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Based on the phenomenological extension of Darcy’s law, two-fluid flow is dependent
on a relative permeability function of saturation only that is process or path dependent with
an underlying dependency on pore structure and wettability. For applications (fuel cells to
underground CO2 storage), it is imperative to determine the effective phase permeability
relationships where the traditional approach is based on the inverse modeling of time-
consuming experiments. The underlying reason is that the fundamental upscaling step from
pore to Darcy scale, which links the pore structure of the porous medium to the continuum
hydraulic conductivities, is not solved. Herein, we develop an artificial neural network
(ANN) that relies on fundamental geometrical relationships to determine the mechanical
energy dissipation during creeping immiscible two-fluid flow. The developed ANN is based
on a prescribed set of state variables based on physical insights that predict the effective
permeability of 4500 unseen pore-scale geometrical states with R2 = 0.98.

DOI: 10.1103/PhysRevFluids.8.064004

I. INTRODUCTION

Multiphase flow in porous media is common to various technological applications, including
fuel cells [1], supercritical carbon dioxide storage [2], subsurface hydrogen storage [3], contaminant
hydrology [4], recovery of transition fuels [5], and negative compressibility materials [6]. It is well
known that the constitutive relationship for relative permeability used in multiphase flow models
is valid for only a specific process taking a specific saturation path [7,8] thus, the generality of
such models are limited. Processes not captured in that limited experimental parameter space,
such as nucleation of a gas phase, e.g., in electrolysis, rather than the co-injection of fluids,
result in significantly different relative permeability for the same saturation [9,10]. However, there
is currently no satisfactory physics-based approach to encode the state space for a generalized
relationship even though theoretical works have shown the importance of kinematic analysis beyond
saturation only functions [11].
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We take advantage of a recent discovery that the capillary state at quasiequilibrium, which is
process dependent in a manner similar to relative permeability, can be uniquely defined when a
complete set of state variables are considered [12]. The approach was based on Hadwiger’s theorem
that defines the four Minkowski functionals [13] as a complete set of geometrical measures [14].
A piecewise polynomial model [generalized additive model (GAM)] can be used to parametrize
the state function for quasistatic capillary pressure with the state variables: fluid saturation, surface
area, and topology with 0.96 � R2 � 1.0 [12]. The question now is whether this approach can
also be extended to effective permeability being a dynamic property based on the viscous stress
tensor and velocity field both of which are geometrically constrained by the flowing pathway. The
GAM approach was effective for the fitting of up to three state variables; however, to predict ef-
fective permeability, all four Minkowski functionals are presumably required with highly nonlinear
relationships, which is beyond the possibilities of simple polynomials. As an alternative, artificial
neural networks (ANNs) are an attractive candidate for parametrization in higher-dimensional space
because they are known to be universal approximators [15].

The geometrical state of fluids in porous media has been extensively characterized through the
utilization of x-ray microcomputed tomography (micro-CT) and microfluidic experiments [16,17].
The earliest microfluidic observations of multiphase flow report different flow regimes from con-
nected pathway flow to ganglion dynamics to drop traffic flow depending on capillary number
(Ca) and fluid saturation [18,19], Ca being the dimensionless ratio between capillary and viscous
forces. For approximately Ca � 10−5, fluids are expected to form connected pathways and provide
a linear response between flow rate and pressure drop [20]. These pathways are geometrically
and topologically complex with no analytical solution for the velocity field. This flow regime is
the standard for experimental relative permeability measurements in special core analysis [21,22].
At Ca ≈ 10−5, the fluid pathways are commonly reported as being intermittent, resulting in the
creation or destruction of interfacial area [23,24]; in addition, a nonlinear response between flow
rate and pressure drop can be observed [20,25]. The time derivative of the internal energy becomes
complex due to additional energy dissipation during geometrical and topological changes and flow
rate fluctuations [26]. At approximately Ca � 10−5, the fluids undergo ganglion dynamics whereby
disconnected phases flow through the porous domain [19].

Presumably, under steady-state connected pathway flow, the main contribution to energy dissi-
pation, and thus effective permeability, is defined by the viscous stress tensor [27]. The condition
of steady state requires that all extensive variables are constant, such as interfacial energy and/or
phase volume. Recent works have shown that a detailed balance is maintained under intermittent
conditions when time-and-space averaging is considered [28]. Recent work in Ref. [29] observed
red noise in the pressure signal even at very low Ca, suggesting that intermittent filling events occur
in a stochastic manner. However, the degree to which the bulk topology of the connected pathways
is influenced under low Ca is unclear. Herein, we assume that connected pathways are maintained
under creeping flow conditions or at least to a degree at which the impact on relative permeability
is negligible.

