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While understanding breaking waves is crucial for the development of parametrizations
used in ocean wave modeling for both deep and shallow water, the complete process of
wave breaking is not well understood. Here we present direct numerical simulations of two-
dimensional solitary waves that shoal and break on a uniform beach in shallow water, with
the presence of storm surge represented by an inshore region. The storm surge depth, beach
slope, and wave amplitude are varied to study the dependence of energy dissipation in the
breaker on wave and bathymetric parameters. We classify wave breaker types and find a
separation between plunging and spilling breakers when scaled by breaking amplitude and
depth. We compare energy dissipation during the breaking process with results from the
literature without storm surge. A representation of energy dissipation in this solitary wave
breaker data is also compared with prior experiments and simulations of breakers in deep
water, and possibilities of a unifying model are explored. We conclude that a previously
developed shallow-water inertial dissipation model for wave breaking on a uniform slope
can be extended to this storm surge environment with good data collapse, and we further
discuss possibilities for a general parametrization of wave breaking valid across different
depth regimes.
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I. INTRODUCTION

As water waves approach a beach or shore, they steepen and break, dissipating the energy that
they have gained in generation processes that occur well away from the shore. Given that the impact
of coastal storms on the built environment has become more severe in recent years owing to climate
change and increased urban development, there has been an increasingly urgent need to understand
the loadings that such breaking waves exert on coastal and offshore infrastructure, particularly in
the presence of other storm-related phenomena, such as strong winds and storm surge [1]. There is
also a fundamental interest in breaking waves: deep water breakers modulate mass, momentum, and
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FIG. 1. Turbulent zone formed by the wave after breaking, showing the relevant integral velocity scale u,
length scale l , and cross-sectional area A. The relationship between these scales and the wave parameters is
unchanged between deep and shallow water, except for l . Adopted from [46] [Fig. 1(c)].

energy transfer between the ocean and the atmosphere [2], while in the nearshore environment
they play a strong role in dissipating wave energy [3–5], the development of currents [3,5–7],
runup and setup of the shoreline water level [3,6,8], and transport of sediment and biological
material via turbulent dissipation [7,9]. A physical understanding of these phenomena is crucial
for the development of robust parametrizations used in modeling wave systems and, ultimately, the
dynamics of the ocean and atmospheric processes [1].

Although the shallow-water wave breaking process has been studied for many years, its complete
understanding remains elusive. To study the fundamental dynamics of shoaling breakers, simplified
bathymetries such as uniform slopes or step transitions in depth are often utilized. The problem of
wave propagation into an inundated area (such as by storm surge) may be modeled by a change in
depth with a linear slope transition (see Fig. 2 below); the dynamics of individual breakers may then
be clearly examined by the propagation of a solitary wave over such a bathymetry. Such a problem
has not to our knowledge been extensively investigated, aside from an analytical examination
conducted by Bautista et al. [10]. In fact, most investigations have considered a uniform beach
without an inshore inundated region [11–20], an abrupt change in depth, such as over a bathymetric
shelf [21–27], or a submerged breakwater [28,29].

Configurations such as these are useful for gaining an understanding of the small-scale physics of
wave propagation, steepening, and breaking; this understanding can then be used to improve larger-
scale modeling efforts. Aside from experimental methods, a variety of wave-resolving numerical
models and tools have been used to understand these simple systems. Large-eddy simulation is used
for understanding phenomena at and above the individual wave scale but relies on assumptions for
the small-scale processes involving turbulence and void-fraction effects. Fully nonlinear potential
flow models [19,30] are especially powerful for understanding the evolution of prebreaking waves
but cannot capture the breaking process itself or the associated dissipative processes. However, with

FIG. 2. Schematic diagram of wave breaking process. Conditions are shown at initialization and at point of
breaking. When the wave breaks, the leading interface of the wave becomes vertical, and the wave amplitude
ab is measured at this instant.
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increasing sophistication of numerical methods and availability of computational resources, it has
become possible in recent years to use direct numerical simulation (DNS) in simulating the wave
breaking process [20,31–35]. While the main drawback of DNS is that it is too computationally ex-
pensive to simulate intermediate- or large-scale wave systems, DNS of wave breaking nevertheless
provides a powerful investigative tool for understanding the small-scale physics of breakers directly.
Somewhat surprisingly, this has proven the case even for two-dimensional (2D) simulations, despite
the essentially three-dimensional (3D) character of turbulence: many investigations by different
authors across a variety of different experimental and numerical setups have shown that 2D numer-
ical breakers experience dissipation rates very similar to 3D numerical and experimental breakers
[33–36], although naturally slightly smaller; this remains the topic of ongoing investigation [35].
On the basis of these observations, and following [20], we will assume here that 2D simulations are
a reasonable proxy for the energetic dissipation of the full 3D simulations, subject to confirmation
in a future study.

The purpose of the present study is to perform DNS of a breaking solitary wave on a simple
bathymetry in the presence of a storm surge. The resulting data will then be used to set up
physics-informed parametrizations for wave energy dissipation in storm surge conditions, for future
applications to larger-scale models that operate under more realistic topographies and bathymetries,
such as Simulating WAves Nearshore (SWAN). We will present 2D DNS of solitary breakers
approaching an inundated beach with a configuration shown in Fig. 2. Solitary waves have long
been used as models for studying breaking processes (e.g., [11,12,37]). In this study we will include
an inundated inshore beach region, which allows the broken wave to propagate over a region of
uniform depth. In the course of the analysis, the generality of parametrizations and relevance of
scaling arguments usually applied to deep-water systems will also be discussed.

