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We report the mechanism and modeling for the formation of cavitylike structures on a
planar interface subjected to a perturbed shock wave. The cavity is distinguished from
bubbles and spikes formed in the standard Richtmyer-Meshkov instability (RMI). The
two-dimensional direct numerical simulation is conducted at a range of shock Mach
numbers and Atwood numbers. We elucidate the effects of the interfacial vorticity and
the shock-induced vorticity on the cavity formation. The interfacial vorticity, which is
important in the standard RMI, only has a minor influence on the cavity width in the linear
stage. Alternatively, the cavity width is determined by the Mach-stem height when the
shock accelerates the interface. A pair of vorticity patches connecting the Mach stem,
as a part of the shock-induced vorticity, penetrate the interface to form the cavity via
strong shear layers generated by slipstreams during shock propagation. Inspired by this
mechanism, we develop a model of the Mach-stem height to estimate the cavity width in
the linear stage at various Mach numbers.
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I. INTRODUCTION

The interaction of shock waves and an inhomogeneous medium contains rich fluid dynamics,
such as shock deformation, vorticity generation, and turbulent mixing [1]. The shock-accelerated
inhomogeneous flow is of importance for the supersonic combustion [2], supernova explosion
[3], and inertial confinement fusion [4]. The Richtmyer-Meshkov instability (RMI), as a typical
example, is initiated when a shock wave impacts on a perturbed interface between two fluids of
different densities [5–8]. Then the interface evolves into spikes and bubbles [9–11].

Distinguished from the standard RMI, a planar interface between two fluids of different densities
evolves into cavity- and steplike structures when it is accelerated by a perturbed shock wave [12].
Ishizaki et al. [13] conducted a numerical simulation on this instability. Zou et al. [12] observed
this instability in planar geometry in experiments. Moreover, Liang et al. [14] and Zou et al. [15]
investigated this instability in a converging geometry. In the experiments, perturbed shocks are
usually generated via a planar shock diffracting at a cylinder [12,14]. Zhai et al. [16] discussed
the effects of the number of cylinders and spacing between cylinders on the interfacial evolution.
Zhang et al. [17] numerically investigated the Mach-number effect and modeled the role of the
impulsive perturbation on the instability. Liao et al. [18] found that the amplitude growth rate of the
interface decreases with increasing Atwood number, which is essentially different from the result in
the standard RMI.

Earlier theoretical study on the instability for a perturbed shock accelerating a planar interface
focused on modeling statistical quantities using the perturbation expansion method. Although this
method can estimate the interfacial growth rate [13,17], the evolution mechanism for this instability,
in particular formation of the cavity, is not yet clear. Furthermore, since the vorticity is deposited
when the shock accelerates the interface, the vortex-based model [19] is useful in RMI, e.g., the
point vortex and vortex ring are used to model RMI [20–22].

In the present study for a planar interface subjected to a perturbed shock, we quantify the cavity
structure and elucidate its formation mechanism in terms of vorticity and shock dynamics. The
outline of this paper is as follows. The setup of the direct numerical simulation (DNS) is described
in Sec. II. Based on DNS results, we elucidate the cavity formation in Sec. III. Then we develop a
cavity-width model via shock dynamics in Sec. IV. Some conclusions are drawn in Sec. V.

II. SIMULATION OVERVIEW

A. Governing equations and numerical methods

The variable-density, compressible flow is governed by the two-dimensional (2D) multicompo-
nent Navier-Stokes (NS) equations,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ · (pδ − τ ), (2)

∂ (ρE )

∂t
+ ∇ · [(ρE + p)u] = ∇ · (τ · u − qc − qd ), (3)

∂ (ρYi )

∂t
+ ∇ · (ρYiu) = −∇ · Ji. (4)

Here, ρ denotes the mixture density, u = uxi + uy j the velocity, p the pressure, and δ the identity
tensor, where i and j are unit vectors in the x and y directions, respectively. Moreover, Yi is the
mass fraction of species i = 1, 2, . . . , Ns, where Ns is the total number of species with

∑Ns
i=1 Yi = 1.

