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Convective heat transfer in the Burgers-Rayleigh-Bénard system
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The dynamics of heat transfer in a model system of Rayleigh-Bénard (RB) convection
reduced to its essentials, here dubbed Burgers-Rayleigh-Bénard (BRB), is studied. The
system is spatially one-dimensional, the flow field is compressible, and its evolution is
described by the Burgers equation forced by an active temperature field. The BRB dynam-
ics shares remarkable similarities with realistic RB thermal convection in higher spatial
dimensions: (1) it has a supercritical pitchfork instability for the onset of convection which
depends solely on the Rayleigh number (Ra) and not on the Prandlt number (Pr), occurring
at the critical value Rac = (2π )4, (2) the convective regime is spatially organized in distinct
boundary layers and bulk regions, and (3) the asymptotic high-Ra limit displays the Nusselt
and Reynolds numbers scaling regime Nu = √

RaPr/4 for Pr � 1, Nu = √
Ra/(4

√
π ) for

Pr � 1, and Re = √
Ra/Pr/

√
12, thus making BRB the simplest wall-bounded convective

system exhibiting the so-called ultimate regime of convection. These scaling laws, derived
analytically through a matched asymptotic analysis are fully supported by the results of the
accompanying numerical simulations. A major difference with realistic natural convection
is the absence of turbulence. The BRB dynamics is stationary at any Ra number above
the onset of convection. This feature results from a nonlinear saturation mechanism whose
existence is grasped by means of a two-mode truncated equation system and via a stability
analysis of the convective regime.

DOI: 10.1103/PhysRevFluids.8.063502

I. INTRODUCTION

Thought experiments, toy models, and low-dimensional representations are keys to scientific
thinking and allow insight into the complex physics of many real systems. In fluid-dynamics
research, reduced models obtained, e.g., via expansion and truncations of the original dynamical
equations have been used to conceptualize and to understand, for instance, the chaotic dynamics
of flows (Lorenz system [1]) or the physics of energy cascade in developed turbulence (shell
models [2,3]). In this study we focus on the problem of thermal convection and, in the spirit of
the one-dimensional (1D) toy model for granular media introduced by Du, Li, and Kadanoff [4,5],
we introduce a stripped-down mock-up of the classical Rayleigh-Bénard (RB) system [6].

The RB has been extensively studied either in its spatial three-dimensional (3D) or in its two-
dimensional (2D) version [7,8]. We are not aware of any study of the system in one dimension. This
is after all quite understandable, since in one dimension the incompressibility condition for the flow
does not hold, and one expects a rather different physical behavior. This is indeed already the case
for the 1D version of the Navier-Stokes equation, i.e., the Burgers equation [9]. It is well known
that the Burgers equation does not display a turbulent behavior, because it can be recast in terms
of a diffusion equation via the Hopf-Cole transformation [10,11]. However, a stochastically forced
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Burgers equation does produce a special kind of turbulence, dubbed Burgulence [12], that has drawn
the attention of recent research [13].

We show in this study that a 1D deterministically forced version of the RB system that we dub
the Burgers-Rayleigh-Bénard (BRB) system can be defined. Interestingly, this system possesses a
certain number of similarities with thermal convection in higher spatial dimensions: it has a super-
critical linear instability for the onset of convection, the convective regime is spatially organized in
distinct boundary layers and bulk regions, and the asymptotic high-Ra limit displays the so-called
ultimate Nusselt and Reynolds number scalings [8], although it lacks any turbulent behavior. It also
admits shocklike solutions that are peculiar to the Burgers dynamics.

The article is organized as follows. We first define the BRB system; next we examine its most
relevant symmetries and its global properties. In particular, we introduce the definition of the Nusselt
and Reynolds numbers, which are the two global response parameters of the system. Second, we
perform a theoretical analysis on the system dynamics, focusing on the calculation of the linear
instability threshold for convection, on the subsequent nonlinear saturation mechanism, and on a
derivation of a steady matched asymptotic solution for the very intense convection state. Third,
we push forward the analysis by means of a numerical approach. In particular we show that the
system is stationary at all Rayleigh numbers; this is first revealed empirically, then verified by
means of numerically based stability analysis. We then show that the Nusselt and Reynolds numbers
asymptotically approach the ultimate state of thermal convection, this in both their Rayleigh and
Prandtl number dependencies. Finally, we discuss the implications of our findings and possible
perspectives.

II. THE BURGERS-RAYLEIGH-BÉNARD MODEL SYSTEM

A. Equations of motion

We study the spatiotemporal evolution of a single-component velocity W (Z, τ ) and temperature
T (Z, τ ) fields in a 1D domain Z ∈ [0, H], described by the coupled system of differential equations

Wτ + W WZ = ν WZZ + βg(T − Tc), (1)

Tτ + W TZ = κ TZZ , (2)

with Dirichlet boundary conditions

W = 0, T = �
2 in Z = 0 (bottom), (3)

W = 0, T = −�
2 in Z = H (top), (4)

where ν and κ denote, respectively, the viscosity and thermal diffusivity, β the thermal expansion
coefficient, g the gravitational acceleration intensity, and Tc the linear profile given by Tc(Z ) =
−(�/H )Z + �/2, which is also said conductive because it represents a solution for the temperature
field when W = 0 in all the domain. Furthermore, to keep the similarity with realistic RB convection
we adopt the additional constraint that the global value of velocity and temperature fields are null,∫ H

0
W dZ =

∫ H

0
T dZ = 0 (no-zero mode condition). (5)

This prevents the possibility for the system to acquire a vertical mean flow and to heat up or cool
off. We will comment later on the consequence of this constraint.

As we have already mentioned, the above model constitutes an oversimplified representation
of the Rayleigh-Bénard system. It can be loosely obtained from the Navier-Stokes-Boussinesq
set of equations for the 3D velocity U = (U,V,W ) and temperature T , by assuming that (1) the
vertical component of the velocity, W , and the temperature depend only on the vertical direction,
Z , (2) by removing the hydrodynamic pressure field, and (3) by expressing the buoyancy force as
proportional to the temperature deviation from the local conductive temperature profile. With the
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above assumptions, the equations for T and W decouple from the ones for horizontal components
U,V and can be treated separately. As a consequence the vertical velocity gradient WZ becomes
unconstrained and the corresponding unidimensional velocity field is compressible. We stress that
the BRB model cannot be regarded as a low-dimensional mean-field form of the Boussinesq system,
nor a model of convection in compressible gases (where the continuity equation would have a
different form). However, we believe that despite its incompleteness this model is useful to get
an insight into what does or does not occur in the realistic system.

