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Coherent flows of self-propelled particles are characterized by vortices and jets that
sustain chaotic flows, referred to as active turbulence. Here, we reveal a crossover be-
tween defect-free active turbulence and active turbulence laden with topological defects.
Interestingly, we show that concurrent to the crossover from defect-free to defect-laden
active turbulence is the restoration of the previously broken SO(2) symmetry signaled
by the fast decay of the two-point correlations. By stability analyses of the topological
charge density field, we provide theoretical insights on the criterion for the crossover to the
defect-laden active turbulent state. Despite the distinct symmetry features between these
two active turbulence regimes, the flow fluctuations exhibit universal statistical scaling
behaviors at large scales, while the spectrum of polarity fluctuations decays exponentially
at small length scales compared to the active energy injection length. These findings reveal
a dynamical crossover between distinct spatiotemporal organization patterns in polar active
matter.

DOI: 10.1103/PhysRevFluids.8.063101

I. INTRODUCTION

Recent developments in active matter have shed light on a form of chaotic flows sustained by
living microswimmers at low Reynolds numbers, often known as active turbulence [1]. A distinctive
feature of active turbulence, compared to classic inertial turbulence, is the continuous injection of
energy at the scale of individual constituents of the active material. Striking examples are dense
bacterial suspensions [2,3], cellular monolayers [4,5], and assemblies of subcellular filaments [6,7],
which are all composed of active elements—i.e., individual bacterium, single cell, or motor proteins
walking on single filaments—each capable of converting chemical energy to mechanical work
[8–10]. Although, most of the work so far has been limited to visual resemblance with inertial
turbulence, recent works suggest the existence of universal scaling features in active turbulence
[7,11] and even show [12] that crossover to a confined active turbulence belongs to the same directed
percolation universality class as in the inertial turbulence [13].

Nevertheless, a majority of studies of active turbulence so far, including the works suggesting
universal scaling laws and universality classes of turbulence transition, have focused on a subclass of
active materials known as active nematics [14–19], which models flows generated by dense assem-
blies of elongated particles [10]. Within the active nematic framework, the particles are essentially
characterized as shakers [20]: they have neither any polarity nor ability to propel themselves and
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instead generate head-tail symmetric (nematic) active stresses in the fluid. The active stresses in
turn drive hydrodynamic instabilities in the flow and the orientation field of particles, resulting in
a chaotic flow state that is interleaved with topological defects—singular points in the orientation
field where the order breaks down [8,10,21].

Previous studies of polar active matter have characterized spontaneous flows [22,23] and asso-
ciated nonequilibrium steady states [24,25]. On the other hand, studies of self-propulsion effects
on active turbulence have mostly neglected orientational couplings. Instead, the focus has been
put on generalized Navier-Stokes equations, where activity is introduced through the addition of
phenomenological higher-order terms in the momentum equation, corresponding to a second-order
negative viscosity and a fourth-order hyperviscosity, to give characteristic vortex length to active
turbulence [2,26–28]. As such, characteristics of active turbulence in models of polar active fluids
in the presence of topological defects have only been marginally explored in the context of
polar active emulsions [29] and polar flocks with inertia [30]. Additionally, notwithstanding the
interesting recent characterization of the annihilation of topological charges in colloidal flocks
[31] and despite the emerging roles of topological defects in various biological fluids [32–35], the
majority of research so far has focused on nematic topological defects [10,34,36] and studies of
active turbulence in polar fluids in the presence of polar topological defects are lacking.

Here we use numerical simulations of continuum polar active matter together with analytical
arguments to shed light on the turbulence characteristics of active fluids laden with topological
defects, accounting for both hydrodynamic effects and polar ordering. We first show how increasing
active stresses results in a regime shift from defect-free active turbulence to active topological
turbulence, where chaotic flows are interleaved with chaotic arrangements of full-integer topological
defects. We provide theoretical arguments to predict the activity threshold for the crossover to active
topological turbulence, based on the stability analyses of the topological charge density field. We
further show that ordering and symmetry characteristics are different within these two dynamical
regimes: while SO(2) symmetry is broken within the defect-free active turbulence, the defect-laden
turbulence restores the global SO(2) symmetry. Additionally, we demonstrate the existence of
universal scaling behavior in the power spectra of enstrophy and polarity. This is observed for all
activities and within both defect-free and defect-laden active turbulence.

