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FIG. 14. Wake structures of the flow past a TE, colored by ux (low velocity in blue and high velocity in
red), as a function of Re, identified by the isosurface λ2 = −1; views in the x-z plane (left) and the x-y plane
(right).

tails. From Figs. 15 and 16, the hairpin vortices originate from the rear vertex in the TF case and from
the center of the rear face in the TV case. The HS regime exists only for a relatively narrow interval
of 150 � Re � 230 in the TF case and a very typical hairpin shedding is depicted at Re = 180
in Fig. 15. We see that the hairpin head stays in front of the hairpin legs in the wake, similar to
the flow past a fixe cube or sphere. Three periods of the vortex shedding are visible at Re = 180
within a length of 30 downstream of the TF tetrahedron in Fig. 15 versus six periods in the TE
case at Re = 240 in Fig. 14. The HS regime in the TV case features many similarities with the TF
case as illustrated in Fig. 16, namely similar single-hairpin vortex shedding, comparable shedding
frequency and analogous vortex structures. The single hairpin vortex structure appears to be slightly
slimmer in the TV case than in the TF case, as also observable in Fig. 13, although this difference is
not significant. One plausible explanation is that the recirculation region behind the TV tetrahedron
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FIG. 15. Wake structures of the flow past a TF, colored by ux (low velocity in blue and high velocity in
red), as a function of Re, identified by the isosurface λ2 = −1; views in the x-z plane (left) and the x-y plane
(right).

is narrower in the transverse direction than behind the TF tetrahedron, thus leading to smaller and/or
slimmer vortex structures. From Re = 260 to Re = 270, we cannot notice clearly the onset of the
CS regime from the λ2 isosurface in the TV case. Quantitative measurements of the transverse force
and shedding frequency in the DHS and HS regimes discussed in the following discussion may help
to more precisely determine when the transition occurs. In the CS regime, the hairpin structures
progressively degenerate as Re increases, and additional small coherent structures appear. In the
TF case, the small coherent structures entangle with each other more and more as Re increases
until that the large hairpin vortex disappears at Re = 420 in Fig. 15. However, the hairpin vortex
structure (with a dominant frequency) remains observable until Re = 500 in Fig. 16 in the TV case,
and the additional small coherent vortex structures generated during the vortex shedding are less
easily identified in the TV case than in the TF case. We postulate that this is a footprint of the
stabilization effects of the front edges of the TV tetrahedron that enhance the flow steadiness.
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FIG. 16. Wake structures of the flow past a TV, colored by ux (low velocity in blue and high velocity in
red), as a function of Re, identified by the isosurface λ2 = −1; views in the x-z plane (left) and the x-y plane
(right).

Comparing Figs. 14–16, the λ2 criterion clearly identifies the vortex flow structures, in particular
in the unsteady regimes, and helps to elucidate the strong dependence of the tetrahedron wake region
on the tetrahedron angular position. The symmetric DHS is typically original and closely related to
the unique angular position of the TE tetrahedron. Let us conclude this section by pointing out that
we strongly believe that the observed symmetric DHS regime in the wake of the TE tetrahedron is
not a numerical artifact. In particular, the somewhat unexpected sustained symmetry at such large
Re of the vortex shedding mechanism is a natural feature of the flow. In fact, looking more closely
at Fig. 14, we notice that the octree grid is never perfectly symmetric with respect to the x-y plane
and the x-z plane, and therefore this lack of symmetry creates enough numerical disturbance for
any instability to grow and to break the flow symmetry if the flow was not symmetric. The fact
that the flow remains symmetric even when computed on a nonsymmetric grid constitutes a strong
evidence that the flow is physically symmetric in this Re range. To further illustrate the vortex
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FIG. 17. Symmetric double-hairpin vortex shedding process within a period in the flow at Re = 200 past a
TE; (R1) isosurface of λ2 = −1 in the x-y plane at z = zp colored by ux; (R2) LIC of the velocity field in the x-y
plane at z = zp, from blue to red denoting the low to high flow velocity; (R3): streamwise vorticity (positive in
red, negative in blue, and ωx ≈ 0 in white) in the particle wake region in the y-z plane at x = xp + 1.5, indicated
in a white horizontal line in the row R2.

structures and provide a more comprehensive understanding of the wake dynamics, we include
the side views of the vortices in Appendix C. The visualization in Fig. 28 offers a fully three-
dimensional representation of the vortex structures and their spatial distribution, complementing
the information presented in the main text.

D. Double-hairpin vortex shedding

Figure 17 depicts the dynamic double-hairpin vortex shedding process in the wake region of
the TE tetrahedron at Re = 200 [58]. The first row presents the double-hairpin vortex structures
identified by the isosurface λ2 = −1 within a single shedding period in the x − y plane. The double-
hairpin structure identified by the isosurface λ2 = −1 is not perfectly symmetric with respect to x
axis at Re = 200, but this slight imperfection of the vortex structure symmetry does not lead to any
significant lift force exerted on the TE tetrahedron. The flow has a quasiorthogonal symmetry and
the time average lift coefficient Cl remains close to zero at Re = 200.

Line integral convolution (LIC) is a technique for visualizing the fluid velocity field. Instead of
adapting the start and end of streamlines to a specific velocity field, the LIC conveys all structural
features of the flow, such as velocity gradient, vortices, and the location of critical points. Row
R2 presents the LIC of the flow field colored by the velocity magnitude in the x-y plane. We note
that the U-shape recirculation region behind the TE tetrahedron features two long side arms. A
pair of hairpin vortex structures is generated simultaneously from the two back corners of the TE
tetrahedron (R3, t2). They are transported downstream within the recirculation arms and swell by
sucking fluid from the outer flow. The volume of the vortices increases at a similar rate such that
they keep symmetric to the streamwise central line, i.e., the x axis. However, the vortex pair can
hardly grow very large since it can easily detach from the thin arms of the U-shape recirculation
region. The time for the two vortices to absorb fluid from the surrounding bulk flow is limited, hence
the high shedding frequency. On the snapshot (R2, t6), when a new vortex pair emerges in the middle
section, the previous vortex pair is still attached to the particle wake through the two arms of the
U-shape recirculation region.
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FIG. 18. Countours of ux in the x-y and x-z planes to identify the recirculation region (blue) in the flow past
the TE tetrahedron at Re = 200.