The remainder of this paper is organized as follows. In Sec. II a brief review is provided on some
existing physics-based parametrizations for energy dissipation in breaking waves, which will be
tested against new data in Sec. IV. In Sec. III the problem itself is formulated and the methodology
presented. Next in Sec. IV we present the data, test the various parametrizations against it, and
discuss insights that may lead to a general water-depth-independent parametrization. Finally, in
Sec. V conclusions are drawn, and future work is suggested.

II. REVIEW ON MODEL PARAMETRIZATIONS FOR WAVE BREAKING

The present study centers on the use of DNS to generate high-resolution data that can inform
the development of strictly physics-informed parametrizations for wave breaking in shallow water.
Therefore, in this section we briefly discuss some existing physics-based parametrizations relying
on geometric and dynamic considerations of local wave properties. Pictorial representations of the
wave breaking process relevant to this study are shown in Figs. 1 and 2. There are many breaker
models besides the ones discussed below, including the roller model [38], which makes extensive
use of Duncan’s [39,40] observations, or the eddy viscosity approach [41], but these will not be
discussed here.

First, following Duncan [39] and Phillips [42], energy dissipation in breakers is often expressed
in terms of the dimensionless b parameter,

b = gεl

ρc5
, (1)

owing, among other things, to its utility in expressing energy dissipation in a wave system as the
fifth moment of Phillips’ wave breaking distribution, �(c). Here εl is the (dimensional) energy
dissipation rate per unit length of breaking crest, c is the velocity of the breaking crest, ρ is the
water density, and g is gravitational acceleration. The key observation is that the dissipation rates
in geometrically similar breakers are proportional to the fifth power of the crest speed c = |c|. The
dependence of the proportionality parameter b has seen several studies of its dependence on the
breaker geometry since its introduction in [39].
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One of the oldest approaches to characterizing breaker dissipation, particularly in shallow water,
is to model breaking waves as being energetically equivalent to hydraulic jumps. The dissipation
rate of a hydraulic jump in shallow water is easily derived from applying a conservation analysis on
the nonlinear shallow-water equations (NLSWEs) [43] and given by

εl = ρg

4

(
g(h2 + hb)

2hbh2

)1/2

(h2 − hb)3, (2)

where hb and h2 are the water depth ahead of and behind the hydraulic jump, respectively. This
model is, for example, used to set the energy dissipation in the “shock-capturing” approach of
certain joint Boussinesq-NLSWE models [44], as well as in third-generation spectral wave models
such as SWAN [45].

Inertial arguments for breaker properties have also been developed in deep [46] and shallow
water [20] as a function of the breaker’s geometric properties. They use the same dimensional-
analytical approach to develop their dissipation scaling arguments. The difference between them
arises solely from the integral length scale of the eddies in the turbulent zone formed by the breaker
(see Fig. 1). Namely, under Taylor’s hypothesis, the local turbulent dissipation rate is given by
ε = u3/l: according to [20] and [46], in both shallow and deep water, u � √

2gab; in deep water
l ∝ ab [46], which reflects the length scale at which energy is input into the turbulent zone, while
in shallow water l ∝ hb, since often hb � ab and eddies with a diameter larger than the local depth
cannot exist [20]. The dissipation rate per unit length of breaking crest is related to the turbulent
dissipation rate by εl = ρAε, where the area of the turbulent zone is assumed to be cylindrical such
that A = πa2

b/4. This leads to the scalings

εl = β1ρg3/2a5/2
b , b ∝ S5/2 (3)

in deep water, where S is the local slope parameter of the breaker [46], and

εl

ρg3/2h5/2
0

= β2

(
ab

h0

)7/2(hb

h0

)−1

, (4)

εl = β2ρg3/2 a7/2
b

hb
, b ∝ (ab/hb)7/2 (5)

in shallow water [20], where ab is the wave amplitude at breaking and hb is the water depth
immediately ahead of the breaker, and β1, β2 are both dimensionless constants. Using appropriate
semiempirical fits to draw together a variety of data sets [47], the deep-water model in particular
has proved very successful for use in spectral wave modeling in the open ocean ([47,48]) and
in its fundamental form has even been shown to perform slightly better than the hydraulic jump
model in an inner surf zone problem (e.g., [49]). While very similar in formulation, the deep- and
shallow-water models were applied to different environments. That is, the deep-water model of [46]
was applied to study dispersively focused wave packets, while the shallow-water model of [20] was
applied to study shoaling solitary waves. Nevertheless, this approach is agnostic of the origin of
the breaker of interest, as it considers only local geometric parameters at the point of breaking.
These inertial models are what we will primarily compare in this study. Note that Pizzo et al. and
Sinnis et al. [50,51] proposed a modification of the inertial model of [46] for deep-water-focused
packets by interpreting the cross-sectional area of the breaker in terms of a wave-number bandwidth.
However, this work will not be directly incorporated in the present study given the difficulty of
defining wavelength [16] (or indeed bandwidth) for solitary waves. Finally, the model of Derakhti
et al. [18] relays a dynamic criterion [52] for a breaking threshold, finding collapse of their breaker
dissipation rates by using the semiempirical scaling, b = 0.034(� − 0.30)5/2, � = TbdB/dt |Bth ,

where B = ux/c is the particle speed at the crest relative to the crest speed, Bth = 0.85 is the
threshold value of B taken as a criterion for breakingk and Tb is the period of the carrier wave.
Although developed for breakers in deep and intermediate water, this model may also in principle
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TABLE I. Values of �x/a0 for associated a0/h0.

