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We present a three-dimensional computational study of the impact of external magnetic
fields on the dynamics of superparamagnetic ferrofluid droplets and rheology of dilute
ferrofluid emulsions in planar extensional flows. Specifically, we show how the intensity
and direction of uniform magnetic fields affect the planar extensional rheology of ferrofluid
emulsions by changing the shape and magnetization of the constituent ferrofluid droplets
in suspension. We find that the two traditional extensional viscosities associated with the
normal stresses of the bulk emulsion in extension either remain constant or increase with
the field intensity; the only exception occurs when the field direction is perpendicular
to the extension plane, where increasing the field intensity keeps the planar extensional
viscosity constant and modestly decreases the second extensional viscosity. We also find
that the droplet tilts in the flow when the external field is not aligned with one of the
flow main directions, which changes the recirculation pattern and flow topology inside
the droplet. At the microscopic level, the droplet experiences a magnetic torque because
of a small misalignment between its magnetization and the external field direction. At
the macroscopic level, the bulk emulsion experiences a field-induced internal torque that
leads to a nonsymmetric stress tensor with unexpected shear components in extension.
To account for this unconventional stress-strain response, we introduce new extensional
material functions such as shear and rotational viscosity coefficients that unveil novel
rheological signatures of ferrofluid emulsions in planar extensional flows. This study
offers new insights into applications based on the field-assisted manipulation of ferrofluid
droplets and sheds light on the potential of ferrofluid emulsions as a model system for chiral
fluids with internal rotational degrees of freedom that can be activated and controlled by
coupling static magnetic fields with hydrodynamic flows.

DOI: 10.1103/PhysRevFluids.8.063601

I. INTRODUCTION

Ferrofluids are colloidal suspensions of ferromagnetic nanoparticles that effectively behave like
paramagnetic liquids in the presence of magnetic fields [1–3]. Since their formal discovery by Papell
[4] in the 1960s, ferrofluids have emerged as a new class of smart materials whose properties
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and functionality can be remotely controlled by external magnetic fields. The improvement of
applications based on ferrofluid droplets over recent years is particularly impressive and merits
attention. For instance, the field-assisted manipulation of ferrofluid droplets can play a central
role in the development of next-generation microfluidic and lab-on-a-chip technologies [5–8].
Additionally, recent works have demonstrated the potential of ferrofluid droplets as unique building
blocks for manufacturing microrheology probes [9–11] and soft robots [12–14]. The reader can find
comprehensive discussions on the basic principles and field-mediated applications of ferrofluids and
other magnetically responsive colloids in some recently available reviews [15–17].

After decades of fundamental progress, the field-induced distortion, motion, interaction, and
coalescence of ferrofluid droplets in an otherwise quiescent liquid are well established [18–29].
Conversely, the dynamics of ferrofluid droplets under the simultaneous action of external magnetic
fields and hydrodynamic flows is yet to be fully understood. As far as we are aware, the first study
in this regard was presented by Jesus et al. [30], who analyzed the behavior of superparamagnetic
ferrofluid droplets in simple shear flows when uniform magnetic fields are externally applied in the
velocity gradient direction. Based on the classical analysis of Taylor [31,32] for viscous droplets,
they developed a small deformation theory for the droplet distortion at the limit of weak flows and
low field intensities and presented simulation results for the droplet shape and orientation at different
conditions. The work of Jesus et al. [30] was quickly followed by a handful of similar studies by
different authors [33–38]. Despite differences in formulation and solution method, these studies
confirmed that the droplet assumes the format of a general ellipsoid, either prolate- or oblatelike,
whose shape and orientation are determined by a delicate balance between viscous, magnetic, and
capillary forces that essentially depends on the external field intensity and direction relative to the
flow. In a similar fashion, other studies showed that the coupling of flow- and field-induced distortion
also plays an important role in the breakup dynamics of ferrofluid droplets in shear flows [39–41].
Recently Ishida et al. [42] reported an interesting chain-to-crystal transition in the arrangement of
multiple ferrofluid droplets in wall-bounded shear flows, and Abdo et al. [43] studied the dynamic
response of single ferrofluid droplets in unbounded oscillatory shear flows.

Following the seminal theory of Batchelor [44], single-droplet studies pave the way to predict
the rheology of dilute emulsions in which droplet–droplet interactions are negligible. Briefly, the
approach relies on the so-called particle stress, a stress tensor that accounts for the additional stresses
induced by the suspended droplets in the continuous phase when the two-phase system is taken as
a homogeneous rheological material from a continuum perspective [45,46]. For ordinary viscous
droplets, the extra stresses arise from the viscosity difference and interfacial tension between the
phases. Fundamental studies of the rheology of such emulsions abound [47–52]. In turn, ferrofluid
droplets experience an additional field-induced magnetic traction because the magnetic permeability
difference between the phases induces a magnetic field discontinuity across the fluid interface.
Taking advantage of the level set framework for multiphase flows, Cunha et al. [35] introduced a
new formulation for the particle stress of ferrofluid droplets in suspension. Shortly after, Ishida and
Matsunaga [36] and Capobianchi et al. [37] presented similar studies using other interface-capturing
methods. These three works addressed the rheology of dilute ferrofluid emulsions in simple shear
flows and showed that the traditional viscometric material functions (shear viscosity and normal
stress coefficients) can be effectively tuned by external magnetic fields. Recently, Abdo et al.
[43] extended these analyses to the unsteady material functions (storage and loss moduli) in
small-amplitude oscillatory shear flows.

Things become even more interesting when one looks at the droplet magnetization. If the droplet
is superparamagnetic and the external field is uniform, the droplet magnetization in a quiescent
liquid is uniform and parallel to the external field direction, provided that the field-induced distortion
is not sufficiently strong to disrupt the droplet ellipsoidal shape [27]. As first noted by Cunha et al.
[35], and later detailed by Abicalil et al. [38], this is not true for ferrofluid droplets in shear flows.
As in a quiescent liquid, the droplet shape remains ellipsoidal if the external field intensity is not too
high; yet the competition between viscous, magnetic, and capillary forces, together with the effects
of flow vorticity, leads to a small misalignment between the droplet magnetization and the external

063601-2



FERROFLUID DROPLETS IN PLANAR EXTENSIONAL …

field direction. As a result, there is a magnetic torque that tends to tilt the droplet major axis towards
the external field direction, so that the bulk emulsion experiences a field-induced internal torque.
The particle stress becomes a nonsymmetric stress tensor, underscoring the existence of a rotational
viscosity in the bulk emulsion to satisfy the angular momentum balance. The lack of symmetry in
the stress tensor of ferrofluid emulsions requires the introduction of additional material functions
to fully characterize the stress state and describe the fluid rheology. For instance, Cunha et al. [35]
used a rotational viscosity coefficient associated with the skew-symmetric part of the particle stress
to assess the impact of the external field configuration on the internal torques of ferrofluid emulsions
in simple shear flows.

To the best of our knowledge, the great majority of works to date focused on the dynamics
of ferrofluid droplets and rheology of ferrofluid emulsions in viscometric flows such as simple
shear [35–37]. However, because ferrofluid emulsions are complex fluids, the viscometric material
functions obtained in simple shear cannot be extrapolated to different flows. As a macroscopic
response to the imposed motion, the rheological properties reflect the dynamic behavior of the
fluid microstructure. For example, the extensional rheology of complex fluids tends to be markedly
different from their shear rheology counterpart because the fluid microstructure is severely more
stretched in extension than in shear [53–55]. Needless to say, extensional flows of different types
are paramount both in nature and industrial applications, where complex fluids such as emulsions
and ferrofluids are ubiquitous [56,57].

Here we present the first three-dimensional computational study of the effects of uniform
magnetic fields on the dynamics of superparamagnetic ferrofluid droplets and rheology of dilute
ferrofluid emulsions in planar extensional flows. We show that the droplet shape and magnetization
are tightly coupled and strongly depend on the external field intensity and direction relative to
the flow. We also show that the droplet response at the microscopic level directly correlates with
the rheological response of the bulk emulsion at the macroscopic level. Despite the fact that the
imposed motion is purely extensional by construction, we find that the droplet tilts in the flow when
the external field is not aligned with one of the flow main directions, causing notable changes in
the recirculation pattern and flow topology inside the droplet. Similarly to what happens in shear
flows, the system experiences a field-induced magnetic torque because of a misalignment between
the droplet magnetization and the external field direction. This leads to the remarkable development
of nonsymmetric shear stresses in the bulk emulsion to sustain the imposed extension. In addition to
the two usual extensional viscosities associated with the normal stresses in extension, we introduce
new material functions such as shear and rotational viscosities to account for the unexpected shear
stresses and fully characterize the fluid stress state. We then discuss in detail the emergence of
novel rheological signatures of ferrofluid emulsions subjected to external magnetic fields in planar
extensional flows, highlighting their potential as a new model system for chiral fluids with internal
rotational degrees of freedom.

The remainder of this article is organized as follows: the model, boundary conditions, and
relevant dimensionless parameters are described in Sec. II, validation tests for the computational
method are outlined in Sec. III, results are presented and discussed in Sec. IV, and some concluding
remarks are given in Sec. V.

