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Surface wave height distributions and rogue wave probabilities
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The distribution of wave heights, and therefore the occurrence rate of extreme waves,
depends on the shape of the surface elevation spectrum. In an idealized two-layer flow,
e.g., fresh water overlaying salt water, the spectral shape of surface waves is modified by
class-three triad interactions. We conduct numerical simulations of the wave field evolution
on a two-layer stratified fluid. Starting from realistic deep-water JONSWAP spectra, the
spectral density at high wavenumbers increases while the variance in the peak region
decreases and the peak shifts slightly lower. The enhancement of the spectral tail grows
rapidly with increasing initial wave steepness and is strongest for broad-banded spectra.
Monte Carlo simulations of surface realizations are performed, where the surface is a linear
superposition of wave components taken from the initial and the modified spectra. In all
cases, the wave height and crest height distributions can be expressed by modified Rayleigh
distributions. On a two-layer flow the probability of rogue waves can be up to two orders
of magnitude lower than in the unstratified deep-water case, whereas the probability of
rogue crests is nearly unaffected. The average crest-trough correlation, calculated from the
spectra, is a good predictor for rogue wave probabilities even for strongly modified spectra
with enhanced high-wavenumber spectral variance.

DOI: 10.1103/PhysRevFluids.8.054804

I. INTRODUCTION

Large ocean waves may cause serious damage to ships, offshore platforms, and coastal structures,
and understanding the occurrence rate of large waves is important for maritime safety [1]. The risk
associated with large waves depends on the absolute height of a wave as well as how extreme
the wave is relative to the prevailing sea state. Due to the stochastic nature of individual wave
heights, exceedance probabilities are the best way to assess the risk presented by an ocean sea
state.

The prevailing sea state is characterized by the significant wave height Hs, defined as the average
of the largest third of the waves in the wave field. An individual wave is defined as the profile of
the surface elevation between two consecutive downward zero crossings at a fixed location. The
wave height H is the distance from the peak (or crest) of the profile to the trough, and the crest
height η is the distance from the mean water level to the wave crest [2]. Wave height exceedance
probability is the probability that a given wave will exceed some value, often expressed as multiples
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of the significant wave height Hs:

P(z) = prob

(
H

Hs
� z

)
. (1)

In deep water gravity waves are dispersive and at any given location the wave field is a superposition
of individual wave components of varying frequency and direction. Based on linear theory the
resulting wave height distributions are given by the Rayleigh distribution [3], and for narrow-banded
spectra their exceedance probability is

P

(
H

Hs
> z

)
= e−2z2

and P

(
η

Hs
> z

)
= e−8z2

(2)

for wave heights and crest heights, respectively.
More generally, the exceedance probability can be written as a Weibull distribution:

P

(
H

Hs
> z

)
= exp

(−zα

βH

)
, P

(
η

Hs
> z

)
= exp

(−zα

βη

)
. (3)

where α and β are functions of the spectral bandwidth, and water depth [4]. For a discussion of
common parametrizations for (3), see [5]. Besides these theoretically derived wave statistics a wide
range of empirical distributions have been developed, as reviewed in [6].

The transformation

ln[−ln(P)] = α ln(z) − ln(β ) (4)

results in straight lines of the exceedance probability (3) when plotted against ln(z) and deviations
from the linear model are easily recognized [5]. Observed wave height distributions show good
agreement with the Weibull distribution up to moderate normalized wave heights H/Hs, but a sharp
increased probability for extreme waves [7–9]. Monte Carlo simulations of random superposition of
fourth-order Stokes waves showed excellent agreement with real ocean wave height distributions,
including the increased probability of extreme waves [5,8,9]. Thus, for idealized conditions of a
narrow-banded wave field on homogeneous deep water the wave height distribution is reasonably
well known. However, on stratified water the wave spectra, and therefore the wave height distribu-
tion might be different.