a0/h0 0.2 0.3 0.4 0.5

�x/a0 1/32.7 1/49.1 1/65.5 1/81.9

be applicable to shallow water or solitary waves, but owing to difficulties in the measurement of �

in the present data (see Sec. IV E), we will not directly compare this parametrization.

III. FORMULATION AND METHODOLOGY

A. Numerical method

For the simulations used in this study, we use the Basilisk package, an open-source numerical
library, developed as a successor to the Gerris Flow Solver, to solve partial differential equations on
regular adaptive Cartesian meshes [53]. Following [20], we use Basilisk to solve the nonlinear
incompressible Navier-Stokes equations in two phases (air and water) with variable density and
surface tension. In this solver, the Bell-Colella-Graz projection method [54] is used to solve the
momentum equation, and a momentum-conservative volume of fluid (VOF) advection scheme
is used to advect the liquid-gas boundary, which helps to maintain a relatively sharp interface
representation [55]. The method of [56], which was further developed and implemented by [55],
is used to model the surface tension.

The incompressible Navier-Stokes equations with surface tension and variable density govern
the flow in the two phases (water and air) and can be written as⎧⎪⎪⎨

⎪⎪⎩
ρ(∂t u + (u · ∇)u) = −∇p + ∇ · (2μD) + γ κδsn
∂tρ + ∇ · (ρu) = 0
∇ · u = 0
∂ f
∂t + u · ∇ f = 0

, (6)

where u = (u, v) is the fluid velocity, ρ the density, μ the dynamic viscosity, and D the deformation
tensor. The interface between air and water is defined by the γ κδsn term, where δs is the Dirac
delta function, γ is surface tension, and κ and n are the mean curvature and normal of the interface,
respectively, which are estimated using a height function approach in the VOF scheme [55]. The
volume of fluid tracer f is used to distinguish between air and water phases, and sets the density
and viscosity in the relevant phase.

The Basilisk software library features a quadtree-based adaptive mesh refinement (AMR)
scheme, which allows high effective resolutions to be attained at a fraction of computational cost
associated with conventional, uniform-grid approaches [53,57]. The method identifies and finely
resolves only the active portions of the simulated flow, while using coarser local resolutions for
roughly quiescent regions. In particular, the AMR approach more easily allows the direct resolution
of small-scale turbulence in water without the need of a turbulence model. The criterion for
refinement is determined through a wavelet algorithm, which estimates the discretization error in
the velocity and VOF fields, following [20,35].

In this study, effective resolutions are stated in terms of the level parameter Le, where x =
L0/(2Le) is the minimum grid size and L0 is the domain length. The maximum resolution is set
to Le = 13 for the cases presented here; numerical convergence of the energy budgets, which are
used to determine energy dissipation, is shown in Appendix A.

For all simulations, the bathymetry length was set to L0/h0 = 50. We have �x/L0 = 1/213 and
�x/Lc = 1/1638.4, where Lc = 10h0. For the viscous boundary layer, we use Batchelor’s estimate,
δv ∼ h0/

√
Re = 5 × 10−3h0. So we have �x/δv = 1/(5 × 10−3h0). For the capillary length scale,

we have �x/λc = 3.67 cm−1 (although for this 2D study we do not consider bubbles or droplets).
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Additionally, several values of �x/a0 are shown in Table I for various values of a0/h0. The
maximum resolution is 16 cells over the wave amplitude.

B. Problem formulation

We consider a varying bathymetry, featuring a depth change with a linear transition, as illustrated
in Fig. 2, as a simple model for wave runup in conditions of a storm surge. After some distance,
Lc, the bathymetry changes from a uniform flatness (hereafter offshore region) to a uniform slope.
This slope continues until the storm surge depth hs is reached, upon which the bathymetry returns
to a uniform flatness (hereafter inshore region) for the rest of the domain, representing the area
for storm surge. We set the problem by considering a solitary wave of amplitude a0, traveling
in the x direction over a uniform water depth of h0, as illustrated in Fig. 2. A negative storm
surge depth hs corresponds to an inshore region which is elevated above the undisturbed water
level. The wave may break either over the sloped transition or over the inshore region. The latter
case can occur only for positive inshore depths hs, while the former case can occur for hs of any
sign.