II. MATHEMATICAL MODELING

Figure 1 shows a sketch of the problem, which starts with a single ferrofluid droplet suspended
in a nonmagnetizable fluid. The system is subjected to a planar extensional flow imposed in the
xy plane and a uniform magnetic field H0 applied externally. The two phases are incompressible
Newtonian liquids of same density ρ and viscosity η; therefore, buoyancy effects are absent and
the dispersed-to-continuous phase viscosity ratio is λ = 1. We keep the viscosity ratio constant and
equal to one to isolate the effects induced by the external magnetic field, which is consistent with
previous studies of ferrofluid droplets in shear flows (λ = 1–2) [33–43]. The droplet is initially
spherical, has radius a, and is located at the center of a three-dimensional box. We set the domain

063601-3



A. L. GUILHERME et al.

FIG. 1. Sketch of the problem (not to scale). A superparamagnetic ferrofluid droplet is suspended in a
nonmagnetizable fluid. The two phases are incompressible Newtonian liquids of the same density and viscosity,
and the dispersed-to-continuous phase magnetic permeability ratio is two. The droplet is initially spherical, has
radius a, and the domain size (normalized by a) is 12.5, 10, and 7.5 in the x, y, and z direction, respectively
(the droplet volume fraction is β ≈ 0.45%). The system is subjected to a planar extensional flow in the xy
plane, and the far-field velocity u∞ of the continuous phase has a constant extension rate ε̇ that defines the
directions of flow extension (x direction), flow compression (y direction), and neutral (z direction). The system
is also subjected to a uniform magnetic field H0 applied externally (the external field is in the y direction in this
sketch). The origin x = 0 is fixed at the droplet center (the coordinate system at the bottom right is shown just
for the sake of reference).

size to 12.5a, 10a, and 7.5a in the x, y, and z direction, respectively, which is comparable to that
used in previous studies of viscous droplets in planar extensional flows and suffices to mitigate
the effects of wall confinement on the droplet dynamics [58,59]. Macroscopically, the two-phase
system is a dilute ferrofluid emulsion for which the droplet volume fraction is β ≈ 0.45%, so that
hydrodynamic and magnetic interactions between droplets are both negligible. We now summarize
the equations of the model (see Refs. [35,38,39,43] for details).

The two-phase flow is governed by the equations of mass conservation and momentum balance
written as

∇ · u = 0 (1)

and

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + η∇2u + Fc + Fm. (2)

Here ∇ = ∂/∂x is the nabla operator (x is the position vector), u is the velocity field, t is time, P
is the pressure field, and Fc and Fm are, respectively, body forces per unit volume representing the
capillary and magnetic forces in the system.

We assume that the system is at the magnetostatic limit, so that electric fields and currents
are absent. At this condition, Maxwell’s equations of electromagnetism reduce to ∇ · B = 0 and
∇×H = 0, where B is the magnetic induction field and H is the magnetic (or magnetizing) field;
note that H = −∇ψ because of the curl-free constraint, where ψ is the scalar magnetic potential.
We also assume that the ferrofluid is a superparamagnetic material for which the magnetization is
a linear function of the local magnetic field; that is, the external field intensity is sufficiently small
to keep the ferrofluid magnetization far below the saturation magnetization, so that the classical
Langevin theory of paramagnetism is approximately linear [1]. Hence, the magnetization and
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magnetic fields inside the droplet are related by M = χH , where χ is the magnetic susceptibility.
We take χ = 1, so that the dispersed-to-continuous phase magnetic permeability ratio is ζ = 2. We
keep the permeability ratio constant and equal to two to stay reasonably consistent with previous
experiments of ferrofluid droplets in quiescent liquids (χ = 0.9–2.2) [18,19,21] and simulations
of ferrofluid droplets in shear flows (χ = 0.5–1) [33–43]. Finally, as B = μ0(M + H ), Maxwell’s
equations further simplify to

∇ · (ζ (x)∇ψ ) = 0, (3)

where ζ (x) is a local version of the permeability ratio, so that ζ (x) = 1 + χ inside the droplet and
ζ (x) = 1 in the continuous phase.

The droplet surface is captured with the level set method, which relies on a level set function
φ(x, t ) that returns the signed distance of any point in the flow domain to the interface, so that
φ = 0 at the interface, φ < 0 inside the droplet, and φ > 0 in the continuous phase [60–62]. The
outward unit normal and mean curvature of the droplet surface are n̂ = ∇φ/‖∇φ‖ and κ = ∇ · n̂,
respectively. The capillary force is Fc = −σκδ(φ)n̂ and corresponds to the normal stress jump
across a curved interface (the Young-Laplace equation) [60], where σ is the interfacial tension
coefficient (assumed to be constant) and δ(φ) is the Dirac delta function of φ. The magnetic force
is Fm = μ0(ζ (x) − 1)H · ∇H and represents a field-induced magnetic traction that depends on the
intensity and gradients of the local magnetic field (the Kelvin force) [1], where μ0 is the magnetic
permeability of the continuous phase (assumed to be equal to that of the free space). Note that a
constitutive equation for the Maxwell stress tensor is not required [63]; additionally, ζ (x) = 1 +
χ [1 − H (φ)], where H (φ) is the Heaviside step function of φ. It is worth mentioning that Fc

and Fm are both concentrated at the droplet surface. The level set function is also used to define
regularized versions of the Heaviside and Dirac functions, say, Hε(φ) and δε(φ), over a thin region
of thickness 2ε across the interface. Following the literature of level set methods for multiphase
flows, we set

Hε(φ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if φ < −ε,
1

2

[
1 + φ

ε
− 1

π
sin

(
πφ

ε

)]
, if |φ| � ε,

1, if φ > ε,

(4)

where δε(φ) = H ′
ε (φ) (the prime denotes derivative with respect to φ), and ε = 1.5�x, where �x

is the meshing size [60]. The impulse δ(φ) and the piecewise constant ζ (x) are then replaced by
δε(φ) and ζε(φ) = 1 + χ [1 − Hε(φ)], so that Fc and Fm vary smoothly across the interface and
vanish both inside and outside the droplet. In conclusion, the capillary and magnetic forces at the
droplet surface are

Fc = −σκδε(φ)n̂ (5)

and

Fm = μ0(ζε(φ) − 1)H · ∇H . (6)

In summary, the model consists of Eqs. (1) and (2) coupled with Eqs. (5) and (6) for the two-phase
flow and Eq. (3) with ζε(φ) instead of ζ (x) for the magnetic potential. The system is initially at
rest; the extensional flow and the external magnetic field are applied simultaneously at t = 0. The
external field is imposed through a constant magnetic potential flux at the six boundaries (either
homogeneous or nonhomogeneous von Neumann conditions, as determined by the external field
direction). Velocity and pressure are periodic in the z direction; at the other four boundaries, the
normal flux of the pressure gradient vanishes (homogeneous von Neumann conditions), and the
velocity is imposed essentially (Dirichlet conditions). The velocity field of the continuous phase
at the boundaries is a planar extension given by u∞ = ε̇(xêx − yêy), where êx and êy are the unit
vectors in the x and y direction, respectively. The extension rate ε̇ > 0 is constant and defines the
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FIG. 2. (a) Droplet distortion in the xy plane (Dxy) as a function of Ca with no external magnetic field
(Camag = 0): present work (black circles), experimental results of Hsu and Leal [58] (red triangles), and
simulation results of Hoang and Park [59] (blue squares). The insets show the droplet cross section in the
xy plane at Ca = 0.02 and Ca = 0.115. (b) Droplet distortion in the xy plane (Dxy) as a function of Camag

when the external magnetic field is applied in the x direction with no external flow (u∞ = 0): present work
(black circles) and theoretical predictions of Afkhami et al. [21] (blue line). The insets show the droplet cross
section in the xy plane at Camag = 2 and Camag = 20.

flow three main directions, namely, flow extension (x direction), flow compression (y direction), and
neutral (z direction).

The problem is governed by three dimensionless parameters: the Reynolds number, Re =
ρa2ε̇/η, which measures the ratio of inertial to viscous forces at the droplet scale; the capillary
number, Ca = ηaε̇/σ , which measures the ratio of viscous to capillary forces at the droplet surface;
and the magnetic capillary number, Camag = μ0a‖H0‖2/σ , which measures the ratio of magnetic
to capillary forces at the droplet surface. We set Re = 0.01 to mitigate inertial effects. The other
parameters, Ca and Camag, as well as the external field direction, are changed systematically
throughout this study. All variables are dimensionless henceforth.

III. CODE VALIDATION

The model is solved with the numerical scheme described by Abicalil et al. [38] (see Appendix A
for a review). Here we focus on two validation tests: one for the flow-induced distortion of a
viscous droplet in planar extension and one for the field-induced distortion of a ferrofluid droplet
in a quiescent liquid. The droplet distortion is measured with a scalar parameter similar to that
introduced by Taylor [31,32]. We define Dxy = (Lx − Ly)/(Lx + Ly), where Lx and Ly are the droplet
semiaxes in the x and y axis, respectively. Note that Dxy is a measure of planar distortion in the
xy plane; we define analogous quantities to measure the droplet distortion in other planes later.
We determine the steady state when the droplet shape changes in less than 0.5% between two
consecutive units of dimensionless time. Figure 2 presents the results of the two tests at the steady
state.

Figure 2(a) shows Dxy as a function of Ca with no external field (Camag = 0). We also present the
experimental results of Hsu and Leal [58] (measured in a four-roll mill apparatus) and the simulation
results of Hoang and Park [59] (computed with a commercial software). The droplet is stretched
in the x direction and, because of incompressibility, compressed in the other two directions with
slightly different intensities. As a result, the droplet assumes the shape of a prolatelike ellipsoid
and distorts progressively more as Ca increases. The droplet does not achieve a steady shape at
Ca � 0.12; alternatively, it continuously distorts and develops necking regions near the tips in the x
axis. This suggests that the droplet will eventually burst, as predicted by the earlier theoretical work
of Rallison [64].

