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Multiscale flow topologies in microconfined high-pressure transcritical
fluid turbulence
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The topology of multiscale turbulent motions in a high-pressure transcritical channel
flow is studied using direct numerical simulations. In particular, the system analyzed
corresponds to high-pressure (P/Pc = 2) microconfined turbulence of N2 at transcritical
conditions imposed by a temperature difference between the cold (T/Tc = 0.75) and
hot (T/Tc = 1.5) walls for a friction Reynolds number of Reτ = 100 (cold wall). The
invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors are computed
at different length scales. The joint probability density functions of the invariants are
calculated and conditioned based on the distance from the walls and additionally compared
against an equivalent low-pressure case at isothermal conditions. The results indicate that
the presence of higher levels of vorticity close to the hot wall significantly impacts the
flow topologies in the viscous sublayer. As a result, topology distributions of the velocity-
gradient tensor typical from the outer region are observed in the vicinity of the hot wall.
Moreover, the second invariants of the rate-of-strain and rate-of-rotation tensors indicate
a large probability of vortex sheet events in the hot (supercritical gaslike) region. Finally,
at lengths comparable to the density gradient scale, the presence of vortex sheet structures
is diminished with respect to the reference low-pressure case to favor more tubelike flow
motions. As inferred from the vorticity transport equation, this behavior is connected to the
appearance of a baroclinic-type instability generated from the combination of the external
force driving the flow and the large variation of density across the pseudoboiling region.

DOI: 10.1103/PhysRevFluids.8.054608

I. INTRODUCTION

From innovative biomedical solutions to powerful sophisticated microchips, technology has
become microscopically compact over the past decades. This trend has been particularly important
in the field of microfluidics which has extraordinarily branched into a virtually infinite number of ap-
plications due to its high surface-to-volume ratios, flow controllability, and length scales efficiently
suited for interacting with microscopic elements. These properties have proven to be well-suited, for
example, to biology and chemistry, in which localized precision is usually an advantage. However,
the utilization of microfluidics for energy applications has long been a key challenge in what
some researchers refer to as “lab-on-a-chip and energy—the microfluidic frontier” [1]. One of the
principal reasons is that standard microfluidic systems are typically limited to operate under laminar
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flow regimes due to their small characteristic hydraulic diameters [Dh ∼ 1–1000 µm] and bulk
velocities [ub ∼ O(1) m/s]. In particular, at atmospheric pressure conditions, the Reynolds numbers
encountered in microfluidics are in the order of Reb = ubDh/ν ∼ 0.1–100, where ν ∼ 10−6–10−4

m2/s are typical values for the kinematic viscosity, and consequently flows tend to remain laminar
[2]. The smooth nature of this flow regime does not provide good mixing and transfer efficiencies in
comparison to the performances obtained if turbulence, which is characterized by rapid fluctuations
of flow variables in space and time, is present [3]. In this regard, an important body of research
in microfluidics is focused on improving molecular diffusion in laminar flows through different
passive-mixing strategies [4–6], like, for example, fabricating serpentinelike microchannels and
cross-/patterned-flow mixers. However, these techniques typically impose important construction
complexities without exceptional increases in mixing and transfer rates. Other strategies signifi-
cantly explored try to (i) achieve enhanced chaotic mixing through electrokinetic forcing [7] or
(ii) reach incipient turbulent flow conditions by extraordinarily increasing the volumetric flow
rates (large sizes/velocities) [8], which is in contradiction to the small values typically sought in
microfluidic applications. Moreover, connected to this topic, experimental studies are commonly
conducted using micro-particle image velocimetry (microPIV). This methodology enables the
observation and characterization of flows at the microscale, like, for example, near-wall mechanisms
[9–11], two-phase flow phenomena [12–14], and laminar-to-turbulent transition [15,16].