The commonly weak density stratification in the ocean supports internal waves which can gener-
ate converging and diverging weak currents at the surface. The resulting wave-current interactions
affect mainly the high wavenumber tail of the surface wave spectrum, making internal waves highly
visible in remote sensing synthetic aperture radar images (e.g., [10]). Modulations of the surface
wave spectra can be significant, up to O(1), but are restricted to wave length of order 1 m, or less
[11], and will therefore have a negligible impact on the wave height distribution.

On the other hand, oceanic conditions with a shallow well-mixed surface layer having a lower
density than the underlying water can be idealized as a two-layer flow. Such a two-layer flow
supports so-called class-three wave-wave triad interactions between two surface waves and an
interfacial wave, all propagating in the same direction [12]. These triad wave-wave interactions
are limited to wavenumbers k > kc, where the critical wavenumber kc increases with decreasing
density difference between the two layers. For large density differences the critical wavenumber
is comparable to the wavenumber kp at the peak of the wave spectrum and the triad interaction
results in a downshift of the peak [13]. In oceanic conditions the density difference between the two
layers can be due to temperature and salinity, with salinity generally taking a more dominant role.
For example, a layer of fresh water overlaying oceanic salt water occurs naturally in estuaries or due
to freshly melted sea ice. In such a situation a realistic lower bound for the density ratio R = ρu/ρl is
R = 0.97, where ρu, ρl are the densities of the upper and lower layer, respectively, and kc = 8.3kp.

Recent simulations of waves on an idealized two-layer stratified water body using high-
order spectral methods (HOS) [14] show the evolution of the wave spectrum in the case of
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R = 0.97 [15]. The simulations predict an overall energy decrease with a relative enhancement
of the high-wavenumber tail of the spectrum. Here we analyze what is the effect of this profound
change of the spectral shape on the resulting wave height distribution.

II. SIMULATION OF WAVE FIELD EVOLUTION

We consider a two-layer system with a shallow upper layer and a deep lower layer with thickness
hu, hl , respectively, and hu � hl . Such a system can support gravity waves at the free surface and
at the interface between the two layers, both propagating in the positive x direction. The model is
described in detail in [12,13,15]. Here we give a basic summary.

The irrotational motion is obtained from Laplace’s equation for the velocity potentials �u(x, z, t )
in the upper layer and �l (x, z, t ) in the lower layer, where z denotes the vertical coordinate direction:

∇2�u = 0, −hu + ηl < z < ηu, (5a)

∇2�l = 0, −hu − hl < z < −hu + ηl . (5b)

The kinematic boundary conditions are

∂ηu

∂t
+ ∂ηu

∂x

∂�u

∂x
− ∂�u

∂z
= 0, z = ηu, (6a)

∂ηl

∂t
+ ∂ηl

∂x

∂�u

∂x
− ∂�u

∂z
= 0, z = −hu + ηl , (6b)

∂ηl

∂t
+ ∂ηl

∂x

∂�l

∂x
− ∂�l

∂z
= 0, z = −hu + ηl . (6c)

The dynamic boundary conditions are given by the Bernoulli equation:
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+
(
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)2]
+ gηu = 0, z = ηu, (7a)
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)2
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(
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)2]
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}
= 0, z = −hu + ηl , (7b)

∂�l

∂z
= 0, z = −hu − hl , (7c)

where g is the acceleration due to gravity, and ηu and ηl are the elevations of the surface and the
interface, respectively, composed of the superposition of small amplitude plane waves.

The system (5)–(7) can be expanded into a set of evolution equations:

∂ηu

∂t
= −∂ηu

∂x

∂�S
u

∂x
+

[
1 +

(
∂ηu

∂x

)2]
∂�u

∂z
, z = ηu, (8a)
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u

∂t
= −1

2

[(
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−
[

1 +
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)2](
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− gηu, z = ηu, (8b)
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u
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)2]
∂�u
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where �S
u (x, t ) = �u(x, ηu, t ) and �I (x, t ) = �u(x,−hu + ηl , t ) − R �l (x,−hu + ηl , t ). This sys-

tem can be solved with the HOS method [16]. Similar to Gemmrich and Monahan [15], we restrict
the expansion to second order in wave steepness.

