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We study the behavior of a thin liquid film flowing over a compliant substrate that is
thin enough. The breakdown of time-reversal symmetry includes the odd component of
the Cauchy stress tensor, resulting in some significant effects that were not previously
explored. We utilize the long-wave theory to obtain equations coupling the thickness of
the film and the compliant substrate. These equations consider inertia, damping effects,
wall tension, and odd viscosity. Through linear stability analysis, we establish that the
compliant substrate destabilizes the system while odd viscosity significantly stabilizes.
We also apply a weakly nonlinear approach to explore the system’s dynamics. The cou-
pled long-wave equations lead to the derivation of the Kuramoto-Sivashinsky equation.
Notably, incorporating the odd viscosity tensor component can avert chaotic behavior in
compliant substrates within the weakly nonlinear limit. Numerical simulations reveal that
the odd viscosity produces remarkable effects on substrate deflection. Furthermore, we
demonstrate the consistency of the linear and weakly nonlinear theories with numerical
results by performing a numerical investigation of the coupled long-wave equations.
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I. INTRODUCTION

Studying thin liquid film flow down an inclined plane is a fascinating research field with diverse
industrial applications. These applications ranged from thin coating processes in various industries
and lubricated pipelining to the manufacturing of photographic plates. A thin liquid sheet must be
applied evenly onto the substrate in the coating process. It is essential to suppress surface waves
for manufacturing products with a smooth and glossy texture like photographic membranes. Thus,
a comprehensive theoretical understanding of the behavior of thin film flow is vital for the design
and improvement of coating technology.

A considerable amount of research has been devoted to analyzing the stability and dynamics of
thin film flows on a rigid substrate, resulting in an extensive body of literature. For a thorough review
of this literature, Refs. [1–4] provides an excellent source. A compliant substrate, commonly made
of thin and heat-resistant polymers like polyimide and polyethylene terephthalate (PET), is a readily
deformable material. During deformation at any given time t , the substrate can be mathematically
represented as z = f (x(S, t ), y(S, t )), where x and y are functions of arc length S and time t and
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(x, y, z) denotes the spatial coordinates of a point on the substrate. The fundamental structural
difference between a compliant substrate and a rigid substrate is that, for a compliant substrate,
a point’s position depends on both time t and arc length S, whereas for a rigid substrate, the position
depends only on the spatial coordinates. Fluid-compliant material interactions play a significant
role in many scenarios, such as the wrinkling of thin sheets at fluid interfaces [5], the suppression
of fingering instability with elastic membranes [6], and wrapping liquid droplets with elastic sheets
[7]. In 2020, Nikravesh et al. [8] studied the instabilities of thin films on a compliant substrate,
with a primary emphasis on developing a finite-element modeling approach for simulating wrinkle
formation. Halpern and Grotberg’s research [9,10] investigated the interaction between compliant
substrates and thin liquid films. Their model provided insights into the mechanism behind airway
collapse in the lungs and highlighted the impact of pulmonary surfactants in this scenario. Matar
et al. [11] explored the stability and dynamics of thin liquid films on a flexible substrate and
concluded that wall flexibility promotes flow instability. Sisoev et al. [12] then expanded on Matar
et al.’s study [11] and delved into the nonlinear traveling wave solution. Howell et al. [13] analyzed
the impact of a flexible substrate on the flow of a thin liquid film using the lubrication approximation
framework. Another study conducted by Chao and Ding [14] examined the dynamics of a thin liquid
film over a compliant substrate subjected to wall heating and found that the heating affects both the
substrate and the thin liquid film. Alexander et al. [15] researched the linear stability of a thin
liquid film flowing along a flexible wall inclined at an angle. Their study involved the use of an
Orr-Sommerfeld-type boundary value problem. In a subsequent study, Samanta [16] expanded on
the work of Alexander et al. [15] by including an insoluble surfactant on the surface of the liquid
and imposing an external streamwise shear stress on the fluid surface. To obtain a comprehensive
understanding of various compliant models, it is recommended to refer to the study by Alexander
et al. [15].

In a viscous fluid that maintains time-reversal symmetry, the stress tensor is symmetric. How-
ever, if this symmetry is broken, then the viscosity tensor splits into even (symmetric) and odd
(antisymmetric) parts, as demonstrated by Avron [17]. The dissipative effect is described by the
symmetric part of the viscosity tensor, while the odd viscosity contributes to a nondissipative
effect. Examples of odd viscosity include three-dimensional magnetized polyatomic gases such
as N2, CO, or CH4, a two-dimensional fluid of electrons in graphene under a magnetic field, and
a two-dimensional fluid containing small cubes with a permanent magnetic dipole moment in a
colloidal suspension under a rotating magnetic field [18–21]. Avron [17] showed that time-reversal
symmetry can naturally break in systems such as superfluid He3 or in the presence of an external
magnetic field (as in two-dimensional quantum Hall fluid) or due to rotation. Most studies on
falling film instability have overlooked the odd part of the viscosity tensor. However, in recent
years, researchers have begun to explore the impact of odd viscosity in various contexts, such
as in chiral active fluids [22], incompressible fluids [23,24], swimming strategies [25], electric
fields [26,27], electromagnetic fields [28], Rayleigh-Taylor instability [29], vertical moving plates
[30], and others. Kirkinis and Andreev [31] investigated the effect of odd viscosity on a thin
liquid film flow in the presence of thermocapillarity and broken time-reversal symmetry. They
demonstrated that considering the odd viscosity coefficient could suppress surface waves induced
by the thermocapillary effect. Monteiro and Ganeshan [32] investigated the impact of odd viscosity
on shallow water dynamics. They found that within the Korteweg–de Vries dynamics, there exist
two parity-breaking regimes—strong (with high odd viscosity) and weak (with low odd viscosity).
Doak et al. [33] analyzed the impact of vertical odd viscosity on weakly and strongly nonlinear
waves in three-dimensional nonlinear shallow water waves. They observed several striking effects
of the vertical odd viscosity. Chattopadhyay [34] explored the effects of odd viscosity on the stability
of a thin liquid film flowing along a uniformly heated inclined plane, taking into account variations
in liquid surface tension and density due to temperature changes. The study showed that both the odd
viscosity and the density change rate with temperature can stabilize surface instability. Additionally,
Samanta [35] investigated the influence of odd viscosity on thin liquid films and found that the
odd viscosity coefficient can weaken both surface and shear instabilities. Desai et al. [36] have
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recently investigated the behavior of a thin liquid film flowing on an inclined plane in the moderate
Reynolds number regime under the influence of an imposed shear stress, with the time-reversal
symmetry broken. Their study reveals that uphill shear tends to stabilize the flow, while downhill
shear exacerbates the instability. However, the presence of odd viscosity can reduce this instability.