A novel potential approach to achieve microconfined turbulence, which is carefully studied
by Bernades et al. [17,18], is based on operating under high-pressure supercritical conditions to
leverage the hybrid thermophysical properties of supercritical fluids. High-pressure supercritical
fluids are used in a wide range of engineering applications, like, for example, in gas turbines,
supercritical water-cooled reactors, and liquid rocket engines [19,20]. They operate within high-
pressure thermodynamic spaces in which intermolecular forces and finite packing volume effects
become important. In this regard, it is important to distinguish between supercritical gaslike and
liquidlike fluids separated by the pseudoboiling line [21]: (i) a supercritical liquidlike fluid is one
whose density is large, and whose transport coefficients behave similarly to a liquid; whereas (ii)
the density of supercritical gaslike fluids is smaller, and their transport coefficients vary similar to
gases. In particular, the strategy proposed makes use of the rapid smooth transition when crossing
the pseudoboiling line to tune supercritical fluids to present liquidlike densities [ρ ∼ 103 kg/m3] and
gaslike viscosities [μ ∼ 10−5 Pa s], and therefore achieve Reb ∼ 103–104 for typical microfluidic
velocities and channel sizes and favoring, in this manner, inertial over viscous forces and resulting
in turbulent flow [2]. The theoretical estimations presented in their work indicate that microconfined
turbulent flow regimes can be potentially achieved by operating in the vicinity of the pseudoboiling
region for a wide range of popular working fluids, like, for example, carbon dioxide, methane,
nitrogen, oxygen, and water. In this regard, the experimental study of supercritical fluids is notably
challenging due to the high pressures typically involved, which significantly limit the quantity and
quality of data that can be extracted from laboratory experiments and/or industrial applications
[22]. This complexity is further increased by the interest in working in microfluidics conditions.
Consequently, this work will utilize computational approaches based on direct numerical simulation
(DNS) to resolve all turbulent scales and further analyze them. In connection with this strategy,
Zhang et al. [23] explored mixing intensification for antisolvent processes by operating at high
pressures in free-shear coflow configurations at isothermal conditions. Nonetheless, the overall
strategy is significantly different to the one studied in this work as: (i) jet flows are inherently
unstable, and consequently laminar-to-turbulent transition occurs in the range Reb ≈ 30–2000 [24];
(ii) coflows require complex microfluidic configurations; and (iii) isothermal conditions are not
generally suitable for energy-related applications.

The detailed flow characterization and modeling of high-pressure transcritical fluid turbulence
remain an outstanding challenge [19] due to the presence, especially, of localized large density
gradients that may modulate the flow [21]. Moreover, these density gradients tend to modify the
near-wall characteristics of turbulent flow as shown by different authors [25–28]. In this regard,
novel approaches have been proposed to carefully study transformations of flow statistics for the
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mean velocity profile [29–31] and mean temperature distribution [28,32,33]. Consequently, the
development of predictive, coarse-grained models for the design and optimization of engineering
applications, like, for example, Reynolds-averaged Navier-Stokes (RANS) approaches, remains
an open problem. It is now well established that, since the large-scale features of turbulence
are typically flow dependent, different models are needed for different flows [34]. However, a
major motivation for the development of large-eddy simulation (LES) approaches is the belief
that, although large structures may vary between flows, at smaller scales the features should be
less flow-dependent and more amenable to modeling. Universal fine-scale features, if they can be
identified, should potentially be of greater utility in construction of subgrid-scale (SGS) models
[35,36] than broad assumptions concerning statistical isotropy of turbulent fluctuations at high wave
numbers. For instance, in the case of high-pressure transcritical turbulence, it is unclear whether
the small and/or intermediate scales are universal and statistically isotropic. Nevertheless, using
local topology, or streamline patterns, is a highly effective method for characterizing flow features
and regimes, efficiently quantifying the deformation and mixing of fluid elements and making it
notably useful in this regard. For example, a strain-dominated streamline pattern will deform a fluid
element and lead to increased mixing, while a rotation-dominated pattern, however, will merely
reorient a fluid element without much increase in mixing. Motivated by the need for a general
methodology, Perry et al. [37,38] proposed a scheme based on the three invariants (P, Q, R) of
second-order tensors to effectively infer local flow topologies in velocity fields. Subsequently, Soria
et al. [39], using DNS results, studied the joint statistical distributions of Q and R in mixing layers.
They found that the scatter plot of second and third invariants (i) presents small amounts of data
in the lower right quadrant, whereas (ii) the bulk of data lies in the upper left and lower right
quadrants roughly distributed uniformly over an elliptical region. The local topologies associated
with these two regions are unstable node/saddle/saddle and stable focus stretching (described
in detail later). These prominent topological features immediately attracted considerable research
attention and were later found to be quite general across a variety of turbulent flows. Examples
of such studies include high-symmetry flows [40], turbulent channel flows [41], turbulent jets [42],
two-phase turbulence [43], and compressible flows [44]. For a review of the dynamics of small-scale
turbulence and various modeling approaches the reader is referred to the article by Meneveau [45].