Equations (1) and (2) can be made dimensionless by means of the linear size of the domain
(or height H), the free-fall velocity Uf = √

βgH�, and the global temperature gap � (i.e., the
difference between the top temperature and the bottom one). This leads to the two control parameters
in the system: the Rayleigh number Ra = (Uf H )2/(νκ ) and the Prandtl number Pr = ν/κ . With
these choices the equations can be conveniently rewritten in terms of the velocity, w = W/Uf , and
the temperature deviation from the conductive profile, θ (z, t ) = [T (Z, τ ) − Tc(Z )]/�, as

wt + w wz =
√

Pr

Ra
wzz + θ, (6)

θt + w θz = 1√
PrRa

θzz + w, (7)

with w = θ = 0 in z = 0 and z = 1 and 〈w〉 = 〈θ〉 = 0, where 〈· · · 〉 = ∫ 1
0 · · · dz is the spatial

average (all lower-case letters denote dimensionless variables). Equation (6) is the 1D forced
Burgers equation, which is coupled to the advection-diffusion equation for a scalar field (7), which
is in turn forced by w.

B. Symmetries

The system (6)–(7) enjoys a series of symmetries which greatly affect its dynamics. We describe
them in detail in this section. To begin, we note that when Pr = 1, θ = w is a permitted solution of
the BRB model system.

Second, the set of equations (6)–(7) is invariant with respect to the transformation (z, θ ) →
(1 − z,−θ ), which also implies w → −w because by definition w = dz/dt . This means that if the
couple θ (t, z),w(t, z) indicates a solution of the equations, then −θ (t, 1 − z),−w(t, 1 − z) is also
a solution. Combining this with the condition 〈w〉 = 〈θ〉 = 0, it entails that both θ and w are odd
functions with respect to z = 1/2, and so θ (z = 1/2) = w(z = 1/2) = 0.

A third symmetry is the following:

z →
{

z + 1/2 if z � 1/2
z − 1/2 if z > 1/2 or z → z + sign

(
1

2
− z

)
1

2
. (8)

It corresponds to swapping the spatial interval [0, 1/2] with the one [1/2, 1]. As shown in the sketch
in Figs. 1(a) and 1(b) this symmetry transforms what we call a “boundary-layer”-type solution to a
“shock”-type solution (more on this later). In other words, due to the zero boundary conditions and
to the second symmetry, the functions w(z) and θ (z) can be seen as periodic odd functions. This
means that adding a phase of half the period is still a solution of the system. Equivalently one can
say that z → z + 1/2 is a symmetry of the system.

A fourth remarkable symmetry of the system is the following: let’s call
w(t, z; Ra, Pr), θ (t, z; Ra, Pr) the solution of the system for a given value of the parameters
Ra, Pr. The system is then invariant with respect to the transformation:

w(t, z; Ra, Pr) → w

(
t, 2nz;

Ra

2n
, Pr

)
/(2n), (9)

θ (t, z; Ra, Pr) → θ

(
t, 2nz;

Ra

2n
, Pr

)
/(2n), (10)
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FIG. 1. Symmetries of the system of equations: (a) odd symmetry of w and θ with respect to the position
z = 1/2; (b) swap symmetry with resect to the system midpoint (8); (c) rescaling transformation [(9)–(10)]
with n = 1.

where n is a positive integer number. This “rescaling transformation” symmetry is illustrated in
Fig. 1(c) for the case n = 1.

C. Global response parameters: Nusselt and Reynolds numbers

To derive the expression for the global heat flux it is convenient to resort to the dimensional
notation. The temperature equation (2) in conservative form reads Tτ + (JT )Z = 0, where

JT (Z, τ ) = W T − κTZ −
∫ Z

0
TWZ ′ dZ ′ (11)

is the local and instantaneous heat flux at position Z and time τ . Averaging the conservative form
equation over time (here denoted as an overline) and assuming a steady state gives the expression
of the mean global heat flux:

JT (Z ) = W T − κT Z −
∫ Z

0
TWZ ′ dZ ′ = const. (12)

The integral term in the above expression, which is absent in the mean heat flux of the RB system, is
a consequence of the compressibility of the velocity field. The mean Nusselt number is defined by
adimensionalizing the mean global heat flux with respect to the conductive heat flux (i.e., the state
where W = 0 and T = Tc):

Nu ≡ JT

JTc

= const. (13)

We observe that by plugging into the above expression the dimensionless temperature fluctuation θ ,
and evaluating the expression in either z = 0 or z = 1, gives the following equivalent expressions
for Nu:

Nu = 1 − θ z(0) = 1 − θ z(1). (14)

One can remark that this same expression for Nu is obtained in the RB flow ruled by the Boussinesq
system of equations. On the contrary, if one considers the spatial average of Nu [spatial average of
Eq. (13)] one gets

Nu = 1 +
√

PrRa

(
〈wθ〉 −

〈∫ z

0
(θwz′ + w)dz′

〉)
, (15)

which is different from the RB expression by the appearance of the integral term on the r.h.s., which
originates, as already mentioned, by the flow compressibility. The volume-averaged expression of
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the Nusselt number is convenient for numerical calculations, as it is less affected by discretization
and numerical errors (we will use this expression in the numerical calculations presented in this
article).

Finally, we note that the Reynolds number defined as a system response parameter is here:

Re ≡ 〈W 2〉1/2
H

ν
=

√
Ra

Pr
〈w2〉1/2

. (16)

III. THE BRB DYNAMICS: THEORETICAL ANALYSIS

This section presents some notable analytical results on the dynamics of the BRB model system.
First, we perform the linear stability analysis to determine the transition from the conductive to the
convective state. Second, we address the nonlinear saturation mechanism that is responsible for the
stabilization of the flow after the inception of convection. Third, by means of a standard matched
asymptotic (ma) analysis, we solve the BRB system of equations in a steady condition in the limit of
large Ra numbers. Finally, based on the ma solution we derive the asymptotic-in-Rayleigh scaling
laws for the Nusselt and Reynolds numbers.