II. METHODS

A. Hydrodynamic model

We consider an incompressible polar active fluid in two spatial dimensions, with the local
orientational order described by a two-component order parameter p pointing in the direction of
self-propulsion. Let then u and ρ be the velocity and density of the polar fluid, respectively. Coarse-
grained hydrodynamic equations can be derived by phenomenological considerations [8,30,37] and
take the form

Dui

Dt
= 1

ρ
∂ jσi j, (1a)

Dpi

Dt
− (λEi j + �i j )p j = 1

γ
hi, (1b)

along with the incompressibility condition ∂iui = 0. Here D
Dt = ∂t + u j∂ j is the usual advective

derivative. The strain rate tensor Ei j = (∂iu j + ∂ jui )/2 and the vorticity tensor �i j = (∂iu j −
∂ jui )/2 are respectively the symmetric and antisymmetric parts of the velocity gradient tensor. In the
momentum balance Eq. (1a), the stress tensor σi j is broken into a sum of three parts: viscous stress

σ vis.
i j = 2ηEi j , passive stress σ

pas.
i j = −Pδi j + Ci jkl pkhl , and active stress σ act.

i j = −ζ (pi p j − p2

2 δi j )
[38,39]. The first term in the passive stress is the usual hydrodynamic pressure. The second term
accounts for elastic stresses through the anisotropic tensor Ci jkl = λ+1

2 δikδ jl − λ
2 δi jδkl + λ−1

2 δilδ jk ,
with λ being the flow alignment parameter and h = −δF/δp [40,41] being the molecular field
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defined here from the free energy

F =
∫

d2x
{

A

(
−| �p|2

2
+ | �p|4

4

)
+ K

2
∂i p j∂i p j

}
. (2)

The free energy contains a local energy density with an energy scale A that controls the isotropic-
polar transition favoring the emergence of finite polarity at |p| = 1, and a nonlocal energy
contribution with an elastic constant K that penalizes deformations in the polarity field [42]. It
is important to note that we do not treat the polarity as a unit vector, with fixed magnitude. Instead,
in this formulation the polarity modulus is an important dynamical variable.

B. Numerical method and the simulation parameters

We simulate Eqs. (1a) and (1b) using a hybrid lattice-Boltzmann method, combining the finite-
difference method for the evolution of the polarity vector, Eq. (1b), and the lattice-Boltzmann
method for solving the incompressible Navier-Stokes equation, Eq. (1a), with ρ = 40 and η = 3.6 in
lattice Boltzmann units, ensuring that the Reynolds number in the simulations is negligible (Re � 1)
[12,43]. The other relevant dimensionless numbers describing the system are (i) the dimensionless
ratio of the viscosities η/γ , (ii) the ratio of micro to macro length scales (

√
K/A)/L, (iii) the flow

alignment parameter λ, and (iv) the dimensionless active stress ζ̄ = ζ/A. Unless otherwise stated,
we fix the viscosity ratio to η/γ = 3.6, micro to macro length scale to (

√
K/A)/L = 2 × 10−4

(assuring that the coherence length lp = √
K/A is significantly smaller than the domain size L), and

the flow alignment parameter to λ = 0.1.
Simulations were initialized with quiescent velocity field and noisy polar alignments close to the

uniformly oriented state p = êx under periodic boundary conditions, on quadratic domains of linear
dimension L = 1024, unless otherwise is stated.