We hypothesize that under capillary-dominated creeping flow the effective permeability of a
phase can be predicted by an ANN when given a complete set of geometric measures, i.e., the
Minkowski functionals. Our proposition is that each connected fluid pathway can be characterized
by an “equivalent domain” whereby effective permeability, related to total mechanical energy dissi-
pation, is of geometric origin. The approach is inspired by other recent successes with ANN-based
models, such as estimation of the stress distribution during finite element analysis [30], force field
models to learn the relationship between chemical structure and potential energy [31,32], and the
identification of Koopman eigenfunctions [33].

The traditional workflow for developing a reservoir model involves the collection of relative
permeability data where a single curve represents a single set of parameters defined by Bond
number, capillary number, wettability, and viscosity ratio (or mobility number) and a single history
dependence, e.g., imbibition or drainage [22]. The overall workflow proposed herein (Fig. 1)
circumvents these limitations by leveraging the wealth of information provided by pore-scale
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FIG. 1. Overview of the workflow presented herein and road map for future research on encoding pore-
scale information into continuum-scale models by the utilization of artificial neural networks. The gray box
around the reservoir model denotes that this step is future work.

simulations and recent advances in ANNs to provide a predictive relative permeability for a
wide range of operational parameters. The application of an ANN relative permeability model
for reservoir simulation remains as future work. Yet the potential for an ANN to predict relative
permeability based on the fluid geometrical state alone is the focus of the work presented herein.
Our basic approach is to evaluate the impact that the geometrical state of a fluid body has on the
relative permeability by using an ANN and pore-scale simulation data.

A. Equivalent domain model

To develop our physical insights and provide justification for the state variables, we examine
the codirectional flow of two connected pathways through a porous domain. The flow conditions
are immiscible, creeping, and capillary dominated. Each connected pathway is decomposed into an
“equivalent domain” that contains only the respective phase.

Consider a fluid flow that is subject to force balance such that Stokes’ equations are satisfied
locally,

−∇p + ∇ · τ = 0, (1)

∇ · u = 0, (2)

where the deviatoric stress tensor is τ and the pressure is p. The flow domain � has cross-sectional
area Ac and length L and contains multiple fluid regions. Let �i be the region of space occupied by
fluid i, with an associated boundary �i. Each such boundary surface can be decomposed into three
regions: the inlet �ci(0), the outlet �ci(L), and the interior boundary �b

i ,

�i = �ci(0) ∪ �ci(L) ∪ �b
i . (3)

In a situation where the internal boundaries do not move, the pressure force must balance the
contribution of the shear stresses when considered in the direction normal to the boundary, denoted
by nb,

(pI − τ) · nb = 0,
(
everywhere on �b

i

)
. (4)
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However, this force balance does not hold at the inlet and outlet due to the net flow of fluid i through
each surface. The flow is oriented in the same direction as the normal vector n, which will be
oriented in a parallel direction for any cross section. Within �i, the flow is Newtonian,

τ = μi[∇u + (∇u)T ], (everywhere on �i), (5)

with μi the fluid viscosity. If the system is homogeneous, then the volumetric flow rate can be
expressed as

Qi = siφŪiAc = ŪsiAc, (6)

where φ is the porosity and si is the saturation of fluid i. Since the fluids are incompressible, the
superficial velocity for fluid i will be constant for any cross section �ci(z),

Ūsi = Ūsi(z) = 1

Ac

∫
�ci (z)

u · n dS, (7)

with z ∈ [0, L]. Equivalently, the volumetric flow rate Qi is independent of the height along the flow
direction z.

