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Effect of flexibility on the self-propelled locomotion by an elastically
supported stiff foil actuated by a torque
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A theoretical model is presented for the locomotion of an aquatic vehicle propelled by
a flexible foil elastically mounted to translational and torsional springs and dampers at
an arbitrary pivot axis and actuated by a harmonic torque. The work extends a previous
model by the authors for an elastically mounted rigid foil [Lopez-Tello et al., Appl. Math.
Model. 116, 236 (2023)], allowing for a passive flexural motion of the foil in addition to
the passive pitching and heaving motions of the rigid foil, all of them generated by the
actuating torque and the fluid-foil interaction. The Euler-Bernoulli beam equation is used
together with linearized results from the potential flow theory, valid for small pitch, heave,
and flexural deflection amplitudes. The problem is governed by four ordinary differential
equations (ODEs) for the temporal evolutions of the swimming velocity, and the pitch,
heave, and flexural motions of the flexible foil. In addition to numerical results of these
ODEs, we also present an analytical perturbation solution, which provides a valuable quick
insight about the propulsion performance, but which is additionally restricted to very small
swimming velocities. The vehicle’s propulsion performance is discussed in terms of the foil
stiffness ratio and the remaining nondimensional parameters, particularly the translational
and torsional spring constants, the pivot axis location, and the Lighthill number. It is
found that, except for very low Lighthill numbers, the maximum swimming velocity is
reached for a rigid foil actuated at the leading edge with the resonant combination of
the translational and torsional springs constants for the given frequency. However, higher
propulsive efficiencies and lower costs of transport, but with slightly smaller swimming
velocities, are obtained for flexible foils with the same resonant combination of the elastic
supports at the leading edge. As a validation of the model, the Strouhal number for optimal
propulsion efficiency is found in a narrow band around 0.32, in agreement with many
experimental and numerical works on optimal propulsion by flapping foils. Additionally,
the relation between Strouhal and Lighthill numbers for optimal propulsion is favorably
compared with experimental data for fishes where the primary mechanism for producing
thrust is an oscillatory prominent caudal fin.

DOI: 10.1103/PhysRevFluids.8.063102

I. INTRODUCTION

Motivated by the highly efficient propulsion of fishes that produce most of their thrust by the
oscillatory motion of their caudal fins, an increasing number of works have been dedicated in
the recent past to the study of flapping foils to propel bioinspired aquatic vehicles [1–9]. Many
works have analyzed the effect of chordwise flexibility of the foil, which in general has been
shown to enhance the propulsion performance in terms of thrust, efficiency, and cruising velocity
[10–19], as well as the efficiency of the closely related flapping-foil energy harvesters [20–27].
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Particularly helpful for the understanding of the propulsive performance of swimming animals,
and for the design and improvement of bioinspired swimming robotic models, is to dispose of
analytical solutions characterizing the fluid-structure interaction of flexible flapping foils, even
for very simplified configurations. These analytical approximations have to be searched within
the framework of the two-dimensional and linearized inviscid flow theory for small deformations
of the foil, pioneered by Wu [28], who considered a flapping plate that incorporated flexibility,
allowing it to deform according to the fluid and elastic forces it experiences. Passive flexibility
changes the thrust that a flapping plate generates, and consequently its propulsive efficiency and
its cruising speed if self-propelled. It has generally been found from these inviscid flow theories
that flexibility produces greater thrust when actuated near a fluid-structure natural frequency, but
less otherwise, with larger propulsive efficiency than that of a rigid foil over a broad range of
stiffnesses and frequencies [29–36]. However, when viscous flow with nonlinearities associated
to flow separation are considered, optimal performance can be achieved off the structural resonance
conditions [37–43]. In any case, structural resonance plays always a relevant role in enhancing the
propulsion performance if the mass ratio of the foil is not too large [44], as it is the case in fishlike
swimming.

In the present work we consider the locomotion of an aquatic vehicle propelled by an elastically
mounted foil actuated by an oscillatory torque and analyze the effect of chordwise flexibility on the
propulsion performance. Due to the driving torque applied on a given pivot axis, at which the foil
is attached to longitudinal and torsional springs and dampers, the foil undergoes passive pitching,
heaving, and flexural deflection motions. We use a model for the fluid-foil interaction based on the
Euler-Bernoulli beam equation coupled to the results from linear potential flow theory [36], valid
for small pitching, heaving, and flexural deflection amplitudes, and therefore for sufficiently high
stiffness of the foil, together with a constant drag coefficient for the vehicle of a given mass. In
a recent work we have considered this model for the case of the vehicle propelled by a rigid foil
elastically supported [45], finding that the optimal propulsive performance, i.e., maximum cruising
velocity and maximum propulsive efficiency, is reached for particular resonant combinations of the
torsional and longitudinal springs constants for an oscillatory torque with a given frequency actuat-
ing at, or close to, the foil’s leading edge. It was shown that the propulsion enhancement due to this
resonant behavior, which was approximately characterized by simple analytical expressions, is quite
significative, diminishing more than twice both the swimming velocity and the propulsive efficiency
by just moving the torsional spring constant a few percent from its resonant value. The model for
the rigid-foil flapper was validated with high Reynolds numerical simulations of a self-propelled
pitching foil, and by the fact that the Strouhal number for optimal propulsion was in agreement with
that found experimentally in nature for optimal cruise propelled by flapping fins or wings. When
chordwise flexibility of the foil is taken into account, the model is substantially more complicated
because so it is the fluid-structure interaction of the propeller. However, using the analytical results
of Refs. [36,46] for this interaction, assuming a quartic polynomial for the flexural deflection of
the foil, the resulting model is governed by four ordinary differential equations, just one more
equation than for the rigid-foil counterpart. In addition to the results from the numerical integration
of these equations, which is straightforward and almost instantaneous compared with numerical
computations of the full viscous problem, we also derive simple analytical expression in the limit
of very small nondimensional swimming velocity, which, contrary to the flapping amplitudes, is
not limited in the numerical solutions of the model equations. The resulting approximate analytical
expressions provide simple scaling laws for the nondimensional performance parameters, such as
cruising velocity, propulsive efficiency, cost of transport, and Strouhal number, in terms of the
nondimensional driving torque amplitude, vehicle’s drag, characterized by the Lighthill number,
and mass ratio, among others.

The literature on the propulsive performance of flexible flapping foils is vast. Most of the works
are for oscillating foils in a fluid stream with fixed velocity rather than for self-propelled flexible
foils, a few of them for a vehicle or body propelled by a flexible flapping foil, and none of them, to
the best of our knowledge, for the present configuration of a flexible foil elastically mounted on the
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vehicle hull through translational and torsional springs and dampers that allows for passive heaving,
pitching, and flexural deflection motions. As aforementioned, numerous theoretical, computational,
and experimental studies on flexible flapping foils with prescribed pitching and/or heaving motions
and passive flexural deflection immersed in a constant velocity stream show that structural resonance
may play a relevant role in their propulsive performance, generally enhancing the thrust generation
and/or the propulsive efficiency when actuated at, or near, structural resonance frequencies, depend-
ing on the prescribed kinematics, the flow regime, and the relative inertia of the foil [29–31,33–
36,44,47,48]. Another kind of structural resonance that may enhance the propulsive performance of
rigid foils oscillating in a fluid stream with fixed velocity appears when the foil, actuated with forced
pitching or heaving motion, is elastically mounted to translational or torsional springs and dampers,
so that the heaving or the pitching motion is also passive [49–52]. The new structural resonances,
associated to the supporting springs and dampers and with natural frequencies quite different from
those associated to the flexural deflection in the case of flexible foils, may enhance the propulsive
performance even more than the resonantlike response without springs and dampers [26,27,50,53].
In any case, these flexible foils elastically mounted may be actuated in a greater variety of coupled
natural frequencies to improve their propulsive performance.