We use the depth h0 to set the length scale. We set a reference velocity scale using the linear
speed c0 = √

gh0 and find the solitary wave phase speed to be c/c0 = √
1 + a0/h0. The timescale is

then set as t0 = √
h0/g. We use the Bond number, Bo = ρgh2

0/σ = 1000, to set the surface tension,
and the Reynolds number, Re = c0h0/ν = 40 000, to set the water kinematic viscosity. A ratio of
air density to water density of ρair/ρ = 1/850 is used. The chosen value of Re corresponds with
a depth of h0 = 5.46 cm, and Bo with a depth of 8.6 cm for water and air at room temperature.
Following evidence from studies of short (deep-water) waves [33–35], we expect these values of Re
and Bo to be asymptotically large, and thus that the essential dynamics of the wave propagation and
breaking problem are insensitive to them. Specifically, we expect the speed and rate of steepening of
the wave to be insensitive to Re and Bo, consistent with the findings of Mostert and Deike [20], who
validated their numerical data partly against the experiments of Camfield and Street [11,12], which
were run at different values of these parameters. The shape of the overturning wave and the local
turbulent dissipation rate is also expected to remain insensitive to these values, given observations
in deep water [33–35]. To keep the numerical simulations tractable, we therefore do not vary these
parameters in the present study, but this assumption remains to be confirmed for shallow-water
contexts in future work.

The wave is initialized using the exact soliton solution to the Green-Naghdi equations [58] given
by

η(x) = a0sech2

⎡
⎣(x − xw )

√
3a0

4h3
0

(
1 + a0

h0

)⎤
⎦, (7)

ux(x) = cη(x)

h0 + η(x)
, uy(x, y) = c(y + h0)

h0 + η(x)

∂η

∂x

(
1 − η

h0 + η0

)
. (8)

This forms a solitary wave, at location xw in Fig. 2, that propagates inshore towards the beach,
steepens, and breaks, as described in Sec. IV A.

In this study, 123 cases are simulated by varying the three parameters, which are the storm surge
depth hs, the beach slope α ≡ tan θ , and the offshore wave amplitude a0, as illustrated in Table II.
For each combination of initial wave amplitude and beach slope, cases are run covering inshore
depths from hs/h0 = −0.4 to 0.5. Cases with negative storm surge depths represent bathymetry
where the inshore region is above the water initially, causing the wave to break against the beach
slope. This case is somewhat similar to the bathymetry condition considered in [20], which could
be interpreted as the limiting case hs/h0 → −∞.
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TABLE II. Outline of the simulated cases. The varying parameters are the beach slope α ≡ tan θ (rows)
and offshore wave amplitude a0 (columns). Note that the beach slope ranges fall under the small angle
approximation, α ≈ θ . The individual entries mark the number of different storm surge (inshore) depths that
have been run for the corresponding values of a0, θ ; these vary from hs/h0 = −0.4 to 0.5.

�������θ

a0/h0

0.2 0.3 0.4 0.5

2◦ 7 8 8 8
3◦ 7 8 8 8
4◦ 7 8 8 7
5◦ 7 8 8 8

IV. RESULTS AND DISCUSSION

A. Describing the wave-breaking process

This section discusses the wave breaking process for some representative cases, in which
different types of breakers are formed, as illustrated in Figs. 3–5. Figure 3 presents the vorticity
around the wave in water at four representative time instants during wave breaking for a case with
a positive storm surge depth. For this case the beach slope is θ = 4◦, the initial wave amplitude
is a0/h0 = 0.4, and the storm surge (inshore) depth is hs/h0 = 0.2. The wave begins to break
around the boundary between the uniform slope and inshore region [see Fig. 3(a)]; as the wave
propagates further, an air cavity forms inside the breaker [see Fig. 3(d)], which is characteristic of a
plunging breaker. An additional plunging breaker with a negative storm surge depth is described in
Appendix B (see Fig. 11).

Figure 4 shows a case with a large storm surge depth. Here the beach slope is θ = 3◦, the initial
wave amplitude is a0/h0 = 0.3, and the storm surge depth is hs/h0 = 0.5. Similar to Fig. 3, the wave
breaks on the inshore region, but no clear air cavity is encapsulated as the wave breaks, and thus
this is a spilling breaker.

Finally, Fig. 5 shows a case with a large beach slope. Here the beach slope is θ = 5◦, the initial
wave amplitude is a0/h0 = 0.4, and the storm surge depth is hs/h0 = −0.4, i.e., the inshore region
lies well above the undisturbed water level. The wave breaks on the beach slope. From Fig. 5(d), an
air pocket is observed, indicating that a plunging breaker is formed.

FIG. 3. Wave breaking process (plunging breaker) for the case with a beach slope of 4◦, initial wave
amplitude of 0.4, and storm surge depth of 0.2. Vorticity (color contour) in the water phase at the following
four time instants: (a) t/t0 = 13.8, (b) t/t0 = 14.4, (c) t/t0 = 14.7, (d) t/t0 = 15.3.
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FIG. 4. Wave breaking process (spilling breaker) for the case with a beach slope of 3◦, initial wave
amplitude of 0.3, and storm surge depth of 0.5. Vorticity (color contour) in the water phase at the following
four time instants: (a) t/t0 = 19.75, (b) t/t0 = 21.75, (c) t/t0 = 23.2, and (d) t/t0 = 26.0.

In summary, plunging breakers exhibit clear overturning jets, such as those visible in Figs. 3(b),
3(c), 5(b), 5(c), and 11(c); Although spilling breakers also feature overturning behavior, which is
essentially the same process as in plungers albeit on smaller length scales [16,33,59], this is not
easily distinguishable in the present simulations.