Equation (3) is closed with the equation of state for ideal gas,

p = ρ
R
M

T = ρe(γ − 1), (5)

063402-2



FORMATION OF THE CAVITY ON A PLANAR INTERFACE …

IF IS

x

y x = x̄s

16L

L

d

SF6

ρ2

p0

T0

Air

ρ1

p0

T0

ρs

ps

Ts

Us

FIG. 1. Schematic diagram of a planar interface (IF) subjected to an initially sinusoidal incident shock (IS)
in the computational domain D. The IF separates SF6 and air, and the IS propagates from right to left. The gray
dotted line denotes the averaged streamwise position x̄s of IS. The distance between IF and x̄s is d .

where R is the ideal gas constant, M the molar mass, T the temperature, γ = Cp/Cv the specific-heat
ratio of the mixture, and e the internal energy.

In Eq. (3), E = e + (u · u)/2 denotes the total energy per unit volume, and τ = 2μ[S − (∇ ·
u)δ/3] denotes the viscous stress tensor, with the mixture viscosity μ and the strain-rate tensor S.
The heat flux qc = −∇(κT ) is based on Fourier’s law with the mixture heat conductivity κ; the
interspecies diffusional heat flux is qd = ∑Ns

i=1 Cp,iT Ji with Fick’s law Ji = −Dρ∇Yi, where D is
the mixture diffusion coefficient and Cp,i the constant-pressure specific heat of species i.

The thermodynamic properties of the mixture are modeled with the isothermal and partial
pressure assumptions [23]. For the ith species, the Sutherland viscosity law is applied to calculate
the viscosity as

μi = μr,i

(
T

Tr

)3/2 Tr + TS

T + TS
, (6)

where μr,i is the reference viscosity at a reference temperature Tr , and TS is an effective temperature.
The present flow has two species. The quantities with subscript 1 or 2 denote those for the air or

SF6, respectively. In Eq. (6), we set Tr = 299.5 K, TS = 124 K, μr,1 = 1.7161 × 10−5 kg m−1 s−1,
and μr,2 = 1.2388 × 10−5 kg m−1 s−1. The thermal conductivity κi = Cp,iμi/Pr and diffusivities
Di = μi/(ρiSc) of the ith species are calculated with the Prandtl number Pr = 0.72 and Schmidt
number Sc = 1.0.

Numerical solutions of the NS equations are obtained by using the Adaptive-mesh-refinement
Program of Eulerian solvers with X-physics (APEX) [24]. For the convective term, the monotonic
upwind scheme for conservation laws with a Riemann solver [25] is used. Other spatial derivatives
and gradient terms are evaluated using an eighth-order compact finite-difference scheme. The
temporal integration is marched by a third-order Runge-Kutta scheme. The APEX code has been
validated and used to investigate the RMI in convergent geometries [24].

B. DNS setup

As illustrated in Fig. 1, we consider a 2D problem—a perturbed shock wave from the air
accelerates a planar interface between still air and SF6. The problem is simulated in the domain
D = [−8L, 8L] × [−L/2, L/2]. The perturbed shock has a sinusoidal shape as

xs = x̄s + as0 cos(2πy/L), (7)

where xs, x̄s, as0, and L are the streamwise location, averaged streamwise location, amplitude, and
wavelength of the shock, respectively. The initial distance between the shock and the interface is d .
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TABLE I. DNS parameters. All cases have L = 56 mm, as0 = 5 mm, and x̄s = 37 mm.

Ma 1.2 1.8 3.0
A 0.30 0.68 0.80 0.30 0.68 0.80 0.30 0.68 0.80
�U (m/s) 95.10 70.11 57.26 320.03 237.88 195.50 686.82 520.51 433.39
�t (ns) 25 25 25 10 10 10 5 5 5
N 1024 1024 1024 4096 4096 4096 2048 2048 2048

For the still air and SF6, we set the pressure p0 = 1.013 × 105 Pa, temperature T0 = 299.5 K, and
density ρi = p0Mi/(RT0) with the species molar mass Mi. The postshock quantities (with subscript
s) are calculated by the Rankine-Hugoniot conditions. The upper and lower boundaries are periodic,
and the left and right boundaries are outflow.

To validate the DNS, we set parameter values close to those in the experiment of Liao et. al.
[18], including L = 56 mm, d = 45 mm, x̄s = 37 mm, as0 = 5 mm, and the shock Mach number
Ma = 1.2 without reshock. The Atwood number A = (ρ2 − ρ1)/(ρ1 + ρ2) for the air-SF6 interface
is 0.68 with M1 = 29 g mol−1 and M2 = 146 g mol−1.