When the flexible oscillating foil is not immersed in a constant velocity fluid stream but moves
freely self-propelled by itself, or propelling an animal or a vehicle, the problem is quite different
because the velocity of the foil relative to the flow, i.e., the free-swimming velocity, is no longer
an independent control parameter, nor is it constant, but it is time dependent and resulting from
the fluid-structure interaction, and therefore a function of the kinematics and structural properties
of the foil. Alben et al. [32] found resonance peaks in the inviscid free-swimming velocity of
an elastic oscillating plate, similar to those found for a flexible foil immersed in a fluid stream
with fixed velocity [30]. However, only some general results for a foil in a fixed-velocity stream
can be roughly extrapolated, in certain circumstances, to the time-averaged performance of these
freely moving foils when using the time-averaged swimming velocity [32,41,54]. For consistent
and accurate results one has to solve the complex fluid-structure interaction problem of the freely
moving body. Olivier and Dumas [41] considered numerically the self-propelled locomotion at
low flapping Reynolds numbers of a flexible plate with imposed pitching and heaving motion
about its leading edge and with a drag model, finding that increasing the flexibility decreases the
time-averaged swimming velocity. This result is in contradiction with similar low Reynolds number
numerical results but with only heaving motion imposed at the leading edge of the foil, where
moderate flexibility usually implies a significant increase of the averaged swimming velocity near
the first resonant frequency [47,55] or at much lower frequencies [56,57]. In particular, Yeh and
Alexeev [47] found that elastic propulsors can be operated at a regime of maximum propulsion
near the first resonant frequency, or maximum efficiency when operated away from the resonance.
Hoover et al. [58] further confirmed these results with three-dimensional simulations, giving
additional insight about the role of resonance in swimming performance. More efficient aquatic
locomotion (higher cruising speed and efficiency) has been found for an elastic plate actuated at
resonance by combined external and internal actuation, with heaving motion at the leading edge
and distributed internal bending moment [59], or using an optimal stiffness distribution of the
heaving flexible plate [60]. However, neither of these works considered the mass nor the form
of the aquatic vehicle propelled by the flexible foil, and therefore the vehicle’s inertia and drag
as independent parameters that affect to its locomotion. We show in the present work that the
relevant structural resonances optimizing the locomotion through elastically mounted flexible foils
with high enough stiffness are associated to the stiffness of the supporting springs, which are
quite different from the aforementioned flexural resonances. Also, that these spring resonances
eclipse the structural resonances associated to the chordwise deflection of the foil, qualitatively
in agreement with previous theoretical works for oscillating foils in a fluid stream with fixed
velocity [26,27,53]. Unfortunately, to the best of our knowledge, no numerical nor experimental
results on the locomotion through elastically mounted flexible foils are available to compare
with.
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FIG. 1. Schematic of an underwater vehicle (top) propelled by a flexible foil (bottom).

II. FORMULATION OF THE PROBLEM

We consider an aquatic vehicle self-propelled by a flexible hydrofoil [see sketch in Fig. 1 (top)]
of chord length c and large aspect ratio s/c, where s is the foil span, so that the flow around it may be
considered two dimensional in the plane (x, z) shown in the bottom of Fig. 1. The foil is elastically
mounted to translational and torsional springs and dampers at a given pivot axis xp, and actuated at
the same pivot with a known torque Mi, per unit span, to generate the pitching motion that, together
with the induced passive heaving and flexural deflection motions of the foil, propels the vehicle. In
particular, a harmonic torque with frequency ω,

Mi = AM sin(ωt ), (1)

will be assumed, with the amplitude AM sufficiently small for the amplitudes of all the foil’s motions
be small compared to c. Thus, one may use Euler-Bernoulli’s beam equation to describe the motion
of the foil centerline zs(x, t ) [36]:

ρsγ
∂2zs

∂t2
+ ∂2

∂x2

(
Eγ 3

12

∂2zs

∂x2

)
+ Loδ(x − xp) − Moδ

′(x − xp) = �p − Miδ
′(x − xp) , (2)

for −c/2 � x � x/2. In this equation ρs, γ , and E are the density, thickness, and elastic modulus
of the foil, respectively,

Lo = khh + bh
dh

dt
and Mo = −kαα − bα

dα

dt
(3)

are the force and moment per unit span exerted by the foil on the translational and torsional springs
and dampers at the pivot axis, where h(t ) and α(t ) characterize its heaving and pitching motions,
respectively, and kh, kα , bh, and bα are the respective constants of the springs and dampers. Note that
α is taken positive clockwise following the usual convention in aerodynamics, while the moments
Mo and Mi are positive counterclockwise. Finally, �p = p− − p+ is the pressure difference between
the lower and upper sides of the foil, which is the only force (per unit area) that the fluid exerts on
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the foil considered in the present inviscid model, valid for sufficiently high Reynolds numbers.
Actually, we will use the results from linear potential flow theory for the pressure and, therefore,
for the resulting fluid force and moment, because of the aforementioned additional assumption
of small-amplitude foil motion (see below for more details). Thus, following Ref. [36], a quartic
approximation is used for zs,

zs(x, t ) = h(t ) − (x − xp)α(t ) + (x − xp)2d (t ) − (x − xp)3 2d (t )

3(c/2 − xp)
+ (x − xp)4 d (t )

6(c/2 − xp)2
,

(4)

which accounts for the (passive) heaving and pitching motions, h(t ) and α(t ), respectively, at x = xp,
and for a free trailing edge, ∂2zs/∂x2 = ∂3zs/∂x3 = 0 at x = c/2.

The other fundamental equation of the model is Newton’s equation in the x direction applied to
the vehicle center of mass,

m′ du

dt
= sT − D, (5)

where m′ is the vehicle’s mass, u the velocity component of its center of mass in the −x direction,
D the drag force exerted by the fluid on the whole vehicle, which will be modeled below through
a constant drag coefficient, and T the thrust force (per unit span s) generated by the oscillating foil
through its interaction with the fluid. This force will also be modeled below using the results from
linear, two-dimensional potential flow theory.

A. Nondimensional formulation

Dimensionless variables and parameters will be used from this point on using ω−1 and c/2 as
the time and length scales, respectively, and the fluid density ρ to scale mass units. The same letters
will be used for the dimensionless variables, except otherwise specified. For instance, ωt → t is now
the dimensionless time, 2x/c → x the dimensionless x coordinate, and similarly z, 2u/(cω) → u,
the dimensionless x component of the vehicle’s velocity, etc. Note that this velocity thus scaled
is actually the inverse of the reduced frequency k commonly used in unsteady aerodynamics [61],
which now depends on time,

k(t ) ≡ 1

u(t )
, (6)

This unsteady reduced frequency will be used in the models for the dimensionless force and
moment. All variables and parameters used from this point downward are dimensionless, unless
explicitly specified that it is a dimensional quantity, or marked by a tilde (˜ ) to differentiate it from
its dimensionless counterpart. Nonetheless, sometimes a variable is specified as dimensionless just
to remark it.

Starting with Eq. (5), its dimensionless counterpart can be written as

R′u̇ = ĈT − Liu2, (7)

where a dot denotes a derivative with respect to the (now dimensionless) time t ,

R′ = 4m′

πρc2s
, Li = Aw

πc s
CD, CD = 2D

ρAwũ2
, (8)

are the dimensionless vehicle’s mass and Lighthill’s number based on a constant drag coefficient CD,
respectively, with Aw a characteristic surface for the vehicle’s drag (all quantities in the right-hand
sides of these three expressions are dimensional except for CD and the pure numbers). The thrust
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coefficient of the hydrofoil,

ĈT = 8T

πρc3ω2
= u2CT

π
= CT

πk2
, (9)

is written with a hat (ˆ) to remark that it is not the standard thrust coefficient CT scaled with ρcũ2/2,
also included in the above relations for reference sake. The expression of ĈT obtained from linear
potential flow theory for a flexible foil moving according to (4) with harmonic functions h(t ), α(t ),
and d (t ) was obtained in Ref. [46] and reproduced in Appendix A.