B. Classifying the types of breakers for all simulation cases

The breakers for all simulation cases are classified as either plunging breakers or spilling break-
ers. Plunging breakers are characterized by the presence of a well-defined cavity underneath the
overturning jet, while spilling breakers in this data set correspond to any other breaking morphology.
We note that there is no fundamental difference between plunging and spilling breakers. New et al.
[60] observed that spilling breakers overturned in a remarkably similar manner to plunging breakers,
where the scale of the overturning jet is merely smaller. The same phenomenon was observed in the
context of solitary waves specifically [16]. (The similarity does break down for sufficiently small
wavelengths, in which case parasitic capillary waves can arise and modify the breaking process
[33,61], but this phenomenon occurs for Bond numbers significantly smaller than those considered
in the present study and is not qualitatively apparent in our simulations.) Nevertheless, plunging

FIG. 5. Wave breaking process (plunging breaker) for the case with a beach slope of 5◦, initial wave
amplitude of 0.4, and storm surge depth of −0.4. Vorticity (color contour) in the water phase at the following
four time instants: (a) t/t0 = 7.25, (b) t/t0 = 12.25, (c) t/t0 = 13.2, and (d) t/t0 = 14.45.
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FIG. 6. Breaker types of all simulated cases. Blue-filled shapes represent spilling breakers, and hollow
shapes represent plunging breakers. Black-filled shapes at locations of maximum local wave height represent
nonbreaking cases. The dashed line (hb = ab − 0.12) separates the spilling breaking cases from the plunging
breaking cases.

breakers as we have defined them here are known to cause significantly increased loadings on
offshore structures owing to the presence of the entrained air cavity [62], and the entrained cavity
can also affect the wave’s dissipative properties [34,35]. It therefore remains of interest to identify
this broad change in wave character. To determine whether the type of breaker can be determined
by the local conditions of the wave at the moment of breaking, the wave amplitude at breaking ab

and water depth hb under the breaking wave is extracted from the data for each case and normalized
by h0 to get dimensionless wave amplitude ab/h0 and water depth hb/h0. The breaking amplitude
is then plotted against breaking depth (ab/h0, hb/h0) as shown in Fig. 6, with solid and hollow
markers denoting spilling and plunging breakers, respectively. The shape of the marker denotes
the beach slope. The solid markers and the hollow markers can be separated by a line, which is
governed by hb/h0 = ab/h0 − 0.12 (i.e., ab/hb � const) as indicated by the dashed line in Fig. 6.
Given that plunging and spilling breakers are governed by the same overturning behavior, though
at different length scales [16,33,59], the particular form of this separating line does not reflect a
change in fundamental physical processes, but may instead suggest that breaker intensity correlates
with the so-called breaking index γ ≡ ab/hb, which is equivalent to one form of the nonlinearity
parameter F (see Sec. IV D). Further, Fig. 6 suggests that, first, breaking amplitude and depth
are rather insensitive to beach slope, second, for a given breaking depth, plunging breakers have
larger amplitudes than spilling breakers. Putting it another way, if the wave amplitude at breaking
is relatively larger, it will have a higher chance to encapsulate air and thus will more likely form
a plunging breaker. Third, for sufficiently low wave amplitude and sufficiently high depth, a wave
will not break, as indicated by the solid black markers. This threshold is suggested by Losada et al.
to be ab/hb = 0.7, for example [21].

C. Determining energy budget and dissipation

For all the simulated cases, the energy dissipation is examined. Figure 7 shows the energy
dissipation process for a few representative cases, namely, with storm surge (inshore) depths of
hs/h0 = −0.2, 0.1, 0.3, and −0.4, respectively.

In the figures, the dotted line represents the gravitational potential energy, the dashed line repre-
sents the kinetic energy, and the dark line represents the sum of these two, as the total conservative
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FIG. 7. Energy dissipation for representative cases: (a) 0.5 amplitude, 3◦ beach slope, −0.2 storm surge
depth; (b) 0.3 amplitude, 3◦ beach slope, 0.1 storm surge depth; (c) 0.3 amplitude, 3◦ beach slope, −0.4 storm
surge depth; and (d) 0.3 amplitude, 2◦ beach slope, −0.4 storm surge depth. Kinetic energy is shown as the
dashed line, gravitational potential energy is shown as the dotted line, and total energy is shown as the solid
line. The leftmost vertical line represents the start of breaking time, while the three rightmost vertical lines
represent the error bar approximation of breaking end time. The solid red line represents the line of best fit for
the specific total energy dissipation curve.