We plot over the row R3 the streamwise vorticity ωx = ±0.03 in the y-z plane at x = xp + 1.5
in the particle wake at the different discrete times ti, i = 0, . . . , 7. When a pair of vortices moves
downstream of the TE tetrahedron, the vortices display two symmetric crescent vortex structures
that attest of the flow symmetry with respect to the y axis during the double-hairpin vortex shedding
in a clearer fashion than the λ2 criterion. The two vortices emerge from the two ends of the vorticity
plot along the y axis. The size of the vortex pair first increases while staying on the two ends of
the plot (t0–t3). From row R2, we see that this corresponds to the transport of the vortex pair within
the two side arms of the recirculation region. Then the size of the crescents shrinks while moving
to the center (t4–t7), as the vortex pair moves farther downstream and detaches from the particle
close wake. Once again, the TE tetrahedron is the only angular position in which we observe highly
symmetric vortex structures in unsteady flows.

We present in Fig. 18 the recirculation region (blue) of the flow at Re = 200 past the TE
tetrahedron, colored by the streamwise flow velocity ux, identified in the x-y plane at z = zp and
in the x-z plane at y = yp. We select the two times t4 and t7 from Fig. 17. The view in the x-y plane
in Fig. 18 illustrates very visibly the U-shape recirculation region and the double-hairpin vortex
within the two side arms. In contrast, the recirculation region is exceedingly slim and short in the
x-z plane in Fig. 18. The two rear faces guide the flow to converge smoothly and narrow down
the region for possible backflows. The short blue tail in the x-z plane corresponds to the middle
section of the recirculation in the x-y plane. The flow rectification by the two rear faces pushes the
fluid to the middle section, increases the local fluid velocity and reshapes the recirculation region.
Close to the two rear tips, the flow-rear surface interaction time is shorter and thus the rectification
effect correspondingly fades. Consequently, the two side arms are longer than the middle section in
the x-y plane leading to the U-shape recirculation and the unique double-hairpin vortex shedding.

Another consequence of the U-shape recirculation is the reverse double hairpin structure with
respect to the streamwise direction. During the formation of the double-hairpin vortex, the hairpin
head is generated in the two side arms while the hairpin legs are formed in the middle section of the
U-shape recirculation region. From Figs. 17 and 18, we know that the velocity in the two side arms is
lower than that in the middle section. Compared to the hairpin heads, the hairpin legs are transported
at a higher velocity within the U-shape recirculation leading to the reverse hairpin structure in
the DHS regime. Once leaving the U-shape recirculation region, the double-hairpin structure is
transported downstream at a similar velocity. Thus, in Fig. 14, the hairpin heads are always located
behind the hairpin legs in the TE tetrahedron wake flow.

E. Hydrodynamic forces

In this subsection we examine the time average and time evolution of the drag force along the
streamwise direction and the lift force in the transverse plane exerted on the tetrahedron as a function
of its angular position.

064304-22



DYNAMICS, WAKES, AND REGIME TRANSITIONS …

FIG. 19. Time-averaged Cd as a function of Re of the flow past a tetrahedron at the three angular positions:
TE ( , , ), TF ( ), and TV ( ).

1. Drag and lift coefficients

We plot in Fig. 19 the time-averaged drag coefficient Cd as a function of Re for the three angular
positions. In general, Cd decreases with increasing Re but the angular position has a strong impact
on the magnitude of Cd and the functional form of the dependence on Re. The regime transitions
can also be perceived in the drag coefficient evolution, although in a manner less clear than in the
vortex structure visualization. Figure 19 shows that Cd,F > Cd,E > Cd,V for any Re ∈ [100, 500].
Note that the tetrahedron has the same streamwise cross-sectional surface area in the TF case and
in the TV case. The difference in Cd therefore mainly comes from the particle angular position, i.e.,
the difference of the front and rear surface angularity between the TF case and the TV case. It is also
noticeable in Fig. 19 that the effect of particle angular position on Cd is more marked at high Re.
For instance, the ratio of the drag coefficients Cd,F /Cd,V increases from 1.22 at Re = 100 to 1.91 at
Re = 500. As expected, the three front edges and three front surfaces of the TV tetrahedron reduce
significantly the exerted drag force, especially in the CS regime.