A. Onset of convection

The linearization of the system (6)–(7) with respect to w and θ satisfies solutions of the form

w = 	∞
n=1wneσnt sin(nkz), θ = 	∞

n=1θneσnt sin(nkz), (17)

where k = 2π and n is an integer value, and with the growth rate

σn =
√

(Pr + 1)2(nk)4 + 4Pr[Ra − (nk)4] − (Pr + 1)(nk)2

2
√

RaPr
. (18)

Therefore, for Ra > Rac = k4 = (2π )4 � 1558, and at any Pr value the system becomes linearly
unstable (σ1 > 0). The critical Rayleigh number happens to be the same as in the 3D three-periodic
homogeneous Rayleigh-Bénard system [14,15] although in that case the perturbation form is
different as it depends only on the horizontal coordinates. We observe that the relative amplitude of
the velocity and temperature field is w1/θ1 = (σ1 + k2/

√
PrRa), and this implies that w1 = θ1 for

Pr = 1. This prediction will be verified in Sec. IV by means of a numerical simulation starting from
a tiny white noise perturbation on w and θ fields (see also Fig. 6).

The described exponentially growing solution is eventually saturated by the presence of the
nonlinear terms, as we discuss in the next section.

B. Nonlinear saturation mechanism

Similarly to what occurs in a 3D RB system in slightly supercritical conditions (Ra � Rac) the
exponential growth rate of the perturbation rapidly saturates into a convective steady state. This
phenomenology can be promptly explained for the BRB at Pr = 1 by means of a two-mode Galerkin
expansion, which we detail in the following. We assume

w(z, t ) = 	n=1,2An(t ) sin (nkz), θ (z, t ) = 	n=1,2Bn(t ) sin (nkz). (19)

Upon its substitution into the equations of motion, retaining only terms in sin (kz) and sin (2kz), we
obtain the first-order differential system for the evolution of the amplitudes of the four considered
modes:

Ȧ1 = Ra1/4
c

2
A1A2 −

√
Rac

Ra/Pr
A1 + B1, (20)
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Ȧ2 = −Ra1/4
c

2
A2

1 − 4

√
Rac

Ra/Pr
A2 + B2, (21)

Ḃ1 = Ra1/4
c

2
(2A1B2 − A2B1) −

√
Rac

RaPr
B1 +A1, (22)

Ḃ2 = −Ra1/4
c

2
A1B1 − 4

√
Rac

RaPr
B2 + A2, (23)

where we have taken into account that Rac = k4. Such a system can not be solved analytically;
however, that is possible for the special case Pr = 1. In this condition the equations for Ai and Bi

become identical, hence the differential system reduces to a 2D one:

Ȧ1 = σ1A1 + Ra1/4
c

2
A1A2, (24)

Ȧ2 = σ2A2 − Ra1/4
c

2
A2

1, (25)

with σ1 = 1 − √
Rac/Ra > 0 and σ2 = 1 − 4

√
Rac/Ra < 0 for Rac < Ra < 16Rac. As the charac-

teristic timescale of the second mode τ2 = |σ2|−1 is smaller than the characteristic time of the first
mode τ1 = |σ1|−1, we can perform a so-called adiabatic elimination and take Ȧ2 ≈ 0 in the vicinity
of the bifurcation threshold. By doing so, we obtain the following Landau equation [16] for the
evolution of the amplitude A1:

Ȧ1 = σ1A1 − γ A3
1 (26)

with γ =
√

Rac

4(4
√

Rac
Ra −1)

. Equation (26) admits three steady solutions:

Ass
1 = 0 (conductive state), (27)

Ass
1 = ±

√
σ1/γ (two convective states). (28)

Assuming the perturbation expansion A1(t ) = Ass
1 + εA1p(t ) + O(ε2), the amplitude equation at

order O(ε) writes

Ȧ1p = A1p(t )
[
σ1 − 3γ

(
Ass

1

)2]
. (29)

A solution of the linear and homogeneous equation above can be written as A1p(t ) =
A1p(0) exp (−iωt ), which leads to

σ1 − 3γ
(
Ass

1

)2 + iω = 0. (30)

Since all the coefficients are real and ω = ωR + iωI , we get ωR = 0 (meaning that solutions are
stationary) and ωI = σ1 − 3γ (Ass

1 )2. Hence, the growth rates of the trivial (27) and nontrivial
(28) steady states are ωI = σ1 and ωI = −2σ1 respectively. Therefore, for Ra < Rac the trivial
conductive solution is stable, whereas for Ra > Rac the nontrivial convective solutions are the ones
to be stable. This corresponds to a supercritical pitchfork bifurcation, as illustrated in Fig. 2.

The multiplicity of the above convective solutions is a consequence of the swap symmetry
mentioned in the previous section, which in the case of a sinusoidal profile takes the form
sin(nkz) → (−1)n sin(nkz) for integers n. In the two-mode expansion it therefore affects only the
mode A1. This produces a change from a solution with sharp variations at the boundaries, which
we can denote as “boundary layer”-type solution, to one with a sharp transition in the bulk of the
domain, which we call “shock”-type solution. While the boundary layer-type solution is analogous
to the vertical flow profile observed in the RB system, the shock-type solution has no corresponding
in 2D or 3D convective systems. For this reason, in our analysis we will mainly focus on the
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FIG. 2. Steady solution of the amplitude A1 of the two-mode truncated system as a function of the control
parameter Ra, as given in Eqs. (27) and (28). The graph has a typical structure of a supercritical pitchfork
bifurcation; solid lines denote stable branches, while the dotted one denotes the unstable branch. We indicate
as “conduction” the solution corresponding to A1 = 0 (and A2 = 0 too), with the “shock”-type solution the one
presenting a sharp variation on the bulk of the system, which corresponds to the case A1 > 0, and finally with
“boundary layer”-type, the one where the variation occurs close to the boundaries (A1 < 0 in this case). The
insets show the complete steady two-mode solutions for θ (z) or w(z) of the shock and boundary layer types
for the case Ra = 2000, marked with colored circles on the main panels.