III. RESULTS

A. Activity-induced crossover to defect-laden turbulence

We begin by introducing global measures of the flow fluctuations and polar order parameter
as functions of the activity parameter ζ̄ . The flow is globally characterized by the dimensionless
root-mean-squared (rms) velocity V rms = Vrms/Vp that is normalized by the characteristic velocity of
passive relaxation of polarity Vp = √

AK/η. The polar order parameter is associated with the SO(2)
symmetry and carries full-integer topological defects. Its global measure is given by the average
density of topological defects ρd = 〈Nd〉/L2. The averaging is done both over space and time in the
statistical steady-state regime. As evident from Fig. 1, increasing activity beyond a certain threshold
results in a continuous increase in the defect density for both extensile (ζ > 0) and contractile
(ζ < 0) systems. We have carefully checked that the activity thresholds do not depend on the
system size L, by simulating different domain sizes of 512 × 512, 1024 × 1024, and 4096 × 4096
and finding precisely the same quantitative dependence of defect density on the activity (see
Fig. 2; square and circle symbols). Interestingly, simultaneous measurement of the rms velocity
V rms indicates that even below the critical activity for defect nucleation, active stresses disturb the
polarity field such that spontaneous flows are generated within the system, for any nonzero activity
[Fig. 1(c)]. A closer look at the velocity field of the system below the defect nucleation threshold
shows that chaotic flows characterized by flow vortices and jets span the system [Fig. 1(a); only a
fraction of the entire domain is shown], although no topological defects are present in the polarity
field. Qualitatively similar chaotic flows manifest at higher activities with a smaller typical length
scale Lact. defined below, though with the distinctive feature that the flows are now laden with the
presence of full-integer topological defects (unbound vortex and antivortex pairs) in the polarity
field [Fig. 1(b)]. Together, these results establish that there is a well-defined activity threshold for
the crossover from defect-free and defect-laden active turbulence in polar active matter.
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(a) (b)

(c)

FIG. 1. Crossover from defect-free to defect-laden active turbulence upon increasing strength of active
stresses. Shown here are the averaged defect density (blue dots) and the rms velocity (orange dots) in units
of Vp = √

AK/η, characterizing the passive relaxation velocity of the polar particles. Active turbulence arises
as soon as the activity is nonzero, but topological defects form and persist in the polarity field only beyond
a finite threshold in both contractile (ζ < 0) and extensile systems (ζ > 0). Results were averaged over time
and for ten simulations from different initial conditions; the error bars stand for the corresponding standard
deviation. The excess kurtosis κi values of both quantities are also represented at the bottom. For large activity
levels, κ (ρd ) � 0, which indicates the population of defects is typically equilibriumlike and follows a normal
distribution law. For small activity levels, there are no defects at all and κ is set by convention to −3. In between,
the crossover is characterized by very rare formation and annihilation events, as evidenced by the peaks in κ

(blue highlighted areas). There are no such peaks for the kurtosis of the rms velocity, which indicates there
is no equivalent crossover regime. (a) and (b) illustrate the polarity field (left panels) and the corresponding
velocity field (right panels) characterized by streamlines (solid black lines) colored by the normalized vorticity
ω/ωmax. Only a small subset of the full domain (1/16th zoomed-in region) is shown. Within the polarity field
positive and negative integer topological defects are marked by red asters and blue squares, respectively.

B. Global symmetry is restored in the defect-laden active turbulence

We next investigate whether the emergence of topological defects leads to alterations in the
global ordering features of the polar active turbulence. To this end, we first introduce the global
polarization � as the spatiotemporal average value of the polarity field p:

� =
∫

dt

T

∫
d2x
L2

p(t, x). (3)

The magnitude of this global polarization |�| is a macroscopic order parameter for polar order akin
to total magnetization in spin systems: |�| = 0 is associated with disordered states (i.e., continuous
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(a)

(b)

FIG. 2. Global symmetry restoration. (a) Averaged defect density ρd , blue solid line, and averaged mag-
nitude of the global polarization � [Eq. (3)], orange solid line. (b) The correlation length ξ̄ (in units of
lp = √

K/A) defined by fitting an exponential to the pair-correlation function �(r). The square and circle
symbols in panel (b) correspond to the simulations results for 4096 × 4096 and 1024 × 1024 domains,
respectively, showing no detectable difference.