Since ĈT (t ) depends on h(t ), α(t ), and d (t ), to solve Eq. (7) for u(t ) one needs additional
equations for these functions of time. The first of these equations is obtained by integrating (2)
along the foil’s chord length, once (4) is substituted, and the remaining two equations by multiplying
(2) by (x̃ − x̃p) and by (x̃ − x̃p)2 and again integrating along the chord length. Assuming that the
(dimensional) stiffness Eγ 3 does not depend on x̃, in dimensionless form these equations can be
written as [36]

R[ḧ + (a − x0)α̈ + Jad̈] = ĈL − ĈLo, (10)

R[(x0 − a)ḧ − Iaα̈ + Jd d̈] = 2
(
ĈM + ĈMi − ĈMo

)
, (11)

R(Iaḧ − Id α̈ + Kd d̈ ) + a2 + 1
3

3(1 − a)2
S d = ĈF , (12)

where the terms corresponding to the pressure force that the fluid exerts on the foil are

ĈL = 8L

πρc3ω2
= u2CL

π
, ĈM = 8M

πρc4ω2
= u2CM

π
, ĈF = 32F

πρc5ω2
= u2CF

π
, (13)

with the dimensional forces and moments

L =
∫ c/2

−c/2
(�p)dx̃, M =

∫ c/2

−c/2
(x̃ − x̃p)(�p)dx̃, F =

∫ c/2

−c/2
(x̃ − x̃p)2(�p)dx̃. (14)

Again, the relations between the standard force, moment, and flexural coefficients CL, CM and CF

and the hatted ones scaled with the frequency ω, more appropriate for the present self-propulsion
problem, are also given in Eq. (13). The expressions of these coefficients obtained in Refs. [36,46]
from the linear potential flow theory are given in Appendix A. Similarly, the nondimensional
coefficients kh, kα , bh, and bα associated to Eq. (3), corresponding to the translational and torsional
springs and dampers, are defined as

ĈLo = 8Lo

πρc3ω2
= khh + bhḣ, ĈMo = 8Mo

πρc4ω2
= −kαα − bαα̇. (15)

The nondimensional input torque (1) is

ĈMi = 8Mi

πρc4ω2
= ε sin t, ε = 8AM

πρc4ω2
, (16)

where ε is assumed sufficiently small to generate the small-amplitude foil motion required by the
present model; i.e., |h| � 1, |α| � 1, and |d| � 1. The remaining nondimensional parameters in
Eqs. (10)–(12) are the mass and stiffness ratios of the foil,

R = 4m

πρc2
, S = 64Eγ 3

πρc5ω2
, (17)

respectively, with m = ∫ c/2
−c/2 ρsγ dx̃ the (dimensional) mass of the foil per unit span, x̃0 the foil’s

center of mass, defined as mx̃0 = ∫ c/2
−c/2 x̃ρsγ dx̃, a = 2x̃p/c is the dimensionless pivot axis location,

a = −1 corresponding to the leading edge and a = 1 to the trailing edge, and the coefficients Ja, Ia,

063102-6



EFFECT OF FLEXIBILITY ON THE SELF-PROPELLED …

Jd , Id , and Kd are functions of a given in Appendix B for the simplest case of constant ρs and γ ;
i.e., when m = ρscγ and x̃0 = 0.

B. Performance parameters

Once Eqs. (7) and (10)–(12) are solved, either numerically (Sec. III A) or analytically for small
u (Sec. III B), one is interested in different nondimensional quantities, in addition to the swimming
velocity u(t ) itself, that provide relevant information about the self-propelled vehicle’s performance.

One of them is the efficiency, defined as the propulsion power, u(t )ĈT (t ) in dimensionless form,
divided by the power input spent to generate that propulsion, which in dimensionless form is

ĈPi (t ) = −2α̇ĈMi (t ) = −2α̇ ε sin t . (18)

Thus, the instantaneous propulsive efficiency is

H (t ) = u(t )ĈT (t )

ĈPi (t )
. (19)

Since the forcing torque is a periodic function of time, one expects that so will be the long
time solutions of Eqs. (7) and (10)–(12), at least approximately. Of particular interest are thus some
time-averaged quantities. For any magnitude φ(t ), its time average over n cycles, once the permanent
state for t � 1 has been reached, is denoted by an overline and given by

φ = 1

2πn

∫ t+2πn

t
φ(t )dt, t � 1. (20)

Different values of n will be used in the reported results, n = 1 if the solution is exactly periodic
(e.g., for the approximate analytical solutions), or large enough for φ to be almost independent of
the choice of n. The most relevant time-averaged quantities are the mean swimming speed, U = u,
and the propulsive (Froude) efficiency:

η = H = uĈT

ĈPi

� Li u3

ĈPi

, (21)

where Eq. (7) has been used in the last expression, taking into account that uu̇ � 0 if a nearly
harmonic swimming velocity u(t ) has been reached for t � 1.

Instead of the swimming velocity U sometimes is more interesting to use its associated Strouhal
number, since it usually remains in a narrow range for efficient flapping propulsion [1,62]. It is
defined as

St = A

2πU
, (22)

where A is the nondimensional beat amplitude, taken as the maximum peak-to-peak flapping foil
amplitude. If the pivot axis is upstream the midchord (a < 0), the maximum amplitude is presum-
ably reached at the trailing edge, whose z coordinate is zt (t ) = zs(1, t ) = h(t ) − (1 − a)α(t ) + (1 −
a)2d (t )/2, and A = max(zt ) − min(zt ).

Finally, for cruising, it is also widely used the cost of transport, instead of, or together with, the
Froude efficiency, as a measure of the self-propulsion efficiency [63,64]. It is defined as the energy
consumption per unit distance traveled by the vehicle. Although a dimensional form of this quantity
is commonly used (e.g., with units of J/km), here we use a dimensionless version:

CoT = ĈPi

U
. (23)
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FIG. 2. Temporal evolutions of (a) the swimming velocity u(t ), (b) heaving h(t ), (c) pitching α(t ), and
(d) flexural deflection d (t ) motions for foil and vehicle mass ratios R = 0.02 and R′ = 0.2, pivot axis and
center of mass locations a = −1 and x0 = 0, translational and torsional spring constants kh = 2.5 and kα = 3,
damper constants bh = bα = 0.05, Lighthill number Li = 0.1, torque amplitude ε = 0.05, and three values of
the stiffness S indicated in (a).

III. SOLUTIONS AND DISCUSSION

A. Numerical solution

The system of ordinary differential equations (ODEs) (7) and (10)–(12) for u(t ), h(t ), α(t ), and
d (t ) is solved numerically using MATLAB’s solver ode45 starting from vanishing initial conditions.
Numerical solutions for decreasing values of the stiffness parameter S and typical values of the
remaining nondimensional parameters (as discussed in Ref. [45] for a rigid foil) are shown in Fig. 2.
In all cases, the solutions for all the variables consist of a transient phase much longer than the
oscillating period, which eventually reach a permanent state with almost periodic oscillations around
a constant mean. The mean is practically zero for h, α, and d , while u → U > 0 as discussed above.
Notice that, for the selected set of values of the parameters, h(t ), α(t ), and d (t ) remain small and,
therefore, within the validity range of the model equations.