The single boundary conditions at the a priori unknown time- and space-varying surface,
z = ηu(x, t ), and interface, z = −hu + ηl (x, t ), are transformed into a series of linearized boundary
conditions for the perturbed potentials �(m)

u and �
(m)
l , m = 1, 2 at fixed vertical locations, which

can be solved sequentially, starting from m = 1. Using a fourth-order Runge-Kutta scheme for
integration, the time-varying surface and interfacial elevations and their velocity potentials at all
locations x are obtained. After each time step the “wave-breaking scheme” described in Gemmrich
and Monahan [15] reduces steep waves to the Stokes limiting steepness 0.14.

The model is nondimensionalized with mean upper layer depth, lower layer density, and accel-
eration due to gravity as scaling parameters. We initialize the model with a realistic surface wave
field and let it evolve over a period of 1000 dominant wave periods Tp. This duration is long enough
for class-three triad interactions to generate interfacial waves [12] and to achieve nearly steady-state
solutions.

Two-layer conditions in the ocean are most likely in fetch-limited conditions and a Joint
North Sea Wave Project (JONSWAP) type spectrum [17] is a suitable choice for initial surface
wave spectra. The frequency-domain JONSWAP spectrum is implemented in the MATLAB toolbox
WAFO [18]:

Ss(ω) = b H2
s

ωp

(
ωp

ω

)5

exp

[
−5

4

(
ω

ωp

)−4]
γ q,

q = exp

(
−1

2

(ω/ωp − 1)2

s

)
(9)

with normalization factor b, peak frequency ωp, and s = 0.07 for ω � ωp and s = 0.09 for ω > ωp.
The peak enhancement factor γ is a measure of wave field development, ranging from γ = 1 for
fully developed seas to γ = 7 for young seas. We then convert the dimensional frequency-domain
spectrum S(ω) into its nondimensional wavenumber form S(k/kp) based on the deep-water disper-
sion relation ω2 = k g. The model (8) is evaluated at Nx = 221 evenly spaced locations where the
initial surface elevation is a random realization consistent with the initial wavenumber spectrum.
The interface between the two layers is initially undisturbed. The evolution of the surface and
the interface are then calculated for a duration of 1000 dominant wave periods Tp, at a time step
�t = Tp/500.

To cover a wide range of sea states we run the two-layer model (8) for 56 initial condi-
tions, specified by R = 0.97, ωp = 2π , γ = [1, 2, 3, 4, 5, 6, 7], and nondimensional wave heights
Hs = [0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]. Each run is repeated six times with different
seeds for the random number generation, i.e., the initial surface wave fields have identical spec-
tral shapes but six different realizations. These 56 initial conditions result in different average
wave steepness ak, which is mainly governed by the value of Hs, and different spectral bandwidth

ν =
(

m0m2

m2
1

− 1

)1/2

, (10)

where mn is the nth moment of the spectrum [19].
Here we are interested in the changes of the spectral shape of the surface wave field, due to

class-three triad interactions and associated wave breaking. Except for very small wave heights,
and therefore small average wave steepness ak, the surface wave spectrum undergoes the following
three changes: (i) a weak downshift of the peak, (ii) an overall loss of power, and (iii) a pronounced
enhancement of the spectral tail, k > 3kp. Modifications of the spectral shape in the peak region
0.5kp < k < 3kp are strongest for more developed sea states, i.e., smaller γ (Fig. 1).
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FIG. 1. Evolution of normalized surface wave spectra from initial condition (blue) to condition at
t = 1000Tp (red); Hs = 0.07. (a) γ = 2. (b) γ = 7.

The surface energy dissipated during the evolution of the two-layer flow is a combination of
energy transfer to the interface displacement and dissipation due to wave breaking [15]. It can be
quantified as

�s = ρu
[∫ kmax

0 Ss(k, t = 0)dk − ∫ kmax

0 Ss(k, t = 1000)dk
]

ρu
∫ 12kp

0 Ss(k, t = 0)dk
. (11)

Here we chose kmax = 12kp. This choice ensures that the initial spectral density at k > kmax is
negligible, S(kmax, t = 0)/S(kp, t = 0) < 10−3, while kmax � kcrit.