The initial fields in the shock tube in Fig. 1 are given by

ρ(x, y, t = 0) = (ρ1 − ρ2)H[x − (xs − d )] + (ρs − ρ1)H(x − xs) + ρ2, (8)

p(x, y, t = 0) = (ps − p0)H(x − xs) + p0, (9)

T (x, y, t = 0) = (Ts − T0)H(x − xs) + T0, (10)

u(x, y, t = 0) = −H(x − xs)Usi, (11)

Y1(x, y, t = 0) = H[x − (xs − d )], (12)

with a smoothed Heaviside function

H(x) = 1

2

[
erf

(
x

2δ0

)
+ 1

]
, (13)

the postshock velocity Us, and δ0 = L/128. The computational domain is discretized by uniform
grid points with the mesh spacing �x = L/N . The time stepping �t is chosen to satisfy the
Courant-Friedrichs-Lewy condition as listed in Table I. To keep the interface in the middle of D
during the evolution, the initial velocity in the x direction is subtracted by �U to offset the interface
translation driven by the shock, where the velocity jump �U of the interface is evaluated by the
one-dimensional Riemann problem [26]. Besides the case with the parameters consistent with the
experiment, we conducted a series of DNS at various Ma and A. The DNS parameters are listed
in Table I. Based on the experimental parameters at A = 0.68, we artificially modify the molar
mass of SF6 to M2 = 54 g mol−1 and M2 = 260 g mol−1, corresponding to A = 0.30 and A = 0.80,
respectively.

We conduct a grid convergence test for two typical cases at Ma = 1.2, A = 0.68, and d = 45 mm
with N = 256, 512, and 1024, and Ma = 3.0, A = 0.68, and d = 25 mm with N = 1024, 2048, and
4096, by examining the amplitude of the interface,

aI = |x|〈Y1〉=0.05 − x|〈Y2〉=0.05|, (14)

where 〈·〉 denotes the average over the y direction. When the shock is accelerating the interface at
early times, the growth of aI in the second case at a larger Ma is much faster than that in the first
case. The plateau of aI in the second case is due to the rolling-up of the cavity edge, which will be
shown in Sec. III B.
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FIG. 2. Temporal evolution of the interface amplitude in the DNS grid convergence test.

Figure 2 shows that the profiles of aI converge for N = 1024 at Ma = 1.2 and N = 4096 at Ma =
3.0, so these resolutions are used in the present study (see Table I). Note that the initial time, t = 0,
is defined when the shock accelerates the interface, which is slightly different from that defined in
the experiment [18].

In Fig. 3, the density fields in DNS are in overall good agreement with the experiment results in
Fig. 5(c) in Ref. [18]. The step and cavity structures (marked in Fig. 3) occur in both the experiment
and DNS. The penetration depth of the cavity in the experiment is slightly smaller than that in
DNS due to subtle differences of initial conditions. First, the perturbed shock in the experiment
is generated by diffracting a planar shock over a circular cylinder, so its shape is not perfectly
sinusoidal. Second, the initial time in the experiment [18] is defined when the shock passes the
cylinder center, which is slightly earlier than the initial time in this study.

III. CAVITY FORMATION

A. Shock-induced vorticity

To analyze the vorticity effect on the interface deformation, the temporal evolution of the
shock, interface, and generated vorticity is depicted by the numerical schlieren field 	 = exp

IS

L

cavitystep

0

796

896

996

1096

1196

1296

1396

FIG. 3. Evolution of the density field in the DNS (black: air; gray: SF6). Measuring times are shown in the
upper right corner of each figure in µs. The corresponding experimental result is shown in Fig. 5(c) in Ref. [18]
for comparison. The parameters A and �U and measuring times in the present DNS are the same as those in
the experiment [18].
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FIG. 4. Evolution of the schlieren (gray) and vorticity (red and blue) fields with Ma = 1.2, A = 0.68,
and d = 45 mm. The parameters are consistent with those in the experiment [18]. The units of both axes are
in mm. The triple point (TP), Mach stem (MS), transmitted shock (TS), reflected shock (RS), and vorticity
patches related to the initial shock (ω0) and slipstream (ωSS) are marked.

(1.2|∇ρ|/|∇ρ|max) [27] and the vorticity field ωk = ∇ × u in Fig. 4, where k denotes the unit
vector normal to the x-y plane, the subscript “max” denotes the global maximum value, and the
dimensionless times k�Ut are listed with k = 2π/L.