former kind of solution. The temperature or velocity spatial profiles corresponding to the complete
convective steady solutions of (24)–(25), i.e., the two-mode truncated series (19) with

A1 = ±
√

σ1/γ = ±2

Ra1/4
c

(
1 −

√
Rac

Ra

) 1
2
(

4

√
Rac

Ra
− 1

) 1
2

, (31)

A2 = −2σ1/Ra1/4
c = −2

Ra1/4
c

(
1 −

√
Rac

Ra

)
(32)

are traced in Fig. 2 (insets) [17].
The above convective solutions allows to estimate the Nusselt number near to the onset, as

Nu = 1 − 2π (A1 + 2A2). (33)

They also imply that

〈w2〉 = 〈θ2〉 = 〈wθ〉 = 1

2

(
A2

1 + A2
2

) = 6√
Ra

(
1 −

√
Rac

Ra

)
, (34)
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so the Reynolds number becomes

Re =
√

6(
√

Ra −
√

Rac). (35)

These predictions will be tested in Sec. IV by means of direct numerical simulations.
Finally, we wish to comment on the role of the no-zero mode condition, 〈w〉 = 〈θ〉 = 0, in-

troduced in our model system. The removal of this condition allows for an anticipated onset of
convection at Rac = π4 (16 times smaller than in the present case). It also permits nonodd solutions
characterized by a single boundary layer on one of the sides of the domain. By virtue of the system
symmetries, these solutions are trivially linked to the ones described above: their period and their
amplitude are doubled, but all scaling properties remain identical.

C. Large-Ra asymptotic dynamics

What happens to the system dynamics at large Ra? Does it stay stationary, or rather does it
become time dependent, and possibly chaotic and turbulent? Replying to these questions on the
basis of a theoretical analysis is challenging. We will try to reply to this question with the aid of
numerical simulations, in Sec IV. However, it is possible to derive a steady solution of (6)–(7) in
the limit of large Ra and at any Pr, by means of the standard technique of matched asymptotic
expansion. In the following we detail the derivation of such a remarkable solution, and we will
then use it to give a prediction for the Nusselt and Reynolds scaling in the asymptotically large
Ra regime. The numerical simulations, described in Sec IV, will prove that the steady ma solution
describes strikingly well the real behavior of the BRB system.

1. Approximate stationary solution with matched asymptotic expansion

The use of matched asymptotics to describe the structure of shocks in the Burgers equation at
very small viscosities is a classical approach [18]. This technique has been applied in several studies
to estimate the contribution of shocks to the anomalous dissipation of kinetic energy [19] and to the
energy spectrum of solutions [20], to propose closures for statistical theories of Burgers’ turbulence
[21], and more recently to explain the spontaneous stochasticity of Lagrangian trajectories in the
Burgers equation [22].

Here we look for a solution of Eqs. (6)–(7) under the assumption that both
√

Pr√
Ra

and 1√
RaPr

are

small parameters (or equivalently Ra−1 � Pr � Ra). First, we consider the solution of the system
far from boundaries, denoted as the outer solution. In this region the dissipative terms are negligible,
because they multiply the above mentioned small parameters, hence the system reduces to

w wz = θ, (36)

w θz = w. (37)

From the second equation we get θout = z + c1, which is then plugged into the first equation leading
to wwz = z + c1, which admits the solution wout =

√
z2 + 2c1z + c2. By using the condition that

the solution should be an odd function in the domain [i.e., w(1/2) = θ (1/2) = 0] we determine the
constants c1 = −1/2, c2 = 1/4 and so wout = θout = z − 1/2.

Second, we consider the solution near to a boundary, denoted as inner solution (we choose here
the boundary close to z = 0). In this region the application of standard least degeneracy principle
[23] leads to the system

w wz =
√

Pr√
Ra

wzz, (38)

w θz = 1√
PrRa

θzz. (39)
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Here one first solves the equation for w. This leads to win = −a tanh (a
√

Ra
Pr z/2) where we have

adopted the boundary condition in w(0) = 0. The constant a can be determined by matching the
inner and outer solutions for w, limz→∞ win = limz→0 wout: −a = −1/2, so a = 1/2:

win = −1

2
tanh

(√
Ra

Pr

z

4

)
. (40)

By substituting now the inner solution win in the equation for θ we obtain

−1

2
tanh

(√
Ra

Pr

z

4

)
θz = 1√

PrRa
θzz, (41)

which can be rewritten as

−1

2

√
PrRa tanh

(√
Ra

Pr

z

4

)
= d

dz
log θz (42)

and integrated to

log

[
cosh

(√
Ra

Pr

z

4

)]−2Pr

= log θz + log K, (43)

where log K is a constant, hence removing the log:[
cosh

(√
Ra

Pr

z

4

)]−2Pr

= Kθz. (44)

This can be integrated in the interval [0, z]

θ (z) − θ (0) = 1

K

∫ z

0

[
cosh

(√
Ra

Pr

z′

4

)]−2Pr

dz′. (45)

We now apply the boundary condition θ (0) = 0, while the value of K is obtained by matching the in-
ner and outer solutions for θ , limz→∞ θin = limz→0 θout: − 1

2 = 1
K limz→∞

∫ z
0 [cosh (

√
Ra
Pr

z′
4 )]−2Prdz′.