Figure 2(b) shows Dxy as a function of Camag with no external flow (u∞ = 0). The external field
direction is not important here; we conveniently apply the external field in the x direction to keep Dxy
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as the main measure of droplet distortion. We also present the theoretical predictions of Afkhami
et al. [21] for the droplet shape at equilibrium. The agreement between the results is again excellent
(within ∼1.5%). As we detail later, the external field induces a magnetic force normal to the droplet
surface because the difference in magnetic permeability between the phases leads to a magnetic field
jump across the interface; this force is stronger in regions where the interface is perpendicular to
the external field direction. In the absence of external flow, the field-induced distortion corresponds
to a uniaxial extensional loading; that is, the droplet is stretched in the x direction and, because
of incompressibility, compressed in the other two directions with equal intensities. As a result,
the droplet assumes the shape of a prolate ellipsoid and distorts progressively more as Camag

increases. We observe no signs of hysteresis nor the formation of conical tips in the droplet shape
up to Camag = 20, which agrees with previous studies of low to moderate field-induced distortion
(Dxy � 0.6) of superparamagnetic droplets with small to medium magnetic susceptibilities (χ � 20)
[27].

The results of Figs. 2(a) and 2(b) have an important qualitative difference. In both cases, there is
an initial range where Dxy increases close to linearly with the corresponding parameter under study,
either Ca or Camag. However, Fig. 2(a) shows that Dxy displays a nonlinear, softeninglike response
when Ca is sufficiently high. There is a critical value of Ca above which a further increase in Ca
enhances the flow-induced distortion. This is likely related to the existence of an upper limit of Ca
around Ca ≈ 0.12 above which the droplet does not achieve a steady shape and eventually bursts.
In contrast, Fig. 2(b) shows that Dxy displays a nonlinear, hardeninglike response when Camag is
sufficiently high. This leads to an asymptotic value for Dxy at the limit of very high Camag. The
theory of Afkhami et al. [21] indicates that Dxy → 1 as Camag → ∞, a condition at which the
droplet approaches a very slender prolate ellipsoid aligned with the external field direction. We
revisit these points later. For now, the agreement with previous studies in the literature confirms the
reliability of our simulation results regarding the hydrodynamic, magnetic, and interfacial problems.

IV. RESULTS AND DISCUSSIONS

We split this section in two parts. First, we discuss the results for which the external magnetic
field is applied in one of the flow three main directions (extension, compression, or neutral, as
defined by the x, y, and z axis, respectively). Second, we discuss the results for which the external
field is in a direction different from one of the flow main directions. We focus on the effects of
the external field configuration (intensity and direction) on the droplet shape and magnetization, as
well as on the planar extensional rheology of the resulting ferrofluid emulsion. Our analyses are for
Ca � 0.12 and Camag � 20, and all results correspond to the steady state.

A. External magnetic fields applied in one of the flow main directions

1. Droplet shape and magnetization

Figure 3 shows the droplet distortion in the xy plane, Dxy, as a function of Camag. The results
are for different values of Ca when the external magnetic field is applied in the x and y direction.
We see that Dxy grows with Camag when the external field is in the x direction [Fig. 3(a)]. Because
viscous and magnetic forces stretch the droplet together in the same direction, the droplet assumes a
prolatelike shape with the major axis in the x axis (Dxy > 0). This field-induced extension is slightly
more pronounced in strong flows (high Ca). In turn, Dxy falls with Camag when the external field
is in the y direction [Fig. 3(b)]. Viscous and magnetic forces now compete to stretch the droplet in
directions that are perpendicular to one another. Briefly, the field-induced extension in the y direction
is counteracted by flow-induced compression, whereas the flow-induced extension in the x direction
is counteracted by field-induced compression. At low enough Camag, viscous forces dominate over
magnetic forces, and the droplet major axis is in the x axis (Dxy > 0). As Camag increases and the
external field intensity grows stronger, magnetic forces eventually overtake viscous forces and the
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FIG. 3. Droplet distortion in the xy plane (Dxy) as a function of Camag when the external magnetic field
is applied in the (a) x direction and (b) y direction. The results are for Ca = 0.02 (black circles), Ca = 0.04
(blue squares), Ca = 0.08 (red triangles), and Ca = 0.12 (green diamonds). The insets show the droplet cross
section in the xy plane at different conditions. The data set is not complete in (a) because the droplet does not
achieve a steady shape when Ca = 0.08 and Camag � 6 and when Ca = 0.12 and Camag � 0 [see the discussion
for Fig. 2(a)].

droplet major axis becomes aligned with the y axis (Dxy < 0). This field-induced shape transition is
easier in weak flows (low Ca).

Figure 4 shows the droplet distortion as a function Camag for different values of Ca when the
external magnetic field is applied in the z direction. Note that we now plot Dxy and Dxz = (Lx − Lz )/
(Lx + Lz ), where Lz is the droplet semiaxis in the z axis. We observe that Dxy is a weak function
of Camag [Fig. 4(a)]. The field-induced compression in the x and y direction is approximately the
same, particularly at low Ca [see the discussion for Fig. 2(b)]. Thus, the droplet distortion in the
xy plane is mainly governed by the balance between viscous and capillary forces, as determined
by Ca. Conversely, Dxz falls strongly with Camag [Fig. 4(b)]. The competition between viscous and
magnetic forces behind this field-induced shape transition—from Dxz > 0 with the droplet major
axis in the x axis to Dxz < 0 with the droplet major axis in the z axis—is similar to that discussed
for Fig. 3(b). The major difference here is that Dxz is a weaker function of Ca, especially at high
Camag, where all curves approach one another. This indicates that viscous forces play a minor role
in the droplet distortion in the direction of the external magnetic field when the latter is sufficiently
strong and aligned with the flow neutral direction.

Figures 3 and 4 suggest that the intensity and direction of external magnetic fields can be adjusted
to either induce or prevent droplet breakup in planar extensional flows. Recall that the droplet bursts
at Ca ≈ 0.12 in the absence of an external field (Camag = 0) [see the discussion for Fig. 2(a)]. On the

FIG. 4. Droplet distortion in the (a) xy plane (Dxy) and (b) xz plane (Dxz) as a function of Camag when the
external magnetic field is applied in the z direction. The results are for Ca = 0.02 (black circles), Ca = 0.04
(blue squares), Ca = 0.08 (red triangles), and Ca = 0.12 (green diamonds). The insets show the droplet cross
section in the (a) xy plane and (b) xz plane at different conditions.
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FIG. 5. Three-dimensional view of oblate droplets at Ca = 0.12 when the external magnetic field is applied
in the (a) y direction (at Camag = Ca∗

mag ≈ 10.03) and (b) z direction (at Camag = Ca∗
mag ≈ 5.74). In (a) Lx = Ly

is the equatorial radius in the xy plane and pr is the polar radius in the z axis; in (b) Lx = Lz is the equatorial
radius in the xz plane and pr is the polar radius in the y axis. For the sake of visualization, the droplet shape is
projected on each plane (black), flow streamlines outside the droplet are projected on the xy plane (red), and
magnetic field lines outside the droplet are projected on the yz and xz plane (blue).

one hand, we find that the droplet does not achieve a steady shape at Ca = 0.08 when the external
field is in the x direction at Camag � 6, indicating that the droplet will eventually break up. On the
other hand, we do observe steady shapes with no signs of droplet breakup at Ca = 0.12 when the
external field is either in the y or z direction at Camag � 2. It is worth noticing that the breakup is not
strictly associated with the droplet distortion. Whereas Fig. 2(a) shows that Dxy ≈ 0.4 immediately
before the breakup at Ca ≈ 0.12 and Camag = 0, Figs. 3 and 4 confirm that the droplet can sustain
larger distortions with a steady shape depending on the external field configuration; for instance,
Dxy ≈ 0.7 at Ca = 0.04 when the external field is in the x direction at Camag = 20 [see Fig. 3(a)].
The potential of controlling the breakup dynamics of ferrofluid droplets with external magnetic
fields was originally addressed by Cunha et al. [39] for simple shear flows. Yet a detailed analysis of
this field-mediated breakup control requires an extensive study over a multidimensional parameter
space that involves not only Re, Ca, Camag, and the external field direction, but also λ and ζ . This is
beyond the scope of this work.