Regime transitions can be somewhat discerned from the slope variation of the Cd (Re) plots in
Fig. 19. In the TE case, we notice three different Re subintervals. From Re = 100 to Re = 180
corresponding to the OSS regime and plotted with , Cd decreases with a high slope. Then the
DHS regime starts at Re = 190 and lasts until Re = 360, and the slope of the Cd (Re) curve plotted
with slightly reduces. The CS regime starts when Re � 370 and the slope of the Cd (Re) plotted
with reduces even more. We observe a similar tendency in the TV case. The slope of the Cd (Re)
curve is the same in the PSS regime and the HS regime, spanning the range Re = 160 to Re = 260,
and is smaller than that in the TSS regime 100 � Re � 150 and larger than that in the CS regime
Re � 270. In the TF case, the transitions from the TSS regime to the PSS regime, from the PSS
regime to the HS regime and eventually from the HS regime to the CS regime all occur at a smaller
Re than in the TV case. However, the TF tetrahedron exhibits a unique feature on the Cd (Re) curve
in the CS regime. In fact, when the HS regime breaks down, Cd,F stops decreasing with Re from
Re = 240 and remains approximately constant throughout the CS regime. The TF tetrahedron is the
angular position that leads to the largest Cd and is also the stable angular position of a freely falling
tetrahedron [30,37]. In particular, the trend of our computed Cd (Re) in the TE case is perfectly
in line with the experimental data reported in [37]. The widely used correlation proposed in [37]
predicts a value of Cd ≈ 2 when 100 � Re � 500 in the case of the freely settling tetrahedron. This
value is slightly larger than our computed value of ≈1.7 in the TF case. This difference is fully
understandable. In fact, the face down being the stable position of the freely falling tetrahedron is
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FIG. 20. Time-averaged Cl as a function of Re of the flow past a tetrahedron at the three angular positions:
TE ( ), TF ( ) and TV ( ): multiaxis steady symmetry ( ), planar steady symmetry ( ), periodic vortex
shedding ( ), and chaotic vortex shedding ( ); the standard deviation σ (Cl ) is represented by the shaded
light colored area. (a) TE, (b) TF, and (c) TV.

true on average in time only and the freely falling tetrahedron also experiences transverse motion
[30] that slows it down, thus contributing to a slower settling velocity for the same driving force
(i.e., net weight) and therefore a higher Cd compared to that in the case the tetrahedron is forced to
settle with a fixed face down angular position, which would be the reverse problem of the flow past
a fixed TE tetrahedron studied here.

We plot in Fig. 20 the time-averaged lift coefficient Cl as a function of Re at the three angular
positions TE/TF/TV in different flow regimes. In the TE case, Cl remains close to zero in the OSS
and DHS-I regimes for Re � 300, before increasing in the DHS-II and CS regimes. In the TF and
TV cases, the evolution of Cl exhibits clear regime transitions. In the TSS regime, Cl is close to
zero, then increases in the PSS regime and reaches a maximum value during the transition from the
PSS regime to the HS regime, as shown in Figs. 20(b) and 20(c). It is noteworthy that the maximum
value of Cl in the TF case is almost three times higher than that in the TV case, and that Cl in the TF
case is generally higher than that in the TE and TV cases for a given Re. In general, the symmetry
breakup of the wake flow is characterized by an increase in Cl . Specifically, in the DHS regime, Cl

increases with increasing Re, while in the HS regime, Cl decreases with increasing Re. At a higher
Re, the time evolution of Cl exhibits a large standard deviation in all three cases in the CS regime, as
shown in Fig. 20. Note that the standard deviation σ (Cl ) is represented by the shaded light colored
area. For further insight, we refer the reader to our previous study [53] where we investigated the
evolution of the time-averaged lift coefficient Cl of Platonic polyhedrons at low Re � 200.

Figures 21(a) and 21(b) present the time evolution of Cd and Cl,z in the TE case at Re = 330
and Re = 340. After the breakup of the planar symmetry in the DHS-I regime, Cl,z increases
noticeably at Re = 340 in Fig. 21(b) and indicates the onset of the DHS-II regime. Meanwhile,
Cl,y remains small due to the symmetric DHS in the x-y plane. It is hard if not impossible to discern
this regime transition in the time evolution of Cd in Fig. 21(a). We plot in Figs. 21(c) and 21(d)
the maximal/minimal Cl,y and Cl,z as a function of Re. At Re = 290, the magnitude of Cl,y starts to
increase, indicating the transition from the quasiorthogonal symmetric shedding mode to the planar
symmetric shedding mode. This mode change in the DHS-I regime does not affect Cl,z. Please note
the factor of 10−2 at the top of the vertical axis in Fig. 21(c) such that the values of Cl,y, while
nonzero, remain very small when Re � 290. Then, the breakup of the planar symmetry (onset of
DHS-II regime) at Re = 340 is well captured by the rise of Cl,z at Re = 340 in Fig. 21(d). The z axis
is the axis perpendicular to the hairpin vortex shedding plane, therefore Cl,z is significantly larger
than Cl,y. The maximal/minimal values of Cl,z increase in magnitude with Re in the DHS-II regime
and then remain approximately constant in the CS regime for Re � 370.

Figure 22 presents the time evolution of Cl,y in the TF case at various Re. Since the vortex
shedding plane is not aligned with either the x-y plane or the x-z plane, the time evolution of Cl,y
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(a) (b)

(c) (d)

FIG. 21. Flow past the TE tetrahedron: (a), (b) time evolution of Cd and Cl,z at Re = 330 ( ) and

Re = 340 ( ), and (c), (d) maximal lift coefficient ( ) and minimal lift coefficient ( ) (Cl,y and Cl,z) as a
function of Re.

and the time evolution of Cl,z resemble each other and we choose to discuss Cl,y as representative.
In general, the time required to establish the flow regime decreases with Re, e.g., the CS regime is
established faster than the PSS regime. However, the HS regime requires a particularly long time to

(a) (b)

FIG. 22. Time evolution of Cl,y in the flow past the TF tetrahedron at Re = 110 ( ), Re = 120 ( ),

Re = 130 ( ), Re = 140 ( ), Re = 150 ( ), Re = 160 ( ), Re = 230 ( ), and Re = 240
( ).
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FIG. 23. Time evolution of Cl,y in the flow past the TV tetrahedron at Re = 140 ( ), Re = 150 ( ),

Re = 160 ( ), Re = 170 ( ), Re = 180 ( ), Re = 190 ( ), Re = 260 ( ), and Re = 270
( ).

establish when Re is slightly above the transition to the HS regime. As an illustration, Fig. 22 shows
that the flow at Re = 140 needs about t = 300 to establish while it needs t = 400 at Re = 160 to
establish the HS regime. In the steady regime, Cl,y increases and reaches a nonzero stable value at
Re = 130 and Re = 140. The onset of the HS regime occurs between Re = 140 and Re = 150 in
Fig. 22(a). At Re = 160, Cl,y decreases to −0.18 in the early transient flow, then oscillates while its
time average value converges back to zero. When Re > 160, Cl,y oscillates around a time average
value close to zero. Figure 22(b) presents the time evolution of Cl,y at Re = 230 and Re = 240
corresponding to the transition from the HS regime to the CS regime. Even though the oscillation
amplitude of Cl,y is pretty similar at Re = 230 and Re = 240, Cl,y has a single dominant oscillation
frequency at Re = 230 while a secondary oscillation frequency emerges at Re = 240 at the start of
the CS regime.