rotational symmetry) while |�| > 0 is associated with ordered states (discrete or broken rotational
symmetry). We use this global measure to probe the crossover between the two active turbulence
regimes as shown in Fig. 2(a) (orange solid line). Upon increasing the active stress from zero, the
active turbulence state immediately manifests a broken SO(2) symmetry evident from a nonzero
value of |�| in the absence of topological defects. The global polarization decreases in magnitude
with increasing activity and, remarkably, drops to zero beyond a critical activity for the nucleation
of topological defects. This is indicative of the restoration of the SO(2) symmetry in the active
defect-laden turbulence.

To further characterize the signature of this crossover, we also measure the equal-time, spatial
pair-correlation function for the polarity field �(r) = 〈δpi(x)δpi(x + r)〉, where δpi(r) = pi(r) −
〈pi(r)〉 is the deviation from the local mean value and the averaging is performed over ten different
realizations, with distinct initial conditions and over time, once the system has reached a statistical
steady state. Accordingly, the correlation length ξ is obtained by fitting an exponential to the
pair-correlation function �(r). Similar to the global polarization, the correlation length ξ̄ = ξ/lp,
normalized with respect to the coherence length lp = √

K/A, decreases with increasing activity
(Fig. 2). The regime shift is marked by the crossover from the fast decay to the slow decay of the
correlation length ξ̄ , which matched with the onset of defect nucleation and the vanishing of |�| = 0
as evidenced in Figs. 2(a) and 2(b). We have carefully checked that correlation measurements
are independent of the domain sizes for very large systems up to 4096 × 4096. We note that the
behavior of the correlation length shares interesting similarity to that in frustrated two-dimensional
Heisenberg magnets, where a crossover between a topological defects dominated regime at high
temperatures, and a spin-wave regime at low temperatures is observed [44]. Together, these mea-
surements of the global polarization and the correlation length indicate that the crossover from
defect-free to defect-laden active turbulence is marked by significant alterations in both the global
symmetry of the collective organization and in the local correlations between the polarities of active
constituents.
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(a) (b)

(c) (d)

FIG. 3. Defect pair nucleation process. (a), (b) Temporal evolution of the average bulk free-energy F̄bulk =
(Fbulk + A/4)/ALact. (top panels) measured in units of ALact. relative to the background field −A/4; along with
(c, d) simulation snapshots depicting the polarity field and diffuse charge density (heat plot) before, at, and after
the nucleation of one pair of oppositely charged topological defects (bottom panels). Panels (a) and (c) are
contractile, and panels (b) and (d) are extensile. The blue regions in panels (a) and (b) mark the period of
existence of the defect pair considered. Time t̄ is measured in units of the passive relaxation time of polarity
over the simulation domain tp = γ L√

AK
(see also Supplemental Movies [46]).

It is important to note that the observed restoration of the SO(2) symmetry is solely activity-
driven and is in the noiseless limit of the equations of motion. Furthermore, the results presented
in Fig. 2 demonstrate that, point-by-point, for any activity, (i) the correlation length, (ii) the
polarization, and (iii) the defect density for domain sizes 1024 × 1024 and 4096 × 4096 fall
exactly on top of each other. This strongly suggests a system-size independent behavior, at least
for the numerically accessible system sizes. The question about the existence of a well-defined
thermodynamic limit of this symmetry-breaking or symmetry-restoring transition remains open for
future studies. Additionally, it is constructive to note that we do not observe any difference between
longitudinal and transverse correlations in the polarity. The correlation length does not diverge with
the system size within the ordered state, which we conjecture is due to the nonequilibrium nature of
the system and the breaking of detailed balance [45] through activity-induced flows that couple to
the dynamics of the order parameter.