The field-induced shape transition presented in Figs. 3(b) and 4(b) also deserves special remarks.
We build the discussion based on the results of Fig. 3(b), for which the external field is in the y
direction. At fixed Ca, there is a specific value of Camag, say Ca∗

mag, at which the droplet cross
section in the xy plane is circular because the semiaxes in the x and y axis are equal (Dxy = 0
when Lx = Ly). At this condition, the net effects of field-induced extension in the y direction and
flow-induced extension in the x direction match one another. Because both viscous and magnetic
forces compress the droplet together in the z direction, the droplet becomes an oblate ellipsoid
with a polar radius pr = Lz in the z axis. A similar rationale applies when the external field
is in the z direction, as in Fig. 4(b). The only difference is that the circular cross section is
in the xz plane (Dxz = 0 when Lx = Lz) and the polar radius is pr = Ly in the y axis. To ease
the visualization, Fig. 5 displays a three-dimensional view of oblate droplets at Ca = 0.12 (and
Camag = Ca∗

mag) for the two external field configurations. Additionally, Fig. 6 shows how Ca∗
mag and

pr depend on Ca. Interestingly, both Ca∗
mag and pr vary linearly with Ca, at least within the range

of parameters explored here (see the caption of Fig. 6 for details). We note that Ca∗
mag increases

and pr decreases with Ca. Because viscous and magnetic forces stretch the droplet in directions
that are perpendicular to one another, the magnetic force required to promote a circular droplet
cross section in a plane—either xy or xz—increases as the relative intensity of viscous forces grows
stronger. The equatorial radius—either Lx = Ly in the xy plane or Lx = Lz in the xz plane—also
increases with the intensity of viscous forces, so that the polar radius—either pr = Lz in the z axis
or pr = Ly in the y axis—decreases to preserve the droplet volume. At fixed Ca, we see that Ca∗

mag
and pr are higher for external fields in the y direction. This is not unexpected, as the field-induced
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FIG. 6. Magnetic capillary number Ca∗
mag at which the droplet becomes an oblate ellipsoid (circles, left

axis) and the corresponding droplet polar radius pr (squares, right axis) as a function of Ca. The results are
for external magnetic fields applied in the y direction (red symbols) and z direction (blue symbols). The solid
lines are linear fits with fixed intercepts (Ca∗

mag = 0 and pr = 1 at Ca = 0): Ca∗
mag ≈ 80Ca and pr ≈ 1 − 1.7Ca

when the external field is in the y direction (red); Ca∗
mag ≈ 44Ca and pr ≈ 1 − 2.6Ca when the external field is

in the z direction (blue). The coefficient of determination of all adjustments is R2 > 0.99.

extension is more attenuated by the flow-induced compression in this case. The reader interested in
the shape control of liquid droplets through external force fields in hydrodynamic flows is referred
to Liu et al. [65], who recently presented a study of the electric field-mediated spheroidization of
leaky dielectric droplets in uniaxial extensional flows.

Overall, the droplet shape is determined by a balance between viscous, magnetic, and capillary
forces that depends on the external field intensity and direction relative to the flow. As earlier noted
by Jesus et al. [30], and further confirmed here, three-dimensional computational studies are critical
to accurately predict and fundamentally understand the dynamics of ferrofluid droplets in external
magnetic fields and hydrodynamic flows. Three-dimensional simulations unveil a complex physics
of which most details would be either poorly addressed or even missed in their two-dimensional
counterparts. The present discussions can bring new insights to improve the field-assisted manufac-
turing of microparticles for which shape–property relationships can be broadly explored based on
the magnetic–hydrodynamic coupling of ferrofluids and nonmagnetizable liquids [66,67].

Before moving forward, we must also highlight that in all cases analyzed thus far the droplet
remains symmetric with respect to the three main directions set by the planar extensional flow. That
is, the droplet distorts and assumes the shape of an ellipsoid that, albeit not generally axisymmetric,
retains its main axes aligned with the x, y, and z axis. Figure 7 shows the z component of the
flow vorticity ξ = ∇×u and flow streamlines near the droplet in the xy plane. The results are for
Ca = 0.04 when the external field is absent (Camag = 0) [Fig. 7(a)] and when the external field
is applied in one of the flow main directions at Camag = 16 [Figs. 7(b)–7(d)]. The magnetic field
does not change the general flow pattern. Even though the way the distorted droplet affects the
streamlines near the interface depends on the external field direction, the flow inside the droplet
remains characterized by four recirculation regions that are symmetric with respect to the reference
axes, as in the absence of the external field. This is the same flow pattern reported by Liu et al. [65]
for leaky dielectric droplets in uniaxial extensional flows both in the absence and in the presence of
external electric fields applied in the extension and compression directions.

We now examine the magnetization of ferrofluid droplets and emulsions. The mean magnetiza-
tion of the system is [35,38]

〈M〉 = 1

V

∫
V

(ζ (x) − 1)H dV, (7)
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FIG. 7. z component of the flow vorticity (ξ = ∇×u) and flow streamlines in the xy plane. The results are
for Ca = 0.04 when (a) there is no external magnetic field (Camag = 0) and when the external magnetic field is
applied in the (b) x direction, (c) y direction, and (d) z direction at Camag = 16.

where V is the total volume occupied by the two phases. Note that the continuous phase does
not contribute to the system magnetization and that ζ (x) is replaced by ζε(φ) for calculations.
Macroscopically, the ferrofluid emulsion magnetizes only because the dispersed phase consists of
ferrofluid droplets and the system is subjected to an external magnetic field. Equation (7) is, in
essence, a volumetric average of the magnetization of a single droplet in suspension. The bulk
magnetization of the ferrofluid emulsion is 〈M〉 = βM, where β is the droplet volume fraction and
M = χH is the droplet magnetization.

Ellipsoids are the only finite bodies that can be uniformly magnetized in uniform magnetic
fields [68,69]. Therefore, the magnetic field inside a prolate ferrofluid droplet in a quiescent liquid
subjected to a relatively weak uniform magnetic field is uniform and parallel to the external field
direction [27]. The same holds true for ferrofluid droplets in planar extensional flows when the
external field is applied in one of the flow main directions. Figure 8 shows the magnetic field
intensity and lines near the droplet in the xy plane for Camag = 12 with no external flow (u∞ = 0)
[Fig. 8(a)] and with the external flow at Ca = 0.04 [Figs. 8(b)–8(d)]. The flow does not change
the general behavior of the magnetic field in the system. Far outside the droplet, the magnetic
field is uniform and equal to the external field because the continuous phase is a nonmagnetizable
fluid. Inside the droplet, the magnetic field is uniform and parallel to the external field direction
because the droplet behaves like a magnetizable ellipsoid; as we discuss shortly, the lower field
intensity inside the droplet results from a demagnetizing factor that depends on the droplet shape
and orientation. Outside the droplet and close to the interface, the magnetic field is not uniform.
The field lines are deflected near the droplet because of the difference in magnetic permeability
between the phases; the spatial gradients associated with the magnetic field discontinuity across the
interface are the source of the field-induced magnetic force at the droplet surface [see Eq. (6)]. The
field intensity outside the droplet is higher/lower in regions where the interface is normal/tangent
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FIG. 8. Magnitude of the magnetic field and magnetic field lines in the xy plane. The results are for Camag =
12 when (a) the external magnetic field is applied in the x direction with no external flow (u∞ = 0) and when
the external magnetic field is applied in the (b) x direction, (c) y direction, and (d) z direction with the external
flow at Ca = 0.04.

to the external field. These are the regions where the magnetic force is stronger/weaker; because of
symmetry, these are also the regions where the droplet curvature is maximum/minimum.

The demagnetizing factor of a general ellipsoid decreases as the ellipsoid slims and approaches
a slender body aligned with the external field [68,69]. Similarly, the demagnetizing factor of a
prolate ferrofluid droplet in a quiescent liquid decreases with the droplet eccentricity, so that
the droplet magnetization increases as the external field intensity grows and the droplet becomes
more elongated in the external field direction [27]. Figure 9 shows the magnitude of the droplet
magnetization, M = ‖M‖, as a function of Camag for different values of Ca. We note that M grows
monotonically with Camag independently of the external field direction. Increasing the external field
intensity increases the droplet elongation in the external field direction [see Figs. 3 and 4(b)]; this

FIG. 9. Magnitude of the droplet magnetization (M) as a function of Camag when the external magnetic
field is applied in the (a) x direction, (b) y direction, and (c) z direction. The results are for Ca = 0.02 (black
circles), Ca = 0.04 (blue squares), Ca = 0.08 (red triangles), and Ca = 0.12 (green diamonds).
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decreases the demagnetizing factor and increases the droplet magnetization. Viscous forces play a
role in the droplet shape and affect the demagnetizing factor as well. Yet the way M trends with
Ca essentially depends on the external field direction. We see that M increases with Ca when the
external field is in the x direction [Fig. 9(a)]. The flow improves the droplet magnetization because
viscous and magnetic forces stretch the droplet together in the same direction, increasing the overall
droplet elongation in the external field direction [see Fig. 3(a)]. Conversely, M decreases with Ca
when the external field is in the y direction [Fig. 9(b)]. The flow hinders the droplet magnetization
because viscous and magnetic forces compete to stretch the droplet in different directions that
are perpendicular to one another, decreasing the overall droplet elongation in the external field
direction [see Fig. 3(b)]. All M vs Camag curves collapse when the external field is in the z direction
[Fig. 9(c)]. The flow is not consequential to the droplet magnetization because viscous forces have a
minor effect on the droplet elongation in the external field direction when the latter is in the neutral
direction [see Fig. 4(b)]. In all cases, the rate at which M grows with Camag decreases as Camag

increases; at finite Ca, we expect M → 1 as Camag → ∞, which corresponds to the magnetization
counterpart of the hardeninglike behavior observed in Fig. 2(b).

Because 〈M〉 = βM for the bulk system, ferrofluid emulsions of superparamagnetic droplets
behave as a superparamagnetic material for which the effective magnetic susceptibility increases
with β and M. Because M is determined by the coupling between viscous, magnetic, and capillary
forces at the droplet level, the magnetic susceptibility of the bulk emulsion varies with the external
field configuration, even if the magnetic susceptibility of the constituent droplets is constant. These
predictions agree qualitatively well with previous theoretical and experimental studies of static
magnetic properties of ferrofluid emulsions in relatively weak magnetic fields, below the saturation
magnetization of the ferrofluid droplets in suspension [70–73].