For very large S (104 and 103 in the figure) the foil behaves as a rigid foil, with d negligible and
time evolutions of u, h, and α almost indistinguishable for S = 103 and S = 104. As S decreases to
S = 100, d (t ) becomes noticeable and the swimming velocity U increases substantially, showing
that, for the present set of values of the parameters, foil flexibility improves the propulsion perfor-
mance in terms of swimming speed when all the rest of the vehicle and foil characteristics remain
the same. Another feature of the solutions, which will be manifest in the perturbation analytical
solution described in Sec. III B, is that, contrary to u(t ), both h(t ) and α(t ) remain almost unaltered
in the permanent state for S = 100 when d (t ) is no longer negligible. Thus, flexibility barely affects
to the passive heaving and pitching motions of the foil but, nonetheless, it significantly affects its
propulsive performance.
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B. Asymptotic analytical solution

Although the numerical solution of the system of ODEs is straightforward, much insight about
the propulsion performance may be gained by taking advantage of the small torque intensity ε

and the large stiffness ratio S to obtain analytical approximate solutions for h(t ), α(t ), d (t ), and
u(t ) using perturbation methods. It will also be assumed that u = 1/k � 1, which constitutes an
additional limitation of the asymptotic solution in relation to the numerical solution of the model
equations for small ε and large S.

From the structure of the numerical solution described in the previous section, one may assume
two time scales: a fast time t , associated to the period of the torque oscillations, and a slower time

τ = Bεbt (24)

associated to the transient towards the permanent oscillatory state with constant mean, where the
constants B and b have to be determined from the scaling of the different terms in the equations.
Since we are considering the small deflection approximation, we assume that S � 1. In the rigid-foil
case (S → ∞, d = 0), it was shown in Ref. [45] that b = 4/3 and the lowest-order solution can be
written (discarding an irrelevant fast transient decay from the initial conditions) as

h(t, τ ) ∼ εH1 sin(t + φh1) + . . . , α(t, τ ) ∼ εA1 sin(t + φa1) + . . . , (25)

u(t, τ ) ∼ ε4/3u1(τ ) + ε2u2(t ) + . . . , u1(τ ) = U1w1(τ ), (26)

where functions w1(τ ) and u2(t ), constants H1, A1, φh1, φa1, U1, and the slow-time constant B, are all
obtained analytically (see Appendix C). w1(τ → ∞) = 1, so that the lowest-order swimming speed
is U ∼ ε4/3U1. The scalings for h and α are easily derived from Eqs. (10)–(11) taking into account
that ĈMi ∼ ε in the right-hand side of Eq. (11) and the asymptotic expansions of the remaining
coefficients in the right-hand sides of Eqs. (10)–(11) when the large-k approximation of the different
functions of k appearing in them are used (see Appendix D, where the formal general expansions
of ĈL, ĈT , ĈF , and ĈT in the present flexible case are given), whose first terms coincide with those
for the rigid case when S � 1). The scaling for u and τ comes from the balance between drag and
thrust in Eq. (7) using the expansions for u and ĈT .

When flexibility effects are taken into account, the new equation (12) with S � 1, together with
the expansion for ĈF (see Appendix D, where it is shown that the lowest order of ĈF is also ε, like
those of h and α) imply that

d ∼ εS−1, (27)

so that d is much smaller than ε. Hence, this small deflection does not affect to h and α at their
lowest orders because it is much smaller than ε, and the lowest-order solution (25) remains the
same as that for a rigid foil (given in Appendix C; this feature was anticipated by the numerical
solution described in Sec. III A). However, it may affect the swimming velocity u, which is smaller
than ε at its lowest order. In fact, we will consider the deflection range where this does happen;
i.e., the distinguished limit S−1 ∼ εm such that flexibility d ∼ ε1+m = εm1 modifies the swimming
velocity at its lowest order. The value of m (or m1 = 1 + m) can be derived taking into account the
expansions of u and ĈT [see Appendix D, where the power n1 = 4/3, like in the first term of u in
(26)]. Knowing that the first term in ĈT , or order ε2, has zero mean and does not contributes to the
mean swimming velocity, and balancing the second and third terms, which also match the drag term
Li u2, it results 1 + m1 = 8/3; i.e., m1 = 5/3 and m = 2/3. Thus we define

S = ε−2/3S1, (28)

with S1 of order unity, and the expansion

d (t, τ ) ∼ ε5/3d1(t, τ ) + ε7/3d2(t, τ ) + . . . . (29)
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Substituting into Eq. (12) and using the expansion for ĈF from Appendix D one gets, at the
lowest order, d1(t ) in terms of h1(t ) = H1 sin(t + φh1) and α1(t ) = A1 sin(t + φa1),

d1 = (a2 + 1/4 + RIa)H1 sin(t + φh1) + [a(a2 + 1/2) − RId ]A1 sin(t + φa1)
a2+1/3
3(1−a)2 S1

, (30)

which can be written as

d1 = D1 sin(t + φd1), (31)

with

D1 =
√

a2
h + a2

a + 2ahaa cos(φh1 − φa1), φd1 = arctan
ah sin φh1 + aa sin φa1

ah cos φh1 + aa cos φa1
, (32)

ah = (a2 + 1/4 + RIa)H1

a2+1/3
3(1−a)2 S1

, aa = [a(a2 + 1/2) − RId ]A1

a2+1/3
3(1−a)2 S1

. (33)

On the other hand, substituting (24)–(29) and the expansion of ĈT given in Appendix D (with
b = n1 = 4/3, n2 = 2, n3 = 8/3) into Eq. (7), at the orders ε, ε2, and ε8/3 we get, respectively, the
following equations:

∂u1

∂t
= 0, (34)

R′ ∂u2

∂t
= A1{H1 cos(2t + φh1 + φa1) + aA1 cos[2(t + φa1)]}, (35)

R′
(

∂u3

∂t
+ B

∂u1

∂τ

)
+ Liu2

1 =
{

C0 + H1A2 cos(2t + φh1 + φa2) + A1H2 cos(2t + φa1 + φh2)

+ 2aH1D1 cos(2t + φh1 + φd1) − H1D1

2
sin(2t + φh1 + φd1)

+
(

5a2 + 3

4
− Al2

)
A1D1

2
cos(2t + φa1 + φd1) +

(
1

2
− a

)

× A1D1

2
sin(2t + φa1 + φd1) + 2aA1A2 cos(2t + φa1 + φa2)

}

+ u1/2

√
π

{
C + H2

1

2
cos[2(t + φh1)] +

(
a − 1

2

)
(a − 1)

A2
1

2

× cos[2(t + φa1)] +
(

a − 3

4

)
H1A1 cos(2t + φh1 + φa1)

}
, (36)

where

C0 = 1

2

{
A1D1

[(
a2 + 1

4
+ Al2

)
cos(φa1 − φd1) +

(
a − 1

2

)
sin(φa1 − φd1)

]

− D1H1 sin(φd1 − φh1)

}
, (37)

C = H2
1

2
+

(
a − 3

4

)
A1H1 cos(φh1 − φa1) +

(
a − 1

2

)
(a − 1)

A2
1

2
. (38)

Equations (34)–(35) coincide with those for the rigid-foil case (they do not depend on the lowest-
order deflection d1), resulting that u1 only depends on τ , and yielding the same oscillatory function
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u2(t ) of the rigid-foil case (see Appendix C). On the other hand, Eq. (36) does depend on d1. To
avoid secular terms in the timescale t , we have the freedom within the two-scales perturbation
method [34] to select the equation for u1(τ ) that cancels the nonoscillatory terms; i.e.,

R′B
du1

dτ
+ Liu2

1 = C0 + Cu1/2
1√
π

. (39)

What remains of Eq. (36),

R′ ∂u3

∂t
=

{
H1A2 cos(2t + φh1 + φa2) + A1H2 cos(2t + φa1 + φh2)