energy. (The surface tension energy has been found in such cases to be negligible [20,33]). The
leftmost vertical line represents the time when the wave begins to break (namely, when the wave face
becomes vertical). The natural end time of breaking, however, is not immediately obvious. In [20]
the end time was defined as the moment after breaking that the gravitational potential and kinetic
energies were equal; this corresponds to the crossover of these energies in the case of Fig. 7(a),
which has a negative storm surge depth and thus the wave breaks on the beach slope. This is due to
the transfer of kinetic energy to gravitational potential energy as the wave runs up the beach. In such
a case, the wave exchanges kinetic energy that would otherwise be available for dissipation through
breaking into gravitational potential energy, which rapidly slows or terminates the breaking process.
However, such a moment does not arise naturally for cases with positive storm surge depths or for
small negative storm surge depths in the present study. This is because for such cases, the breaker
cannot gain a significant amount of gravitational potential through runup; it thus retains kinetic
energy available for dissipation, allowing the breaking process to prolong without a clear endpoint.
Therefore, in this study, an approach to determining the breaking end time is developed using a
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linear regression of the total energy budget, as shown in Fig. 7. First, in our analysis, we consider a
parameter sweep to be a series of cases of varying storm surge depth (hs/h0 = −0.4–0.5) with the
same combination of beach slope (θ ) and initial wave amplitude (a0), as shown in Table II. For each
combination of (a0/h0, θ, hs/h0), a least-squares line is fit to the energy budget from the breaking
time t1 = tb to a range of candidates for the end time t2. The candidate of t2 resulting in the best fit
(i.e., with the highest determination coefficient R2) is noted. For a given combination of (a0/h0, θ ),
the results are then averaged into a single end breaking time, across the set of all corresponding
storm surge depths. The range of best end breaking times within this set is used to develop error
bars for the dissipation rate at each storm surge depth. While all the cases at a given (a0/h0, θ )
share the same temporal distance between the start and end of breaking, each case will have distinct
error bars for energy dissipation rate since the energy budget is unique for each case.

Results for some representative cases are shown in Fig. 7. The red line in each figure shows
a linear fit between t1 = tb and the candidate t2 with the highest R2 value for that case; the three
rightmost vertical lines in the shaded region represent the end time of the breaking event with the
center line representing the average breaking end time across all storm surge depths at the given
(a0/h0, θ ), and the left and right lines representing the error bar range. From all figures, a clear
drop in total energy is observed as the wave breaks. The cases with negative storm surge depths
show a steep drop in kinetic energy when compared to those with positive storm surge depths,
due to wave breaking on the beach slope, which reduces the water velocity more significantly. For
all cases, the initial energy dissipation observed in the wave before breaking is a physical effect
captured by the numerical simulations and is numerically converged in our study.

Figure 7(a) shows that for negative storm surge depths, this method can predict a breaking end
time very close to the crossover point between kinetic and gravitational potential energy used in [20],
without any additional tuning of parameters, although we note that this behavior is not observed in
all cases. While the kinetic or gravitational crossover often lies within the range of best t2 within a
given set of storm surge depths [as in Fig. 7(c)], this is not always guaranteed [Fig. 7(d)].

D. Characterizing dissipation rate

The energy dissipation induced by a breaking wave is typically described by its dissipation rate
per unit length of breaking crest, εl [39]. In this study the dissipation rate is determined using a
linear fit to the total energy (i.e., the sum of gravitational potential and kinetic energies) during the
breaking event,

εl = �E

�t
, (9)

where �E = |E1 − E2| and �t = |t1 − t2|, with subscripts 1 and 2 representing the start and end of
the breaking event, respectively. Aside from how t2 is determined (see Sec. IV C), this is consistent
with the methodology applied in [20,35]. The dissipation rates for all simulation cases are shown in
Fig. 8.

Figure 8(a) plots the dissipation rates against normalized ab for all the simulated cases. The
colors of black, red, green, and blue represent beach slopes of θ = 2◦, 3◦, 4◦, and 5◦, respectively.
Scaled dissipation rate is plotted with respect to the local breaking conditions, where the constant,
ε0 = ρg3/2h5/2

0 , is used to normalize the dissipation rate. Error bars are included for each data point
to calculate the dissipation rate at the upper and lower limits of the end breaking time as described
in Sec. IV C. The dissipation rate from [20] is also included in Fig. 8(a) for comparison, shown as
hollow squares. In general, across all cases the dissipation rate increases with the wave amplitude
at breaking, but there is considerable variation in the data due to the effects of the beach slope and
inshore storm surge depth. Note that despite the methodological differences, the estimates for the
dissipation rate for negative storm surge depths in the present data lie approximately within the
spread of the cited data from [20], which corresponds to the limit hs/h0 → −∞.
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(a)

(c) (d)

(b)

FIG. 8. (a) Dissipation rate plotted against normalized wave amplitude at breaking for all simulated cases.
Data from [20] are also included as hollow squares for comparison. (b) Dissipation rate plotted against storm
surge depth. (c) Dissipation rate plotted against ab scaled by hb. The line represents the shallow water inertial
model from [20]. (d) Breaking parameter shown in Eq. (1) plotted against nonlinearity parameter ab/hb.
Dashed and solid lines represent deep- and shallow-water scalings, respectively. Blue dotted line represents
the hydraulic jump bore model [43]. For panels (c) and (d), shape representation is as shown in (a), and for all
panels, color representation is as shown in panel (b).