Finally, Fig. 23 presents the time evolution of Cl,y in the TV case at various Re. The TF and
TV angular positions break the orthogonal symmetry of the flow and thus produce a nonzero lift
coefficient even in the low Re steady-state regime. Indeed, Cl,y is small but not zero at Re = 140 and
Re = 150. At the start of the PSS regime, Cl,y increases to a stable value ≈2.6 × 10−2, ≈4.9 × 10−2,
and ≈3.7 × 10−2 at Re = 160, Re = 170, and Re = 180, respectively. The onset of the HS regime
at Re = 190 translates into rather large amplitude oscillation of Cl,y around a nonzero time average
value of ≈3.7 × 10−2. The transition from the periodic HS regime to the CS regime occurs between
Re = 260 and Re = 270. Similarly to the TF case, Cl,y exhibits a single dominant oscillation
frequency in the HS regime at Re = 260 while a secondary oscillation frequency manifests at
Re = 270 in Fig. 23(b), indicating the onset of the CS regime. We acknowledge that the emergence
of the secondary oscillation frequency is not always overly obvious in the time evolution of the
lift coefficients. The role played by the vortex shedding frequency in the determination of the
regime transitions is discussed in details in Sec. IV F. Overall, the lift coefficient magnitude never
exceeds 10% of the drag coefficient Cd in the Re range and the three tetrahedron angular positions
investigated in this study.

2. Vortex shedding patterns

To further investigate the lift force time evolution, we plot Cl,y-Cl,z phase diagrams in Fig. 24.
These phase diagrams provide additional comprehension of the time evolution of the transverse
forces and the associated vortex shedding pattern in the wake of the tetrahedron at the three angular
positions. From purple to red, the rainbow color of the plots indicates time increase. In the steady
regime, both Cl,y and Cl,z are very small due to the multiaxis symmetry of the flow in the OSS
and TSS regimes. At a higher Re, the flow becomes unsteady and more complex patterns are
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FIG. 24. Cl,y-Cl,z phase diagrams at the three angular positions. Time evolution shown in rainbow colors
from purple (start time) to red (end time).

depicted in Fig. 24. In the TE case, from Figs. 24(a) and 24(b), the onset of the DHS-I regime
does not significantly change the magnitude of Cl,y and Cl,z. This holds for 190 � Re � 280 since
the wake flow features a quasiorthogonal symmetry. From Re = 290 to Re = 330, the second stage
of the DHS-I regime features a planar symmetry only in the wake flow and Cl,y slightly increases.
Figures 24(c) and 24(d) plots the lift coefficients evolution before and after the breakup of the planar
symmetry, i.e., the beginning of the DHS-II regime. At Re = 340, the magnitude of Cl,z becomes
markedly larger than that of Cl,y. While both Cl,y and Cl,z oscillate around zero in Fig. 24(d), the
oscillation amplitude of Cl,z is larger than that of Cl,y.

The lift coefficients behave differently in the TF and TV cases. In the PSS regime, Cl,y and
Cl,z reach stable values after a long enough simulation time as shown in Figs. 24(e) and 24(i). In
the steady state, the lift curve stays in the red dot region and no longer moves. With the onset
of HS, the lift coefficients start to oscillate around nonzero time average values. For instance, the
path is oval in Fig. 24(f) for the TF tetrahedron and shaped as a tilted ∞ in Fig. 24(j) for the TV
tetrahedron. Different from the flow past a sphere or a cube, the shedding plane is not stationary
and rotates around the x axis in time and with the increase of Re for both the TF tetrahedron and
the TV tetrahedron. In the TF case at Re = 230 in Fig. 24(g), the oscillation amplitude of Cl,y is
larger than that of Cl,z. In the TV at Re = 200 in Fig. 24(k), the shedding plane oscillates around
the x axis with a maximal rotation angle of about π/2 and an oscillation period of about t = 100.
Considering the triangular shape of the cross-sectional surface area in the TF vase and the TV
case, the wake flow from the three cross-sectional edges converges at the rear vertex or the rear
face, respectively. The streams coming from three directions are hard to stabilize at high Re and
conversely promote a rotating vortex shedding. In the late stage of the HS regime, the rotation of
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FIG. 25. Dimensionless vortex shedding frequency f spectrum in the periodic HS/DHS regime and the CS
regime. I denotes the dimensionless intensity of the frequency obtained through FFT.

the vortex shedding plane becomes less organized and the vortex shedding plane angular position
changes intermittently in time. This lack of organization increases even more as soon the CS regime
starts at Re = 270 as shown in Fig. 24(m). Once the CS regime starts, the flow structures in the
particle wake region become more cluttered. At Re = 240 in the TF case, the lift coefficients no
longer have any privileged direction in the phase diagram in Fig. 24(h). Similarly, in the TV case,
we note in Fig. 24(m) that the time evolution of Cl,y and Cl,z becomes highly disorganized. The
phase diagram in Fig. 24(m) resembles that in Fig. 24(l). In the CS regime, Cl,y and Cl,z have a
similar oscillation amplitude.