2. Emulsion rheology

We now study the impact of external magnetic fields on the planar extensional rheology of
dilute ferrofluid emulsions. The dimensionless particle stress associated with ferrofluid droplets
in suspension is [35] (see Appendix B for details)

σd = 1

V

∫
S

[(
κ

Ca
− Camag

2Ca
(ζ − 1)‖H‖2

)
xn̂

]
dS, (8)

where S is the droplet surface. Note that a, ηε̇, and H0 are used as characteristic scales of length,
stress, and magnetic field intensity to normalize σd , respectively, and that ζ is replaced by ζε(φ) for
calculations. For the sake of convenience, we will refer to σd as the droplet stress, as it measures the
contribution of the ferrofluid droplets to the bulk stress tensor of the resulting ferrofluid emulsion
when the two-phase system is taken as a homogeneous material from a continuum perspective.
Equation (8) is valid only for λ = 1; the interested reader is referred to the original work of Batchelor
[44] for details on the particle stress of general particulate systems. The droplets affect the stress
tensor of the bulk emulsion only through capillary and magnetic forces acting at the fluid interface;
the dyadic xn̂ captures anisotropic contributions to the stress associated with the droplet shape.
Because the droplet is symmetric with respect to the reference axes, the normal components of xn̂
are all positive. The shear components of xn̂ change in sign along the interface, but these changes
are antisymmetric. As both κ and ‖H‖2 are positive and symmetric with respect to the reference
axes (see Fig. 8), the shear components of the integrals of κxn̂ and ‖H‖2xn̂ over S are null. As a
result, the shear stresses of σd vanish identically, so that σd is a symmetric tensor for which the only
nonzero entries are the normal stresses σ d

xx, σ d
yy, and σ d

zz.
It is instructive to split the droplet stress into a traction term given by

σd
t = 1

V

∫
S

κ

Ca
xn̂ dS (9)
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and a compression term by

σd
c = − 1

V

∫
S

Camag

2Ca
(ζ − 1)‖H‖2xn̂ dS. (10)

While the traction term depends on 1/Ca and contributes with positive values to the normal
stresses, the compression term depends on Camag/Ca and contributes with negative values to
the normal stresses. Note that Camag/Ca measures the ratio of magnetic to viscous forces at the
droplet scale and does not depend on the interfacial tension between the phases. Importantly, the
compression term is a direct consequence of the field-induced magnetic force at the droplet surface.
Equations (9) and (10) then provide interesting insights. At fixed Ca, increasing Camag enhances
the overall compression of the stress state. In contrast, at fixed Camag, increasing Ca mitigates both
the traction and compression contributions to the stress state. If Camag is sufficiently small, the
normal stresses are positive (traction-dominated) and increasing Ca leads to lower normal stresses
(less traction, more compression). If Camag is sufficiently high, the normal stresses are negative
(compression-dominated) and increasing Ca leads to higher normal stresses (less compression,
more traction). We find that this transition occurs around Camag ≈ 6 for the cases analyzed here.
The droplet shape also plays a role. First, distorted droplets are an important source of anisotropic
stresses; these are captured by xn̂ and affect both the traction and compression terms. When
the droplet is stretched/compressed in a certain direction, the unit normal associated with this
direction becomes more/less distant from the droplet center, increasing/decreasing the anisotropic
contribution to the normal stress in this direction. Second, distorted droplets have a nonuniform
curvature distribution over the surface, which affects the traction terms.

Usually, the steady-state rheology in planar extension is fully characterized by two extensional
viscosity coefficients [56]: the planar extensional viscosity and the second extensional viscosity.
Both material functions are based on the normal stresses and uniquely determine the deviatoric
part of the stress tensor. The planar extensional viscosity measures the material resistance to be
continuously stretched in the x direction and compressed in the y direction at the same rate, while the
second extensional viscosity measures the material resistance to prevent continuous deformation in
the z direction (at the same condition). In the present work, we are primarily interested in the droplet
stress contributions. In this way, we define the dimensionless planar extensional viscosity,1 ηp =
σ d

xx − σ d
yy, and the dimensionless second extensional viscosity, η2 = σ d

zz − σ d
yy, in order to measure

the droplet contribution to the extensional viscosity coefficients of the bulk emulsion.
Figure 10 shows ηp (normalized by β) as a function of Camag for different values of Ca. We start

with the external field in the x direction [Fig. 10(a)]. Increasing Camag increases the distortion of
the prolatelike droplet in the x direction [see Fig. 3(a)]. The higher curvature at the droplet tips in
the x axis increases the traction contribution to σ d

xx. Analogously, the lower curvature at the droplet
tips in the y direction decreases the traction contribution to σ d

yy. The compression contribution to
σ d

xx is much more attenuated by the traction counterpart in comparison to what happens with σ d
yy.

As a result, ηp grows with Camag, which corresponds to a field-induced viscous-hardening behavior
(or a magnetic-thickening effect) [Fig. 10(a)]. Because viscous forces also stretch the droplet in
the x direction [see Fig. 3(a)], the net effect of increasing Ca is an increase in the anisotropic
contribution of xn̂ to the traction term. Hence, ηp also grows with Ca [Fig. 10(a)]. The results with
the external field in the y direction are more delicate [Fig. 10(b)]. Increasing Camag now drives the
droplet through a dramatic geometric change in the xy plane [see Fig. 3(b)]; the droplet starts as a
prolatelike ellipsoid with the major axis in the x axis at low Camag, becomes an oblate ellipsoid with
the polar radius in the z axis at Camag = Ca∗

mag, and eventually becomes a prolatelike ellipsoid with

1The dimensional version of the droplet contribution to the planar extensional viscosity is ηp,dim = (σ d
xx,dim −

σ d
yy,dim )/ε̇, in such manner that ηp = ηp,dim/η. The same applies to the droplet second extensional viscosity as

well as to the shear and rotational viscosity coefficients, defined in Sec. IV B 2.
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FIG. 10. Droplet contribution to the planar extensional viscosity (ηp) of the ferrofluid emulsion as a
function of Camag when the external magnetic field is applied in the (a) x direction, (b) y direction, and (c) z
direction. The results are for Ca = 0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.08 (red triangles),
and Ca = 0.12 (green diamonds). Note that ηp is normalized by the droplet volume fraction (β).

the major axis in the y axis at high Camag. The anisotropic contribution of xn̂ to the compression and
traction terms associated with σ d

yy becomes progressively more pronounced throughout this process.
However, anisotropic changes in the droplet shape driven by the external field intensity are not
followed by changes in curvature of similar strength because the competition between viscous and
magnetic forces stretching the droplet in different directions results in less pronounced curvatures
at the droplet tips. As a result, the compression contribution overcomes the traction contribution
in σ d

yy, so that ηp generally grows with Camag and falls with Ca [Fig. 10(b)]; the only exception
occurs at Ca = 0.12 for Camag � 6. This viscous-hardening behavior is less apparent in strong flows
because increasing Ca attenuates the imbalance of the stress state by reducing both the traction and
compression terms. The results for the external field in the z direction are simpler [Fig. 10(c)].
Because both Camag and Ca are not very consequential to the droplet shape in the xy plane
[see Fig. 4(a)], ηp remains nearly constant [Fig. 10(c)].

Figure 11 shows the results for η2 (also normalized by β) in the same fashion. To assist the
discussion, Fig. 12 presents the droplet distortion in the yz plane measured with Dzy = (Lz − Ly)/
(Lz + Ly). Again, we start with the external field in the x direction [Fig. 11(a)]. Viscous and
magnetic forces compress the droplet together with similar intensities in the y and z direction,
so that Camag and Ca do not induce substantial changes in the droplet shape in the yz plane
[Fig. 12(a)]. It follows that η2 is effectively constant [Fig. 11(a)]. This parallels the results for
ηp when the external field is in the z direction [see Fig. 10(c)]. The reasoning behind the viscous-
hardening behavior of η2 when the external field is in the y direction [Fig. 11(b)] is similar to that
discussed for ηp [see Fig. 10(b)]. That is, increasing Camag and stretching droplet in the y direction
increases the anisotropic contribution of xn̂ to the compression term associated with σ d

yy, which

FIG. 11. Droplet contribution to the second extensional viscosity (η2) of the ferrofluid emulsion as a
function of Camag when the external magnetic field is applied in the (a) x direction, (b) y direction, and (c) z
direction. The results are for Ca = 0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.08 (red triangles),
and Ca = 0.12 (green diamonds). Note that η2 is normalized by the droplet volume fraction (β).

063601-15



A. L. GUILHERME et al.

FIG. 12. Droplet distortion in the yz plane (Dzy) as a function of Camag when the external magnetic field is
applied in the (a) x direction, (b) y direction, and (c) z direction. The results are for Ca = 0.02 (black circles),
Ca = 0.04 (blue squares), Ca = 0.08 (red triangles), and Ca = 0.12 (green diamonds). The insets show the
droplet cross section in the yz plane at different conditions.

overtakes the corresponding traction term because changes in curvature are not equivalently strong
[see Fig. 12(b)]. Thus, η2 grows with Camag and falls with Ca [Fig. 11(b)]. The same rationale
applies to the field-induced viscous-softening behavior (or magnetic-thinning effect) of η2 when the
external field is in the z direction [Fig. 11(c)]. Increasing Camag and stretching the droplet in the
z direction leads to compression terms stronger than the corresponding traction terms because of
insufficiently strong changes in the droplet curvature [see Fig. 12(c)]. As a result, η2 falls with both
Camag and Ca [Fig. 11(c)].