In Fig. 4(a), the Mach-reflection structure forms during the propagation of the perturbed shock
[28]. It contains a Mach stem and two triple points, as visualized by 	 at t = 0 when the shock
accelerates the interface. After the shock impacts the interface, transmitted and reflected shocks are
generated at t = 66 µs in Fig. 4(b), and the postshock region is in between [26]. The cavity and step
structures form on the interface at t = 1496 µs, as marked in Fig. 4(d).

In Fig. 4(c), the vorticity contour shows two types of concentrated vorticity patches, ω0 and ωSS.
They have different generating mechanisms. First, the initial shock deposits ω0 at the initial position
due to the velocity gradient across the shock [see Eq. (11)]. Second, the slipstream downstream to
the shock is identified by ωSS, as a shear layer spread out from the triple point [29].

Note that the generation of the finite-size vortex sheet ω0 is inevitable in the numerical simulation
[30], but we find that ω0 only has a slight influence on the cavity formation in the linear stage at
k�Ut � 1. Its effect is minor by comparing the contributions from ω0 and ωSS using the Biot-
Sarvart law. The normalized variation due to ω0 on the cavity width is typically less than 10%.

Figure 5 shows a close-up view of the shock propagation. In Figs. 5(a) and 5(b), the height h
of the Mach stem, i.e., the distance between the two triple points, grows and the amplitude of the
shock distortion rapidly decays during the shock propagation. A shock with a nonzero curvature
deposits the vorticity ωCS downstream [30]. The initial sinusoidal shock leaving behind vorticity ω0

in Fig. 5(a) deposits nearly negligible vorticity ωCS during the propagation in Fig. 5(b) due to the
rapid decay of the shock curvature and amplitude. In Fig. 5(c), after the shock impacts the interface,
a small amount of the interfacial vorticity ωIF is generated on the interface due to the misalignment
of pressure and density gradients [9], as in the standard RMI.

The generating mechanisms of ωIF, ωCS, and ωSS are illustrated in Fig. 6. The interfacial vorticity
ωIF is generated by the shock accelerating the interface and it drives the interfacial evolution in the
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FIG. 5. Close-up view of the schlieren (upper half) and vorticity (lower half) fields during the shock
propagation with Ma = 1.2, A = 0.68, and d = 45 mm. The color bars are the same as in Fig. 4.

RMI [21,22]. The shock-induced vorticities ωCS and ωSS are deposited by the Mach-reflection shock
the interface upstream. Both the curved shock and slipstream contribute to the generation of ωCS and
ωSS. Note that the propagating planar shock in the standard RMI [9] before accelerating the interface
cannot deposit shock-induced vorticity.

B. Vorticity effects on cavity formation

We examine the effects of the interfacial vorticity and shock-induced vorticity on the cavity
formation. As sketched in Fig. 7, the cavity geometry is characterized by the parameters below,
instead of a direct measurement from experimental images [12]. The width W and the depth H of
the cavity are determined by three points, PA, PB, and PC . The coordinates of the three points are
quantified below: PA with yA = 0 is at the centerline and located at the bottom of the cavity; PB with

∫ L

−L
Y2(x, yB)dx = max

{∫ L

−L
Y2(x, y)dx

∣∣∣∣ 0 � y � L

2

}
(15)

and

Y2(xA, yA) = Y2(xB, yB) = Ycr (16)

(a) interfacial vorticity (b) shock-induced vorticity

Shock Wave Shock Wave

IS IF

ωIF

∇ρ ∇p

IS

IF MS

TP

RS

SS

ωCS

ωSS

FIG. 6. Schematic diagram for different mechanisms of vorticity generation. Blue line: interface (IF); thick
red line: incident shock (IS); thin red line: reflected shock (RS); line segment of IS between two triple points
(TPs): Mach stem (MS); green dashed line: slipstream (SS). Note that (b) is essentially a close-up detail of
Fig. 4(a).
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FIG. 7. Schematic diagram of the cavity. The bold black line denotes the interface separating SF6 and air.
The cavity depth is determined by points PA and PB, and the cavity width in the linear stage is determined by
point PC and the symmetric line (dash-dotted line).

is located at the top of the cavity with Ycr = 0.95; PC with

xC = (1 − α)xA + αxB (17)

and

yC = min

{
y

∣∣∣∣Y2(xC, y) = Ycr, 0 � y � L

2

}
(18)

is between PA and PB with a weighting factor α = 0.7. This value of α is chosen to measure the
largest cavity width. Then, W = 2yC and H = xB − xA are obtained, as marked in Fig. 7. In the
present study, the cavity width is measured at the time tM = 1/(k�U ). This small time is within the
period of the incipient cavity formation when H is small (refer to Fig. 4). We observe that the cavity
width is nearly invariant during a short linear stage defined by the period with k�Ut � 1.