F. Vortex shedding frequency

We now examine the frequency of the hairpin vortex detachment from the particle rear surface.
In the flow past a sphere or a cube, the dominant frequency of the vortex shedding is reported to be
around St = 0.1 [17,35].

We plot in Fig. 25 the frequency spectrum ( f = f ∗D∗
sph/U ∗

0 ) of the time evolution of Cd in the
TE case and of Cl,y (or Cl,z) in the TF and TV cases. These frequency spectra are computed by
classical fast Fourier transform (FFT). To obtain an accurate and representative estimation of the
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FIG. 26. St as a function of Re at the three angular positions: TE ( ), TF ( ), and TV ( ).

dominant frequency, we choose a number of periods in the time evolution of the flow once vortex
shedding regime is well established. Please note that in the CS regime, the dominant frequency
slightly varies with the time interval chosen in the FFT computations since the shedding is highly
disorganized. Consequently, we report approximate values only of the dominant frequency (and St)
in the CS regime. Comparing Figs. 25(a), 25(d), and 25(g), we note that the dominant frequency of
the DHS regime past a TE tetrahedron is twice ( f ≈ 0.2) that in the HS regime past a TF tetrahedron
and a TV tetrahedron ( f ≈ 0.1). At the end of the DHS-II regime at Re = 360 in the TE case,
Fig. 25(b) exhibits several low-frequency peaks while the dominant frequency is still about f ≈
0.23. Similarly, at the end of the HS regime (Re = 230 in the TF case and Re = 260 in the TV
case), the dominant frequency remains f ≈ 0.1. Generally, the dominant frequency remains almost
constant throughout the periodic DHS and HS regimes. In the CS regime, the dominant shedding
frequency seems to become lower than 0.2 at Re = 370 in the TE case in Fig. 25(c). In the TF
and TV cases, the dominant frequency remains close to 0.1, but its intensity decreases and various
secondary peaks arise as depicted in Figs. 25(f) and 25(i). The appearance of a secondary low-
frequency peak is observed in the late stage of the periodic vortex shedding regime, specifically
in the DHS regime for the TE case and the HS regime for the TF and TV cases. As seen from
Figs. 25(b), 25(e), and 25(h), in the periodic shedding regime, the intensity of the secondary peak
is lower compared to the dominant peak. This secondary peak is associated with the low-frequency
dynamics of the wake vortices, which is also reflected in the temporal evolution of the lift coefficient
Cl , as shown in Fig. 22(a). The evolution of the low-frequency peak with Re indicates a gradual
transition from the periodic shedding regime to weak turbulence. This observation is consistent with
the findings of Meng et al. [35], who also reported the presence of physically relevant low-frequency
peaks in the flow past a fixed cube and divided the HS regime into two subregimes accordingly.

Figure 26 shows the evolution of the Strouhal number St as a function of Re for the three angular
positions for 150 � Re � 400, i.e., we mainly focus on the hairpin vortex shedding regime and the
early stage of the CS regime. In the early stage of the CS regime, we count the number of hairpin
vortices detached from the particle over a given time interval to obtain an approximative value of St,
considering that the shedding frequency of the main hairpin structure may not be dominant in the
CS regime. Please note that such a computation in the CS regime leads to slightly different value of
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FIG. 27. Recirculation region length Lr as a function of Re of flow past a tetrahedron at the three angular
positions: TE ( ), TF ( ), TV ( ). Inset: 3D U-shape recirculation region (red) and ux = 0.5 isosurface (blue)
in the wake of the TE at Re = 200.

St than that given by simply identifying the highest intensity frequency mode in the FFT computed
frequency spectra presented in Fig. 25.

In the TF and TV cases, the HS regime starts at Re = 150 and Re = 190, respectively and St
remains approximately constant around 0.1 up to Re = 400. This value was also reported by [35]
in the unsteady flow past a fixed cube. When Re increases, the flow transitions to the CS regime,
where multiple high-intensity frequencies arise and vary in time. In the CS regime, St shows a
very mild tendency to increase with Re in the TV case, while it first slightly increases with Re for
240 � Re � 280 and then slightly decreases for Re � 290 in the TF case. Overall, in the TF and
TV cases, the variation of St with Re is not significant and the dominant dimensionless frequency
remains close to St = 0.1.

In the TE case, the DHS regime starts at Re = 190 with St ≈ 0.2, indicating again that the DHS
regime is twice faster than the HS regime. St slowly increases with Re from Re = 190 to Re = 400.
In the DHS-I and DHS-II regimes where vortex shedding is easily identified, the highest intensity
frequency mode in the FFT computed frequency spectra method and the vortex shedding counting
method deliver similar values of St. Indeed, the increase of St with Re is also noticeable when we
compare Fig. 25(a) and Fig. 25(b). However, in the CS regime, the value of St delivered by the
vortex shedding counting method does not correspond to the highest intensity frequency mode in
Fig. 25(c). This observation attests again of the difficulty of properly estimating the vortex shedding
frequency in the CS regime. Nevertheless, as discussed in Sec. IV D, the high shedding frequency
of the TE tetrahedron is due to the U -shape recirculation region. The two side arms of the U -shape
recirculation region have a limited volume that restricts the time available to the double-hairpin
vortices to grow and promotes vortex detachment. At Re � 400, the hairpin vortex structures are
too disorganized to be properly identified and the computation of St may not be valid anymore.