We now consider a force balance along the boundary of �i. The force exerted on a boundary
element includes contributions from the deviatoric stress tensor and the pressure. Considering the
whole fluid region, a total force balance requires an equivalence between the boundary pressure
forces and the internal stresses. This is stated microscopically by Eq. (1). Integrating this expression
over the fluid region �i and applying the divergence theorem to the pressure term, the pressure
difference between the inlet and outlet is linked with the net contribution of viscous forces within
the region �i,

siφAc�p̄i = μi

∫
�i

∇ · [∇u + (∇u)T ] dV = 0, (8)

where

�p̄i = 1

siφAc

[ ∫
�ci (L)

p dS −
∫

�ci (0)
p dS

]
. (9)

In general the contributions due to τ · n will include both interfacial and viscous stresses. In a
capillary-dominated system, the viscous stresses are of particular interest since their contribution
will account for the quasistatic flow behavior. For a Newtonian fluid, the magnitude for these forces
will be determined directly by the pore-scale velocity gradients. For porous media the hydraulic
radius is commonly used to define a reference length scale as the ratio of cross-sectional area to the
wetting perimeter, Ac/L. The standard definition of hydraulic radius (rh) for an “equivalent” domain
is

rh = φDp

6(1 − φ)
, (10)

where Dp is particle (or grain) diameter and φ is porosity. Assuming a no-slip boundary condition,
the flow velocity will go to zero at solid grain boundaries. The hydraulic radius thereby establishes
the reference length scale for velocity gradients. Therefore, we consider the following nondimen-
sional representation:

∇∗ ← rh∇, u∗ ← u
Ūsi

. (11)

For Stokes’s flow the structure of the velocity field will be entirely determined from the micro-
structure of the porous material. Conceptually, let us assume that a nondimensional shape function
exists that can account for the net force that is due to the microscopic structure of the viscous
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stresses,

G(shape) = 1

siφAcL

∫
�i

∇∗ · [∇∗u∗ + (∇∗u∗)T ] dV. (12)

Inserting this into Eq. (8) and rearranging terms,

Ūsi = 1

μi

rh
2

G

� p̄i

L
. (13)

The objective of our artificial intelligence model is therefore to learn the structure of G(shape),
which is expected to depend on invariant measures of the geometric structure for fluid i.

Darcy’s law is commonly extended to represent the flow of two immiscible fluids in a porous
domain [34,35]. The extended relationship provides a linear relationship for the superficial velocity
of phase i as

Usi = Kei
�P

μiL
, (14)

where Kei is the effective permeability of phase i. Based on Eqs. (13) and (14),

Kei = φ3D2
p

3G(1 − φ)2
. (15)

Effective permeability is therefore based on geometry only. While the geometrical factors are
unknown, we know that these parameters are dependent on the morphology of the connected
pathway.

B. Geometrical state function

The Minkowski functionals are geometric measures of size based on set theory [36]. By con-
sidering a connected fluid body (X) embedded in Euclidean space (�) with boundary surface δX ,
integral geometry provides d + 1 functionals where d is the dimension of �. The first functional,
M0, is the total volume of X . The second functional, M1, is the integral measure of the surface area
of X . The third functional, M2, is the integral of mean curvature of δX . The fourth functional, M3,
is the integral of Gaussian curvature of δX .

The Minkowski functionals can be normalized by the total system volume V to provide a set
of intensive parameters. The first parameter is simply fluid saturation, Ŝ f = Mo/V φ. The second
parameter is the specific interfacial area of a fluid body, ε̂T = M1/V . For the third parameter, an
approximation to replace the mean curvature of δX with the fluid pressure difference based on the
capillary pressure (Pc) can be used [37]. The approximation is

Ĥ = M2

V
≈ Pc

γ
A f f + 2

A f s

Ds
, (16)

where A f f is the fluid-fluid interfacial area and A f s is the fluid-solid interfacial area. Conveniently Pc

is already defined in multiphase flow models. The interfacial tension γ is usually a known parameter,
and the grain Sauter diameter Ds is directly measurable. The fourth parameter provides the degree
of connectivity per volume, χ̂ = M3/V .

Hadwiger’s theorem states that any linear additive property (F ) of an object can be represented
by a linear combination of the Minkowski functionals [14],

F (X ) =
3∑

i=0

ciMi(X ), (17)

where ci is a coefficient that is independent of fluid body (X). Motion-invariant means that F (X )
does not depend on the orientation of X .
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Therefore, Eq. (15) is reformulated as

Kei = f (Ŝ f , Ĥi, ε̂T , χ̂ ). (18)

The independent parameters are commonly found in porous media multiphase flow research
[38–40]. The task herein is to define Eq. (18).