+ 2aH1D1 cos(2t + φh1 + φd1) − H1D1

2
sin(2t + φh1 + φd1)

+
(

5a2 + 3

4
− Al2

)
A1D1

2
cos(2t + φa1 + φd1) +

(
1

2
− a

)
A1D1

2
sin(2t + φa1 + φd1)

+ 2aA1A2 cos(2t + φa1 + φa2)

}
+ u1/2

√
π

{
H2

1

2
cos[2(t + φh1)]

+
(

a − 1

2

)
(a − 1)

A2
1

2
cos[2(t + φa1)] +

(
a − 3

4

)
H1A1 cos(2t + φh1 + φa1)

}
, (40)

can easily be integrated to obtain explicitly u3, except for an arbitrary function of τ . But with u1(τ )
and u2(t ) would be enough since we are mostly interested in the lowest-order solution for u in terms
of the slow time τ and the fast time t . Formally, the solution at the lowest order is (26), with the
same u2(t ) for a rigid foil given by Eq. (C5) in Appendix C, but with different function u1(τ ) and a
different scaling constant B in the slow time τ .

To solve Eq. (39) it is convenient to rescale u1 as in (26),

u1(τ ) = U1w1(τ ), (41)

but now, according to (39), U1 is given by the solution of the algebraic equation

LiU 2
1 − C√

π
U 1/2

1 − C0 = 0. (42)

Selecting the slow-time scaling constant as

B = LiU1

R′ , (43)

which formally is the same of the rigid-foil case, but with a different swimming velocity U1, Eq. (39)
becomes

dw1

dτ
= C∗(w1/2

1 − 1
) + 1 − w2

1, with C∗ = C√
πLiU 3/2

1

. (44)

In the rigid-foil case U1 is such that C∗ = 1 [see Eq. (C1) in Appendix C]. Equation (44) can be
easily solved numerically with some initial condition [e.g., w1(0) = 0]. The solution always satisfies
w1(∞) = 1, so that the lowest-order nondimensional swimming velocity is u ∼ ε4/3U1. An explicit,
analytical solution of Eq. (44) in the form τ = F (w1;C∗) can be found, but the function F is so
involved that it has no advantage whatsoever over the numerical solution. [For the rigid-foil case,
with C∗ = 1, F is much simpler, see (C3) in Appendix C.]

Contrary to the rigid-foil case, where U1 is given explicitly, now one has to solve numerically the
algebraic nonlinear equation (42). To that end it is convenient to start the iteration procedure from
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the first correction to the rigid-foil value when C0 → 0. From (42),

U1 ≈ U1r

(
1 + 2

√
πC0

3CU 1/2
1r

)
, C0 � CU 1/2

1r , (45)

where U1r is the rigid-foil value of U1 that makes C∗ = 1. This seed to obtain U1 will assure that
one gets the correct physical solution of Eq. (42), that tends to the rigid-foil solution when S → ∞.
In addition to the mean swimming velocity U ∼ ε4/3U1 one can compute the other performance
parameters defined in Sec. II B, which at their lowest order are given by

ĈPi ∼ ε2A1 sin φa1, (46)

η ∼ ε2 LiU 3
1

A1 sin φa1
, (47)

CoT ∼ ε2/3 A1 sin φa1

U1
, (48)

St = A

2πU
∼ ε−1/3

πU1

[
H1 + (1 + |a|)A1 + 1

2
(1 + |a|)2ε2/3D1

]
. (49)

Figure 3 compares the asymptotic lowest-order solutions for u(t ), h(t ), α(t ), and d (t ) with the
numerical solutions of the model equations for the same case plotted in Fig. 2 when S = 1 000 and
S = 100. The asymptotic solution captures quite well the numerical solution for large S, becoming
poorer as the stiffness ratio S decreases to 100 or below, particularly for the swimming velocity
u(t ). This is due to the limitation of the asymptotic solution to u � ε, a constraint not shared by
the model equations (remember that ε = 0.05 in the figure). However, the agreement between both
solutions remains excellent for h(t ), α(t ), and d (t ) even for S = 100 (and below), notably for the
pitch angle α.

The disagreement for the swimming velocity increases as one approaches the resonant values
of the spring constants kh and kα , where the mean swimming velocity U reaches a pronounced
maximum. Since h and α coincide with those for a rigid foil at the lowest order, so does the resonant
value of the torsional spring constant kαr for each value of the translational spring constant kh [45]:

kαr = 1

2

[
RIa + a2 + 1

8
+ [a + R(a − x0)]2

kh − 1 − R

]
, (50)

where the nondimensional moment of inertia Ia = a2 + 1/3 (see Appendix B). Figure 4 compares
the mean swimming velocity U obtained numerically from the model equations with the present
lowest-order asymptotic solution as kα is varied for the same values of the remaining parameters
considered in Figs. 2 and 3, and for stiffnesses S = 103 and S = 102. Near the resonant value (kαr �
0.927 in the present case, marked with a vertical dashed line in the figure) the asymptotic solution
greatly overestimates the mean swimming velocity, even for large S. Also, for S = 100, the velocity
prediction of the asymptotic is poor even for large kα for the reason explained above in relation to
Fig. 3. However, the lowest-order asymptotic solution yields correctly the scaling of U and, more
importantly, predicts accurately the resonant values of the nondimensional parameters for optimal
propulsion performance. Thus, the present asymptotic solution will guide the search for optimal
propulsion performance given in the following section, but using the numerical solution of the model
equations for quantitative results close to the resonance of the system.

C. Optimal propulsion performance

In this section we look for the best propulsion performance as described by the numerical solution
of the model equations, and guided by the lowest-order asymptotic solution of Sec. III B. To that
end we use a set of nondimensional parameters appropriate for a small aquatic vehicle (or a large
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FIG. 3. Comparison between the lowest-order asymptotic solution (blue) and the numerical solution
(black) for the same case plotted in Fig. 2 when (a) S = 103 and (b) S = 102. The quantities plotted vs time are
the swimming velocity u, and the heaving (h), pitching (α), and flexural deflection (d) displacements.
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FIG. 4. Mean swimming velocity U vs torsional spring constant kα for the same values of the remaining
parameters used in Figs. 2 and 3, and for two values of the stiffness S, obtained from the lowest-order
asymptotic solution (continuous lines) and from the numerical solution of the model equations (dashed-and
-dotted lines). The vertical dashed line corresponds to the resonant value of kα given by Eq. (50).

fish), varying mainly the stiffness parameter S, and also kh, kα , a, and Li. The fixed parameters
are: R = 0.02, R′ = 0.2, x0 = 0, bh = bα = 0.05, and ε = 0.05. Note that although we select a
small value of ε for the model assumptions to be valid, this does not restrict the analysis to a small
actuating torque Mi, since it is scaled with the frequency ω and the foil chord length c [see Eq. (16)],
being the actual torque also proportional to the span of the foil, so that it can be as large as desired
by increasing the foil size and the actuating frequency, not being restricted to the propulsion of small
aquatic vehicles.