Energy dissipation �s shows a strong threshold behavior on wave steepness with little dissipation
at ak < 0.07 and 20%–30% dissipation for the steepest initial conditions 0.12 < ak < 0.14. Its
dependence on spectral bandwidth does not appear to be systematic [Fig. 2(a)].
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FIG. 2. Relative change of spectral surface wave energy after 1000Tp as a function of initial dominant wave
steepness ak and initial spectral bandwidth ν. (a) Energy loss �s. (b) Spectral tail enhancement �s.

The strongest impact of the triad interactions is the enhancement of the spectral tail. This can be
quantified as tail enhancement:

�s = Etail(t = 1000)

Epeak(t = 1000)

(
Etail(t = 0)

Epeak(t = 0)

)−1

, (12)

where

Epeak(t ) =
∫ 2.5kp

0
Ss(k, t )dk, Etail(t ) =

∫ kmax

2.5kp

Ss(k, t )dk. (13)
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The tail enhancement shows a strong threshold behavior on wave steepness, similar to the energy
dissipation [Fig. 2(b)]. In addition, �s is positively correlated with spectral bandwidth ν. For steep
waves, ak > 0.11, the total variance in the spectral tail, k > 2.5kp, approximately doubles, �s ≈ 2,
compared to the initial JONSWAP conditions.

III. SURFACE WAVE HEIGHT DISTRIBUTIONS

To evaluate the impact these profound spectral changes, �s,�s, have on the distribution of wave
heights we perform Monte Carlo simulations of surface elevations:

ηu(x) =
Nk∑

n=1

an cos(knx) + bn sin(knx). (14)

The coefficients an, bn are generated from a normal distribution, have zero mean, and a variance
equal to the desired spectrum at kn. Surface elevations are generated from the initial spectrum,
and the evolved spectrum at t = 1000Tp, for each set of (γ , Hs) parameters of the two-layer
simulations. The spectra are evaluated at Nk = 222 wavenumbers. This yields about 2×105 in-
dividual waves for each realization, from which the normalized wave heights H/Hs and crest
heights η/Hs are extracted, where the significant wave height Hs = 4σηu is calculated separately
for each realization. This procedure is repeated 100 times with different random seeds, but the
same spectrum. Since for each initial condition the two-layer evolution (8) is run six times, there
are six sets of slightly different spectra. The Monte Carlo simulations of surface elevations are
then repeated for the additional runs of the two-layer evolution (8) for the given initial condition,
resulting in 600 synthetic surface elevation records for each initial (γ , Hs). In total there are roughly
108 individual wave and crest heights from which the exceedance probability can be calculated.
Examples of initial and final wave height and crest height distributions are given in Figs. 3(a)
and 4(a).

It is well known that higher-order Stokes corrections, responsible for sharper and taller crests,
and shallower and flatter troughs, result in several orders of magnitude increase in the probability of
extreme wave heights, resulting in curved lines for H/Hs � 2.2 when plotted according to (4) [5].
To highlight the effect of two-layer wave field evolution we purposely restrict our analysis to purely
linear simulations, without Stokes corrections. For linear simulations the exceedance probability
curves are expected to be straight lines and deviations are easily determined.

The exceedance probability P of wave heights for any given value H/Hs � 2.5 decreases for
waves on a two-layer flow compared to the initial JONSWAP condition [Fig. 3(a)]. The initial as
well as the final wave height distribution follow a Weibull distribution (3), as expected for linear
superposition and indicated by a straight line (4), with α(initial) = α(final) ≈ 2, and βH (final) <

βH (initial) ≈ 1/2. The decrease in β implies that the relative change in wave height exceedance
probability increases with normalized wave height z. The change in the wave height distribution is
linked to the energy dissipation and the tail enhancement during the two-layer evolution. Therefore,
it is not surprising that the relative change of exceedance probability, quantified by the ratio
P(z)final/P(z)initial, shows a threshold behavior on average wave steepness, similar to �s and �s

[Fig. 3(b)]. For example, the likelihood of rogue waves, defined as z � 2.2, decreases by roughly
10% in moderate steep initial conditions, ak < 0.1, but in the steepest conditions, ak > 0.12, their
occurrence rate is expected to drop by almost two orders of magnitude.