The aim of this work, therefore, is to thoroughly study and characterize the multiscale flow
topologies of high-pressure transcritical fluid turbulence by means of carefully analyzing the
invariants of the velocity-gradient tensor using joint probability density functions (JPDFs). In
particular, focus will be placed on the case of wall-bounded turbulent flows at low (subcritical)
and high (supercritical) pressure conditions; for the high-pressure system, a temperature difference
is imposed between walls, whereas the system is isothermal for the low-pressure case. To that
end, the paper is organized as follows. In Sec. II, the classification of local flow topologies based
on velocity-gradient tensor invariants is presented. This is followed by a detailed description of
the flow physics modeling utilized to study high-pressure transcritical fluid turbulence in terms
of equations of fluid motion, real-gas thermodynamics, and numerical methods in Sec. III. Next,
in Sec. IV, computational experiments are described and results regarding the flow topology at
different scales are discussed. The aim is to characterize how transcritical conditions affect the
turbulent flow topologies using JPDFs. In addition, the different terms of the vorticity transport
equation are studied to further connect the flow typologies observed with the underlying flow
mechanisms. Finally, the work is concluded and future directions are proposed in Sec. V.

II. CLASSIFICATION OF LOCAL FLOW TOPOLOGY

The theoretical work that connected invariants of the velocity-gradient tensor to flow topologies
was established by Perry et al. [37,38]. They employed critical point theory (i.e., local streamlines
have an indeterminate slope) to relate the invariants of the velocity-gradient tensor to the local
three-dimensional flow field as seen by an observer traveling with the flow. In this regard, the
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(a) (b)

FIG. 1. Topological classification of local flow fields (streamlines) for an observer traveling with
the flow on the RA versus QA diagram (a): upper-left, stable focus/stretching (SFS); upper right, un-
stable focus/compressing (UFC); lower left, stable node/saddle/saddle (SN/S/S); lower right, unstable
node/saddle/saddle (UN/S/S). Lines in (RS, QS )-space corresponding to different ratios of principal strains
λ1 : λ2 : λ3 (b): 2 : −1 : −1, axisymmetric contraction; 1 : 0 : −1, two-dimensional straining limit; 1 : 1 : −2,
axisymmetric expansion.

subsections below summarize the theoretical framework of the tensor-invariant-based flow topology
classification for completeness of the present work and to introduce the notation utilized.