According to the asymptotic results, the maxima of the swimming velocity are obtained for
resonant values of kα , kαr (kh, R, a, . . .), which at the lowest-order approximately coincide with the
results for a rigid foil given by Eq. (50). Actually, it was shown in Ref. [45] that the maximum
swimming velocity for a rigid foil was reached for large kh. In that case, according to (50), kαr �
(RIa + a2 + 1/8)/2. Consequently, we select kh = 10, large enough to reach the above asymptotic
value of kαr (kh), and plot the performance parameters in Fig. 5 in the plane kα − S for Li = 0.1
and a = −1; i.e., for the pivot axis at the leading edge, for which kαr � 0.634, shown with vertical
dashed lines in Fig. 5. We observe in Fig. 5(a) that the maximum swimming velocity (maximum
thrust force) is reached close to this resonant value kαr (at about kα = 0.6) and for a rigid foil; i.e.,
for S → ∞. This result is in agreement with that previously found by Moore [53], who showed that
torsional spring with a rigid foil is the optimal arrangement for thrust production in a fluid stream
with fixed velocity. However, out of that resonance, for kα larger than kαr , U increases as the stiffness
S decreases, as already shown in the example of Fig. 2. Actually, the swimming velocities reach local
maxima for lower values of S corresponding to the first resonant mode Sr associated to the stiffness
of the foil. For instance, for kα = 5 we find a local maximum of U � 0.012 for Sr ≈ 106, which
roughly coincides with the first resonant frequency associated to the stiffness of the foil with the
present nondimensionalization [34,36]. In general, these local maxima of the swimming velocity
are more than ten times smaller than the maxima of U for the first resonant mode associated to the
torsional spring kα = kαr when kh is large. As found in previous models for an elastically mounted
flexible foil in a fluid stream with fixed velocity, the resonances associated to the stiffness of the
foil are eclipsed by the more efficient (from a thrust-producing point of view) resonance of the foil
associated to its elastic support when the stiffness of the foil is high enough [26,53].
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FIG. 5. Contours of (a) mean swimming velocity U , (b) propulsive efficiency η, (c) cost of transport CoT ,
and (d) Strouhal number St in the (kα, S) plane for R = 0.02, R′ = 0.2, x0 = 0, bh = bα = 0.05, ε = 0.05,
a = −1, Li = 0.1, and kh = 10. The vertical dashed lines correspond to kαr given by (50).

Although the highest U is reached for a rigid foil with kα very close to kαr , it is observed in
Fig. 5(c) that in the present self-propulsion problem this configuration is also that with the highest
cost of transport CoT , and with a propulsive efficiency, which is not the maximum one [Fig. 5(b)].
The highest propulsive efficiency is also reached close to this resonant value of the torsional spring
constant kαr , but for flexible foils with S below 100. In the figure, η at kα � kαr increases from about
29.7% for S → ∞ to about 35.1% for S ≈ 75. At this value of S the CoT is also significantly smaller
than for a rigid foil (0.018 versus 0.024). It is remarkable that this optimal performance around the
resonant value of kα corresponds to an almost constant value of the Strouhal number, about 0.32,
in accordance with the range where many swimming and flying animals in many scales optimally
cruise propelled by flapping fins and wings [1,62], including also fishes swimming by undulating
their bodies at high enough Reynolds numbers [65–68], quite different from the present oscillatory
swimming mode (see Sec. IV below). With the present model, for kα = kαr , St in Fig. 5(d) ranges
from 0.328 as S → ∞, to 0.317 for S ≈ 75.

Figure 6 shows the propulsive performance as one moves the pivot axis downstream of the foil
(a > −1) maintaining the resonant value kαr (actually, Fig. 6 is for kα = 0.6, where η is maximum
for large S, very close to kαr). Figure 6(b) shows that the propulsive efficiency decreases, but remains
practically unchanged for the optimal efficiency case just discussed (S below 100) if −1 � a �
−0.9. However, the maximum swimming velocity, with the highest cost of transport, is reached for
a ≈ −0.9 for a rigid foil [Figs. 6(a) and 6(c)]. The Strouhal number remains practically unchanged
for a near −1 [Fig. 6(d)].

We have seen that the maximum of U is reached close to the resonant value of kα for a rigid
foil. However, this behavior depends on the vehicle’s drag through Li, as shown in Fig. 7, where
contours of U divided by its rigid-foil counterpart U rigid are plotted in the (m, S) plane. In the case
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FIG. 6. Contours of (a) mean swimming velocity U , (b) propulsive efficiency η, (c) cost of transport CoT ,
and (d) Strouhal number St in the pivot-stiffness plane (a, S) for R = 0.02, R′ = 0.2, x0 = 0, bh = bα = 0.05,
ε = 0.05, Li = 0.1, kh = 10, and kα = 0.6.

with Li = 0.1 considered in Figs. 5 and 6, U/U rigid decreases from unity as S → ∞ to about 0.95
for S ≈ 75. However, for Li < Li∗(S), where the Li∗(S) contour is marked with 0 in Fig. 7, the
maximum of U at resonance increases slightly with the flexibility of the foil. Thus, for Li = 0.005,
U/U rigid increases from unity as S → ∞ to about 1.04 for S ≈ 75. To show this different behavior,
Fig. 8 reproduces the results of Fig. 5 but for Li = 0.01. Now, the highest U is reached for a flexible
flow [S below 102, see Fig. 8(a)], but still close to the resonant value kαr . For this Li, the highest
efficiencies and CoT are also reached at these lower values of S when kα ≈ kαr [Figs. 8(b) and 8(c)].
However, the corresponding Strouhal numbers [Fig. 8(d)] are significantly lower than those found
in natural swimmers, an indication that this value of the Lighthill number is too low and difficult to
achieve in nature (see discussion in the next section).

IV. COMPARISON OF OPTIMAL EFFICIENCY RESULTS WITH FISH PROPULSION DATA

The expressions for the force components and moment from linearized potential flow theory,
which are coupled with the Euler-Bernoulli beam equation in the present self-propulsion model,
have been amply validated against numerical simulation and experimental data in the case of
rigid foils [69–73], surprisingly showing a good agreement even for not so small amplitude of
the oscillations, and for flexible foils [36,46,48]. The self-propulsion model with rigid foils has
also been validated recently against high-fidelity numerical simulations for rigid foils [45,74].
However, to our knowledge, no numerical results about bodies self-propelled by flexible flapping
foils elastically mounted are available to compare with. For that reason, to assess the validity of
the model, we compare in Fig. 9 the results of the theory for the Strouhal number vs. the Lighthill
number with experimental data for the swimming kinematics of several fishes compiled by Eloy
[65], and with theoretical results derived by this author.
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FIG. 7. Contours of ln(U/U rigid ) in the (Li, S) plane for R = 0.02, R′ = 0.2, x0 = 0, bh = bα = 0.05, ε =
0.05, a = −1, kh = 10, and kα = 0.6.

Actually, Eloy’s theoretical results [65], based on Lighthill’s elongated-body theory [75], are for
undulatory swimming, qualitatively and quantitatively very different from the oscillatory swimming
mode based on oscillatory foils considered in the present model [7,76]. Consequently, we include
in Fig. 9 only the data for “scombrids” and “other fishes” compiled by Eloy [65], which include

FIG. 8. As in Fig. 5, but for Li = 0.01.
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FIG. 9. Strouhal number for maximum efficiency η as kα is varied versus Lighthill number for several
values of kh, S, and R′, as indicated in the legend. The green continuous line is Eloy’s (2012) model for
undulating swimming [65] and the symbols are experimental data for several fishes, both model and data
taken from Fig. 4 in Ref. [65] (see main text for more details).

several species of mackerels, tunas, bonitos, daces, and goldfishes, among others. These fishes are
mostly propelled by the thrust produced by their caudal fin oscillatory motion, being negligible the
thrust contribution by the body motion [7,76]. Incidentally, tunas are among the fastest and most
efficient swimming fishes in sustained cruise [77], and precisely they are endowed by nature with a
long, almost rigid-fin tail, thus approximating better the assumptions of the present model. The other
species considered in Fig. 9, though all of them are mostly propelled by their caudal fin oscillatory
motion, have more flexible caudal fins. This fact, together with the variable contribution of the body
undulatory motion to their propulsion, may explain part of the scattering in the experimental data.
For the comparison in Fig. 9 we use the Lighthill number defined by Eloy, LiE , which is related
to that defined in Eq. (8) through LiE = (πc/s)Li. Since the present theory is for two-dimensional
foils, i.e., for large aspect ratio s/c, and it ranges from 4.5–10 in mackerels and tunas [78], for
simplicity we have selected s/c = 2π , so that LiE = Li/2. The Strouhal number defined in Eq. (22)
is exactly the same used in Ref. [65].