It follows:

θin(z) = −1

2

∫ z
0

[
cosh

(√
Ra
Pr

z′
4

)]−2Pr
dz′∫ ∞

0

[
cosh

(√
Ra
Pr

z′
4

)]−2Pr
dz′

. (46)

The complete perturbative solution is obtained by summing up the inner and the outer so-
lution and by subtracting their overlap, wma(z) = win(z) + wouter (z) − woverlap, where woverlap =
limz→∞ win = limz→0 wout = − 1

2 . This leads to the final expression for the matched asymptotic
solution:

wma(z) = z − 1

2
tanh

(√
Ra

Pr

z

4

)
, (47)

θma(z) = z − 1

2

∫ z
0

[
cosh

(√
Ra
Pr

z′
4

)]−2Pr
dz′∫ ∞

0

[
cosh

(√
Ra
Pr

z′
4

)]−2Pr
dz′

. (48)

We note that if Pr = 1 the solutions take the simpler form

wma(z) = θma(z) = z − 1
2 tanh

(√
Ra

z

4

)
. (49)
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The solution (49) for Pr = 1 coincides with the shock solution derived by Saffman [24] for the
randomly forced Burgers equation in the limit of t → +∞ and large Re (when

√
Ra is replaced by

Re); see also [25] for a recent discussion.
Remark that the matched asymptotic solutions (47) and (48) are valid only in the interval

z ∈ [0, 1/2], but they can be applied to the interval z ∈ [1/2, 1] with the transformation z →
z − 1. This at the price of accepting a discontinuity in the origin, because, e.g., for the velocity
wma(z = 1/2) = ε �= 0. However, such a discontinuity goes as 2ε = 1 − tanh(

√
Ra
Pr

1
8 ), and therefore

it vanishes asymptotically with Ra. We also note that the perturbative solution is not an exact
solution of the original system. However, it is asymptotically correct. This can be seen by plugging
it into the stationary equations and considering the Ra → ∞ limit of the residuals

limRa→∞ wmawma,z −
√

Pr√
Ra

wma,zz − θma = 0,

limRa→∞ wmaθma,z − 1√
PrRa

θma,zz − wma = 0.

Another observation is in order about the the shape of the solution. By choosing that the internal
solution occurs at z = 0, we have implicitly selected the boundary-layer type of the solution. A
different, equally admissible choice is to place the inner solution close to z = 1/2, and this leads to
a shock-type solution. One can trivially go from the former type of solution to the latter by applying
the third symmetry transformation (8) discussed in Sec. II B. We observe that these two types of
solutions are characterized by the same Reynolds number, as Re ∼ 〈w2〉1/2, while they differ for
the Nusselt number, because Nu = 1 − θz(0). The latter observation implies that while boundary
layer (BL)-type solutions are characterized by an increasing Nu as Ra → ∞, in the shock-type
solution the Nusselt number vanishes (leading to a perfectly insulating system for Ra → ∞). As
we mentioned before, although these two convective states are equally probable, we will limit our
considerations to the case of a BL-type solution, as it offers a better analogy with the dynamics of
the realistic RB system which motivates this study.

D. Upper bounds and asymptotic scalings for the Nusselt and Reynolds numbers

The matched asymptotic solution allows us to promptly compute asymptotic expressions for all
global quantities in the system; we focus here on the two main output observables of the BRB
system, the Nusselt and the Reynolds numbers.

1. Nusselt number

We evaluate Nu = 1 − θma,z(0). In the general Pr case, by using (48) we get

Nu = 1

2
∫ ∞

0

[
cosh

(√
Ra
Pr

z′
4

)]−2Pr
dz′

. (50)

First, let us note that the Ra dependence can be factorized by introducing the auxiliary variable
z̃ = √

Ra z′ in the integral, so

Nu =
√

Ra

2
∫ ∞

0

[
cosh

(
z̃

4
√

Pr

)]−2Pr
dz̃

. (51)

Because the denominator depends only on Pr it is therefore clear that the scaling Nu ∼ √
Ra is to

be expected asymptotically in Ra for any Pr.
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We now focus on the Pr dependence. Using the property ex/2 � cosh x � ex for x > 0, one can
write

22Pr+1

√
Pr

�
∫ ∞

0

[
cosh

(
z̃

4
√

Pr

)]−2Pr

dz̃ � 2√
Pr

,

and finally by using (51),
√

RaPr

4Pr+1
� Nu �

√
RaPr

4
.

This bounding relation is relevant in the limit of small Pr, because 4Pr → 1, leading to the scaling
law

Nu �
√

RaPr

4
(Pr small). (52)

In the limit of large Pr as [cosh ( z̃
4
√

Pr
)]−2Pr → e−( z̃

4 )2
and using (51) one obtains

Nu =
√

Ra

4
√

π
(Pr → ∞), (53)

which is an expression that does remarkably not depend on the Pr value. It is worth observing that
the saturation of the Nu number for large Pr values (53) is a feature also observed in the realistic
RB system (see, e.g., [26], Fig. 5). Finally, for the intermediate case, Pr = 1, taking advantage of
the simpler form of the matched asymptotic solution (49), one can exactly derive

Nu =
√

Ra

8
(Pr = 1). (54)

2. Reynolds number

We now turn the attention to the Reynolds number. Asymptotically in Ra we observe that the ma
velocity solution approaches the behavior wma � wout = z − 1/2, while the boundary layers (BL)
become thinner and thinner. This points to the existence of the upper bound for the velocity variance,
〈w2〉 � ∫ 1

0 (z − 1/2)2 dz = 1/12, which implies

Re =
√

Ra

Pr
〈w2〉1/2 � 1√

12

√
Ra

Pr
. (55)

A lower bound for Re can be obtained by just considering that the asymptotic outer solution is the
one most contributing to the global velocity variance, so

〈w2〉 �
∫ 1−δ

δ

w2
out dz �

∫ 1−δ

δ

(
z − 1

2

)2

dz = (1 − 2δ)3

12
,

where δ is an estimation for the thickness of the kinetic boundary layer, which we define as the
height z where the argument of the hyperbolic function in win is one, i.e., δ = 4/

√
Ra/Pr. This

implies

Re � 1√
12

√
Ra

Pr

(
1 − 8

√
Pr

Ra

)3/2

. (56)

We will show that the above predictions for the Nusselt and the Reynolds numbers approach quite
well the result that we obtain from the numerical simulations of the BRB system in the asymptotic
large-Ra limit (see below, Sec. IV C).