II. MATERIALS AND METHODS

A. Multiphase flow simulations

Simulations were conducted using a parallel implementation of the color-gradient lattice Boltz-
mann method (LBPM) [41]. The code has been documented, validated, and tested in numerous
publications [12,38,42–44]. To obtain a diverse set of geometrical states under creeping flow
conditions, we simulated a wide range of wetting conditions [45]. In total, the simulations took
12 h of walltime using 48 NVIDIA V100 GPUs on the Summit Supercomputer.

We used a segmented micro-CT image of a North Sea sandstone where the mineral phases were
identified on a per voxel basis. The details of the image processing workflow and mineralogy are
provided in the Supplemental Materials [46]. For simplification, we grouped the mineral voxels
into three groups: quartz (74%), clay (19%), and carbonate (6.3%). For initializing numerical
simulations, the mineral groups were defined by various contact angles that represent a wide range
of different fluid pairs. The wettability of these systems was defined as a summation of the cosine
of the contact angles for each mineral-fluid-fluid combination, determined as

W = (γqn − γqw )/γwnφq + (γkn − γkw )/γwnφk + (γcs − γcs)/γwnφc, (19)

where φq, φk , and φc are the solid voxel fractions of quartz, clay, and carbonate, respectively. This
metric provides a scale from strongly water-wet (W = 1.0) to strongly oil-wet (W = −1.0). In
addition, the squared variance, σ 2, of the contact angle values defines the spatial variability. In total
36 different wetting conditions were simulated. The wetting distribution was considered in three
ways. (1) The mineral type is the only reason for the wetting affinity to vary. (2) Fluid history is the
only reason for the wetting affinity; based on an initial morphological drainage of the image to 20%
saturation. (3) Wetting affinity varies based on both fluid history and mineral type.

Further details on the image processing, wetting distributions, and contact angles (affinity values)
used are provided in the Supplemental Materials [46].

B. Artificial neural network

A simple ANN was tasked to find Eq. (18) within the defined state space. The ANN had three
hidden layers, each with 50 neurons and was trained for a total of 250 epochs using the stochastic
gradient decent optimizer with an initial learning rate of 0.001, which was reduced by 10% after 10
and 150 epochs. Further details on the network optimization, training, and testing are provided in
the Supplemental Materials [46].

III. RESULTS AND DISCUSSION

In Fig. 2 the steady-state fluid distributions obtained for various wetting conditions are presented.
The simulation conditions ranged from strongly water wet to strongly oil wet, which was quantified
by the average wettability of the system (W ) and mineral heterogeneity based on the squared
variances (σ 2) of the wettabilities assigned to these minerals. The solid material is colored based on
the local range of wettability with water-wet solid being blue and oil-wet solid being red. The oil
phase is white and water is black. It was observed that the distribution of fluids was dependent on
both W and σ 2. In particular, for similar W (pick a column in Fig. 2) the distribution of fluids differs
based on how wettability was assigned to the spatial distribution of the minerals. This result is well
aligned with other recent studies; concluding that the spatial distribution of wetting is an important

064004-6



EFFECTIVE PERMEABILITY OF AN IMMISCIBLE FLUID …

FIG. 2. Distribution of oil (white) and water (black) obtained from simulations of water-flooding under
different wettability conditions. The solid material is colored according to the local wettability ranging from
water wet (blue) to oil wet (red).

parameter for the simulation of multiphase flow in porous media [47–49]. This also suggests that
pore space geometry alone is insufficient for the prediction of relative permeability.

The LBPM simulations provided 25 906 unique morphological states. Euler characteristic for
the (nonwetting phase) NWP followed the expected trend of increasing connectivity for more
oil-wet conditions (Fig. 3). The NWP stops percolating at high water saturation near Euler equal
to 1, resulting in an effective permeability of approximately zero at the corresponding saturation.
The constitutive relationship for relative permeability was well aligned with the expected behavior
based on wettability (Fig. 4). The oil phase effective permeability increased under more water-
wet conditions while the water phase relative permeability decreased resulting in a net effect of
shifting the crossing point of the two curves to the right. As evident, no single constitutive relative
permeability relationship would be sufficient to represent this data.

Based on the creeping flow assumption underpinning Eq. (15), the effective permeability of a
phase can be expressed as a function of geometry only. Our premise is that an ANN should be
ably to find the mapping between Eq. (15) and Eq. (18), as suggested by Hadwiger’s theorem.
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FIG. 3. LBPM Simulations provided 36 different Euler characteristic trends for each wetting case.