First, to isolate different vorticity effects, we take the same shock-induced vorticity by setting
d = 25 mm, and only vary the interfacial vorticity by artificially modifying the molar mass of SF6

to achieve A = 0.30 and A = 0.80 (also see Table I). At the same Ma and different A, the cavity
widths are almost the same in Fig. 8. In other words, W is dependent on the shock-induced vorticity,
while almost independent of the interfacial vorticity. At the same A, W varies with Ma and is very
close to the Mach-stem height. Note that the Mach stem is between the two patches of ωSS (see
Figs. 4 and 5). The effect of the Mach reflection on the cavity width will be modeled in Sec. IV.

Second, we keep A = 0.68 and only vary d to investigate effects of the shock-induced vorticity
on the cavity formation. All the other parameters are listed in Table I. In Fig 4(a), the Mach-stem
height grows with the propagation of the curved shock and the separation of the two Mach-reflection
shocks. In addition, the growth of the Mach stem is discussed in detail in Sec. IV. Namely, h grows
as the incident shock propagates from its initial location to the interface (also see Fig. 1), so it
increases with d . Considering W increases with d at the same Ma in Fig. 9 and W ≈ h in Fig. 8, we
demonstrate that the cavity width in the linear stage is determined by the Mach-stem height when
the shock accelerates the interface.

Referring to Fig. 6(b), the two slipstreams originating from the triple points have strong shear
layers and they penetrate the interface to form the cavity. This mechanism is further illustrated
in the close-up view of schlieren and vorticity fields in Fig. 10. Before the shock accelerates the
interface, the slipstream, spreading out from the triple point, deposits ωSS at the interface upstream
in Fig. 10(a). When the slipstream penetrates the interface, the strong shear layer associated with ωSS

causes the relative motion (marked by red arrows) on two sides of the strip of ωSS (marked by red
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FIG. 8. Dimensionless width W∗ = W/L of the cavity measured at t = tM with d = 25 mm and various Ma
and A. The normalized Mach-stem height measured when the shock is impacting on the interface is compared
with W∗.

dashed line) in Fig. 10(b). Under the shearing motion, the cavity forms after the shock accelerates
the interface in Fig. 10(c).

With increasing Ma, both shock and cavity structures become more complex. Figure 11 shows
the cavity formation at Ma = 1.8 from the shock impact in Fig. 11(a), through the linear stage at
k�Ut � 1 with small H in Fig. 11(b), to the nonlinear stage at k�Ut > 1 in Figs. 11(c) and 11(d).
The deposited vorticity at Ma = 1.8 is much stronger than that at Ma = 1.2, where the maximum
value in the vorticity color bar in Fig. 11 is increased by one order of magnitude from that in Fig. 4.

 

 

 Ma = 1.2

Ma = 1.8

Ma = 3.0

20 30 40 50
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0.1

0.2

0.3

0.4
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W
∗

FIG. 9. Dimensionless width W∗ = W/L of the cavity measured at t = tM with A = 0.68 and various Ma
and d .
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FIG. 10. Close-up view of the schlieren (gray) and vorticity (red and blue) fields in Fig. 4 with Ma = 1.2,
A = 0.68, and d = 45 mm. The axes are in units of mm. The red dashed line is along the strip of ωSS. The
black arrows denote the shear shearing motion associated to ωSS. Two red arrows denote the relative motion on
two sides of the strip of ωSS.

The shock-wave pattern between the interface and transmitted shock in Fig. 11(b) is more complex
than that in Fig. 4(b) due to the Guderley reflection with two triple points [31]. Specifically, two
slipstreams with ωSS (marked by two black arrows) spread downstream of the transmitted shock
in Fig. 11(c) instead of one in Fig. 4(c). The strong vortex sheet ω0 rolls up into a large-scale
mushroomlike structure.