063502-11



ENRICO CALZAVARINI AND SILVIA C. HIRATA

Scaling laws of the form Nu ∼ √
Ra Pr and Re ∼ √

Ra/Pr identify the so-called ultimate regime
of thermal convection. Physically it can be interpreted as a regime where the microscopic diffusion
material properties, i.e., the viscosity and the thermal diffusivities, have a negligible role in the
determination of the intensity of the heat transport and of the kinetic energy in the system. The
ultimate regime has been predicted to occur in the RB systems in the asymptotic high-Ra limit [27]
(see also [28]). However, its verification in RB experiments and simulations is still debated (see
[29] for a recent concise account). On the opposite, it has been clearly observed in the so-called
homogeneous-Rayleigh-Benard (HRB) model system, which is a 3D vertically unbounded system,
either triperiodic [14] or laterally confined [30], which can be realized only in numerical simulations.
It is important to note that the HRB model has no horizontal wall boundaries, and as such it
misses the corresponding kinetic and thermal boundary layers, i.e., well-identified regions where
dissipation has the dominant role with respect to inertial transport terms. Experimental realizations
of the Nu ∼ √

Ra regime have been achieved only in bulk-dominated convective systems, such
as in the vertical channel setup [31,32] or in systems where the wall thermal heating has been
replaced by volumetric radiative heating [33,34]. More recently Ref. [35] numerically demonstrated
the occurrence of the ultimate regime of convection also in a RB system with permeable walls.
This system possesses thermal and kinetic BL but does not enforce the cancellation of the vertical
velocity on the top-bottom walls. In light of this, the verification of Eqs. (54) and (55) for the
BRB system in high-Ra regime would make it the first bounded system, with kinetic and thermal
boundary layers, to display the ultimate regime. As we will numerically demonstrate in the next
section, the BRB clearly possesses this feature.

IV. THE BRB DYNAMICS: NUMERICAL SIMULATION ANALYSIS

In order to test the predictions presented in the previous section and to get deeper insight into
the BRB dynamics, we performed direct numerical simulations (DNS) of the system of equations.
This is conveniently done by means of a Fourier pseudospectral method. For this study we use
spatial resolutions ranging from N = 213 to 216 grid points and explore the 2D parameter space
Ra-Pr. The simulations evolve in time from an initial state where w and θ are null except for a tiny
random uniform spatially uncorrelated perturbation. The adopted numerical methods and protocols
are described in detail in the Appendix.

A. Temperature and velocity profiles

We numerically find that the system displays a steady solution at any Ra, up to 1010 simulated
in this study, and at any Pr in the range [10−2, 102]. Furthermore, when Pr = 1 the w and θ

profiles are always coincident. As illustrated in Figs. 3 and 4 when the Rayleigh number is slightly
beyond the critical threshold Ra = O(103), the two-mode solution (31)–(32) perfectly approximates
the numerically computed temperature and velocity profiles. On the other hand for Ra = 105 the
agreement with the matched asymptotic solution (49) is already excellent. It is also evident that as
Ra → +∞ the profiles approach the z − 1/2 linear shape, with vanishingly thin boundary layers.
Note that the temperature T is the sum of the conductive profile and the fluctuation θ ; this implies
that T is essentially constant in the well-mixed bulk of the system and changes sharply only in the
boundary layer, in close analogy with the mean vertical temperature profile in the turbulent high-Ra
RB system.

Figure 4 reports the corresponding numerical results for nonunit Prandtl numbers (Pr = 5 and
1/5) at Ra = 105. One can appreciate that for Pr > 1 the thermal boundary layer is thinner than the
kinetic one and vice versa for Pr < 1. Note also that the two cases are distinct, because Pr → Pr−1

is not a symmetry of the system. Again we observe a good agreement with the matched asymptotic
solutions (47)–(48). In the asymptotic high-Pr limit one shall expect that θ will become almost
everywhere equal to z − 1/2, while in the low-Pr limit the same will happen for w.
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FIG. 3. Graph of the numerical solution for the temperature fluctuation θ (z) at Pr = 1 [identical to the
velocity w(z)] for several Ra values from Ra = 1700 = 1.09Rac to Ra = 105 = 64.16Rac. The two-mode
truncated solution for Ra = 1700 is shown as well as the matched asymptotic one for Ra = 105. The solution
approaches the bulk behavior, z − 1/2, at increasing the Ra number.

B. Is the convective stationary regime stable?

As mentioned above, numerically we find that the convective state of the system displays a
stationary solution at any Ra and Pr values. This aspect might seem surprising as it is different from
what happens in the RB system, where successive bifurcations occur as Ra is increased, leading
first to temporally periodic solutions, then chaotic ones, and finally to progressively more turbulent
states. In the BRB case, although we cannot rule out the existence of subcritical bifurcations that
might lead to the existence of such unsteady states, we can prove that the convective state displayed
by the system is linearly stable. This point is addressed in the current section.

In Sec. III A we studied the stability of the conductive state. It was shown that, beyond
Rac = k4 = (2π )4, the system bifurcates to a convective stationary state, hereafter denoted as ws, θs.
Depending on the value of Ra this state can be approximated in three ways:

(i) By a two-mode expansion Eqs. (19) and (31)–(32), valid near the critical threshold Rac
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FIG. 4. Numerical solution for the temperature fluctuation θ (z) and velocity w(z) at Ra = 105 and Pr = 5
(a) and Pr = 1/5 (b), and comparison with the matched asymptotic solutions for both fields. Note that the
profile is shown for better visibility only in the bottom half of the domain (the top part being its mirrored
image).
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FIG. 5. Results of linear stability analysis of the convective steady state ws, θs. Perturbation growth rate σ̃

as a function of Ra: (a) for the case Pr = 1 computed from three different representations of the base state: the
numerical (valid in the full range of Ra), the two-mode Galerkin truncation base state (valid at small Ra), and
the matched asymptotic one (valid for Ra → +∞); (b) for different Prandtl numbers Pr ∈ [0.1, 102] using the
numerical base state. The dotted vertical line is traced at Ra = Rac.

(ii) By a matched asymptotic solution Eqs. (47)–(48), valid in the limit of large Rayleigh
numbers

(iii) By an interpolation of the discretized numerical solution obtained from the DNS, which is
valid in the whole Ra range.