C. Mechanism of defect pair nucleation in active turbulence of polar particles

Having established the significant impact of the topological defects on the collective organization
of polar active matter and its spontaneous flows, we next explore the mechanism of how topological
defects are formed within the active turbulence state as the activity approaches the threshold
value. Figure 3 illustrates zoomed-in snapshots of the polarity field at the onset of one defect pair
nucleation. Three snapshots are shown at simulation times corresponding to the following: before,
at, and after a single pair nucleation for both extensile and contractile active stresses. To identify and
track topological defects, we make use of the diffuse charge density, defined in the next section as
D = 1

2π
εi jεkl∂i pk∂ j pl : it carries the ±1 charge of the integer topological defect at the singularities

in the polarity field and is zero elsewhere. Shortly before the onset of defect pair nucleation, the
polarity field is characterized by locally ordered domains separated by lines of kink walls (Fig. 3
and Supplemental Movies [46]). At the onset of defect pair nucleation the polarity within one of the
kink walls flips locally, leading to spontaneous emergence of a pair of full-integer defects (Fig. 3).
After the nucleation event, the defect pair gets separated by an ordered region of polarity alignment
(Fig. 3). While the negatively charged antivortices (−1 topological defects) have similar structures
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in both extensile and contractile systems, the positively charged +1 topological defects take the
form of asters and vortices in contractile and extensile systems, respectively [Figs. 3(c) and 3(d)],
in agreement with earlier analytical predictions on the stability of defect structures in polar active
matter [47].

In order to gain more insight into the defect pair nucleation process, we measure the averaged
bulk free-energy of the system from Eq. (2) during the time leading to a single defect pair
nucleation event, as depicted in Figs. 3(a) and 3(b). For both extensile and contractile systems
the onset of defect nucleation coincides with a burst in the bulk free-energy. This is consistent with
the spontaneous flipping of the polarity within the kink walls that occurs when activity-induced
fluctuations in the polarity overcome the energy barrier of local flipping, set by the bulk free-energy.
Once the defect pair is formed, the bulk free-energy drops as the high energy stored in the kink
walls is released. In the following section, we look more closely at this defect nucleation process
and derive an analytical description of the activity threshold that is set by the competition between
bulk and elastic energies of the system and by activity-induced flows.

D. Onset of active defect-laden turbulence

To gain more theoretical insights into the onset of defect pair nucleation, we perform a stability
analysis of the topological charge density field. A stability analysis of the polarity field to probe
the nucleation of topological defects is unfeasible since it is intrinsically nonlinear. However, we
take advantage of the property of the topological charge density field being zero for low-energy
excitations of the polarity field (aka kinks and domain walls) to study the onset of defect nucleation
as an instability to a nonzero and localized charge density field. To this end, we employ the
Halperin-Mazenko method [48–50] of topological defects as zeros in the polarity vector field p, i.e.,
localized regions where p vanishes in magnitude while its orientation is undefined (multivalued).
The associated topological charge is a quanta of the phase jump measured around an arbitrary
contour Cα enclosing the defect

2πqα =
∮

Cα

dl · ∇θ, (4)

where θ = arg(p). By Stokes’ theorem, we see that topological defects correspond to phase singu-
larities where the phase ceases to be irrotational,

2πqα

∫
Aα

d2x δ(x − xα ) =
∫

Aα

d2x∇ × ∇θ. (5)

As shown in Ref. [50], the topological content inside an area region Aα can be also obtained from
the corresponding integration in the order parameter space p = (p1, p2):

2πqα

∫
Aα

d2x δ(x − xα ) =
∫

d2pdet(∇p)δ(p). (6)

We relate the topological defect density D with the Jacobi determinant of the transformation to the
order parameter space, which is the same as the determinant of the distortion tensor ∇p, to define

D = 1
2εi jεkl∂i pk∂ j pl , (7)

which is a smooth scalar field that vanishes where p is smooth and becomes nonzero and localized
at the core of topological defect, picking up the phase singularity. We have validated the defects
detected by D field against our routine approach of using winding angles and have obtained identical
results, in agreement with previous studies on active nematics, where the D field was defined as
the diffuse charge density [51–53]. The D field has the physical interpretation of a nonsingular
topological charge density field which follows the conservation law [50]

∂t D + ∂iJi = 0, (8)
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with the corresponding topological current density

Ji = −εi jεkl∂t pk∂ j pl , (9)

which is fully determined by the evolution of the polarity p and the flow field u through the main
equations, Eqs. (1b) and (1a).