We plot in Fig. 9 St resulting from the present model equations for translational spring constants
kh = 2.5 and 10, stiffness ratios S = 103 and 102, and vehicle’s mass ratios R′ = 0.2 and 2, corre-
sponding, for each value of Li, to the highest efficiency η when kα is varied, which approximately is
reached at the rigid-foil resonant value kαr , as discussed above. The remaining parameters are fixed
to R = 0.02, x0 = 0, bh = bα = 0.05, ε = 0.05, and a = −1. The results are almost independent
of R′, particularly for Li � 0.1, in spite of the vehicle’s mass disparity (note that, for R = 0.02,
the value R′ = 0.2 used in all previous figures roughly corresponds to a vehicle’s mass ten times
larger than that of its propeller, while R′ = 2 corresponds to a vehicle about 100 times heavier
than its propeller). Similar behavior is observed for the dependencies of St on kh and S as Li is
varied, in such a way that for Li � 0.1 the optimal Strouhal with the present oscillatory swimming
model collapses to St ≈ 1.75(LiE )0.57 = 1.18Li0.57. This should be compared with the power law
obtained by Eloy from his undulatory swimming model, St ≈ 0.75(LiE )1/3, also shown in Fig. 9.
The scattering of the experimental data makes it difficult to decide which fits better, but it seems that
the present model works slightly better for the thunniform swimmers, which are the scombrids in
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FIG. 10. (a) Optimal efficiencies η and (b) corresponding values of kα , (c) U , and (d) CoT vs Li for the
St-Li curves plotted in Fig. 9 when R′ = 2. Also shown in (b) with thicker lines are the corresponding values
of kαr for each kh.

Fig. 8 with lower Li, i.e., for typical swimmers where the primary mechanism for producing thrust
is a prominent caudal fin.

Complementing Fig. 9, Fig. 10 shows the values of η, kα , U , and CoT corresponding to the
model curves plotted in Fig. 9 for R′ = 2 (for R′ = 0.2 the results practically coincide). The optimal
efficiencies are reached for kα close to kαr [Fig. 10(b)], as discussed in Sec. III C, and obviously η

increases as Li decreases, i.e., as the drag decreases. η may reach values higher than 50% when kh

is large (i.e., kh = 10 in the figure) and S = 100, but for Li lower than about 0.01, too small to be
achieved in nature as observed in Fig. 9. For all values of Li, the optimal η increases [Fig. 10(a)],
and the corresponding CoT decreases [Fig. 10(c)], as the stiffness S decreases for a given kh, as
already discussed in Sec. III C. However, as it was also shown in that section, the swimming velocity
U increases slightly with the stiffness S at these resonant values of kα , except for very low, and
unrealistic, values of Li [Fig. 10(c)].

V. CONCLUSION

A model for the locomotion of an aquatic vehicle self-propelled by a flexible foil elastically
supported and actuated by an oscillatory torque is used to gain insight about the optimal propulsion
conditions. Particularly, the conditions for which the flexibility of the foil enhances the propul-
sive and cruising performance. The model is based on linear potential flow theory coupled with
the structural Euler-Bernoulli beam equation, valid for small amplitudes of the passive pitching,
heaving, and flexural motions of the foil that propels a vehicle with constant drag coefficient and
independent mass. The rigid-foil case has been previously validated with numerical simulations for
high Reynolds number locomotion.

063102-19



P. E. LOPEZ-TELLO AND R. FERNANDEZ-FERIA

An analytical perturbation solution, additionally limited to very small nondimensional swimming
velocities, guides the search for optimal propulsion solutions of the four ordinary differential
equations resulting from the model as the nondimensional parameters governing the problem are
varied, for a given actuating torque amplitude nondimensionalized with the actuating frequency,
fluid density, and foil chord length. The main parameters are the stiffness and mass ratio of the foil,
S and R, longitudinal and torsional springs constants, kh and kα , vehicle’s mass ratio and Lighthill
(drag) number, R′ and Li, and center of mass and pivot axis locations, x0 and a. It is found that the
maxima of thrust and swimming velocity are achieved at, or very close to, a resonant combination
of kα and kh given by a simple analytical expression in terms of R, a, and x0 only, in the limit of
a rigid foil (S → ∞) for Lighthill numbers common in fishes, and when the foil is actuated at, or
near, the leading edge (a = −1). More particularly, the maximum occurs when kh is sufficiently
large and the resonant kαr for a = −1 depends only on R. These maxima of the swimming velocity
U are associated to maxima of the cost of transport. However, the highest propulsive efficiencies,
which are also reached for kα close to kαr , increase as the stiffness S decreases, this being the
main beneficial effect of the foil flexibility coupling with its elastic support on the propulsive
performance according to the model. These results for optimal efficiency η are observed in the
Lighthill number range of most fishes whose primary mechanism for producing thrust is a prominent
oscillatory caudal fin, 0.02 � Li � 0.2, almost independently of the remaining parameters, with
a corresponding Strouhal number lying in a narrow range around 0.32, in agreement with many
experimental data on the optimal cruise swimming of these fishes. As Li decreases, U and η

increases and CoT decreases, reaching for Li ≈ 0.02 a propulsive efficiency close to 45%. Below
this Li, the swimming velocity U may become slightly larger for a flexible foil than for its rigid
counterpart, and the efficiency predicted by the model becomes larger than 50%, but so low values
of Li are not reached even by the most efficient fishes in sustained cruise.

Summarizing, the following design guidelines follow from the present model results. First, and
obviously, for optimal cruising performance one has to minimize the Lighthill number by reducing
the vehicle’s drag coefficient CD as much as possible. Then one has to fix a sufficiently large
(nondimensional) longitudinal spring constant kh and a nondimensional torsional spring constant
kα close to its resonant value kαr , which for large kh only depends on R and a. The pivot point
location has to be selected close to the leading edge (a → −1) for best performance, and R is
selected from the foil geometry and density. From the relations between kh and kα and their
dimensional counterparts, kh = 4k̃h/(πρsc2ω2) and kα = 8k̃α/(πρsc4ω2), and given the actuating
torque, Mi = επρc4ω2/8, one may select the actuating frequency ω and the foil size (i.e., c and
s, with s/c � 1) for given values of k̃h and k̃α and for any given ε � 1. Alternatively, one may
select ω, k̃h, and k̃α for given Mi, s, and c, or any other combination between these quantities.
Finally, one may select the stiffness of the foil, actually the combination of Young’s modulus and
foil thickness Eγ 3 entering in the dimensionless stiffness S, to achieve either maximum cruising
speed or efficiency, or both. If Li � 0.02, which will be the usual case because it would be rather
difficult to get a smaller Li, maximum cruising speed U , but with high cost of transport, is achieved
with a rigid foil (S � 103, would be enough according to the present results), while maximum
cruising efficiency η would be obtained for S � 102. An intermediate value of S can be fine tuned
with the model for best global performance.
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APPENDIX A: THRUST, LIFT, MOMENT, AND FLEXURAL COEFFICIENTS

The following expressions for the coefficients corresponding to the quartic foil’s deflection (4)
are taken from Refs. [36,46], written in the present notation and for nonconstant stream velocity
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u(t ) = 1/k(t ). Note that v = ḣ.