The present study is motivated by practical reasons for considering a compliant substrate that
is extremely thin, rather than a rigid inclined substrate. There are several instances where such
a scenario is applicable. For instance, in medical biology, administering liquids and surfactants
into the pulmonary airways during surfactant replacement therapy, partial liquid ventilation, and
drug delivery is a common practice [37]. Similarly, in human physiology, blood flows through the
heart and lungs, which are flexible substrates. The rate and rhythm of the heartbeat are maintained
through electric impulses that cause the heart muscle to contract and relax [38]. Moreover, rubber-
coated rollers are used in industries to ensure uniform mix transfer and minimum wear during
flexographic printing [39]. Additionally, blood flow in veins and arteries contains soft and flexible
cells, which cause the bounding surface to deform when a biological flow system passes through it.
These practical examples of flow systems have motivated us to study the effect of a compliant or
flexible substrate on the stability and dynamics of the flow.

Existing literature suggests that when the time-reversal symmetry of a liquid is broken in thin
film flows over a rigid or moving substrate, the inclusion of the odd part of the viscosity tensor
results in increased stability [26,27,29–31,34,35]. We have also identified several situations where
the interaction between fluid flow and a compliant substrate is of interest [5,6,9,10,37,39]. However,
it is still unknown how the odd viscosity will behave when a thin liquid flows over a compliant
substrate. Our new model assumes that the fluid’s time-reversal symmetry is broken when it flows
over a thin compliant substrate. Our objective is to derive the appropriate governing equations,
investigate the interdependence of the equations under different conditions, and determine whether
the odd viscosity attenuates or intensifies instabilities in the presence of a thin compliant substrate.
It is anticipated that the properties of a thin compliant substrate would significantly affect the
dynamics of a falling film when the time-reversal symmetry of the liquid is disrupted. The role
of odd viscosity will be crucial in determining the stability and dynamics of a thin liquid film on
a compliant substrate. Ultimately, we aim to contribute to a better understanding of the underlying
instability mechanisms associated with the aforementioned practical problems.

We have structured this paper in the following way. In Sec. II, we present the formulation of the
governing equations and associated boundary conditions. Using a long-wave technique, we derive a
pair of coupled equations for the film thickness and wall deflection in the presence of odd viscosity
in Sec. III. The linear stability analysis is carried out in Sec. IV. We discuss the dynamics of the
weakly nonlinear equations as an extension of the Kuramoto-Sivashinsky equation in the presence
of odd viscosity in Sec. V. We simulate nonlinear evolution equations in Sec. VI. In Sec. VII, we
present a design of the experimental setup. Finally, we discuss our key findings in Sec. VIII.

II. MATHEMATICAL FORMULATION

We investigate the behavior of a two-dimensional, incompressible, viscous, gravity-driven thin
liquid film flowing over an inclined (making an angle β with the horizontal), impermeable, infinitely
long, and sufficiently thin compliant substrate. The configuration of the flow is depicted in Fig. 1.
We adopt a Cartesian coordinate system (x, z), where the x and z axes correspond to the streamwise
and cross-stream directions, respectively. The representation of the substrate’s shape (solid-liquid
interface) and the height of the liquid-air interface at any given moment are given by z = −s(x, t )
and z = h(x, t ), respectively. Initially, the compliant substrate and thin liquid are positioned at
z = 0 and z = H , respectively, where H represents the thickness of the liquid film in the planar
parallel base state. Therefore, we use z = −s(x, t ) to indicate the instantaneous displacement of
the substrate from its equilibrium position z = 0 at time t . Similarly, we use z = h(x, t ) to indicate
the instantaneous height of the liquid-air interface relative to the equilibrium position z = 0. A
motionless, inviscid gas surrounds the free surface of the liquid film.
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FIG. 1. Schematic of the problem.

If the liquid film is isotropic, then the Cauchy stress tensor τi j and rate of strain tensor ϑi j are
related linearly as τi j = μi jklϑkl , where μi jkl is the viscosity tensor, and ϑi j = (∂ jϑi + ∂iϑ j )/2, with
ϑi (i = 1, 2) being the components of the fluid velocity field. The viscosity tensor μi jkl is symmetric
under the exchanges i ↔ j and k ↔ l if the total external torque is zero, as dictated by the conser-
vation of angular momentum. Nonetheless, the viscosity tensor can be divided into two parts, even
(symmetric) and odd (antisymmetric), under such an exchange as [25] μi jkl = μe

i jkl + μo
i jkl , where

μe
i jkl = μe

kli j and μo
i jkl = −μo

kli j . If the time-reversal symmetry is preserved, then the antisymmetric
part drops out. However, in chiral active liquids composed of self-spinning objects subject to torque,
the time-reversal symmetry breaks down either naturally or due to an external magnetic field or
rotation [17]. For such cases, we must consider the split viscosity tensor as mentioned earlier. Due
to this split, the Cauchy stress tensor τi j consists of two parts [31],

τi j = τ e
i j + τ o

i j, (1)

where τ e
i j = μe(∂iϑ j + ∂ jϑi ) is the standard (even) Cauchy stress tensor with standard (even) vis-

cosity coefficient μe and τ o
i j = μo(∂iϑ

∗
j + ∂∗

i ϑ j ) is the odd part of the Cauchy stress tensor with odd
viscosity coefficient μo. Here a∗

i = εi jai is the Levi-Civita antisymmetric tensor in two dimensions
[23]. In our usual notation, τ o

xx = −μo(uz + wx ), τ o
xz = τ o

zx = μo(ux − wz ), and τ o
zz = μo(uz + wx ).

Here u and w are the components of the velocity vector along x and z directions, respectively. It is
to be noted that under the exchange of the indices x ↔ z, the stress tensor due to even viscosity is
always symmetric. In contrast, the stress tensor due to odd viscosity contains symmetric (τ o

xz, τ
o
zx )

as well as antisymmetric (−τ o
xx, τ

o
zz ) parts.

This study considers the physical properties of the liquid, including density ρ, surface tension
σ , even viscosity coefficient μe, and odd viscosity coefficient μo. The primary objective is to
investigate the impact of μo on the dynamics and stability of liquid film flow over a sufficiently
thin compliant substrate.