In general, traction and compression (forces) are necessary to promote extension and com-
pression (kinematics), respectively. Conceived as material properties, the extensional viscosities
measure resistance coefficients associated with the difficulty of imposing the corresponding kine-
matics. Common materials, so to speak, thus possess positive extensional viscosities. In most of the
cases analyzed here, the droplet contribution to the extensional viscosities of the bulk emulsion
is positive and either remains constant or increases (viscous-hardening) with the external field
intensity [see Figs. 10(a)–11(b)]. The fact that η2 decreases (viscous-softening) with the external
field intensity and eventually achieves negative values at low Ca and high Camag when the external
field is in the z direction [see Fig. 11(c)] deserves a special remark. In this case, increasing the
external field intensity mitigates the difficulty added by the droplet in imposing the bulk extensional
kinematics in the yz plane; when η2 is negative, the droplet facilitates the bulk motion in this plane.
Interestingly, this behavior is somewhat similar to what happens with some active fluids, such as
suspensions of pusher microorganisms like E. coli and B. subtilis bacteria [74].

The behavior of complex fluids is a strong function of the flow kinematics. Because the rheologi-
cal material functions are defined for certain flow conditions, comparing viscometric and extensional
material functions is not straightforward, yet not illegitimate. Overall, the response of ferrofluid
emulsions in planar extension is very different from that in simple shear, particularly regarding the
dependence of the relevant material functions on Camag and Ca for a specific external field direction.
For example, as Camag increases with the external field in the flow direction, the shear viscosity
decreases and becomes less dependent of Ca, indicating a magnetic-thinning effect that eventually
suppresses the usual shear-thinning behavior of dilute emulsions. Additionally, whereas the first
normal stress difference in shear increases with Ca, decreases with Camag, and achieves negative
values at low Ca and high Camag, the second normal stress difference decreases with Ca, increases
with Camag, and tends to positive values for all Ca at high Camag. Here, in contrast, as Camag increases
with the external field in the flow extension direction, the planar extensional viscosity increases and
becomes more dependent of Ca, revealing a magnetic-thickening effect that amplifies the usual
extensional-thickening behavior of dilute emulsions, and the second planar extensional viscosity
remains constant and approximately independent of Ca. The reader is referred to Cunha et al. [35]
and Ishida and Matsunaga [36] for details on the shear rheology of ferrofluid emulsions subjected
to uniform magnetic fields.
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FIG. 13. Three-dimensional view of the prolatelike droplet at Ca = 0.02 when the external magnetic field
is applied in the x = y direction at Camag = 20. For the sake of visualization, the droplet shape is projected on
each plane (black), flow streamlines outside the droplet are projected on the xy plane (blue), and magnetic field
lines outside the droplet are projected on the xz and yz plane (red). The angle θ is determined by the droplet
major axis and the x axis.

B. External magnetic fields applied in a direction different from one of the flow main directions

1. Droplet shape and magnetization

We now take H0 = (êx + êy)/
√

2, so that the external magnetic field is perpendicular to the z
axis and parallel to the x = y plane. With this configuration, the droplet does not achieve a steady
shape at Ca = 0.12 and Camag � 2, at Ca = 0.1 and Camag � 6, and at Ca = 0.08 and Camag � 16.
We explore the parameter space accordingly.

Figure 13 shows a three-dimensional view of the droplet at Ca = 0.02 and Camag = 20. Even
though symmetric with respect to the xy plane, the prolatelike droplet is not symmetric with respect
to the x and y axis separately. The droplet distortion is now measured with Taylor’s parameter
D = (L − B)/(L + B), where L and B are, respectively, the droplet major semiaxis (half length)
and minor semiaxis (half breadth) in the xy plane [31,32]. The droplet orientation is measured
with the angle θ between the droplet major axis and the x axis, where θ = 0 is the direction of
flow extension and θ = π/4 is the direction of the external field. Figure 14 shows how D and
θ (normalized by π/4) vary with Camag and Ca. Viscous and magnetic forces stretch the droplet

FIG. 14. (a) Droplet distortion (D) and (b) orientation (θ , measured with respect to the x axis and
normalized by π/4) as a function of Camag when the external magnetic field is applied in the x = y direction.
The results are for Ca = 0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.06 (red triangles), Ca = 0.08
(green diamonds), and Ca = 0.1 (magenta stars). The insets show the droplet cross section in the xy plane at
different conditions.
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mag

FIG. 15. Magnitude of the magnetic field and magnetic field lines in the xy plane. The result is for Ca = 0.1
when the external magnetic field is applied in the x = y direction at Camag = 4. The arrows (not to scale)
indicate the direction of the external field H0 and the direction of the system magnetization 〈M〉 = βM; θmag is
the angle between them.

in directions that are not perpendicular to one another. The former is responsible for flow-induced
extension in the x direction, whereas the latter is responsible for field-induced extension in the x = y
direction. The magnetic force can be generally split into three components: one that collaborates
with viscous extension in the x direction, one that counteracts viscous compression in the y direction,
and one that collaborates with viscous compression in the z direction. It follows that D grows with
both Camag and Ca [Fig. 14(a)]. The balance between viscous and magnetic forces also determines
the droplet orientation in the flow. While the former tends to align the droplet with the direction
of flow extension, the latter tends to align the droplet with the external field direction. At fixed
Camag, θ decreases as Ca increases; conversely, at fixed Ca, θ increases as Camag increases. Hence,
θ grows with Camag and the curves of θ vs Camag shift upwards as Ca falls [Fig. 14(b)]. The droplet
orientation is 0 < θ < π/4; we expect θ = 0 as Camag/Ca → 0 (or in the absence of external field)
and θ = π/4 as Camag/Ca → ∞ (or in the absence of external flow). The predictions also suggest
that the dependence of D on Ca and of θ on Camag becomes weaker as Camag grows stronger. That
is, there is a threshold value of Camag above which a further increase in Camag changes D without
changing θ , which becomes a function of Ca only.

Figure 15 shows the magnetic field intensity and lines near the droplet in the xy plane at Ca = 0.1
and Camag = 4 (see Fig. 8 for comparison). The magnetic field inside the droplet is uniform because
the droplet is ellipsoidal, but the field lines are no longer parallel to the external field direction.
Note that the regions of higher/lower field intensity outside the droplet and close to the interface
are not symmetric with respect to the droplet main axes, deviating slightly from the regions of
maximum/minimum curvature at the droplet tips. As a result, the magnetic force, which is always
normal to the interface, induces a torque that tends to lean the droplet counterclockwise around
the z axis (towards the external field direction). The droplet magnetization is locally aligned with
the magnetic field inside the droplet because the ferrofluid is superparamagnetic. Therefore, the
primary action of the magnetic torque is to align the droplet magnetization with the external
field direction. Previous studies showed that superparamagnetic droplets also experience magnetic
torques in simple shear flows under uniform magnetic fields [35,38]. In shear, however, the droplet
orientation is inherently affected by the flow vorticity; here, in contrast, the planar extensional flow
is vorticity-free by construction. The droplet tilts in the extensional flow only because the external
field is not aligned with one of the flow main directions. As soon as magnetic forces stretch the
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FIG. 16. z component of the flow vorticity (ξ = ∇×u) and flow streamlines in the xy plane. The result is
for Ca = 0.04 when the external magnetic field is applied in the x = y direction at Camag = 16.

droplet in the external field direction, viscous forces tend to tilt the droplet major axis clockwise
around the z axis (towards the direction of flow extension); this creates an angle θmag between the
droplet magnetization M and the external field H0 (see Fig. 15), which leads to a magnetic torque
at the droplet level. At the steady state, viscous and magnetic torques balance one another and the
droplet orientation becomes stationary.

Figure 16 shows the z component of the flow vorticity and flow streamlines near the droplet in
the xy plane at Ca = 0.04 and Camag = 16 (see Fig. 7 for comparison). The competition between
viscous and magnetic forces in directions that are not perpendicular to one another pushes the two
vortices of negative vorticity toward the droplet tips and eventually merges the two vortices of
positive vorticity into a large vortex around the droplet center. The flow inside the droplet becomes
characterized by three recirculation regions, highlighting an intriguing field-induced topological
transformation of the flow pattern at the droplet scale.

Macroscopically, the ferrofluid emulsion no longer responds as a superparamagnetic material,
as there is a small angle θmag between the system magnetization 〈M〉 = βM and the external field
H0 (see Fig. 15). Conversely, the bulk emulsion experiences a field-induced internal torque τmag =
(Camag/Ca)〈M〉×H0 whose intensity is τmag = (Camag/Ca)βM sin θmag. Figure 17 shows M as a
function of Camag and θmag as a function of Ca. Increasing the external field intensity stretches and
tilts the droplet towards the external field direction (see Fig. 14). Both effects decrease the droplet
demagnetizing factor, so that M grows with Camag [Fig. 17(a)]. Increasing the strength of viscous
forces also stretches the droplet, but hinders the droplet alignment with the external field direction
(see Fig. 14). It turns out that the combined action of these two effects is not consequential to the
droplet demagnetizing factor, so that M is nearly constant with Ca [Fig. 17(a)]. Additionally, θmag

increases close to linearly with Ca and is a weak function of Camag [Fig. 17(b)]. This suggests that
the flow is the main responsible for promoting field-induced internal torques in the bulk emulsion,
provided that an external magnetic field exists to trigger the droplet magnetization, as previously
observed in simple shear flows [35,38]. Figure 18 shows that τmag (normalized by β) increases with
Camag and is approximately independent of Ca. The rationale is the following: first, τmag scales with
Camag, and increasing Camag increases M without changing θmag; second, even though τmag scales
with 1/Ca, increasing Ca increases θmag without changing M. Because θmag is generally small, so
that sin θmag ≈ θmag, the net effects of changing Ca on τmag are negligible. In summary, the ferrofluid
emulsion behaves like a bulk material that, when subjected to external magnetic fields, responds to
external extensional loads with field-induced internal torques. This odd behavior is a characteristic
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FIG. 17. (a) Magnitude of the droplet magnetization (M) as a function of Camag. The results are for Ca =
0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.06 (red triangles), Ca = 0.08 (green diamonds), and
Ca = 0.1 (magenta stars). (b) Angle between the ferrofluid emulsion bulk magnetization and the external field
direction (θmag, in degrees) as a function of Ca. The results are for Camag = 2 (black circles), Camag = 4 (blue
squares), Camag = 8 (red triangles), Camag = 12 (green diamonds), Camag = 16 (magenta stars), and Camag =
20 (yellow pentagons). In both cases, the external magnetic field is applied in the x = y direction.

of chiral fluids, a new class of complex systems that has received increasing attention in recent years
[75–78].