The LBPM simulations provided a total of 25 906 data points. We found that representative points
were obtained after the simulation convergence, which can be indicated by a convergence of Ca.
Therefore, by visualizing Ca over simulation time in addition to the associated error for each point
(see Fig. 5), we have included points after 1 × 106 time steps. The excluded points represent the
earliest set recorded during the simulation at high Ca, as data was recorded every 1 × 106 steps to
up to 78 × 105. The remaining data at low Ca, which include 22 556 points, was used to develop
and evaluate the ANN.

In Fig. 5 the ANN absolute errors associate with all 25 906 geometric states are provided along
with capillary number, Ca, and the simulation time step. Low Ca is associated with creeping flow
conditions as required for Eq. (15). For an ANN to find the mapping between Eqs. (15) and (18),
and thus predict effective permeability, the effective permeability must be based on the geometry
of the connected pathway only, this situation is commonly refereed to as connected pathway flow
[18]. As evident in Fig. 5, earlier simulation time steps, associated with higher Ca, resulted in higher
absolute error suggesting that the under pinning assumptions no longer hold.

For higher Ca flows, the time-dependent aspect of the phenomena cannot be captured by geomet-
rical terms expressed in units of length only; the fluid pathways are intermittent with geometrical

FIG. 4. LBPM Simulations provided 36 unique relative permeability curves for each wetting case.
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FIG. 5. Representative points from the simulation obtained after 1 × 106 time steps (the gray plain). Data
after this time step was used to build the ANN model presented in the main paper.

and topological changes [23], and thus energy dissipation depends on the geometric state and
the fluctuation timescale [26], resulting in high ANN absolute error. While a unit of time can be
introduced by Ca, the addition of Ca as an input parameter into the ANN did not improve the
predictive capability of the ANN—see the Supplemental Materials [46]. In addition, we do not
present any theoretical reason as to why Ca should be included.

To explore capillary-dominated connected pathway flow, we included only simulation data after
1 × 106 time steps, resulting in 22 556 geometric states. The results for 4500 unseen geometric
states from the testing set are provided in Fig. 6(a). The network achieved an average absolute error
of less than 9.87 × 10−15 m2. Approximately 68% of the test points have an absolute error below
the average while only 3% have an error of more than 3.95 × 10−14 m2, up to a maximum error of
approximately 9.87 × 10−14 m2. The results indicated a valid relationship for the geometric state of
the connected pathway flow and the effective permeability.

Feature importance was evaluated using the permutation feature importance and integrated
gradients methods. The importance of each feature is presented in Fig. 6(b) were the importance
of the last two features were negligible. The permutation feature importance method [50] evaluates

FIG. 6. (a) ANN predictability on the test set with all four Minkowski functionals as input. (b) The
importance of each input parameter for the result presented in (a). (c) A reduced order model, Kei = f (Ŝ f , ε̂T ),
with the same predictability as the full model presented in (a).
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the change in the predictability of an ANN resulting from randomly rearranging the order of
the measured feature and/or providing only the mean value for a given feature. As the accuracy
of the model was measured using R2, the importance was evaluated as the percentage reduction
in the baseline R2. The integrated gradients (IG) method [51] estimates feature importance for a
trained model by accumulating the gradients along a path between the input and a baseline input.
Only the absolute value of the IG has been shown in Fig. 6(b) as a measure of importance. Based on
these methods, the most important features were (Ŝ f , Ĥi ) while (ε̂T , χ̂ ) had little to no influence on
the the ANN predictability. Therefore, a reduced order model based on Kei = f (Ŝ f , Ĥi ) as presented
in Fig. 6(c) could be generated with the same predictability as the original model.

IV. CONCLUSIONS

In principle, our previous works on capillary pressure [12,37] were easier to deal with since
capillary pressure is a quasistatic property where one can consider static snapshots with no flow and
fluid-fluid interfaces are near equilibrium conditions, and thus capillary pressure is related to the
mean curvature of the fluid interfaces [52], which is one of the Minkowski functionals. Therefore,
capillary pressure, is fundamentally a geometrical statement. With effective permeability (or relative
permeability) we need to extend our concepts to flowing conditions. We therefore concentrated
on the capillary-dominated regime, which is typically relevant for reservoir engineering and also
covered by special core analysis (which does not extent above Ca = 10−5, see, e.g., Ref. [21]).
Our overall approach was to relate the mechanical energy dissipation (net force) to the geometric
boundary of the connected pathway, or an equivalent boundary with a given shape factor.