The governing equations are the conservation of mass and momentum for the flow of the liquid
layer [−s(x, t ) � z � h(x, t )], which are given below

ux + wz = 0, (2)

ρ(ut + uux + wuz ) = −px + ρg sin β + μe(uxx + uzz ) − μo(wxx + wzz ), (3)

ρ(wt + uwx + wwz ) = −pz − ρgcos β + μe(wxx + wzz ) + μo(uxx + uzz ), (4)

where g refers to the gravity acceleration.
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Given the assumption of the substrate being impermeable, infinitely long, isotropic, and suffi-
ciently thin such that the tension T remains uniform across its thickness, we can ignore the impact
of bending stresses [11,40]. The substrate’s motion is also assumed to be slow, so the inertia on
the substrate is negligible [14]. Considering that the substrate deflection is only along the normal
direction, we have focused on the normal forces along the wall-liquid interface. The balance of the
normal forces on the compliant substrate z = −s(x, t ) is given by

p − ps − [
2μe

{
uxs2

x − (uz + wx )sx + wz
} + μo

{
(uz + wx )

(
1 − s2

x

)
− 2(ux − wz )sx

}](
1 + s2

x

)−1 + T sxx
(
1 + s2

x

)−3/2 = ρshsdsst
(
1 + s2

x

)−1/2
, (5)

where ρs, hs, and ds are the density, thickness, and damping coefficient of the substrate, respectively.
A brief derivation of Eq. (5) is provided in the Appendix. Here ps represents the pressure external
to the substrate when the compliant substrate is at its static state (z = 0). Consequently,

ps = p∞ + ρgH cos β, (6)

where p∞ denotes the atmospheric pressure.
Since the substrate is impermeable, the usual no-slip and kinematic boundary conditions apply

on the surface of the substrate z = −s(x, t ), which are expressed as follows:

u = 0, (7)

w = −st . (8)

The conditions governing the behavior of the free interface at z = h(x, t ) involve the balance of
normal and tangential stresses, as well as the kinematic condition that describes the movement of
the surface. These conditions can be expressed as

μe
[
(uz + wx )

(
1 − h2

x

) − 2(ux − wz )hx
] + μo

[
(ux − wz )

(
1 − h2

x

) + 2(uz + wx )hx
] = 0, (9)

p∞ − p + [
2μe

{
uxh2

x − (uz + wx )hx + wz
} + μo

{
(uz + wx )

(
1 − h2

x

) − 2(ux − wz )hx
}]

× (
1 + h2

x

)−1 = σhxx
(
1 + h2

x

)−3/2
, (10)

w = ht + uhx. (11)

III. NONDIMENSIONALIZATION AND MODEL SIMPLIFICATION

We can express the significance of viscous and gravitational forces in the system by us-
ing the viscous-gravity length scale, lν = (ν2/g sin β )1/3, and the viscous-gravity timescale, tν =
[ν/(g sin β )2]1/3 [3,41], where ν = μe/ρ is the kinematic viscosity. We will use these scales
to write the governing equations and boundary conditions in dimensionless form, following the
nondimensionalization approach of Chao and Ding [14]. The dimensionless variables, marked by
an asterisk in the superscript, are defined as

(x, z, h, s) = H (x∗, z∗, h∗, s∗), t = (lνtν/H )t∗, (u,w) = [H2/(lνtν )](u∗,w∗),

p = p∞ + (
ρlνH/t2

ν

)
p∗. (12)

By utilizing the dimensionless variables outlined in (12), the governing equations (2)–(4), and the
boundary conditions (5), (7)–(11) can be expressed in a simplified form, with the asterisk sign
removed [31]. The resulting equations are

(i) Governing equations:
ux + wz = 0, (13)

3Re(ut + uux + wuz ) = 1 − px + uxx + uzz − μ(wxx + wzz ), (14)

3Re(wt + uwx + wwz ) = −pz − cot β + wxx + wzz + μ(uxx + uzz ), (15)
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where Re = gH3 sin β/(3ν2) is the Reynolds number and μ = μo/μe is the odd viscosity coefficient
[31].

(ii) Boundary conditions at z = −s(x, t ):

p = cot β + [
2
{
uxs2

x − (uz + wx )sx + wz
} + μ

{
(uz + wx )

(
1 − s2

x

)
− 2(ux − wz )sx

}](
1 + s2

x

)−1 − Wssxx
(
1 + s2

x

)−3/2 + Bsst
(
1 + s2

x

)−1/2
, (16)

u = 0, (17)

w = −st , (18)

where Ws = T/(ρgH2 sin β ) is a dimensionless tension coefficient and Bs = ρshsdsH/μe is a
dimensionless damping number which measures the wall damping effects. We have used the relation
(6) while deriving Eq. (16).

(iii) Boundary conditions on the free surface z = h(x, t ):

(uz + wx )
(
1 − h2

x

) − 2(ux − wz )hx + μ
{
(ux − wz )

(
1 − h2

x

) + 2(uz + wx )hx
} = 0, (19)

p = [
2
{
uxh2

x − (uz + wx )hx + wz
} + μ

{
(uz + wx )

(
1 − h2

x

)
− 2(ux − wz )hx

}](
1 + h2

x

)−1 − Wehxx
(
1 + h2

x

)−3/2
, (20)

w = ht + uhx, (21)

where We = σ/(ρgH2 sin β ) is the Weber number.
We can derive a long-wave expansion of the governing equations and their associated bound-

ary conditions by introducing a small parameter ε (� 1) through the transformations (∂t , ∂x ) →
ε(∂t , ∂x ) and w → εw [3]. By applying these transformations in the system of Eqs. (13)–(21) and
retaining terms up to O(ε), we arrive at the following equations:

ux + wz = 0, (22)

3εRe(ut + uux + wuz ) = 1 − εpx + uzz − εμwzz, (23)

pz + cot β = εwzz + μuzz, (24)

p = cot β + 2ε(wz − uzsx ) + μuz − ε2Wssxx + εBsst at z = −s, (25)

u = 0 at z = −s, (26)

w = −st at z = −s, (27)

uz + εμ{(ux − wz ) + 2uzhx} = 0 at z = h, (28)

p = 2ε(wz − uzhx ) + μuz − ε2Wehxx at z = h, (29)

w = ht + uhx at z = h. (30)

In order to obtain the system of equations presented above, we made the assumption that Re, μ,
εBs, ε2Ws, and ε2We are all of order unity. Experimental data suggest that the aspect ratio ε is small,
with values ranging from 2 × 10−7 to 0.0199 for different setups [31,42,43]. These values confirm
that ε � 1, as previously stated [before Eq. (22)]. Our choice to order the flow parameters allows us
to incorporate the effects of inertia, surface tension, odd viscosity, wall tension, and damping in the
leading-order flow dynamics. Many previous studies on thin films [11,26,27] have assumed large
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values of We, which is consistent with our assumption. Alekseenko et al. [44] also observed large
Weber numbers for the maximum viscous solutions used in their experiments.

We further expand the variables u, w, and p asymptotically in powers of ε(� 1) as

u = u(0) + εu(1) + · · · , w = w(0) + εw(1) + · · · , p = p(0) + εp(1) + · · · . (31)

Substituting (31) into the governing equations (22)–(24) as well as the boundary conditions (25)–
(30), the solutions are as follows:

(i) Leading-order solutions:

u(0) = h(z + s) − 1
2 (z2 − s2), (32)

w(0) = −st − 1
2 (z + s)2hx − (h + s)(z + s)sx, (33)

p(0) = (μ + cot β )(h − z) − ε2Wehxx. (34)

We wish to emphasize that the leading-order pressure solution [as given in Eq. (34)] includes the
effect of odd viscosity, which causes an increase in isotropic pressure.