2. Emulsion rheology

Moving to rheology, Fig. 19 shows ηp and η2 as a function of Camag for different values of Ca.
The trends are qualitatively similar to those discussed for Figs. 10 and 11. Because the droplet
orientation is 0 < θ < π/4 [see Fig. 14(b)], the projection of the droplet major axis on the x axis
is larger than the projection on the y axis. The viscous-hardening behavior of ηp in Fig. 19(a) is
thus equivalent to that when the external field is in the x direction [see Fig. 10(a)], but ηp is now
generally lower because of the mismatch between the primary directions of viscous and magnetic
forces acting at the droplet surface. The same idea applies to the viscous-hardening behavior of η2

in Fig. 19(b), which essentially is a less pronounced version of the results with the external field in
the y direction [see Fig. 11(b)].

The steady-state rheology of complex fluids relies on a set of material functions that can capture
the deviatoric part of the stress tensor in a motion with constant stretch history. The emergence of

FIG. 18. Magnitude of the field-induced internal torque in the ferrofluid emulsion (τmag) as a function
of Camag when the external magnetic field is applied in the x = y direction. The results are for Ca = 0.02
(black circles), Ca = 0.04 (blue squares), Ca = 0.06 (red triangles), Ca = 0.08 (green diamonds), and Ca =
0.1 (magenta stars). Note that τmag is normalized by the droplet volume fraction (β).
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FIG. 19. Droplet contribution to the (a) planar extensional viscosity (ηp) and (b) second extensional
viscosity (η2) of the ferrofluid emulsion as a function of Camag when the external magnetic field is applied
in the x = y direction. The results are for Ca = 0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.06 (red
triangles), Ca = 0.08 (green diamonds), and Ca = 0.1 (magenta stars). Note that both ηp and η2 are normalized
by the droplet volume fraction (β).

field-induced internal torques in the system indicates that the droplet stress is no longer symmetric
and contributes with shear stresses to the bulk stress tensor of the ferrofluid emulsion. As the two
usual extensional viscosity coefficients are associated with normal stresses only, we must introduce
new material functions to account for these unexpected shear stresses and fully characterize the
stress state in planar extension. The parallel with shear rheology is straightforward: even though the
rate-of-strain tensor has shear components only in viscometric flows, one still defines viscometric
material functions associated with normal stresses. It is important to make a distinction between
extensional motion and extensional loading at this point. The existence of shear stresses in exten-
sional flows is related to the anisotropic nature of the fluid microstructure. Shear stresses appear
as a macroscopic response to sustain the imposed extensional motion when the microstructure
orientation is not aligned with one of the flow main directions. Here the microstructure of the
ferrofluid emulsion consists of ferrofluid droplets whose intrinsic orientation is affected by the
external field configuration. Additionally, it is instructive to revisit the definition of the droplet
stress in Eq. (8). Because the droplet is now tilted with respect to the references axes, changes in
the sign of the shear components of xn̂ at the interface are not exactly antisymmetric; likewise, the
distributions of κ and ‖H‖2 at the interface are not exactly symmetric (see Fig. 15). As a result, the
shear components of the integrals of κxn̂ and ‖H‖2xn̂ over S do not vanish; instead, they lead to
nonsymmetric shear stresses in σd .

Let Sd and W d be the symmetric and skew-symmetric parts of σd , respectively. We now define
ηs = Sd

xy and ηr = W d
xy as the dimensionless droplet contribution to the shear and rotational viscosity

coefficients of ferrofluid emulsions in planar extension, respectively (see footnote 1). Note that
ηs and ηr are new material functions associated with shear stresses in the xy plane of the planar
extensional flow. Figure 20 shows ηs and ηr as a function of Camag for different values of Ca.
Because the shear stresses in the bulk emulsion are in the clockwise direction (see Figs. 15 and 16),
σ d

yx is positive and σ d
xy is negative. To explain this further, we analyze the traction and compression

terms of the droplet stress separately [see Eqs. (9) and (10)]. The traction contributions to σ d
xy and

σ d
yx are both positive because the regions of high/low curvature at the interface coincide with those

where the shear components of xn̂ are positive/negative. However, these contributions are equal
to one another because the curvature distribution is symmetric with respect to the droplet major
axis. Following the same rationale, the compression contributions to σ d

xy and σ d
yx are both negative

because the magnetic field intensity near the droplet is higher/lower near the regions where the shear
components of xn̂ are positive/negative. Nevertheless, the distribution of magnetic field intensity
near the interface is not symmetric with respect to the droplet major axis. The regions of high field
intensity are dislocated in the counterclockwise direction from the droplet tips towards the regions
where the xy component of xn̂ is positive. Moreover, as the droplet orientation is 0 < θ < π/4
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FIG. 20. Droplet contribution to the (a) shear viscosity (ηs) and (b) rotational viscosity (ηr) of the ferrofluid
emulsion as a function of Camag when the external magnetic field is applied in the x = y direction. The results
are for Ca = 0.02 (black circles), Ca = 0.04 (blue squares), Ca = 0.06 (red triangles), Ca = 0.08 (green
diamonds), and Ca = 0.1 (magenta stars). Note that both ηs and ηr are normalized by the droplet volume
fraction (β).

[see Fig. 14(b)], the xy component of xn̂ is positive over a larger portion of the interface. The
compression contribution to σ d

xy is thus more intense than that associated with σ d
yx. As a result, ηs

is negative; based on the role Camag and Ca play in the droplet distortion and orientation in the
flow (see Fig. 14), it follows that ηs falls with Camag and grows with Ca [Fig. 20(a)]. The rotational
viscosity is strictly associated with the field-induced internal torque (see Fig. 18), so that ηr simply
scales with τmag [Fig. 20(b)]. The fact that ηr is negative just reflects that the droplet contribution to
the macroscopic flow opposes the magnetic torque induced at the droplet surface.

For the sake of completeness, we want to address the scenario where the external field config-
uration relative to the flow is arbitrary. In the more general case, the external field can entirely
break the droplet symmetry, and so the resulting field-induced internal torque in the bulk emulsion
can have any direction. Following the analysis presented here, this would lead to a nonsymmetric
droplet stress fully populated with all six shear components, which would require eight material
functions to fully characterize the stress state in planar extension: the two usual extensional viscosity
coefficients associated with the normal stresses in each direction and three pairs of shear and
rotational viscosity coefficients associated with the shear stresses in each plane. We anticipate that
highly anisotropic microscopic states like this can also happen in other macroscopic motions such
as simple shear, uniaxial extension, biaxial extension, etc. Therefore, a complete description of the
rheology of ferrofluid emulsions will often require the introduction of additional material functions
to fully characterize the stress state. Remarkably, the activation of rotational degrees of freedom
of superparamagnetic droplets with static magnetic fields is possible only in hydrodynamic flows,
shedding light on the potential of ferrofluid emulsions as a new model system for chiral fluids with
rich rheology and tunable properties [75–78].

V. CONCLUDING REMARKS

We presented a computational study of the dynamics of superparamagnetic ferrofluid droplets
in planar extensional flows under the external action of uniform magnetic fields. For the sake of
simplicity, we neglected both buoyancy and inertial effects, considered the case where the two
liquid phases have the same viscosity, and assumed that the ferrofluid phase has a constant magnetic
susceptibility. Using the particle stress of Cunha et al. [35], we also studied the effects of the
external field configuration on the planar extensional rheology of dilute ferrofluid emulsions when
the two-phase system is taken as a homogeneous material from a continuum perspective. Overall,
we found that the droplet shape and magnetization are strongly coupled and result from the balance
between viscous, magnetic, and capillary forces at the droplet surface, which depends on the external
field intensity and direction relative to the flow. Importantly, the droplet shape and magnetization

063601-22



FERROFLUID DROPLETS IN PLANAR EXTENSIONAL …

at the microscopic level dictate the rheological response of the resulting ferrofluid emulsion at the
macroscopic level.