The determination of effective permeability from geometrical measures suggests that any two
systems with the same effective permeability have the same total energy dissipation (net force) under
stationary capillary-dominated conditions. While the Minkowski functionals are a complete set they
are not a unique set [14]. Therefore, our results suggest that the simulations provided structures for
all wetting states where the flow field retained a degree of similarity near a critical percolation [40].
Therefore, within a given class of conditions effective permeability models can be linked to energy
dissipation (or net force), which is additive, motion invariant, and smooth, as required by Hadwiger
[14]. We should also emphasize anisotropic extensions for future work, since there are many more
invariants when you consider direction dependence [53]. Since relative permeability is a tensor in
practice, the addition of directional dependencies should be an area of future work.

Our previous works have shown that the capillary pressure curve can be predicted from the
Minkowski functionals with two geometric degrees of freedom when a nondimensional form is
constructed [12,37]. For the van Genuchten relative permeability model the behavior is parame-
terized based on the capillary pressure curve [54], which supports the reduced order model found
herein. Other works have suggested the importance of phase connectivity [39,55]; however, these
works were under strongly water-wet conditions while the current study is intermediate-mixed wet
[47] with a high degree of connectivity and minimal surfaces [56]. Spatially varied wetting, σ 2,
essentially provided a degenerate state whereby a limited set of geometrical measures were required,
namely saturation and surface area only, which further supports the need for surface wettability
characterization [49] in pore-scale models as necessary input (initial conditions include the spatial
wettability distribution, at least in a statistical manner).

A consequences of the phenomenological two-phase Darcy formulation is that effective per-
meability needs to be experimentally measured, which is often determined from inverse modeling
that is ill posed with nonuniqueness, correlation between matching parameters, and non-Gaussian
errors [57]. The associated uncertainty by inverse modeling is greater than that determined by
the presented ANN [57,58]. In addition, the determination of end-point relative permeability is
nebulous. Experimental methods for determining end-point relative permeability are based on “best
practices” [22], and thus trends between end-point relative permeability and wetting index are often
conflicting [59,60]. End-point relative permeability prediction with an ANN is based on simulation
data with difficulties similar to experimental data were a significant number of pore volumes (or time
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steps) at an increased flow rate are required to achieve residual saturation [41]. This is particularly
the case for intermediate wet conditions under which thin wetting films remain connected with low
hydraulic conductivity [45].

The proposed ANN approach requires a significant amount of pore-scale data for training, which
is an upfront computational cost. Morphological data, however, is becoming readily available with
recent developments in pore-scale modeling and experiments [16] and data repositories, such as the
“Digital Rocks Portal.” The presented ANN was able to predict the effective permeability for 36
unique wetting states. With traditional constitutive models, a steady-state core flood would need to
be conducted for each wetting state with each experiment taking approximately 1 week to conduct.
Such an enormous parameter space (as that explored by the ANN) is not feasible with traditional
experimental workflows and subsequent constitutive models.

Our ANN was able to predict effective permeability with R2 = 0.98 for a wide range of different
wetting states within the same rock. Corey and/or van Genuchten relative permeability models
would require different parametrization for each wetting case [54,61]. The extrapolative power of an
ANN is not without bounds. Analogously to how a Corey model is limited to a defined set of control
parameters (experimental conditions), the ANN is limited to the features of the training data [62].
Application of the ANN to a wider set of control parameters would need to be explored in future
work. Currently, the ANN provides excellent results for a single rock type under a wide range of
wettabilities, which is a considerable improvement over traditional constitutive relationships since
traditional models are limited to a single wetting condition.

Our ANN provides a physics-based approach to predict effective permeability by only geo-
metrical descriptors providing new possibilities for experimental design and multiphase modeling.
Typical multiphase models already include two of the parameters (Ŝ f , Ĥi) proposed in Eq. (18) while
recent models include ε̂T [11,63] and the inclusion of χ̂ is not far off [12]. ANNs as constitutive
models are also attractive because they will significantly benefit from hardware acceleration over
the near future. An ANN could realistically be embedded into a reservoir simulator and used to
model significantly more complex physics without having it dramatically slow things down. Similar
approaches are already being used for collision operators in lattice Boltzmann models and molecular
dynamics simulations [64].
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