(ii) First-order solutions:

u(1) = [cot βhx − ε2Wehxxx]

[
z2

2
− s2

2
− h(s + z)

]
+ 3Re

{[
(z + s)4

24
− (z + s)(h + s)3

6

]

× (h + s)(h + s)x +
[

(z + s)3

6
− (z + s)(h + s)2

2

]
(h + s)t

}
− 2μ(z + s)(h + s)(h + s)x,

(35)

p(1) = (h − z)hx + μ[ε2Wehxxx − cot βhx](h − z) +
(

3

2
μRe

{
1

2

[
z3 − h3

3
+ s2(h − z)

]

− h

[
z2 − h2

2
− s(h − z)

]}
− 2(1 + μ2)

)
(h + s)(h + s)x. (36)

We express the kinematic boundary condition (21) in the mass conservation form as follows:

(h + s)t + ∂x

∫ h

−s
[u(0) + εu(1)]dz = 0. (37)

After substituting the leading and first-order solutions given in (32)–(35) into (37), we can obtain
the nonlinear evolution equation that governs the interface of a viscous film over a thin compliant
substrate under the influence of odd viscosity as follows:

(h + s)t + (h + s)2(h + s)x + ε
[
(h + s)3

{
2
5 Re(h + s)3(h + s)x

− 1
3 (cot βhx − ε2Wehxxx ) − μ(h + s)x

}]
x = 0, (38)

where the subscript indicates differentiation with respect to the corresponding variable. To eliminate
the time derivative of (h + s) at O(ε) in Eq. (38), we utilize the relation (h + s)t = −(h + s)2(h +
s)x + O(ε). We define 
 = h + s as the dimensionless thickness of the liquid film to simplify
Eq. (38), yielding


t + 
2
x + ε

[
2

5
Re
6
x − (cot βhx − ε2Wehxxx )


3

3
− μ
3
x

]
x

= 0. (39)
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We use Eq. (25) to obtain the evolution equation that describes the dynamics of the thin compliant
substrate and obtain

εBsst − ε2Wssxx + ε2Wehxx − cot β(
 − 1) − ε
(2s − h)x + ε

2
μRe
4
x = 0. (40)

We can eliminate ε by rescaling Eqs. (39) and (40) using the transformation (x, t ) → ε(x, t ). This
yields the simplified equation


t + 
2
x +
[

2

5
Re
6
x − (cot βhx − Wehxxx )


3

3
− μ
3
x

]
x

= 0, (41)

Bsst − Wssxx + Wehxx − cot β(
 − 1) − 
(2s − h)x + 1
2μRe
4
x = 0. (42)

The nonlinear evolution equation of the interface (38) yields the Benney-type equation of Joo et al.
[45] when μ = s = 0. Similarly, setting μ = 0 in Eqs. (41) and (42) gives the equations proposed
by Chao and Ding [14] for an isothermal environment. Additionally, for large wall damping and
tension (s → 0), the film thickness h satisfies

ht + h2hx +
[

2

5
Reh6
x − (cot βhx − Wehxxx )

h3

3
− μh3hx

]
x

= 0,

which is consistent with prior research [43,46–49].

IV. LINEAR STABILITY ANALYSIS

Equations (41) and (42) have the basic solution 
 = 1 and s = 0. The steady solution is perturbed
with an infinitesimal disturbance (
̂, ŝ). The solution then can be expressed as [14]

(
, s) = (
, s) + (
̂, ŝ). (43)

Substituting (43) in Eqs. (41) and (42) and then linearization yields the following:


̂t + 
̂x + [
2
5 Re
̂x − 1

3 (cot βĥx − Wêhxxx ) − μ
̂x
]

x
= 0, (44)

Bŝst − Wŝsxx + Wêhxx − 
̂ cot β − (2̂s − ĥ)x + 1
2μRe
̂x = 0. (45)

We apply a normal mode expansion to the disturbances 
̂ and ŝ as

(
̂, ŝ) = (
̃, s̃)exp(ikx + ωt ) + c.c., (46)

where 
̃ and s̃ (
̃, s̃ � 1) denote infinitesimal disturbances from the uniform flow and c.c. repre-
sents the complex conjugate of the preceding term. Here k is the wave number, ω = ωr + iωi is the
complex frequency where ωr , ωi are the real and imaginary parts, respectively.

Substituting (46) into Eqs. (44) and (45) yields the following eigenvalue problem:

ωs =
(
A11 A12

A21 A22

)
s, (47)

where s = (
̃, s̃)T and

A11 = −ik + k2

[
2

5
Re − 1

3
(cot β + Wek2) − μ

]
, A12 = k2

3
(cot β + Wek2),

A21 = Wek2 + cot β − ik
(
1 + μRe

2

)
Bs

, A22 = −k2(Ws + We) + 3ik

Bs
.

The dispersion relation we obtain from (47) is

ω2 − Xω + Y = 0, (48)
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TABLE I. Dimensionless parameters and their values

Dimensionless parameters Symbols Values References

Reynolds number Re 0–10 [11]
Odd viscosity coefficient μ 0–2 [27,31]
Tension coefficient Ws 102–104 [14]
Damping number Bs 10–103 [14]

where

X = B1 + iB2, Y = C1 + iC2, B1 = α1 + β1, B2 = −k + 3k

Bs
, C1 = α1β1 − α2β2 − A12δ1,

C2 = α1β2 + α2β1 − A12δ2, α1 = k2[ 2
5 Re − 1

3 (cot β + Wek2) − μ
]
, α2 = −k,

β1 = −k2(Ws + We)

Bs
, β2 = 3k

Bs
, δ1 = Wek2 + cot β

Bs
, δ2 = −k

(
1 + μRe

2

)
Bs

.

Solving (48) and separating the real and imaginary parts gives the expressions of ωi and ωr as [50]

ωi =
B2 ±

√√
χ2

1 +χ2
2 −χ1

2

2
, ωr =

B1 ±
√√

χ2
1 +χ2

2 +χ1

2

2
, (49)

where χ1 = B2
1 − B2

2 − 4C1 and χ2 = 2B1B2 − 4C2.
Using h = h + h̃ exp(ikx + ωt ) = 1 + h̃ exp(ikx + ωt ) in the surface evolution equation in the

absence of the compliant wall and then linearizing we obtain the dispersion relation as follows:

ω + ik +
[

k2

3
(cot β + k2We) + k2

(
μ − 2

5
Re

)]
= 0, (50)

where

ωi = −k, ωr = k2

[(
2

5
Re − μ

)
− 1

3
(cot β + k2We)

]
. (51)

To discuss the results, we first consider the ranges of different flow parameters according to their
order [see after Eq. (30)]. In the investigation by Chao and Ding [14], the stabilizing role of the
inclination angle β on the flow of a thin film over a compliant substrate was observed. The influence
of the Weber number We is also well established in the literature [3]. As a result, our study does not
focus on examining the impact of β and We. Therefore, we set β = π/2 and We = 102 [50,51] as
fixed parameters for the ensuing discussion. Table I provides the values of the remaining important
physical parameters for our study.