At the nonlinear stage, the cavity width measured at the trailing part of the cavity shrinks due to
the entrainment of the mushroomlike ω0, while the width measured at the leading part of the cavity
expands due to the Kelvin-Helmholtz instability (KHI) [32] in Figs. 11(d) and 4(d). Since we focus
on the cavity formation, most of the present discussion is restricted to the linear stage.

As shown in Fig. 12 for Ma = 3.0, the interface, shock, and deposited vorticity generate
numerous small-scale structures during the cavity formation. Although it appears to be difficult
to accurately discern physical and numerical oscillations downstream in Figs. 11 and 12, we find
that these small-scale structures have little influence on the cavity geometry using different grid
resolutions and numerical schemes.

-2.0 -1.0 0.0 1.0 2.0
×105

ω s−1
)

1.00 1.01 1.02 1.03 1.04 1.05

Φ

20

10

0

-10

-20

20 30 40

FI SI

(a) kΔUt = 0
20 30 40

TS W

(b) kΔUt = 1
20 30 40
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IF

(c) kΔUt = 3
20 30 40

KHI

(d) kΔUt = 5

FIG. 11. Evolution of the schlieren (gray) and vorticity (red and blue) fields with Ma = 1.8, A = 0.68, and
d = 25 mm. The units of both axes are in mm.
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FIG. 12. Evolution of the schlieren (gray) and vorticity (red and blue) fields with Ma = 3.0, A = 0.68, and
d = 25 mm. The units of both axes are in mm.

IV. MODELING THE CAVITY WIDTH IN THE LINEAR STAGE

Inspired by the formation mechanism of the cavity, we estimate the cavity width in the linear
stage via modeling the Mach-stem height h. This model is based on the assumptions below. First,
the process of the shock impacting the interface is fast enough, so that we approximate that the Mach
stem moves with the constant speed UMS and Mach number Ma. Second, all the segments linked
by the triple points in the Mach-reflection shock (see Fig. 6) are assumed to be planar [33]. This
assumption is supported by the negligible vorticity deposited by the propagating shock in Fig. 4
[30]. The important modeling ingredients are illustrated in Fig. 13(a). The red lines, from thick to
thin, represent the Mach stem, incident shock, and reflected shock, respectively. The three shock
segments are linked at the triple point marked by the blue dot.

UM1

UMS

dh
2

dt

L
2

h
2

2as

θ

(a)

dh
2

dt

UM1 sin θ

UMS − UM1 cos θ

(b)

x

y

FIG. 13. (a) Schematic diagram for the decompositions of the shock structure and velocity. The red lines,
from thick to thin, represent the Mach stem, incident shock, and reflected shock, respectively. The blue solid
circle denotes the triple point. (b) Close-up view of the region near the triple point, marked by the blue dashed
circle in (a). The triple point moves from the solid circle to the open circle. The velocities marked in (a) and
(b) are in the laboratory frame and the relative frame on the moving Mach stem, respectively.
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Ma = 3.0
0.018t

−3/2
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∗

FIG. 14. Decay of the dimensionless shock amplitude in the shock propagation at various Ma, along with
the power law fitted by as∗ at t∗ � 1.

Next, we model the temporal evolution of h. In Fig. 13(a), the propagating velocity of the triple
point is decomposed into UMS and d (h/2)/dt in the laboratory frame. The incident shock with the
perturbed amplitude as moves with the speed UM1 and Mach number Ma1. The angle θ between the
incident shock and the Mach stem satisfies

cot θ = L − h

4as
. (19)

Figure 13(b) depicts a subdomain near the triple point. Taking the reference frame on the moving
Mach stem, we decompose the relative velocity of the incident shock into x and y components
UMS − UM1 cos θ and UM1 sin θ , respectively. As illustrated in Fig. 13(b), the geometrical relation
gives

d h
2

dt
= UMS − UM1 cos θ

tan θ
− UM1 sin θ. (20)

Substituting Eq. (19) and UM1/UMa = Ma1/Ma into Eq. (20) yields

ḣ

UMS
= L − h

2as

(
1 − Ma1

Ma cos θ

)
, (21)

with ḣ = dh/dt . Using L and UMS as the reference length and velocity, respectively, Eq. (21) is
nondimensionalized into