We perform a stability analysis of Eq. (8) around the ground state of zero D associated with
slowly varying polar order to estimate the critical activity for the onset of defect nucleation,
identified as an instability where D becomes nonzero because polar order vanishes locally. In
general, the evolution of D, resulting from inserting the evolution of p from Eq. (1b) into Eq. (8),
cannot be closed only in terms of the D field. However, in the limit of retaining only the shear flow
alignment contribution and the molecular field, the evolution of p from Eq. (8) can be reduced to

∂t D = εi jεkl

[
λ∂i(Ekn pn)∂ j pl + 1

γ
∂ihk∂ j pl

]
. (10)

Now, by balancing viscous stress with the active stress in Eq. (1a), we relate the traceless strain
rate Ekn directly to the nematic order parameter, namely,

Ekn = ζ

2η

(
pn pk − p2

2
δnk

)
, (11)

such that the flow alignment contribution dominated by orientational distortion has a closed form
given by

ζλ

4η
εi jεkl∂i(p2 pk )∂ j pl = ζλ

4η
(p2εi jεkl∂i pk∂ j pl + 2εi jεkl pk pm∂i pm∂ j pl )

= ζλ

2η
p2D + ζλ

2η
p2(∂1 p1∂2 p2 − ∂2 p1∂1 p2) = ζλ

η
p2D. (12)

The molecular field is due to the elastic distortions and the ordering potential

hk = K∇2 pk + A(1 − p2)pk,

and it leads to the contribution

εi jεkl∂ihk∂ j pl = K∇2D + 2A(1 − 2p2)D.

Thus, within this limiting case, the evolution of the D field reduces to a diffusion-reaction equation:

∂t D ≈ K

γ
∇2D +

(
2A

γ
(1 − 2p2) + ζλ

η
p2

)
D. (13)

First, we notice that the polarity stiffness K enters as an effective diffusivity coefficient and sets
the scale of the diffusive core. The kinetic rate coefficients arise from the stabilizing passive contri-
bution through the energy scale parameter A of the local order potential and its relaxation timescale
γ , as well as from the destabilizing contribution through the term that includes flow alignment λ,
activity ζ , and viscosity η. At first sight, Eq. (13) looks nonconservative due to the source/sink
term. This is, however, not the case since this term is derived from a conservative current and is
related to the fact that the D field itself is the divergence of a vector field, D = ∂i(εi jεkl pk∂ j pl )/2.
We estimate the critical activity from the linear stability analysis of Eq. (13) about the ordered state
p = 1 + δp and D = δD. By balancing out the two contributions to the reaction term we find that
the equation becomes unstable at

ζc ≈ 2η

γ λ
A. (14)
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FIG. 4. Dependence of the steady-state density of defects on (a) the flow-aligning parameters λ and (b) the
bulk free-energy strength A. Inset in panel (b) shows that normalizing the active stress by

√
A results in a data

collapse near the crossover point.

Thus, in the limit where we neglect the convective and rotational terms to the evolution of the D
field (i.e., u · ∇p and [�, p]), the topological charge density becomes unstable to defect nucleation
only for extensile systems where ζ > 0. This instability is due to the flow alignment.

Advection and rotation of polarity p, due to flow velocity and vorticity, could also trigger insta-
bilities in the D field. Alas, their contributions are nonlocal through viscosity and incompressibility
constraint and cannot be reduced to linear operators acting on D. However, it turns out that the
contribution of vorticity to the D evolution is symmetric with respect to the sign of ζ , and, from
this, we can infer that an instability induced by vorticity would occur at a critical activity both for
extensile and contractile systems, also symmetric with respect to the sign of ζ .