The growth rate variation with wave number is depicted in Fig. 2 for different μ values. The
parameters We, Ws, and Bs are set to 102, 102, and 10, respectively. The plot shows a cut-off wave
number below which the disturbance amplitude growth rate increases and above which it decreases.
As μ increases for a given Re, this phenomenon reduces, indicating the crucial stabilizing role of
odd viscosity. Additionally, the figure demonstrates that the real temporal growth rate increases
with Re, highlighting that fluid inertia is destabilizing. However, the presence of odd viscosity can
significantly suppress this destabilizing behavior induced by inertia.

To analyze the effect of a compliant substrate on the real temporal growth rate, we set Re = 5
and We = 102, and plot the results for (Ws, Bs) = (102, 10) in Fig. 3(a), obtained from Eqs. (50) and
(52). The figure illustrates that the growth rate curves for a compliant substrate (s �= 0) always lie
above those for a rigid substrate (s = 0), indicating that instability is enhanced when the substrate
is compliant, given a value of μ. However, the presence of odd viscosity can suppress the instability
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FIG. 2. Influence of μ on the real temporal growth rate as a function of wave number (a) for a very
compliant substrate (Ws = 102, Bs = 10); (b) comparison between a very rigid and very compliant substrate.
The other fixed parameters are Re = 5 and We = 102.

for both rigid and compliant substrates. We can investigate this effect further by increasing the wall
damping and wall tension coefficients from small values (Ws, Bs) = (102, 10) to very large values
(Ws, Bs) = (103, 102) while holding other parameters constant as in Fig. 3(a). Figure 3(b) shows
that the compliant substrate can be recovered as a rigid substrate with increasing wall damping and
wall tension coefficients.
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FIG. 3. Growth rate as a function of wave number for (a) (Ws, Bs ) = (102, 10); (b) (Ws, Bs ) = (103, 102)
with fixed Re = 5 and We = 102.
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The linear stability analysis presented in the preceding discussion provides valuable insight into
the stability mechanism of the two key factors we have investigated: compliant substrate and odd
viscosity. Specifically, we can observe that the instability of the thin liquid film flowing over a
sufficiently thin compliant substrate is significantly amplified compared to the instability observed
when the film flows over a rigid substrate. This is because the damping effect of a rigid substrate
is stronger, causing smaller deformations of the liquid-air interface compared to a highly compliant
substrate. However, the odd viscosity tensor’s presence can suppress this instability. This is due to
the fact that the hydrostatic pressure stabilizes the flow by pulling the liquid away from the crest
that has been disturbed, and the odd viscosity coefficient μ contributes to this hydrostatic pressure.
Therefore, the presence of μ increases the hydrostatic pressure, leading to a more stabilized flow. In
summary, the effect of the odd viscosity coefficient μ can counteract the destabilizing influence of
a compliant substrate and result in a more stable flow.

V. WEAKLY NONLINEAR EVOLUTION EQUATIONS

Studying a system’s weakly nonlinear limit is crucial for understanding its behavior and the
impact of nonlinearity on the flow. To achieve this, we make use of a simplified model by introducing
substitutions of h = 1 + εh̆ and s = εs̆, which are then substituted into Eq. (39). This leads to the
following equation:


̆t + 
̆x + 2ε
̆
̆x + ε

[
2

5
Re
̆xx + ε2

3
Weh̆xxxx − μ
̆xx

]
+ O(ε2) = 0. (52)

Applying x̃ = x − t , t̃ = εt [3] and using the chain rule as (∂t )x = (∂̃x )̃t (̃xt )x + (∂̃t )̃x (̃tt )x = ε(∂̃t )̃x −
(∂̃x )̃t , Eq. (52) yields


̆t̃ + 2
̆
̆x̃ + 2

5
Re
̆x̃x + ε2

3
Weh̆x̃xxx − μ
̆x̃x = 0. (53)

It is worth noting that the linear first derivative term 
̆x can be eliminated through the use of a
moving coordinate transformation x̃ = x − t . We further introduce the scalings t̃ = G1t×, x̃ = G2x×
and (
̆, h̆, s̆) = G3(
×, h×, s×) which yields the fluid depth equation in its canonical form after
dropping the × sign as


t + 

x + 
xx + hxxxx = 0, (54)

where

G1 = 25

3

ε2We

(2Re − 5μ)2
, G2 =

√
5

3

ε2We

(2Re − 5μ)
, G3 = 1

10

√
3

5

(2Re − 5μ)3

ε2We
. (55)

Repeating the above procedure for Eq. (40), we obtain

Msx + Nsxx − hxx = 0, (56)

where

M =
√

5B2
s

3We(2Re − 5μ)
, N = Ws

We
. (57)

Equations (54) and (56) represent a more generalized form of the Kuramoto-Sivashinsky equa-
tion for a compliant substrate, incorporating the odd viscosity coefficient μ. The parameter M
represents the ratio of wall damping, inertia, and surface tension forces, while N represents the
ratio of wall tension and surface tension. An increase in wall damping leads to an increase in the
value of M, while an increase in wall tension leads to an increase in the value of N . It is worth noting
that the value of M is dependent on μ, whereas N is not affected by the odd viscosity coefficient.
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To study the dynamics of the system in the weakly nonlinear regime, we scale Eqs. (54) and (56)
as per [11]

x → L

π
x, t →

(
L

π

)2

t, (
, h, s) → π

L
(
, h, s), (58)

and therefore Eqs. (54) and (56) become


t + 

x + 
xx + Phxxxx = 0, (59)

Qsx + Nsxx − hxx = 0, (60)

where P = (π/L)2 and Q = ML/π .
To obtain periodic solutions of the weakly nonlinear equations, we set the initial conditions as

[11]

h(x, 0) = 0.02 cos x, s(x, 0) = 0. (61)

To measure the energy transfer from the base flow into the disturbances, we define an energy norm
[11,51] in the following form:

E2 =
∫ L

0
h2dx. (62)

To begin with, we examine how the flow dynamics for a rigid substrate are impacted by the
parameter P, in the absence of odd viscosity. This will be achieved by analyzing the pattern of E2

curves for various domain sizes L. Next, we investigate the impact of the odd viscosity coefficient
μ on the E2 curves. To focus on weakly nonlinear dynamics, we set the computational domain to
L = 2π . The parameter N , which is related to wall tension, is independent of μ. Matar et al. [11]
previously established that reducing wall tension results in an increase in chaotic oscillations within
a fixed domain. Thus, in this study, we primarily focus on the parameter M, which is influenced by
μ.