Figure 8(b) shows dissipation rate plotted against storm surge depth for all simulation cases.
Clear delineations can be seen between the cases of the various beach slopes. The cases with higher
beach slopes tend to experience a higher dissipation rate. Overall, for the cases with positive storm
surge depths, the dissipation rate decreases with increasing storm surge depth. This is because for
positive hs/h0, the wave can break either on the slope (hb > hs) or on the inshore region (hb = hs);
hence, following the inertial argument of Sec. II, the integral length scales of the turbulence can
only increase with increasing hs/h0, corresponding with lower dissipation rates. On the other hand,
for the cases with negative storm surge depths, dissipation rate decreases with increasing |hs/h0|,
i.e., with increasing elevation difference between the inshore region and the undisturbed water level,
and the greatest energy dissipation rate occurs where the inshore region is at only slightly higher
elevation than the water level. While all waves with negative hs/h0 break on the sloped region, the
resulting runup forces the integral length scales of the turbulent flow to reduce, driving an increase
in dissipation rate. This effect is strong for small |hs/h0|. However, for large negative values of
hs/h0, the breaker runs up the slope and thereby rapidly exchanges kinetic energy for gravitational
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potential energy, so that there is less available energy for dissipation. This effect appears to outstrip
the increase in dissipation rate resulting from the smaller integral length scales and results in a lower
dissipation rate. Note finally that the negative values of hs/h0 tend to show slightly larger error bars
than for positive hs/h0; these indicate greater variability in the energy budget between different
slopes and wave amplitudes for a given storm surge depth.

We now examine the performance of different parametrizations in capturing the trends in the data.
Figure 8(c) shows the energy dissipation rates scaled according to Eq. (5), i.e., the shallow-water
parametrization of [20]. The data collapse consistently with the scaling, represented by the dashed
line in the figure. For small dissipation rates and high beach slopes, the data with negative hs/h0 tend
to show the greatest relative deviation from the scaling (in addition to having large error bars). This
reflects that as the wave runs up the beach, the inertial argument that leads to Eq. (5) becomes less
relevant because the breaking depth hb is no longer properly defined. Moreover, as the breaker runs
up the beach, dissipation due to the bottom boundary layer may become significant; such effects are
not accounted for in Eq. (5). These observations also apply to the DNS data of [20] and may explain
why it does not fully collapse to the parametrization.

We compare other parametrizations in Fig. 8(d), making use of the nonlinearity parameter of [63]
and [64],

F = ga2

c2
, (10)

where a is a representative amplitude and c is a phase speed. In the shallow-water limit, with c =√
ghb, we have F → ab/hb. We also explicitly use the dimensionless breaking parameter b defined

in Eq. (1), which is especially relevant to deep-water studies [39,46], but can also be defined for
shallow water (see Sec. II). With c = √

ghb, the shallow water scaling [Eq. (5) of [20]] can be
nondimensionalized into b ∝ F 7/2, and is shown with the solid line. In the deep-water limit (i.e., the
context of [46]), F → S where S is the breaking slope, obtaining b ∝ F 5/2. Note that the inertial
argument of [46] can apply to any breaker, provided the integral length scale of the turbulence can
be approximated by ab (rather than hb, as in [20]), which could occur in the shallow-water limit for
cases where ab/hb � 1, which is common in the present data. Even in this case, however, the scaling
b ∝ F 5/2 is recovered. This is shown by the dashed line. Finally, the dimensionless form of the bore
model (2) yields

b = βF 3

(
2 + F

2 + 2F

)1/2

(11)

and is shown with the blue dotted line. This model relies on the assumption that all waves in shallow
water can be energetically modeled as hydraulic jumps. When plotted together, the data obtained
in this study appear to best match the inertial scaling in Eq. (5) of [20]. The other scalings have
shallower slopes, with the deep water scaling deviating most from the data obtained in this study.

E. Considerations for a general breaking parametrization

We have found that for solitary waves in the presence of a simple storm surge geometry, the
shallow-water parametrization b ∝ F 7/2 of [20] predicts well the dissipation rate of breaking. It
better collapses the DNS data of the present study than for the hydraulic jump model, Eq. (2),
suggesting that solitary waves are not well approximated energetically by hydraulic jumps. How-
ever, the shallow-water parametrization F 7/2 performs better even for breakers where ab > hb,
equivalently F > 1, for which one might expect that the parametrization b ∝ F 5/2 of [46] would be
superior. We therefore discuss now briefly whether these two parametrizations could be harmonized
across different data sets, including both shallow- and deep-water regimes.

Note the nonlinearity parameter F in Eq. (10) can be used to nondimensionalize the water
wave equations in a depth-independent way. Using the linear phase speed in arbitrary depth,
c2 = (g/k) tanh (kh), in the short-wave (deep-water) limit, F ∼ ak = S is the wave slope, while
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(a) (b)

FIG. 9. (a) Plot of b parameter against nonlinearity parameter F for shallow-water data from the present
study and deep-water data from literature. Black and gray triangles and gray diamonds are from Drazen et al.
[46]; cross and circles from Banner and Peirson [65]; squares from Grare et al. [66]; red triangles are DNS from
Deike et al. [33]. Blue circles are the present shallow-water DNS. (a) Data plotted without shifts or scaling,
(b) Data shifted horizontally by estimated breaking threshold F ∗. For the deep-water data, F ∗ = 0.08; for the
present shallow-water DNS data, F ∗ = 0.7.

in the long-wave (shallow-water) limit, F ∼ a/h. Figure 9(a) shows the b parameter for a variety
of experimental and numerical sources for deep-water breakers ([33,34,46,65,66]), along with the
present shallow-water data set. While the shallow-water data set appears to have a slope qualitatively
similar to the deep-water data, there is a clear break between the two groups, and a single power-law
scaling cannot capture both data sets.