It is important to note that in numerical simulations all these destabilizing forces orchestrate and
compete with the relaxation to uniform order. Therefore, the value of the critical activity is different
than the estimated one corresponding to an isolated triggering factor. However, this stability analysis
is informative and predicts generic properties of ζc: (i) it depends on the energy scale A controlling
polar order, and (ii) the threshold activity has an asymmetry with respect to extensile and contractile
active stresses in the presence of flow alignment.

To test the theoretical predictions on the activity threshold for defect nucleation, we next explore
the dependence of defect density on the flow-aligning parameter λ and the energy scale A for the bulk
free-energy. Figure 4(a) compares the variation of the defect density ρd with activity for three values
of the flow-aligning parameter λ. Interestingly, and consistently with the theoretical prediction,
for λ = 0 the activity threshold for defect nucleation is symmetric with respect to the sign of the
activity. Additionally, as predicted from the theory, a positive (negative) flow-aligning parameter
shifts the defect density curve such that the activity threshold becomes smaller—in absolute value—
for extensile (contractile) activities compared to their contractile (extensile) counterparts, leading to
a more asymmetric profile of the defect density with respect to the sign of the activity. Moreover, as
predicted from the theory, decreasing the energy scale in the bulk free-energy A lowers the activity
threshold for defect nucleation [Fig. 4(b)]. This is also consistent with the mechanism identified for
the nucleation of pairs of defects, relying on the spontaneous flipping of the polarity within the kink
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(a)

(b)

(c)

(d)

FIG. 5. Universal scaling in defect-free and defect-laden active turbulence. Power spectra normalized with
its corresponding maximum value for (a) polarity Êp(k) and (b) kinetic energy Êv (k) on semilog plots,
demarcating the exponential decay at small scales (large wave numbers), which implies the dynamics is
dominated by viscous dissipation. (c), (d) Power spectra normalized with its corresponding maximum value
for (c) the enstrophy Êw (k) and (d) the kinetic energy again, on log-log plots, showing the power-law scaling
at scales larger than the active length scale Lact.. Insets show the nonscaled power spectra and the colorbar
indicates the dimensionless active stress strength ζ̄ .

walls (Figs. 3(c) and 3(d) and Supplemental Movies [46]): since the parameter A sets the depth of a
double-well potential in the bulk free-energy, decreasing its value amounts to lowering the energy
barrier for flipping the polarity, and as such leads to a reduced activity threshold for defect pair
nucleation.

E. Universal scaling in defect-free and defect-laden active turbulence

Having established the mechanism of defect nucleation and the difference between defect-free
and defect-laden active turbulence, we now investigate the common features between these two
active turbulent states by characterizing the energetic features of the flow and order parameters
(Fig. 5). To this end, we first measure the power spectrum of the polarity order parameter Êp(k) =
1
2 〈p̂i(k) p̂i(−k)〉, with k being the wave number averaged over azimuthal direction, for a range
of activities spanning both defect-free and defect-laden turbulent states. Interestingly, when the
wave number is nondimensionalized by the active length scale Lact. = √

K/|ζ |, which characterizes
the scale of energy injection into the system by active stresses, the power spectrum Êp for all
activity values shows an exponential decay at wave numbers larger than the inverse active length
scale, as evident from a semilog plot of the order parameter spectrum versus the normalized
wave number [Fig. 5(a)]. The exponential cutoff scale still depends on activity and approaches a
constant value at sufficiently high activity. This is related to the initial fast decay of the correlation
function �(r), with a correlation length that is activity dependent as discussed earlier. Notice
that the exponential dependence of Êp on k breaks down for small wave numbers. On the other
hand, robust exponential tails at large wave numbers are characteristic for the spectral properties
of the spontaneous flow, measured by the kinetic energy spectrum Êv (k) = 1

2 〈v̂i(k)v̂i(−k)〉, with
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v̂i being the Fourier transforms of flow velocity [Fig. 5(b)]. However, for wave numbers below
the inverse active length scale, the kinetic energy spectrum Êv (k) and the enstrophy spectrum
Êω(k) = 1