Matar et al. [11] studied the dynamics of falling liquid films on flexible inclines using long-wave
theory and the integral method to derive evolution equations for film thickness and substrate deflec-
tion at low and moderate Reynolds numbers while maintaining time-reversal symmetry. Similarly,
Chao and Ding [14] used the long-wave model developed in Ref. [11] to investigate the behavior
of nonisothermal environments. In our study, we extend the existing frameworks for low Reynolds
numbers presented in Refs. [11,14] by incorporating the concept of odd viscosity and analyzing the
system in the weakly nonlinear limit. Our aim is to gain a deeper understanding of the underlying
mechanisms and potentially uncover new insights into the behavior of the system.

Figure 4 depicts the variation of E2 with respect to the length of the computational domain L,
while keeping the support rigid (Q → ∞) and neglecting the odd viscosity μ, as per the study by
Matar et al. [11]. Three distinct values of P are considered in this analysis, namely 0.45, 0.27,
and 0.18. As shown in the figure, the energy norm decreases as P increases (i.e., as L decreases),
consistent with the observations of Chao and Ding [14], who noted that short wavelengths tend to
damp perturbations. Furthermore, the results of Matar et al. [11] suggest that as the domain length
increases, the system undergoes bifurcations leading to the formation of different states. These
include a “stable single-mode steady state,” “single-mode steady traveling waves,” and “periodic
homoclinic bursts” followed by a “two-mode steady state” [11]. The findings from Fig. 4 align
with these observations, confirming similar trends for increasing domain length and emphasizing
the crucial role of domain length in flow dynamics. In summary, the outcomes demonstrated in
Fig. 4 offer valuable perspectives on the relationship between domain length enlargement and its
influence on energy norms and flow dynamics, which could prove helpful in the development and
enhancement of fluid systems. Moreover, Fig. 4 highlights that our research aligns with the findings
of Matar et al. [11] when the fluid retains time-reversal symmetry.
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FIG. 4. Evolution of E2 [from (59) and (60)] for different P in case of a rigid support.

In Fig. 5, we investigate how the compliant substrate affects the temporal evolution of the energy
norm E2 compared to the rigid case in the presence of the odd viscosity coefficient μ. For this
analysis, we set P = 0.18 as it resulted in “periodic homoclinic bursts” in the rigid substrate case
(Fig. 4). The impact of different Q and N values was demonstrated in [11], who studied the case of
P = 0.2 and observed “periodic homoclinic bursts” with a rigid wall. Among these parameters, we
will focus on Q, which is closely linked to our primary parameter of interest, μ. We note that M is a
finite positive number when μ < (2/5)Re, and here we fix Re = 5, so μ ∈ [0, 2). We consider the
case where μ = 0 [Fig. 5(a)] and for μ �= 0 [Figs. 5(b)–5(d)], we choose three representative values
of μ = 0.5, 0.8, and 1. It is evident from Fig. 5(a) that in the absence of μ, the temporal evolution
of the energy norm exhibits significant chaotic oscillations. When we set μ = 0.5 in Fig. 5(b), the
chaotic behavior of the E2 curve completely disappears, although small oscillations are still present.
Further increasing μ in Figs. 5(c) and 5(d), we observe that the oscillations are nearly dampened.
An increase in μ leads to a rise in M, indicating increased wall damping. Moreover, M and Q have

FIG. 5. Evolution of E2 [from (59) and (60)] for different μ with fixed P = 0.18, Re = 5, We = 102,
Bs = 10, and Ws = 102.
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a positive correlation, with an increase in M resulting in a corresponding increase in Q. Matar et al.
[11] observed that an increase in Q causes a shift from chaotic oscillations to time-periodic attracting
solutions. In our current study, we have observed a phenomenon similar to that observed by Matar
et al. [11]. The results presented in Fig. 5 indicate that as M decreases within the weakly nonlinear
regime, chaotic oscillations can arise when the substrate is compliant instead of rigid. Therefore,
our significant discovery regarding the addition of the odd viscosity term implies that taking into
account the odd viscosity tensor component could be advantageous in preventing chaotic behavior
in compliant substrates.

The weakly nonlinear analysis offers valuable perspectives on flow dynamics within the weakly
nonlinear limit, characterized by high wall damping and tension. This limit is crucial for investigat-
ing instability onset and serves as an accessible model for demonstrating the impact of nonlinearity
on the flow. Through an examination of the temporal energy evolution, we explore the influence
of the odd viscosity term on the flow. Our findings demonstrate that an increase in odd viscosity
results in a decrease in chaotic oscillations within the weakly nonlinear limit. This highlights the
potential benefits of considering the odd viscosity tensor component for preventing chaotic behavior
in compliant substrates.

VI. NUMERICAL SIMULATIONS

We will examine the nonlinear spatiotemporal dynamics in this section by considering the
evolution equations (41) and (42). We will apply periodic boundary conditions in the domain
x ∈ [0, L] and approximate the spatial solutions using the discrete Fourier series as [14]


(x, t ) =
N/2∑

−N/2+1


̂nexp

(
in

2π

L
x

)
, s(x, t ) =

N/2∑
−N/2+1

ŝnexp

(
in

2π

L
x

)
, (63)

where the “hat” decorated variables are the Fourier amplitudes of the disturbances and N is the
number of Fourier modes. Chattopadhyay et al. [30] previously demonstrated the space-time con-
vergence of the numerical scheme used in this study. To further verify the accuracy of our scheme,
we conducted a space-time convergence analysis and found that 256 Fourier modes with a time
step of 0.01 and an absolute error tolerance of 10−6 were sufficient. Additionally, we reproduced
the results of Refs. [11,50,52] to ensure the validity of our scheme. While Chao and Ding [14]
investigated the impact of computational domain length in their study, we did not explore this factor
here. For all our simulations, we set L = 20π .

Our numerical investigation begins with applying a harmonic perturbation to the liquid film at
time t = 0, while keeping the compliant substrate flat. The initial condition is chosen as [11]


(x, 0) = 1 + 0.01 exp[−5(x − 5)2], s(x, 0) = 0. (64)

Figure 6 illustrates the influence of the odd viscosity coefficient μ on the maximum (hmax) and
minimum (hmin) amplitude of the film thickness in the presence of a very compliant substrate over
a relatively long time. To plot Fig. 6(a), we choose Re = 2, We = 102, Ws = 102, and Bs = 10. We
observe from the figure that the disturbance amplitude reduces with the presence of μ. In Fig. 6(b),
we investigate the influence of inertia on the film flow by considering Re = 10 and keeping the
other parameters the same as Fig. 6(a). We find that the wave amplitude significantly increases with
an increase in Re, but μ plays a crucial stabilizing role despite strong inertial effects for μ = 0.1
and μ = 0.5. Figure 6 concludes that the odd viscosity coefficient plays a vital role in stabilizing
the liquid flow on a compliant substrate.