In contrast, the distribution of normalized crest heights η/Hs is nearly identical for the ini-
tial and the evolved spectra (Fig. 4). Only the most extreme crests η/Hs > 1.15 show a small
increase of exceedance probabilities at the evolved stage. For the steepest initial wave fields
the likelihood of rogue crests, commonly defined as η/Hs > 1.25, increase by up to a factor
1.4 [Fig. 4(b)], much smaller than the order of magnitude change of rogue wave probabilities
[Fig. 3(b)].
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FIG. 3. (a) Wave height distribution probability P for initial spectrum (blue ◦) and final spectrum at
t = 1000 (red ×); γ = 5; Hs = 0.08. (b) Relative change in wave height exceedance probabilities for all cases,
stratified by the dominant initial wave steepness ak. Dashed vertical line indicates the rogue wave criterion.
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FIG. 4. Same as Fig. 3, but for crest height.
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IV. CREST-TROUGH CORRELATION

The different evolution for wave height and crest height distributions implies a decrease in the
average correlation r between crests and the following troughs. If the crest heights were strongly
correlated with the trough depths a large crest height would also have a large trough depth in
most cases. Since a wave height is just the sum of the crest height and the trough depth, a large
crest height and large trough depth would equal a large wave height. As such, the only way for
crest heights to show such different behavior from the corresponding wave heights is if the crest
heights became decoupled from the trough depths. This difference in crest heights versus trough
depths is not related to nonlinearities or higher-order Stokes corrections [20] since the surface
elevation (14) is a linear superposition of independent, Gaussian-distributed components.

The probability of a large wave occurring, assuming a sufficiently narrow bandwidth, is larger for
strongly correlated crest heights and trough depths [21,22]. Additionally, the Rayleigh exceedance
curve (2) is calculated assuming that each wave height is twice the corresponding crest height [21].
This assumption is equivalent to perfectly correlated crest heights and trough depths, r = 1. For
finite but narrow bandwidth the exceedance probability for wave heights is given by a modified
Rayleigh distribution [23]:

P

(
H

Hs
> z

)
= exp

(−2z2

βr

)
, βr = 1 + r

2
, (15)

where the crest-trough correlation r is defined with trough depths taken to be positive, i.e., r = 1
implying perfectly correlated crests and troughs.

A recent analysis of more than 1×109 individual waves [24] confirmed the crest-trough corre-
lation as the strongest predictor for wave height exceedances for z = 2.0 and z = 2.4 [22], and r
could build the basis for a practical probabilistic rogue wave prediction. However, the calculation of
the crest-trough correlation requires the height and depth of the individual crest-trough pairs, which
are often not available. A proxy can be the average correlation at the dominant wave period [25]:

r̃ = 1

m0

√
ρ2 + λ2,

with

ρ =
∫ ∞

0
S( f ) cos(2π f τ )df ,

λ =
∫ ∞

0
S( f ) sin(2π f τ )df , (16)

where τ = T̄
2 is the lag time at half the spectral mean period T̄ = m0

m1
, and mn is the nth spectral

moment.
The advantage of using r̃ is that it can be readily calculated not only from the full surface

elevation record η but also from more widely available observed one-dimensional wave spectra,
and from standard wave model output [9].