2 〈ω̂(k)ω̂(−k)〉 ∼ k2Êv (p) both exhibit power-law behavior [Figs. 5(c) and 5(d)]. This
is important, because these activity levels span both the defect-free and the defect-laden active
turbulence states, indicating that for a polar active matter, despite distinct symmetry features and
correlation lengths, there exist universal scaling of flow and order parameter spectrum in the active
turbulence state with and without topological defects. In particular, the enstrophy power spectrum
that relates to the flow field shows a universal power-law scaling at length scales larger than the
active length Lact., while the polarity power spectrum that relates to the order parameter field shows
a universal exponential decay at length scales smaller than the active length scale. These two distinct
scaling relate defect-free and defect-laden turbulence in polar active matter. It is important to note
that the scaling observed here is different from the power-law scaling suggested for active nematic
turbulence without topological defects, where the orientational field is treated as a unit vector field
with fixed modulus [11]. The heuristic argument of the scaling behavior reported in Ref. [11] is
based on a spectral analysis of the equation for the vorticity source to argue for the power-law
scaling of Êp(k) and Êv (k) at small k. The scaling argument hinges on two important assumptions:
(i) the vorticity source is dominated by the active stress determined only by phase gradients;
(ii) at small k (long wavelength) phase fluctuations become uncorrelated. Both of these assumptions
fail to apply when the polarity magnitude is allowed to vary, since the vorticity fluctuations couple
with fluctuations in both the magnitude and the phase of the polarity. Thus, the power spectrum of
the vorticity source is not trivially related to the polarity power spectrum by extending the scaling
analysis from Ref. [11]. Therefore, we do not expect to observe the same scaling behavior at long
wavelength as in Ref. [11].

IV. DISCUSSION

The results presented herein reveal distinct flow fields and patterns of collective self-organization
of polar active particles that are primarily controlled by active stresses. We show that increasing
active stress in a polar active fluid leads to a dynamical crossover from a defect-free to a defect-laden
active turbulence state. Above a critical activity threshold, the turbulent flow is seeded with topo-
logical defects nucleated in the polar order parameter. Importantly, we find that the proliferation of
defects screens the global polar order. Thus, in the defect-laden turbulent states the SO(2) symmetry
is restored, whereas the defect-free active turbulence is endowed with broken SO(2) symmetry.

Interestingly, we show that in spite of their distinct topological content, the two active turbulence
regimes share similar statistical properties with robust exponential tails for power spectra of polar
order, flow velocity, and vorticity on length scales smaller than the active length scale. On the other
hand, over the length scales that are larger than the active length scale, enstrophy and energy spectra
of flow fluctuations exhibit self-similarity with power-law scaling exponents. These statistical
properties are also universal in the sense that they do not depend on the presence of topological
defects, which may indicate that nontopological dissipative structures (e.g., kink walls) are the
dominant driving force to fluctuations in order and flow of polar active fluids.

It is noteworthy that despite the ubiquitous presence of polarity in living and synthetic active
materials [8,9], the majority of the current understanding of topological defects and flow features
within the active turbulence is based on studies of active nematics. This is in part due to the growing
number of biological systems that are identified with half-integer, nematic, topological defects
[21,32,34] and discovery of potential biological functions for such defects [53–55]. It is important to
note, however, that full-integer defects have also been identified as possible organization centers for
mitotic spindles in microtubule-motor protein assemblies [56] and more recently as potential sites
for mechanotransduction [35], and for cell differentiation in mouse myoblasts [33] and cartilage
cells [57]. Our results provide a quantitative characterization of the dynamical crossovers, as well
as the statistical imprints of flow and topological defects in polar active matter. Future work should
focus on details of the dynamic distinctions in topological and flow features between the active
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turbulence in polar and nematic active materials, as well as generalized frameworks of the coupling
between polar and nematic symmetries that have already been suggested theoretically [37,58,59]
and observed experimentally [56,57].
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