G. Length of the recirculation region

We plot in Fig. 27 the time average dimensionless length of the recirculation region Lr = L∗
r /D∗

sph
as a function Re for the three angular positions. Different from the convex oval shape in a streamwise
cut plane of the recirculation region behind a sphere or a cube, the TE tetrahedron exhibits a U-shape
recirculation region, where the two sides are longer than the middle section. For consistency, Lr

denotes the length of the longest section in the recirculation region. In Fig. 27, we note that Lr
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TABLE IV. Symmetry and dynamic features of flow with different Re past a tetrahedron at three angular
positions (TE, TF, TV): multiaxis steady symmetry ( ), planar steady symmetry ( ), periodic vortex
shedding ( ), and chaotic vortex shedding ( ).

A.P. State Symmetry Dynamic features

Edge

Face

Vertex

first increases with Re for 100 � Re � 330, i.e., in the OSS and DHS-I regimes, and then remains
constant about 2.3 for Re � 340, i.e., in the DHS-II and CS regimes. With increasing Re, the middle
section of the recirculation region shrinks gradually and disappears intermittently. For Re � 250,
the recirculation region splits in two, and the middle section can hardly be seen anymore.

In the TF and TV cases, the evolution of Lr with Re is very similar. Lr increases with Re in
the steady regimes and then remains constant in the unsteady HS and CS regimes. We report that
Lr ≈ 1.7 in the TF case and Lr ≈ 2.0 in the TV case. We also note that while the recirculation
region is longer in the streamwise direction in the TV case than in the TF case, the recirculation
region is wider in the transverse direction in the TF case than in the TV case. In the HS regime, the
detachment of the vortices occurs at the rear side of the oval recirculation region in the TF and TV
cases. In contrast, we see from Fig. 17 that the detachment of the double-hairpin vortices in the TE
case takes place in the two side arms. As a result, Lr provides a rough estimate of the location of
vortex detachment in unsteady flows.

V. SUMMARY AND CONCLUSION

We provided a comprehensive picture of the different regimes of the flow past a fixed regular
tetrahedron at three angular positions: face facing the flow (TF), edge facing the flow (TE), and
vertex facing the flow (TV), and at Reynolds number 100 � Re � 500. We analyzed and determined
the two well-known regime transitions: loss of symmetry of the wake and loss of stationarity of
the flow as a function of Re. The symmetry characteristics and dynamic features of the flow in
different regimes are summarized in Table IV. This work is a step towards understanding the effects
of particle angularity on the flow regime transitions.

We showed that regime transitions are very sensitive to the tetrahedron angular position. In the
steady regime, several pairs of opposite-signed vortices appear in the wake region and the number
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of pairs is closely related to the geometry of the particle front surface. The vortices have leglike tails
expanding with Re into the wake region and then become perturbed and fluctuate. The multiaxis
symmetry breaks into a planar symmetry for all three angular positions. In the particle wake region,
the recirculation length Lr increases with Re in steady flows and then remains constant in unsteady
flows. The TE tetrahedron features a nonconvex U-shape recirculation region that differs from the
oval recirculation region of the other two angular positions. We presented a detailed analysis of the
vortex structure and the forces exerted on the tetrahedron. We also estimated the critical Reynolds
numbers corresponding to the regime transitions. We identified a new shedding mode in the flow
past the TE tetrahedron that we called symmetric double-hairpin vortex shedding. Three remarkable
features are noticed in the double-hairpin vortex shedding:

(i) the high level of geometric symmetry of the TE tetrahedron (orthogonal symmetry) leads to
a high level of symmetry in the flow even when the flow is unsteady (quasiorthogonal symmetry or
planar symmetry);

(ii) a dominant frequency (St ≈ 0.2) twice larger than that in single-hairpin vortex shedding
(St ≈ 0.1) observed in the flow past a sphere, a cube or a tetrahedron at other two angular positions;

(iii) a reverse structure of the double-hairpin vortices compared to the single-hairpin vortices,
i.e., the double-hairpin legs have a leading position with respect to the hairpin heads in the
downstream flow.

The formation of the double-hairpin vortex shedding is due to the unique U-shape recirculation
region in the wake of the TE tetrahedron. The recirculation region shape is a reflection of the particle
angularity and angular position in the fluid flow, and determines the vortex structures and their
shedding properties. The single-vortex structures in the TF and TV cases are very similar to those
found in the flow past a sphere or a cube, except that they are slightly slimmer in the TV case.
We also noticed that the plane of the periodic single-hairpin vortex shedding is time-dependent
and oscillates around the x axis. In the chaotic regime, the hairpin structures become increasingly
disorganized and additional small coherent structures manifest in the wake at all angular positions.
The fact that the front surface of the TF tetrahedron is perpendicular to the streamwise direction
contributes to the massive generation of small coherent vortex structures and this generation is
more evident (or at least occurs at a smaller Re) than in the other two angular positions. The drag
coefficient Cd of the tetrahedron at all three angular positions decreases with Re. For a given Re,
Cd of the TF tetrahedron is larger than Cd of the TE tetrahedron, that is itself larger than Cd of the
TV tetrahedron. The lift coefficients Cl,y and Cl,z reach their highest values when Re belongs to
an interval of values that corresponds to the end of the steady regime and the start of the unsteady
regime. In the chaotic vortex shedding regime, the time average lift coefficients are nearly zero at
all three angular positions. Usually, the maximal magnitude of the lift coefficient amounts less than
10% of the drag coefficient Cd .

Among the various methods we used to investigate the regime transitions, the streamwise
component of vorticity ωx and the lift coefficients (Cl,y or Cl,z) are suitable for the characterization
of the steady flows while the λ2 criterion, the cross-sectional components of vorticity (ωy or ωz),
and the dominant frequency St provide more insight into the vortex structures of the unsteady flows.
We combined multiple methods to determine the critical Reynolds number Recr corresponding to
the regime transitions, but we were careful in providing estimates of Recr with an error bar of ±5
given the limited data set we generated through highly resolved numerical simulations. Additional
simulations at Re around the estimated Recr, e.g., with a step of 2 in Re instead of a step of 10,
might help to estimate the Recr with a higher accuracy, although we do not believe that doing so will
fundamentally improve our understanding of the flow dynamics.