Here we calculate r̃initial, r̃final according to (16) from the initial and final frequency spectra,
respectively. For all our simulations the initial crest-trough correlation is relatively high, 0.67 <

r̃initial < 0.82, and the correlations corresponding to the final spectra are generally less than the
initial, r̃final � r̃initial. As a result of the wave field evolution on the two-layer fluid the probability
of rogue waves, P(H/Hs > 2.2), decreases on average as the decline of the final crest-trough
correlation becomes more prominent [Fig. 5(a)]. However, for a given decline in correlation r̃
the reduction of rogue wave probability can vary by up to one order of magnitude, especially for
r̃initial − r̃final > 0.2, with no consistent dependence on the actual value of the correlation, or the
wave steepness (not shown). In a real-world two-layer flow the initial crest-trough correlation would
not be known, only r̃final. However, the modified Rayleigh distribution (15) provides a reasonable
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FIG. 5. Change of probability of (a) rogue waves [P(H/Hs > 2.2)] and (b) rogue crests [P(η/Hs > 1.25)],
as a function of change in crest-trough correlation r̃, stratified by final crest-trough correlation r̃final. Lines
represent (15) for r̃initial = 0.82 (solid) and r̃initial = 0.67 (dashed).

approximation of our scattered simulation data with only weak dependence on the value r̃initial of
the crest-trough correlation in the unstratified case [Fig. 5(a)].

As discussed above, the probability of large crests can increase slightly in a two-layer situation
for very steep initial wave fields [Fig. 4(b)]. However, the change in probabilities of rogue crests
P(η/Hs > 1.25) does not depend on the crest-trough correlation, as expected [Fig. 5(b)].

Rogue waves (rogue crests) are rare events that populate the tail of the wave height (crest height)
distribution, and therefore their probabilities are particularly sensitive to sampling variability. Our
simulations are based on six realizations for each parameter setting. We expect that by substantially
increasing the number of realizations the large scatter of rogue wave probabilities would be reduced,
and the apparent weak dependence of rogue crest probabilities on r̃final would disappear.

V. CONCLUSIONS

Situations of a shallow layer of nearly fresh water overlaying a deep layer of salt water resulting
in a density ratio R = 0.97 are the limiting case of idealized two-layer flows in the ocean. Even such
small density changes can support class-three wave triad interactions between two surface waves
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and an interfacial wave. These three-wave interactions, which are not possible in deep unstratified
water, result in a spectral tail enhancement of the surface wave field. This modification of the shape
of the surface spectrum has a significant effect on the distribution of individual wave heights, and
only a weak effect on the distribution of crest heights.

Our analysis is restricted to purely linear waves, neglecting higher-order Stokes corrections.
Thus, absolute occurrence rates of rogue waves would not be representative for real ocean con-
ditions. However, the ratio of rogue wave probabilities in the two-layer system to the unstratified
case provides an estimate of the relative effect of stratification on rogue wave occurrence. Our
simulations show a decrease of rogue wave probabilities in the two-layer flow by up to two orders
of magnitude, and a much smaller increase of rogue crests, up to a factor 1.4.

In deep, unstratified water the crest-trough correlation r evaluated at half the mean wave period
is a good predictor for rogue wave probabilities. The modified Rayleigh distribution, which includes
r as a correction, accounts for finite bandwidth effects [23]. The same correction is valid in the two-
layer case, even for strongly modified spectra with enhanced high wavenumber spectral variance.

These results are based on idealized simulations and need testing in real-world conditions. A
first step should be the analysis of the spectral tail of the wave field in estuaries, or in polar
conditions following ice melt. Since the spectral modifications are expected to be most visible
at high wave numbers, say k > 5kp, high sampling rates and an extremely low noise floor are
required for such measurements. Another pronounced feature of waves on a two-layer fluid will
be the reduced probability of extreme individual waves but a nearly unaffected probability of
extreme crests. Therefore, a strong mismatch between rogue wave occurrence and rogue crest
occurrence in wave observations in potential two-layer conditions would be a strong indication
for the spectral modifications predicted by the model. Such observations have to be of sufficient
length, say several weeks, to show a significantly higher number of extreme crests than extreme
waves. While it is unlikely for a two-layer stratification due to melt water to remain for such a long
period, observations in estuaries would be a strong candidate to look for the asymmetry of rogue
wave and rogue crest occurrences.
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