A. Invariants of the velocity-gradient tensor

The velocity-gradient tensor Ai j = ∂ui/∂x j can be decomposed into rate-of-strain Si j (symmet-
ric) and rate-of-rotation Wi j (skew-symmetric) tensors written in the form

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
and Wi j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
, (1)

such that Ai j = Si j + Wi j . The coefficients (PA, QA, RA) multiplying the eigenvalues λi of the
characteristic equation of Ai j , written in the form

λ3
i + PAλ2

i + QAλi + RA = 0, (2)

are the tensor invariants, which correspond to

PA = −tr[Ai j] = −Sii, (3)

QA = 1
2

(
P2

A − tr
[
A2

i j

]) = 1
2

(
P2

A − Si jS ji − Wi jWji
)
, (4)

RA = 1
3

( − P3
A + 3PAQA − tr

[
A3

i j

]) = 1
3

( − P3
A + 3PAQA − Si jS jkSki − 3Wi jWjkSki

)
. (5)

The topological features of the velocity-gradient tensor as a function of position in (PA, QA, RA)
space can be classified according to the value of the discriminant

DA = 27RA
2
(
4P3

A + 18PAQA
)
RA + (

4QA
3 − P2

AQ2
A

)
, (6)

which determines the real/imaginary nature of the eigenvalues of Ai j . As illustrated in Fig. 1(a), for
low-Mach-number flows in which |PA| � 1, a positive discriminant DA > 0 corresponds to one real
and two complex-conjugate eigenvalues (enstrophy prevalence); a negative discriminant DA < 0
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gives rise to three real, distinct eigenvalues (dissipation prevalence); and a zero-valued discriminant
DA = 0 indicates three real eigenvalues of which two are equal. A further classification can be
made according to the sign of RA. On the left half of the (QA, RA) plane the real parts of the complex-
conjugate eigenvalues are negative and the critical points of the flow are classified as stable, while on
the right half-plane, the real part of the eigenvalues are positive and the critical points are classified
as unstable. The physical interpretation of RA depends on the sign of DA. On the one hand, if DA > 0,
then RA < 0 implies a predominance of vortex stretching over vortex compression (the opposite is
true for RA > 0). On the other hand, if DA < 0, then RA > 0 is associated with converging flow
trajectories, whereas RA < 0 is connected to diverging flow trajectories. Following Chong et al.
[38] terminology, critical point topologies falling in the upper left (right) region are called stable
(unstable) focus/stretching (compressing), and those in the lower left (right) region are referred to
as stable (unstable) node/saddle/saddle.

B. Invariants of the rate-of-strain and rate-of-rotation tensors

The local topology of any second-order tensor field, such as Si j and Wi j , can be classified as
described above. Owing to the symmetry of Si j , all eigenvalues are real. Hence, in the case of low-
Mach-number flows, only classifications for which DS � 0 can be obtained on the (RS, QS )-plane
as shown in Fig. 1(b). In particular, all (RS, QS ) pairs must fall below the lines corresponding to
the eigenvalue ratios (eigenvalues of Si j λ1, λ2, λ3 in descending order) 2 : −1 : −1 (axisymmetric
contraction) and 1 : 1 : −2 (axisymmetric expansion). The ratio 1 : 0 : −1 corresponds to the two-
dimensional straining limit. Note also that the local dissipation rate of turbulent kinetic energy
(TKE) ε and enstrophy ω can be expressed in terms of QS and QW as ε = 2νSi jSi j = −4νQS and
ω = 2Wi jWi j = 4QW , respectively, with ν the kinematic viscosity of the fluid. Therefore, regions
corresponding to large negative values of QS are sites of high dissipation, while large values of QW

indicate flow regions characterized by high vorticity.
In addition, the second invariant of Ai j , QA = QS + QW , is a measure of the relative importance

of the straining and rotational parts of the velocity-gradient tensor. In regions of the flow in which QA

is large and positive, vorticity is high and dominates the strain rate, while the reverse is true if QA is
large and negative. This relative importance can be directly visualized by plotting QW against −QS .
Points which lie near the QW axis are in the nearly pure solid-body rotation, whereas points that
lie near the −QS axis have nearly pure straining motions. Points around the 45◦ line, where strain
rate and rotation are of the same order, correspond to regions of the flow dominated by sheetlike
motions, like those found in boundary layers and represented in Fig. 2(a); viz. sheetlike topologies
present similar rates of strain and rotation, and therefore are dissipative-dominated flow structures
[39]. On the contrary, vortex tubelike structures, as illustrated in Fig. 2(b), are characterized by low
dissipation rates due to the decrement of straining with respect to rotation.