When the external magnetic field is applied in one of the flow main directions (extension,
compression, or neutral), the droplet assumes the shape of a general ellipsoid whose main axes
are aligned with the reference axes. The external field configuration can be adjusted to control
the droplet deformation, induce or prevent droplet breakup, and change the droplet shape from
prolatelike to oblate. The vorticity field is symmetric, the flow inside the droplet is characterized by
four recirculation regions, and the ferrofluid emulsion responds as a superparamagnetic material
for which the bulk magnetization is aligned with the external field direction and the effective
susceptibility varies with the droplet response. Moreover, the droplet contribution to the two
extensional viscosity coefficients associated with the normal stresses of the bulk emulsion either
remains constant or increases with the external field intensity (field-induced viscous-hardening).
The only exception occurs when the external field is applied in the flow neutral direction, where
increasing the external field intensity keeps the planar extensional viscosity constant and decreases
the second extensional viscosity (field-induced viscous softening). In parallel with suspensions of
pusher bacteria [74], the predictions suggest that the droplet can eventually facilitate part of the
imposed motion with negative contributions to the second extensional viscosity. In general, the
response of ferrofluid emulsions in planar extensional flows is very different from that previously
observed in viscometric flows such as simple shear [35,36].

Conversely, the droplet tilts in the extensional flow when the external magnetic field is applied
in a direction that does not coincide with one of the flow main directions. The ferrofluid emulsion
no longer responds as a superparamagnetic material, the vorticity field is no longer symmetric,
and the flow inside the droplet becomes characterized by three recirculation regions, highlighting a
dramatic field-induced topological transformation of the flow at the droplet level. Similar to what
happens in shear flows, the system experiences a field-induced internal torque because the droplet
magnetization is no longer aligned with the external field direction [35,38]. Because of this highly
anisotropic microstructure, the ferrofluid emulsion develops nonsymmetric shear stresses to sustain
the imposed extensional motion and displays novel rheological signatures that can be captured only
with the introduction of appropriate material functions to fully characterize the stress state. The
field-induced activation and control of rotational degrees of freedom of superparamagnetic droplets
in hydrodynamic flows throw light on ferrofluid emulsions as a new model system for chiral fluids
with rich rheology and transformational properties [75–78].

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX A

1. Numerical methodology

a. Projection method for the hydrodynamic problem

The mass conservation and momentum balance equations of the two-phase flow are solved with
the projection method of Kim and Moin [79]. Starting from the velocity un at the present time step,
the method introduces a fractional step for a tentative velocity u∗ and a tentative pressure P∗; the
former is then projected onto the divergence-free space to determine the true velocity un+1 and the
true pressure Pn+1 at the next time step. After the incompressibility constraint, the fractional step
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consists of

ρ

(
u∗ − un

�t

)
= −ρ(u · ∇u)n+ 1

2 + η

2
∇2(un + u∗) + F

n+ 1
2

c + F
n+ 1

2
m (A1)

and

∇2P∗ = ρ

�t
∇ · u∗, (A2)

where the terms at n + 1/2 are extrapolated with a second-order Adams-Bashforth scheme.
Equations (A1) and (A2) are discretized using second-order finite differences in a staggered grid;

the only exception is for the advective term, which is discretized using a second-order essentially
nonoscillatory (ENO) formula, combined with upwind scheme. The linear systems for u∗ and P∗ are
solved using a conjugate gradient algorithm with symmetric successive over-relaxation (SSOR) and
multigrid preconditioning, respectively. The true velocity and the true pressure are then calculated
as un+1 = u∗ − (�t/ρ)∇P∗ and Pn+1 = P∗ − [η�t/(2ρ)]∇2P∗.

b. Laplace equation for the magnetic problem

Equation (3) for the magnetic potential with ζε(φ) instead of ζ (x) is discretized using centered,
second-order finite differences, and the linear system for ψ is solved using a conjugate gradient
algorithm with multigrid preconditioning. This is the same numerical scheme used to solve for the
tentative pressure in the projection method.

c. Level set method for the interfacial problem

The fluid interface that defines the droplet surface is captured with the level method, as detailed
by Osher and Fedkiw [60] and reviewed by Sethian and Smereka [61] and Gibou et al. [62]. The
method couples the traditional equation for the advection of the level set function in the flow,

∂φ

∂t
+ u · ∇φ = 0, (A3)

with an additional transport equation for its reinitialization,

∂φ

∂τ
+ S(φ)(‖∇φ‖ − 1) − ϒδ(φ)‖∇φ‖ = 0, (A4)

where τ is an artificial time, ϒ is a correction to ensure volume conservation, and S(φ) is the signal
function; the correction terms is

ϒ =
∫
�

δ(φ)[S(φ)(‖∇φ‖ − 1)] dV∫
�

δ2(φ)‖∇φ‖ dV
, (A5)

where � is an individual grid cell, and the signal function is

S(φ) = φ√
φ2 + ‖∇φ‖2�x2

. (A6)

Equations (A3) and (A4) are solved with a conservative Gudonov’s method in which the spatial
derivatives are discretized using a fifth-order weighted essentially nonoscillatory (WENO) scheme
and time is integrated using a third-order strong stability preserving (SSP) Runge-Kutta scheme.
Surface integrals of an arbitrary function F(x, t ) over the droplet surface S are transformed into
volume integrals over the total volume V of the system as∫

S
F dS =

∫
V
Fδε(φ)‖∇φ‖ dV (A7)

and calculated using a second-order quadrature in a 27-point cubic stencil.
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TABLE I. Mesh convergence study in terms of the droplet distortion in the xy plane (Dxy), the droplet
magnetization (M, normalized by β), and the xx component of the traction and compression terms of the
particle stress (σd

t,xx and σd
c,xx , both normalized by β). The results are for Ca = 0.02 and Camag = 20 when the

external magnetic field is applied in the x direction.

Mesh Grid cells Meshing size Dxy σd
t,xx/β σd

c,xx/β M/β

M1 829 440 0.1042 0.5703 0.7723 −2.2728 0.004171
M2 1 966 080 0.0781 0.5765 0.7817 −2.2673 0.004151
M3 3 840 000 0.0625 0.5804 0.7869 −2.2649 0.004142
M4 6 635 520 0.0520 0.5835 0.7906 −2.2629 0.004138

d. Computational mesh and convergence study

We performed a mesh convergence study to verify the accuracy of the numerical solutions for
a representative case where Ca = 0.02, Camag = 20, and the external magnetic field is applied in
the x direction. We tested four different regular meshes (termed M1 to M4) for which the number
of cells along the longest side of the flow domain is set to 120, 160, 200, and 240, respectively;
therefore, the total number of grid cells and the meshing size vary from ∼800 000 to ∼6 600 000
and from ∼0.1 to ∼0.05, respectively. In all cases, the time step is set to �t ≈ 0.25�x/‖umax‖,
where ‖umax‖ ≈ 8 is the maximum flow velocity, as determined by the essential boundary condition
and the domain size.

Table I summarizes the steady-state results for the droplet distortion in the xy plane, Dxy, the
droplet magnetization, M, and the xx component of the traction and compression terms of the
particle stress, σd

t,xx and σd
c,xx, respectively. As the refinement increases from mesh M1 to mesh

M4, the results change in less than ∼1.2%, ∼0.7%, and ∼0.5%, respectively, demonstrating that
the hydrodynamic, magnetic, and level set variables indeed converge with the spatial discretization.
All simulations presented in the main paper were computed with mesh M3 and �t = 0.002.

APPENDIX B

Here we derive the expression for the particle stress of ferrofluids droplets in suspension (see
Sec. II to review the model assumptions). We start with the capillary and magnetic forces at the
droplet surface written as Fc = −σκδ(φ)n̂ and Fm = μ0(ζ (φ) − 1)H · ∇H , respectively. Note that
the latter is equivalent to

Fm = ∇
[

1

2
μ0(ζ (φ) − 1)‖H‖2

]
− 1

2
μ0‖H‖2∇ζ (φ). (B1)

While the first term of Eq. (B1) can be readily incorporated into a modified pressure field, thus
playing no role in the flow other than ensuring incompressibility, the second is of special importance
for the droplet dynamics and emulsion rheology. As ∇ζ (φ) = −χδ(φ)n̂, where we have used that
∇ζ (φ) = −χ∇H (φ), ∇H (φ) = δ(φ)∇φ, and n̂ = ∇φ, the second term of Eq. (B1) corresponds
to a normal stress jump of intensity 1

2μ0χ‖H‖2 across the fluid interface.
To formally demonstrate the stress jump across the interface, we take a control volume of width

2e around a portion � of the droplet surface, as illustrated in Fig. 21. The integral momentum
balance reads

(n̂ · σo)�o − (n̂ · σ i )�i +
∫ e

−e

[
1

2
μ0χ‖H‖2 − σκ

]
�δ(φ)n̂ dφ = 0, (B2)

where σ is the bulk stress tensor of each fluid phase and the superscripts i and o are used to
distinguish quantities of the inner and outer phases, respectively. Using the convolution property
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FIG. 21. Force balance in a control volume of width 2e around a portion � of the droplet surface. The
superscripts i and o distinguish the inner and the outer phases, respectively.

of δ(φ) and taking the limit e → 0, Eq. (B2) becomes

n̂ · σo − n̂ · σ i + 1

2
μ0χ‖H‖2n̂ − σκn̂ = 0, (B3)

which is the same as

� f = σκn̂ − 1

2
μ0χ‖H‖2n̂, (B4)

where � f = n̂ · [σo − σ i] is the stress jump.
To determine the particle stress of ferrofluid droplets, we combine Eq. (B4) for the stress jump

with the original formulation of Batchelor [44] for the particle stress of general particulate systems.
This leads to

σd = 1

V

∫
S

[
σκ − 1

2
μ0χ‖H‖2

]
xn̂ dS, (B5)

which is the dimensional counterpart of Eq. (8).
It is worth mentioning that this derivation is exact and does not depend on the interfacial thickness

that the level set method uses to regularize the behavior of discontinuous properties across the
interface.
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