Figure 7 illustrates the evolution of the liquid film profile h over time for a highly compliant
substrate. To investigate the impact of the odd viscosity coefficient μ at different time intervals
(t = 600, 800, and 1000), we present Figs. 7(a) (for μ = 0) and 7(b) (for μ �= 0), respectively. A
comparison of these two figures reveals that an increase in μ leads to a decrease in the growth
of interfacial waves. We further plot the profile of the liquid film h at t = 600 in Fig. 7(c) to
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FIG. 6. Maximum (hmax) and minimum (hmin) amplitude of surface wave instabilities for a thin film flow
along a very compliant substrate for different μ with fixed Ws = 102, Bs = 10, and We = 102.

visualize this reduction more explicitly. The results demonstrate that the crest of the interfacial
wave diminishes with increasing μ. Hence, taking into account the odd viscosity effect can reduce
instability in the case of a highly compliant substrate.

Figure 8 illustrates the maximum (smax) and minimum (smin) amplitudes of the compliant
substrate s for varying values of the odd viscosity coefficient μ over a relatively long time period.
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FIG. 7. The profile of liquid film h for a thin film flow along a very compliant substrate with fixed Ws = 102,
Bs = 10, Re = 2, and We = 102.
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FIG. 8. Maximum (smax) and minimum (smin) amplitude of the substrate s for a thin film flow along a very
compliant substrate for different μ with fixed Ws = 102, Bs = 10, and We = 102.

Our results indicate that for a fixed time t , the growth of the (smax) [and similarly (smin)] curves
decreases with increasing μ. To investigate the effect of inertia on the substrate, we plot Fig. 8(b).
A comparison of Figs. 8(a) and 8(b) clearly shows that although Re enhances the growth of the
substrate, μ can effectively stabilize it. We further present the spatial evolution profile of the
substrate s in Fig. 9. Here, Figs. 9(a) and 9(b) demonstrate the evolution of s at time t = 600, 800,
and 1000 in the absence and presence of μ, respectively. A comparison of Figs. 9(a) and 9(b) reveals
that the presence of μ significantly affects the evolution of the compliant substrate. In Fig. 9(c), we
present the effect of μ at a specific time instant t = 600 and observe that the presence of μ stabilizes
the deformation of the compliant substrate.

In Fig. 10, we investigate the interplay between the inertia and odd viscosity coefficient μ on the
profile of the liquid film h and substrate s for a very compliant substrate at t = 600. Figures 10(a)
and 10(b) depict the profiles in the absence of μ, revealing that the crest of the wave and substrate
height increases with increasing Reynolds number Re. To examine the impact of μ on the profiles of
h and s, we use μ = 0.1 in Figs. 10(c) and 10(d). Comparing all the figures shows that the presence
of μ plays a crucial role in suppressing the instability.

Figure 11 presents the maximum amplitude of the liquid profile h and substrate s for a highly
compliant and a highly rigid substrate, with and without the odd viscosity coefficient μ. To recover
a rigid substrate by increasing wall damping and tension, we investigate three sets of parameters:
(Ws, Bs) = (102, 10), (Ws, Bs) = (103, 102), and (Ws, Bs) = (104, 103). Figure 11(a) shows that a
rigid substrate promotes flow stability, and the difference in growth of hmax is more pronounced as
(Ws, Bs) increases from (102, 10) to (103, 102) than from (103, 102) to (104, 103). Similar behavior
is observed for the smax curves [Fig. 11(b)]. Figures 11(c) and 11(d) demonstrate the stabilizing
effect of μ on the hmax and smax profiles for both highly compliant and rigid substrates.

Figure 12 shows a snapshot of the liquid film thickness h at t = 700 for a highly compliant
and rigid substrate with and without the odd viscosity coefficient μ. We use (Ws, Bs) = (102, 10)
for the highly compliant substrate and (Ws, Bs) = (104, 103) for the highly rigid substrate. In the
absence of the odd part of the viscosity tensor (μ = 0), we observe an enhancement of the crest
of waves for the highly compliant substrate, consistent with the findings of Chao and Ding [14].
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FIG. 9. The profile of substrate s for a thin film flow along a very compliant substrate with fixed Ws = 102,
Bs = 10, Re = 2, and We = 102.

However, when we consider the effect of μ (μ = 0.05), the crest of waves reduces with increasing
μ for both substrates. Figure 13 shows a similar snapshot for the substrate s, and we observe a
similar behavior of the highly compliant substrate and μ as seen in Fig. 12. These results suggest
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FIG. 10. The profiles of liquid film h and substrate s for a very compliant substrate at t = 600 for different
Re with fixed Ws = 102, Bs = 10, and We = 102. Here red solid line (——), blue dashed line (−−), black dot-
dashed line (− · −) and red dotted line (· · · ) represent the curves at Re = 0.4, 0.8, 1.2, and 1.5, respectively.
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FIG. 11. Maximum amplitude of the liquid film profile h and substrate s for a thin film flow along a very
compliant and very rigid substrate for different μ with fixed Re = 2 and We = 102.

that a rigid substrate is always more stable than a compliant one due to the higher values of wall
damping and wall tension, which give the rigid substrate a stronger ability to dissipate energy and
thus promote flow stability.

The time evolution of the energy norm E2 = ∫ L
0 
2dx [51] for a large timescale (t = 2 × 104)

is presented in Fig. 14 for a very compliant substrate with (Ws, Bs) = (102, 10) and a very rigid
substrate with (Ws, Bs) = (104, 103). Initially, the value of the energy norm is nearly parallel to the
base flow. As time progresses, the value of E2 gradually increases until it reaches a certain time
t = tc, after which the system evolves into a saturated steady state with a constant energy norm. The

FIG. 12. Spatial evolution of the film thickness h for (Ws, Bs ) = (102, 10) (very compliant substrate) and
(Ws, Bs ) = (104, 103) (very rigid substrate) at t = 700 with Re = 2 and We = 102. Here solid line (——) and
dashed line (−−) indicate very compliant and very rigid substrate, respectively.

064003-18



ROLE OF ODD VISCOSITY ON FALLING FILMS OVER …

FIG. 13. Spatial evolution of the substrate s for (Ws, Bs ) = (102, 10) (very compliant substrate) and
(Ws, Bs ) = (104, 103) (very rigid substrate) at t = 700 with Re = 2 and We = 102.

figure shows that the growth rate of the energy norm is higher for a compliant substrate than a rigid
one. However, as the odd viscosity coefficient μ increases, the growth rate of E2 decreases. These
time-dependent simulations agree with the findings of the linear stability analysis.

To gain a more comprehensive understanding of the impact that a compliant substrate and odd
viscosity have on the stability of thin film flow beyond the point of linear stability, we conducted
numerical simulations of the evolution equations in a periodic domain over an extended period
of time. The outcome of these simulations demonstrates that a compliant substrate leads to a
destabilizing effect, while odd viscosity has a stabilizing influence over time. This analysis provides
insights beyond those obtained from the linear stability analysis, resulting in a more nuanced
understanding of the system’s behavior.