We can now study the stability of these states by applying the linear stability analysis. We adopt
the Galerkin method of weighted residuals [36]. In short, the idea is to choose trial functions that
satisfy the boundary conditions exactly and solve the differential equations in an averaged sense,
by imposing the condition that the residuals are orthogonal to the trial functions. The result is a set
of homogeneous equations whose nontrivial solution leads to an eigenvalue problem. We denote
with σ̃ (n) the series of the eigenvalues, which are determined in terms of the Ra and Pr parameters.
Similarly to the previous case, we write

w =
N∑

n=1

w̃n sin(nkz)eσ̃ (n)t + ws, θ =
N∑

n=1

θ̃n sin(nkz)eσ̃ (n)t + θs (57)

with n ∈ N and k = 2π . The number of modes N is chosen so that the convergence is ensured for
the different parameter values.

Figure 5(a) shows the evolution of the perturbation growth rate σ̃ = σ̃ (1) with Ra(> Rac), for the
three different approximated base solutions and Pr = 1. As expected, the two-mode solution (case
1) agrees well with the numerical convective state (case 3) for moderate values of the Rayleigh
number, while the matched asymptotic does it for large values. The evolution of the larger growth
rate σ̃ for different values of Prandtl obtained with the numerical base state is depicted in Fig. 5(b). It
can be seen that the growth rate is always negative, indicating that the the first convective stationary
state never loses its stability, even for large values of Ra, in agreement with the observations from
the DNS.

C. Measure of Nusselt and Reynolds number asymptotic scalings

Form the numerically computed θ (z) and w(z) profiles one can estimate the corresponding
Nusselt and Reynolds numbers and analyze their functional dependencies with Ra and Pr.

The behavior of Nu as a function of Ra, for Pr = 1, is shown in Fig. 6(a). We observe that
for Ra < Rac Nu � 1 (vertical dotted line), hence only conductive heat-transfer occurs, as expected

063502-14



CONVECTIVE HEAT TRANSFER IN THE …

100

101

102

103

104

103 104 105 106 107 108 109 1010

(a)

N
u

Ra

Rac

two modes

⎯⎯⎯√Ra /8 (matched asymptotic)
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

103 104 105 106 107 108 109 1010

(b)

 N
u 

 / 
⎯⎯

⎯
√R

a

Ra

Rac

1/⎯⎯⎯√Rac

two modes

1/8 (matched asymptotic)

FIG. 6. Nusselt-Rayleigh scaling at Pr = 1. (a) Nu vs Ra. Numerical simulation results (red circle symbols)
and comparisons with different analytical predictions: (vertical dotted line) the critical Rayleigh number for the
onset of convection Rac � 1558; (solid line) the Nusselt number calculated from the two-mode steady solution
(33); and (dashed line) the Nu expression computed via the matched asymptotic solution Nu = √

Ra/8. (b) The
same data points for Nu and theoretical predictions, compensated with respect to Ra1/2.

from the theoretical analysis. Beyond Rac convection starts and Nu progressively increases. Close to
the onset, for Ra � 2Rac ∼ 3 × 103, the two-mode expression (33) (solid line) approaches well the
numerical results. On the other hand the matched asymptotic prediction agrees with the data from
Ra ∼ 104 (dashed line) up to the highest explored Ra number (1010). Indeed, as is better appreciated
in the compensated plot Fig. 6(b) at the largest Ra the normalized data approach the value 1/8
(dashed-dotted line) meaning that Nu ∼ √

Ra/8 in excellent agreement with the ma prediction (54).
We now look at the heat-flux dependence with respect to Pr. This is illustrated in Fig. 7(a), where

Nu(Pr) is traced for various Rayleigh numbers Ra = 106, 107, 108. Also in this case we see an
excellent agreement with the matched asymptotic solution (50) and with the small- and large-Pr
asymptotic behaviors (52)–(53) derived in the previous section. We clearly observe a saturation
of the Nusselt number for Pr � 1. Furthermore, Fig. 7(b) shows how all the data points can be
collapsed on a single curve, by means of the rescaling Nu/

√
Ra. This means that, in agreement with

the matched asymptotic solution, the Ra and Pr dependence can be factorized [see Eq. (51)].
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FIG. 7. Nusselt-Prandlt scaling behavior at various Rayleigh numbers Ra = 106, 107, 108. (a) Nusselt as
a function of Prandtl. We display the numerical simulation results (symbols) and the corresponding matched
asymptotic predictions (colored dotted-dashed lines). The behaviors

√
RaPr/4 for small Pr (graydashed line)

and
√

Ra/π/4 for large Pr (black dotted line). (b) Compensated graph Nu/
√

Ra vs Pr. The value 1/8
corresponding to Pr = 1 is also traced. One can appreciate the collapse of the measurements on a single curve.
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FIG. 8. Reynolds-Rayleigh scaling at Pr = 1. (a) Re vs Ra. The numerical simulation results (red circle
symbols) and comparisons with different analytical predictions: (vertical dotted line) the critical Rayleigh
number for the onset of convection Rac � 1558; (violet solid line) the Reynolds number calculated from the
two-mode steady solution (35); (black solid line) the Re expression computed via the matched asymptotic
solution; and (green dotted-dashed line) the upper bound value Re = √

Ra/12 [Eq. (55)]. (b) The same
data points for Re and theoretical predictions, here compensated with respect to Ra1/2 We include also the
approximated expression (56) (blue dashed line), which has a much simpler form as the ma prediction and fits
equally well the measurements at large Ra.

Similar observations can be made for the dependence of the Reynolds number versus Ra for
Pr = 1 [Figs. 8(a) and 8(b)] and Re(Pr) Fig. 9(a)]. At high Ra agreement with the ma predictions is
satisfactory in all cases. The Re(Ra, Pr) functional relation is also well described by the expression
(56), which is simpler in form than the ma expression [see again Fig. 8(b) and Fig. 9(a)]. In Fig. 9(a)
we observe that the compensated Reynolds number expression Re/

√
Ra/Pr, which is equivalent to

the mean root-mean-squared velocity
√

〈w2〉, decreases for large Pr. This is consistent with the
fact that the kinematic boundary layer becomes thicker, hence the velocity reduce in intensity. The
opposite is true for the fluctuations of the temperature field

√
〈θ2〉, which is reported in Fig. 9(b),

and for which again the ma solution offers an excellent approximation.
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FIG. 9. Reynolds number scaling vs Pr. (a) Compensated Reynolds number Re/
√