Our study highlighted the significant effects of the particle shape and particle angular position
on the flow dynamics and regime transitions. These regimes, particularly the double-hairpin vortex
shedding regime for the TE tetrahedron, are markedly different from those observed in the flow
past a sphere. The particle angular position has two observable effects on the regime transition:
(i) the sharp edges and inclined faces on the particle front surface generate various patterns of
vorticity distribution. The symmetry breakup of the wake flow structures is directly induced by the
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interaction of vorticity structures, such as vorticity merging. Consequently, particles with different
angular position have different critical Reynolds numbers Recr of symmetry breakup from the
OSS/TSS regime to the PSS regime; (ii) the angular position of the particle affects the size and
shape of the recirculation region (e.g., U -shape in the TE case and oval shape in the TF case)
that in turn play a crucial role in the onset of vortex shedding and lead to different Recr values
from the PSS regime to the HS/DHS regime and eventually from the HS/DHS regime to the CS
regime.

We also acknowledge that the flow past a stationary particle is a simplified flow configuration,
yet it reveals highly intricate flow dynamics. In reality, particles are most of the time freely moving
in either an otherwise quiescent flow (density difference driven settling) or in an already forced
flow (e.g., particle transport in a pipeline or fluidized bed). We already investigated configurations
involving angular freely moving particles [27,30,31] but only selected specific shapes. Platonic
polyhedrons offer a way to investigate the effect of angularity in a controlled manner, i.e., the
sphericity of the angular Platonic polyhedron scales with its number of faces (and a larger number
of faces accordingly decreases the sharpness of edges) and the particle remains isometric. We
already examined the effect of the number of faces on the drag and lift coefficients in the (mostly)
steady flow past a Platonic polyhedron in a previous work [53]. One extension of the present
work is to extend [53] to unsteady flows and investigate regimes transitions as a function of the
number of faces of a Platonic polyhedron, both in the simple case of the flow past a stationary
Platonic polyhedron and in the more exciting case of a freely settling/rising Platonic polyhedron.
Another future research avenue involves conducting a proper orthogonal decomposition (POD)
or dynamic mode decomposition (DMD) analysis of the vortex shedding behind a tetrahedron at
various angular positions to better understand the impact of the sharp edges on the flow. It is
also of interest to explore the effect of particle angularity (e.g., via Platonic polyhedrons) on the
flow modes. Such additional studies will contribute to figuring out whether a smooth evolution of
the flow dynamics exists from a tetrahedron to a sphere through increasing the number of faces
of the Platonic polyhedron, with the sphere being the asymptotic case featuring an infinity of
faces.
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APPENDIX A: DISTRIBUTED LAGRANGE MULTIPLIER/FICTITIOUS
DOMAIN (DLM/FD) METHOD

The DLM/FD method relies on deriving a combined equation of motion for the fluid-particle
mixture obtained by combining the weak formulation of the fluid motion equation and that of the
rigid particle. First, the weak formulation for the fluid domain � \ P is obtained by enforcing the
rigid body constraint (here the tetrahedron is stationary) on the particle surface ∂P. Then the for-
mulation is extended to the computational domain � by imposing the rigid body motion constraint
in the whole particle P. Associating the weak formulation of the fluid motion equation with that
of the rigid particle, we get the combined weak equation of motion for the entire domain �, for
the fluid-particle mixture. Finally, Lagrange multipliers λ∗ are used to relax the rigid-body motion
constraint in the particle P.

We introduce the following functional spaces:

W� = {v∗ ∈ H1(�)3|v∗ = (U ∗
0 , 0, 0) on � \ right}, (A1)
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W0 = {v∗ ∈ H1(�)3|v∗ = (0, 0, 0) on � \ right}, (A2)

L2
0 = {q∗ ∈ L2(�)3|

∫
�

q∗dx = 0}, (A3)

� = H1(P)3, (A4)

and solve in the case of a single stationary particle P the following constrained optimization
problem: find u∗ ∈ W� , p∗ ∈ L2

0, and λ∗ ∈ � such that:
(1) Combined equations of motion∫

�

ρ∗
f

(
∂u∗

∂t∗ + (u∗ · ∇)u∗
)

· v∗dx −
∫

�

p∗∇ · v∗dx +
∫

�

μ∗
f ∇u∗ : ∇v∗dx = −

∫
P
λ∗ · v∗dx,

(A5)∫
P
α∗ · u∗dx = 0. (A6)

(2) Continuity equation ∫
�

−q∗∇ · u∗dx = 0, (A7)

for all v∗ ∈ W0, q∗ ∈ L2(�) and α∗ ∈ �. Eventually, we rewrite Eqs. (A5)–(A7) in a nonvariational
form that is more amenable to a finite volume (or a finite difference) spatial discretization [50,51].