VII. PROPOSED DESIGN OF EXPERIMENTAL SETUP

This section presents an experimental setup for the current study, as illustrated by the two-
dimensional (2D) model in Fig. 15. To begin with, a compliant or flexible substrate is required

FIG. 14. Temporal evolution of the energy norm E2 for (Ws, Bs ) = (102, 10) (very compliant substrate) and
(Ws, Bs ) = (104, 103) (very rigid substrate) with Re = 1 and We = 102.
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FIG. 15. Two-dimensional model of the experimental setup.

on which a time-reversal symmetry-breaking liquid can flow. The substrate can be made of heat-
resistant polymers such as PET or natural rubber. A mechanism to change the inclination angle of
the test area is also necessary, as even tiny changes can affect the wave patterns of the thin liquid
film. A traversing mechanism can be used for this purpose. It is also essential to have a rigid support
to hold the test area in place. To continuously supply the testing area of the compliant substrate
with the liquid (with broken time-reversal symmetry), a reservoir needs to be set up. Additionally,
a device should be installed to vary the liquid flow rate from the reservoir. A movable gate can be
used to adjust the height of the thin liquid. A Sluice gate is the specific device required for an open
channel flow. Moreover, the compliant substrate should be wide enough to prevent any liquid from
falling off the edge during the formation of the liquid film, which could affect the flow dynamics.
Finally, to measure the instability of the flow system, a high-quality digital camera connected to
a computer is needed to capture various snapshots. Since the thin liquid flows over a compliant
substrate, there is no need for additional devices, such as a speaker, to generate sound waves to
examine the stability of the thin film flow in this study.

Our primary goal is to investigate the stabilizing role of odd viscosity to suppress the flow
instability due to the compliant substrate to some extent. As an initial step, we will flow a thin liquid
(which holds the time-reversal symmetry, i.e., μ = 0) over a rigid and compliant substrate. One
has to capture several snapshots at different time instants. This will determine the flow instability
enhancement due to the compliant substrate. The next step is to examine the stabilizing role of μ.
For that, one has to repeat the earlier procedure for μ �= 0. To visualize the suppression of flow
instability due to μ, one has to capture several snapshots at earlier time instants. In addition, one
can examine the growth and reduction of the instability due to compliant substrate and odd viscosity,
respectively, by capturing a video of the fluid flow for a specific time.

VIII. SUMMARY AND CONCLUSIONS

This study examines the behavior of a falling viscous liquid over a compliant substrate with
broken time-reversal symmetry, incorporating the nondissipative effect of the odd viscosity co-
efficient. Using the long-wave expansion method, we obtain a set of equations that describe the
spatiotemporal evolution of the film thickness and wall deflection, considering the odd viscosity
effect. Linear stability analysis shows that the compliant substrate enhances the instability while
increasing the odd viscosity coefficient reduces it. The damping effect is weaker for a compliant
substrate, making the flow system more unstable, but odd viscosity enhances the stabilizing role of
hydrostatic pressure, leading to stabilization. In the weakly nonlinear limit, we derive the evolution
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equations for the film thickness and wall deflection, which exhibit various effects, such as develop-
ing chaotic solutions, for decreasing substrate tension. However, increasing odd viscosity reduces
the development of chaotic solutions in this regime. Finally, we perform numerical simulations of
the evolution equations in a periodic domain, comparing the results for a very compliant and a very
rigid substrate. The simulations demonstrate the stabilizing effect of odd viscosity and destabilizing
effect of the compliant substrate at large times, providing a better understanding of odd viscosity’s
influence beyond the linear stability threshold. When a rigid substrate is present, the damping
effect is strong, and the deformations of the liquid-air interface are limited. As a result, a very
rigid substrate makes the system more stable, which is confirmed by the temporal evolution of the
energy norm. Conversely, a very compliant substrate has weaker damping, leading to larger interface
deformations and a more unstable system. However, odd viscosity can counteract the instability
caused by a compliant substrate by increasing the hydrostatic pressure.

The studies conducted by Matar et al. [11] and Chao and Ding [14] suggest that flexible walls
have a destabilizing effect. Carpenter and Garrad [53,54] have also shown that viscoelastic damping
can destabilize the Tollmien-Schlichting instability for flexible Kramer-type substrates. However,
Brown [55] demonstrated the potential benefits of using compliant substrates in technological
applications. Our study concludes that while compliant substrates can enhance surface wave in-
stability, accounting for odd viscosity can alleviate this issue. Furthermore, although fluid inertia
amplifies destabilizing behavior, odd viscosity can suppress wave amplitude. These findings have
practical implications, particularly in improving product outcomes that involve compliant substrates
exacerbating interfacial instabilities. We acknowledge that our current model is a simple one,
and we are interested in exploring other models for compliant substrates to investigate interfacial
instabilities. In the future, we aim to experimentally verify our study’s results and extend our
theoretical model to moderate Reynolds numbers.
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APPENDIX

Here we present the origin of Eq. (5).
According to Newton’s second law, one can express the explicit elasticity equation for the

compliant substrate as [15]

ρsbXtt + D(ez · Xt )ez −
[

Txts(
1 + s2

x

)1/2 − T sxxns(
1 + s2

x

)3/2

]
+ B(κsns)SS = τ · ns + psns, (A1)

where, X (S, t ) = (X (S, t ), Z (S, t )) is the parametric representation of the substrate, S is the arc
length, (X (S, t ), Z (S, t )) = (x,−s(x, t )) is the reparametrized position of the inclined plane, b is
the thickness of the compliant substrate, D = ρshsds, ez is the unit vector in the z direction, ns =
(sx, 1)(1 + s2

x )−1/2 is the unit normal vector, ts = (1,−sx )(1 + s2
x )−1/2 is the unit tangent vector, B

is the flexural rigidity, κs is the curvature and τ is the liquid stress tensor [see Eq. (1)].
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If we assume a small deflection of the thin compliant substrate, then ρsb = B = 0 and conse-
quently Eq. (A1) reduces to the following form:

D(ez · Xt )ez −
[

Txts(
1 + s2

x

)1/2 − T sxxns(
1 + s2

x

)3/2

]
= τ · ns + psns. (A2)

In the present study, we have considered that the compliant substrate to be sufficiently thin.
Therefore, we can assume the wall tension T to be constant (hence Tx = 0), and hence we neglect
the bending stresses [2,11]. Due to the consideration of the small deflection (longitudinal deflections
are small compared to transverse deflections) of the substrate, we have to consider the normal
component of Eq. (A2) [15], which is given below

D(ez · Xt )(ez · ns) + T sxx(
1 + s2

x

)3/2 = ns · τ · ns + ps. (A3)

For negligible longitudinal extension (i.e., Xt � Zt ), Xt = (0,−st ). Also, ez · Xt = −st and ez ·
ns = (1 + s2

x )−1/2. Therefore the boundary condition equation at z = −s(x, t ) can be expressed as
given in (5). For a more detailed derivation, we refer to the work of Alexander et al. [15].
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