The difference may possibly be accommodated with a heuristic consideration of breaking
threshold. In their semiempirical study, [47] fitted a best-fit curve to deep-water data, finding

b = 0.4(S − ST )5/2, (12)

with ST = 0.08. Here ST can be qualitatively interpreted as a breaking threshold, which is closely
related to questions of breaking dissipation. Identifying breaking criteria in deep and shallow
water remains an active research topic ([33,46,50–52,67–69]), and recent investigations have shown
that the breaking criterion in deep water depends on the bandwidth of the breaking wave group,
somewhat equivalent to a Benjamin-Feir index ([50,51,69]). It is not the purpose of this study to
speculate on the breaking threshold for shoaling solitary waves, and breaker bandwidth is not well
defined for these waves, but we may give a rough heuristic estimate of F ∗ � 0.7, following Losada
et al. [21] who found this threshold for solitary waves encountering abrupt depth changes. Plotting
then a modified fit b = 0.4(F − F ∗)5/2 with F ∗ = 0.08 in deep water, and F ∗ = 0.7 in shallow
water, produces Fig. 9(b), which more closely collapses the deep- and shallow-water data.

While promising, the above approach, and indeed the comparison of different parametrizations
in Sec. IV D, essentially sets F = ab/hb, well known as the breaking index γ ([70]), but it relies on
identifying the crest speed with the linear wave speed at the breaking depth, c = √

ghb. However,
the breaking crest in fact remains close to its offshore speed, c0 = √

g(h0 + a0) � √
gh0, which is a

more natural choice for nondimensionalizing the energy dissipation. Using it actually identifies the
b parameter with the left-hand side of Eq. (4), since g3/2h5/2

0 = c5
0/g, in which case we can interpret

Eq. (4) as

b0 = βF 7/2
0 M2 = βF 5/2

0 γ , (13)
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(a) (b)

FIG. 10. Comparison of energy budget between two mesh resolution levels 213 and 214 for two cases:
(a) 0.2 initial wave amplitude, 2◦ beach slope, and 0.3 storm surge depth; (b) 0.4 initial wave amplitude, 4◦

beach slope, and 0.3 storm surge depth.

where b0 = gε/(ρc5
0), F0 = ab/h0, and M2 = c0/c = h0/hb is the ratio of the inshore and offshore

wave speeds, and γ is the breaking index. The second of Eq. (13) is suggestive of a close link with
the deep-water scaling [46], except that γ (and M2) do not have deep-water equivalents, so that they
cannot be immediately compared on the same axes.

We remark finally that the dynamic/kinematic parametrization of [18] using the parameter � has
shown good data collapse, but � is difficult to estimate for the present data owing to noise in the
numerical differentiation of the related quantity ux/c, evaluated at the wave crest.

V. CONCLUSIONS

In this study, we have conducted various two-dimensional direct-numerical simulations of soli-
tary wave breaking over a simple storm surge bathymetry, varying the depth of the storm surge,
beach slope, and wave initial amplitude. The resulting breakers can be classified into plunging or
spilling breakers through a clear separation line, which was developed based on wave amplitude
and water depth at the point of breaking. In addition, we studied the energy dissipation of the cases
to determine a dissipation rate for each case. Comparing with prior dissipation rate data from the
literature, we found that the shallow water dissipation rate model developed in [20] can be extended
to this storm-surge-style bathymetry with good data collapse, performing better than the hydraulic
jump analogy or the deep-water parametrization of [46]. Furthermore, we compared our shallow
water data with deep water data from literature using a breaking parameter and explored possibilities
of a unifying model. A promising collapse of most of the data can be obtained. The obtained
results from this paper could in the future be used to study how changes in the energy dissipation
of breaking waves affect the wave loading on coastal structures, particularly in the presence of
a storm surge. Possibilities for implementing the parametrization of Mostert and Deike [20] into
a Boussinesq-type or other regional-scale wave-resolving model will also be explored in a future
study.
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APPENDIX A: CONVERGENCE STUDY

The meshes used for these simulations are square, such that �x = �y. Our choice of mesh size is
related to the numerical convergence. We follow the process used in [20] to measure the numerical
convergence based on the energy budget. The kinetic and gravitational potential energies, Ek and
Ep, are

Ek = 1

2

∫
V

ρ|u · u| dV, Ep =
∫

V
ρgy dV − Ep0, E = Ek + Ep. (A1)

In Fig. 10, we show a comparison of energy budget convergence for two cases: one with a 2◦
beach slope and 0.2 initial wave amplitude, and one with 4◦ beach slope and 0.4 initial wave
amplitude. Both cases have a storm surge depth of 0.3. In both cases, we compare mesh sizes of
�x = L0/213 and �x = L0/214, where L0 is the length of the domain. We see that there is little
difference between the energy dissipation between the two resolutions and thus conclude that these
simulations converge for a resolution of 213.

APPENDIX B: ADDITIONAL BREAKER INTERFACE PLOTS

Figure 11 shows a case with a negative storm surge depth. Here the beach slope is θ = 2◦, the
initial wave amplitude is a0/h0 = 0.5, and the storm surge depth is hs/h0 = −0.1, i.e., the inshore
region lies above the undisturbed water level. In this case the wave breaks on the beach slope. The
air cavities observed in Fig. 11(d) again indicate that this is a plunging breaker. This behavior is
similar to the cases presented in [20], in which the bathymetry does not include an inshore region,
so that the wave breaks directly on the beach slope.
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