To solve efficiently the fully coupled Eqs. (A5) and (A6), Selçuk et al. [51] used a first-order
operator-splitting approach (or fractional step method) to divide the coupled problem into multiple
subproblems [60]. This approach was first introduced by Glowinski et al. [47] in the context of
particle-laden flow computations and later used extensively in many papers, including in our own
papers [49–51]. The coupled equations can be regarded as an initial value problem:

d�∗

dt∗ + A1(�∗) + A2(�∗) = f ∗
t , (A8)

�∗(t∗ = 0) = �∗
0, (A9)

where the operators Ai can be determined differently depending on various splitting strategies
[61,62]. �∗ is a vector of unknown fields �∗ = (u∗, p∗,λ∗). A two-step splitting strategy is used in
the current implementation [50]:

�∗,n+1/2 − �∗,n

�t∗ + A1(�∗,n,�∗,n+1/2) = f ∗,n+1
1 , (A10)

�∗,n+1 − �∗,n+1/2

�t∗ + A2(�∗,n+1) = f ∗,n+1
2 , (A11)

f ∗,n+1
1 + f ∗,n+1

2 = f ∗
t [(n + 1)�t∗]. (A12)

Symbolically, the operator A1 represents the Navier-Stokes problem where the advection-
diffusion equation and the incompressibility condition are solved together. The first subproblem
computes u∗,n+1/2 and p∗,n+1/2 and takes both �∗,n and �∗,n+1/2 as parameters given that the velocity
advection term is treated explicitly while the velocity diffusion term is treated implicitly. The second
term A2 denotes the fictitious domain problem with the rigid body motion constraint imposed on
the particle, which computes u∗,n+1 and λ∗,n+1 through the solution of a saddle-point problem for
the fluid velocity u∗ and the Lagrange multipliers λ∗. The second problem leaves the pressure p∗
unchanged such that p∗,n+1 = p∗,n+1/2. This first-order operator-splitting method can provide robust
and stable solutions [63]. Additionally, implementing the above approach is convenient as it allows
for a wide range of solver options for the subproblems.

064304-34



DYNAMICS, WAKES, AND REGIME TRANSITIONS …

TABLE V. Dimensionless vertex coordinates with respect to the mass center of the regular tetrahedron at
the three angular positions (A.P.): TE (edge), TF (face), and TV (vertex).

A.P. Vertex coordinates (x′, y′, z′)

TE (0.581224, −0.821974, 0.000000)
(0.581224, 0.821974, 0.000000)

(−0.581224, 0.000000, −0.821974)
(−0.581224, 0.000000, 0.821974)

TF (−0.335570, 0.000000, −0.949134)
(−0.335570, 0.821974, 0.474567)

(−0.335570, −0.821974, 0.474567)
(1.006710, 0.000000, 0.000000)

TV (0.335570, 0.000000, 0.949134)
(0.335570, 0.821974, −0.474567)

(0.335570, −0.821974, −0.474567)
(−1.006710, 0.000000, 0.000000)

Pyramid (0.949134, 0.000000, −0.335570)
(−0.474567, 0.821974, −0.335570)

(−0.474567, −0.821974, −0.335570)
(0.000000, 0.000000, 1.006710)

We use the implementation of Ref. [51] in the open-source code Basilisk to solve the
Navier-Stokes subproblem due to Basilisk’s flexible implementation on hierarchically refined
Cartesian grids and the remarkable convergence features of its geometric multigrid solver for
Poisson/Helmholtz-type problems [54]. The DLM/FD method and the corresponding iterative
Uzawa conjugate gradient algorithm [49] are implemented on Basilisk’s Cartesian octree grids,
which allow a parent cubic cell to be divided into eight subcubes for local grid refinement of
specific regions of interest [51]. In a more general problem involving freely moving rigid bodies, an
additional granular subproblem is solved using our in-house Grains3D solver [64,65], considering
its strong capacity to handle collisions between rigid particles of complex shape. The particle motion
is turned off in the computations performed in this work since the particle is stationary. Further
information on the numerical implementation and validation can be found in the prior works of our
group [49–51].

APPENDIX B: VERTEX COORDINATES OF THE REGULAR TETRAHEDRON
IN THE THREE ANGULAR POSITIONS

Table V gives the complete list of the dimensionless vertex coordinates, i.e., the vertex coordi-
nates normalized by the equivalent volume sphere diameter, of the regular tetrahedron at the three
angular positions. Note that these coordinates (x′, y′, z′) are given with respect to the mass center
of the tetrahedron. For the TE tetrahedron, the front edge is parallel to the z axis while the rear
edge is parallel to the y axis. Both edges are perpendicular to the streamwise x direction. The TF
tetrahedron has a front surface orthogonal to the streamwise x direction. Its rear vertex lies on the x
axis and one of the edges on its front surface is parallel to the y axis. In contrast, the TV tetrahedron
has mirror symmetry with the TF tetrahedron with respect to the y-z plane at x′ = 0. It has a front
vertex on the x axis and a rear surface perpendicular to the streamwise x direction. Similarly, one
of the edges on its rear surface is parallel to the y axis. The 3D view of the three angular positions
along the streamwise direction and other geometric features are illustrated in Figs. 5 and 6.
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FIG. 28. Side view of wake structures of the flow past a TV, colored by ux (low velocity in blue and high
velocity in red), as a function of Re, identified by the isosurface λ2 = −1. (a) TE, (b) TF, and (c) TV.

APPENDIX C: WAKE STRUCTURES IDENTIFIED BY λ2 IN THE WAKE OF A TETRAHEDRON

We present the wake structures identified by λ2 = −1 in Fig. 28 to provide further insight into
the spatial distribution of vortices and the shedding patterns in the flow past a fixed tetrahedron at
three angular positions. Specifically, in the TE case at Re = 140, we observe four vorticity threads in
the wake in Fig. 25(a) that are not visible in Fig. 14. As Re increases, the DHS regime emerges and
persists until Re = 360, where the double mushrooms structures are clearly depicted. In contrast, the
TF and TV cases exhibit two vorticity threads at low Re, leading to a nonzero lift coefficient in the
PSS regime. In these cases, a single-hairpin vortex shedding occurs before the vortices become
chaotic at Re = 240 and Re = 270, respectively. Figures 25(b) and 25(c) show that the vortex
shedding plane varies with Re in the HS regime. Figure 28 demonstrates a clear transition from
steady flows (MSS and PSS regimes) to unsteady flows (DHS, H, and CS regimes) and illustrates
the effects of particle angular position on the pattern and the instability of the vortex structures.
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