ḣ∗ = 1 − h∗
2as∗

(
1 − Ma1

Ma cos θ

)
, (22)

where the asterisk denotes the dimensionless quantity. As demonstrated in Fig. 14, the evolution of
as∗ generally satisfies a power law of t−3/2

∗ at t∗ � 1. The Mach stem accelerates the interface at
t∗ = t̂∗ ≈ d/L. Since t̂∗ in the present cases ranges from 0.45 to 0.80, the power law of as∗ [34,35]
can be expressed by

2as∗ = Cat−3/2
∗ , (23)

with a model constant Ca.
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FIG. 15. Evolution of the dimensionless Mach-stem height from DNS (symbols) and modeling (lines)
results at various Ma. The arrow denotes the cavity formation time when the shock first accelerates the interface
with A = 0.68 and d = 45 mm. Note that t∗ = 0 denotes the initial time when the initial sinusoidal shock has
the distance d from the interface.

Substituting Eq. (23) into Eq. (22) yields

ḣ∗ = t3/2
∗ (1 − h∗)

1

Ca

(
1 − Ma1

Ma cos θ

)
. (24)

Then we model

C′
h = 1

Ca

(
1 − Ma1

Ma cos θ

)
(25)

in Eq. (24) as a constant. This is a strong approximation because Ma is a constant and θ has small
variations, whereas Ma1 is hard to estimate, so it will be examined by the DNS result below. Under
this approximation, Eq. (24) can be integrated to obtain

h∗ = 1 − exp
(−Cht5/2

∗
)
, (26)

where the empirical constant Ch = 2C′
h/5 can be fitted from data.

The model in Eq. (26) is validated by a separate DNS of air at Ma = 1.2, 1.8, and 3.0. The model
parameters Ch = 0.459 for Ma = 1.2, 0.942 for Ma = 1.8, and 0.854 for Ma = 3.0 are fitted from
the DNS results, where the Mach-stem height in the DNS is measured from the distance between
two triple points in the schlieren contour, and the triple point is identified as the intersection point
of the reflected shock and the incident shock [36]. In Fig. 15, the model can well capture the growth
of h∗ with t∗, i.e., it is able to estimate the cavity width in the linear stage with k�Ut � 1 in Fig. 9.
The good agreement also supports the model approximation in Eq. (25). The model can be extended
to a broader parameter space by considering the deformation of the Mach stem [37] and using the
power law for nonideal gas [35].

Moreover, this model explains the expansion of slipstreams. Referring to Fig. 4(b), the slip-
streams from the light to the heavy gas expand after the Mach-reflection shock accelerating the
interface. This is because as∗ decays instantaneously due to the compression effect, and then ḣ∗
grows instantaneously according to Eq. (22).
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V. CONCLUSIONS

We distinguish the effects of the interfacial vorticity (ωIF) and the shock-induced vorticity (ωCS

and ωSS) on the formation of the cavity on a planar interface subjected to a perturbed shock, and
demonstrate the important role of the slipstream vorticity (ωSS). Thus, the cavity width in the linear
stage depends on the motion of the Mach-reflection shock.

The present instability arises from a perturbed shock at Ma = 1.2, 1.8, or 3.0 accelerating a
planar light-heavy (air-SF6) interface at A = 0.30, 0.67, or 0.80. Its 2D DNS is validated by the
experiment result [18]. From the evolution of vorticity and schlieren fields, we define the interfacial
and shock-induced vorticities.

To distinguish the roles of each vorticity, we first only vary the interfacial vorticity by artificially
modifying the molar mass of SF6, and find that ωIF has a very slight influence on the cavity width
in the linear stage. Thus, the cavity formation is mainly triggered by the shock-induced vorticity.
Then, we only vary the initial distance between the incident shock and the interface, and find that the
cavity width is determined by the Mach-stem height when the shock accelerates the interface. More
specifically, two vorticity patches ωSS connecting the Mach stem, as a part of the shock-induced
vorticity, penetrate the interface to form the cavity via strong shear layers associated to ωSS. Inspired
by this mechanism, we develop a model of the Mach-stem height to estimate the cavity width in the
linear stage.

The present work focuses on the early stage of the cavity evolution. Future work can be
extended to the later stage of the cavity evolution, the effects of reshocks, and different geometric
configurations such as cylindrical and spherical geometries.
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