Ra/Pr, equivalent to
the root-mean-square value of the velocity

√
〈w2〉 as a function of Pr ∈ [10−2, 102] for Ra = 106, 107, 108;

(b) root-mean-square value of the temperature fluctuation
√

〈θ2〉. In both cases the numerical simulation results
(symbols) and comparisons with the dependencies computed upon integration of the matched asymptotic
solutions (47) and (48) and the upper bound 1/

√
12 (green dashed-dotted) that can be computed from the

bulk solution. In (a) the algebraic approximation (56) (dotted) is also reported.
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Overall the DNS confirms the realization of the ultimate regime for the Reynolds and Nusselt
numbers in respect to both the Rayleigh and Prandtl dependence. To our knowledge the occurrence
of this regime was previously assessed only for the 3D homogeneous-Rayleigh-Bénard system in
[14] and more recently in a wider Ra and Pr range in [37]. Despite its great degree of abstraction
(1D, compressible flow) the BRB system represents a second convective model system where this
flow regime takes place. Moreover the saturation of Nu for large-Pr is a feature of the RB model
[8], which is present here, while it was missing in the HRB system.

V. CONCLUSIONS

The BRB dynamics shares remarkable similarities with realistic thermal convection in higher
spatial dimensions, i.e., the Rayleigh-Bénard system under Oberbeck-Boussinesq conditions. In this
work we have shown that (1) BRB has a supercritical linear instability for the onset of convection
which solely depends on the Rayleigh number and not on the Prandlt number (the same as in RB),
occurring at the critical value Rac ≈ 1558, which is of the same order as in the RB system; (2)
the convective regime is spatially organized in distinct boundary layers and bulk regions, although
shocklike solutions are equally admitted; and (3) the asymptotic high Ra limit displays the ultimate
Nusselt and Reynolds number scaling regime Nu = √

RaPr/4 for Pr � 1, Nu = √
Ra/(4

√
π ) for

Pr � 1 and Re = √
Ra/Pr/

√
12 thus making BRB the simplest convective system with boundaries

exhibiting the ultimate regime of convection. A major difference with realistic higher-dimensional
natural convection is the absence of turbulence. The BRB dynamics is stationary at all Ra numbers
above the onset of convection for all Pr values, a feature that results from a nonlinear saturation
mechanism.

One may object that the odd symmetry in w and θ makes the BRB de facto a periodic system, as
the fields can be expressed in term of sine series. For this reason in the future it would be interesting
to explore the dynamics of this system in a higher (two- or three-) dimensional space. In this case,
the convective state might be unstable due to the larger number of degrees of freedom and to the
increased system symmetries available in higher dimensions.

Whether the missing physics in the present model, namely, the violation of the incompressibility
or the absence of the pressure field or of the spatial lateral dimensions, might be related to the
realization of the ultimate regime of heat transfer remains a question for further investigations. In
this sense it would be interesting, and perhaps useful, to think of a similar minimalist model capable
of reproducing the classical scaling of thermal convection (Nu ∼ Ra1/3), in order to see which
key mathematical terms and corresponding physical features are needed for the realization of this
different convection regime.

The codes used in this study are available at [38].
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APPENDIX: NUMERICAL SIMULATION METHOD

Equations (6)–(7) in Fourier space, denoted with a tilde (˜), read

w̃t + w̃wz = −k2

√
Pr

Ra
w̃ + θ̃ , (A1)

θ̃t + w̃θz = −k2 1√
PrRa

θ̃ + w̃. (A2)

The dissipative terms can be analytically integrated, while the nonlinear terms can be evaluated via a
pseudospectral algorithm. In our code we adopt the standard two-thirds dealiasing procedure for the

063502-17



ENRICO CALZAVARINI AND SILVIA C. HIRATA

computation of the nonlinear terms. Furthermore, we enforce the boundary conditions by imposing
that both w and θ are in real space zero-mean odd functions (i.e., we use the sine transform instead
of Fourier). The temporal discretization with time step δt , performed by means of a second-order
Adams-Bashfort algorithm, leads to

w̃n+1 =
{
w̃n + δt

2
(3[−w̃wz + θ̃ ]n − [−w̃wz + θ̃ ]n−1e−k2

√
Pr
Ra δt )

}
e−k2

√
Pr
Ra δt , (A3)

θ̃n+1 =
{
θ̃n + δt

2
(3[−w̃θz + w̃]n − [−w̃θz + w̃]n−1e−k2 1√

PrRa
δt )

}
e−k2 1√

PrRa
δt
, (A4)

where the subscript indexes indicate the discretized value of time. The time step width is chosen
as δt = 10−2/σ , where σ is the growth rate of the most unstable mode, Eq. (18), while the spatial
resolution is increased till when the resulting velocity and temperature profiles become independent
on the number of discretization points N . However, we note that the existence of sharp variations
in the solution is at odds with our discretization method based on sine-Fourier transform, which
is known for being affected by the Gibbs phenomenon. Indeed, at high-Ra some Gibbs-like spurious
fluctuations are seen in correspondence of the bulk to boundary layer transition. This fluctuations
do not affect the scaling laws presented in this work. The simulations of the BRB system have been
also validated against a second code based on finite-difference discretization.

The temperature and velocity fields in the simulations are initialized with a spatially uncorrelated
pseudorandom noise. These perturbations lead in 50% of cases to the BL-type solution and in the
remaining cases to the shock solution. Although these two states correspond to different global
heat-transfer modes, the resulting velocity and temperature profiles can be transformed one into
another by the swap transformation, Eq. (8). In the present analysis, focused on the scaling of
Nusselt in the BL-type state, we take advantage of the swap transformation to maximize the the
number of realizations of BL solutions. However, we note that it is possible to direct the instability
towards one of the two possible convective states, e.g., by adding a sinusoidal modulation to the
initial white noise. A modulation of the form − sin(2πz) leads to BL state, while its opposite,
sin(2πz), favors the transition towards the shock-type solution. This aspect has an analogous in the
RB system where one can control the large-scale circulation direction of the convective cells by
initializing the flow with an horizontally asymmetric perturbation of the temperature field.
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