ĈT = −(α + 2ad )CL + d

2

(
α̈

2
+ ad̈ − uḋ

)
+ ḋ

2

(
α̇

2
+ aḋ − ud

)

+ (α̇ + 2aḋ )

{
v + aα̇ +

(
a2 + 1

4

)
ḋ − u(α + 2ad ) + �0


[
i

k
C(k) +

(
1 + ik

k

)
2

π
C1(k)

]}

− [v + aα̇ − u(α + 2ad ) + a2ḋ]�0

[

2i

π
C1(k)

]
− d �0


[
iC2(k) + 2

1 + ik

k

2

π
C1(k)

]

+ ḋ �0

[(

2i

k2
− 2 + ik

k

)
2

π
C1(k) − C2(k)

k

]
, (A1)

ĈL(t ) = −v̇ − aα̈ + uα̇ + u̇α + Al2(a)d̈ + Al1(a)(uḋ + u̇d ) + 
[C(k)]u�0(t ), (A2)

ĈM (t ) = 1

2

[
av̇ +

(
a2 + 1

8

)
α̈ +

(
1

2
− a

)
uα̇ − au̇α + Am2(a)d̈ + Am1(a)uḋ + Am0(a)u2d

]

− 1

2

(
1

2
+ a

)

[C(k)]u�0(t ), (A3)

ĈF (t ) = −
(

a2 + 1

4

)
v̇ − a

(
a2 + 1

2

)
α̈ + a(a − 1)uα̇ + A f 2(a)d̈ + A f 1(a)uḋ + A f 0(a)u2d

+
(

1

2
+ a + a2

)

[C(k)]u�0(t ), (A4)

where 
 means real part, and

�0(t ) = −2
[
v + (

a − 1
2

)
α̇ − uα + Ag1(a)ḋ + Ag0(a)ud

]
. (A5)

The following functions of k and a are used:

C(k) = H (2)
1 (k)

iH (2)
0 (k) + H (2)

1 (k)
= F (k) + iG(k), (A6)

C1(k) =
1
k e−ik

iH (2)
0 (k) + H (2)

1 (k)
, C2(k) = H (2)

2 (k)

iH (2)
0 + H (2)

1 (k)
, (A7)

where (A6) is Theodorsen’s function [61], and H (2)
n (z) = Jn(z) − iYn(z), n = 0, 1, Hankel’s function

of the second kind and order n, related to the Bessel functions of the first and second kind Jn(z) and
Yn(z) [79];

Al2 = −13 + 48a2 − 64a3 + 24a4

48(1 − a)2
, Al1 = 3 + 12a − 12a2 + 4a3

6(1 − a)2
, (A8)

Am2 = 2 + 25a − 12a2 + 52a3 − 64a4 + 24a5

48(1 − a)2
, (A9)

Am1 = −9 + 12a − 72a2 + 56a3 − 16a4

24(1 − a)2
, Am0 = − 3

4(1 − a)2
, (A10)

A f 2 = −35 + 32a + 392a2 − 320a3 + 496a4 − 512a5 + 192a6

384(1 − a)2
, (A11)

A f 1 = 1 + 8a − 18a2 + 48a3 − 32a4 + 8a5

12(1 − a)2
, A f 0 = 7 + 18a

12(1 − a)2
. (A12)
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Ag1 = 15 − 48a + 96a2 − 80a3 + 24a4

48(1 − a)2
, Ag0 = 3 − 24a + 24a2 − 8a3

12(1 − a)2
. (A13)

For a rigid foil (d = 0), CL and CM are the classical expressions by Theodorsen [61], but corrected
by Greenberg [80] to account for the temporal variation of the streamwise velocity u, while CT

coincides with the expression derived in Ref. [81].

APPENDIX B: COEFFICIENTS IN EQS. (10)–(12)

The following expressions for the nondimensional moment of inertia Ia, and the other coefficients
related to the flexural deflection d (t ), are for constant foil density and thickness, so that x0 = 0. More
general expressions for any distribution ρs(x) and γ (x) can be found in Refs. [27,82].

Ja = 1

2

[
a2 − 2

3
a − 1

3
+ 16

15(1 − a)2

]
(B1)

Ia = a2 + 1

3
, Jd = −12 − 93a + 60a2 − 110a3 + 120a4 − 45a5

90(1 − a)2
(B2)

Id = −a
(
1 + a2

)
, Kd = 141 + 168a + 1281a2 − 1120a3 + 1015a4 − 840a5 + 315a6

630(1 − a)2
. (B3)

APPENDIX C: ASYMPTOTIC SOLUTION FOR THE RIGID-FOIL CASE

From Ref. [45], the lowest-order asymptotic solution for the rigid-foil case can formally be
written as (24)–(26), with

b = 4

3
, B = Li U1

R′ , U1 =
(

C√
πLi

)2/3

, (C1)

C = H2
1

2
+

(
a − 3

4

)
A1H1 cos(φh1 − φa1) +

(
a − 1

2

)
(a − 1)

A2
1

2
, (C2)

w1(τ ) given implicitly as

τ = 2
w2

1 − w
1/2
1

w
3/2
1 − 1

F
[
1, 1/3; 4/3,w

3/2
1

]
, (C3)

where F is Gauss’s hypergeometric function, and with H1 ≡ H1eiφh1 and A1 ≡ A1eiφa1 solution of
the linear complex equations(−(R + 1) + bhi + kh −(a + R(a − x0))

a + R(a − x0) RIa + a2 + 1/8 − 2bαi − 2kα

)
·
(
H1

A1

)
=

(
0
2

)
. (C4)

Finally,

u2(t ) = A1

2R′ {H1 sin(2t + φh1 + φa1) + aA1 sin[2(t + φa1)]}. (C5)

APPENDIX D: ASYMPTOTIC EXPANSIONS OF THRUST, LIFT, MOMENT,
AND FLEXURAL COEFFICIENTS

The formal general expansions of ĈL, ĈT , ĈF , and ĈT are given below using

τ = Bεbt,
d

dt
= ∂

∂t
+ Bεb ∂

∂τ
,

d2

dt2
= ∂2

∂t2
+ 2Bεb ∂2

∂t∂τ
+ B2ε2b ∂2

∂τ 2
, b � 1, (D1)
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and

h(t, τ ) ∼ εh1(t, τ ) + εm1 h2(t, τ ) + εm2 h3(t, τ ) + . . . , 1 > m1 > m2 > . . . , (D2)

α(t, τ ) ∼ εα1(t, τ ) + εm1α2(t, τ ) + εm2α3(t, τ ) + . . . . (D3)

d (t, τ ) ∼ εm1 d1(t, τ ) + εm2 d2(t, τ ) + εm3 d3(t, τ ) + . . . , (D4)

u(t, τ ) ∼ εn1 u1(t, τ ) + εn2 u2(t, τ ) + εn3 u3(t, τ ) + . . . , 1 > n1 > n2 > . . . , (D5)

together with the approximations for k � 1

Re[C(k)] = 1

2
+ O(k−2), Re

[
i

k
C(k) +

(
1 + ik

k

)
2

π
C1(k)

]

= 1

(4πk)1/2
+ O(k−3/2), Re

[
2i

π
C1(k)

]

= 1

(4πk)1/2
+ O(k−3/2), Re

[
iC2(k) + 2

(
1 + ik

k

)
2

π
C1(k)

]

= −1

2
+ O(k−1/2), Re

[(
2i

k2
− 2 + ik

k

)
2

π
C1(k) − C2(k)

k

]

= 1

(4πk)1/2
+ O(k−3/2). (D6)

The expansions are

ĈL ∼ − ε

(
∂2h1

∂t2
+ a

∂2α1

∂t2

)
− εm1

(
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ĈM ∼ ε
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ĈF ∼ − ε

[(
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+ a
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a2 + 1
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