III. FLOW PHYSICS MODELING

The framework utilized for studying microconfined supercritical fluids turbulence in terms of (i)
equations of fluid motion, (ii) real-gas thermodynamics, (iii) high-pressure transport coefficients,
and (iv) numerical method are described below.

A. Equations of fluid motion

The turbulent flow motion of supercritical fluids is described by the following set of conservation
equations of mass, momentum, and total energy

∂ρ

∂t
+ ∇ · (ρu) = 0, (7)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇P + ∇ · τ + f , (8)
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(a)

(b)

FIG. 2. Schematic representation of (a) vortex sheet and (b) vortex tube structures.

∂ (ρE )

∂t
+ ∇ · (ρuE ) = −∇ · q − ∇ · (Pu) + ∇ · (τ · u) + f · u, (9)

where ρ is the density, u is the velocity vector, P is the pressure, τ = μ(∇u + ∇uT ) − (2μ/3)(∇ ·
u)I is the viscous stress tensor with μ the dynamic viscosity and I the identity matrix, f is a general
force (source term), E is the total energy, and q = −κ∇T is the Fourier heat conduction flux with
κ the thermal conductivity.

B. Real-gas thermodynamics

The thermodynamic space of solutions for the state variables pressure P, temperature T , and
density ρ of a monocomponent fluid is described by an equation of state. One popular choice for
systems at high pressures, which is used in this study, is the Peng-Robinson [46] equation of state
written as

P = RuT

v̄ − b
− a

v̄2 + 2bv̄ − b2
, (10)

with Ru the universal gas constant, v̄ = W/ρ the molar volume, and W the molecular weight. The
coefficients a and b take into account real-gas effects related to attractive forces and finite packing
volume, respectively, and depend on the critical temperatures Tc, critical pressures Pc, and acentric
factors ω. They are defined as

a = 0.457
(RuTc)2

Pc
[1 + c(1 −

√
T/Tc)]2, (11)

b = 0.078
RuTc

Pc
, (12)

where coefficient c is provided by

c =
{

0.380 + 1.485ω − 0.164ω2 + 0.017ω3 if ω > 0.49,

0.375 + 1.542ω − 0.270ω2 otherwise.
(13)
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FIG. 3. Snapshot of instantaneous streamwise velocity in wall units u+ on a x-y slice.

The Peng-Robinson real-gas equation of state needs to be supplemented with the corresponding
high-pressure thermodynamic variables based on departure functions [47] calculated as a difference
between two states. In particular, their usefulness is to transform thermodynamic variables from
ideal-gas conditions (low pressure—only temperature dependant) to supercritical conditions (high
pressure). The ideal-gas parts are calculated by means of the NASA 7-coefficient polynomial [48],
while the analytical departure expressions to high pressures are derived from the Peng-Robinson
equation of state as detailed, for example, in Jofre and Urzay [20].

C. High-pressure transport coefficients

The high pressures involved in the analyses conducted in this work prevent the use of simple
relations for the calculation of the dynamic viscosity μ and thermal conductivity κ . In this regard,
standard methods for computing these coefficients for Newtonian fluids are based on the correlation
expressions proposed by Chung et al. [49,50]. These correlation expressions are mainly function of
critical temperature Tc and density ρc, molecular weight W , acentric factor ω, association factor κa

and dipole moment M, and the NASA 7-coefficient polynomial [48]; further details can be found
in dedicated works like, for example, Jofre and Urzay [20] and Poling et al. [51].

D. Numerical method

The equations of a fluid motion introduced in Sec. III A are numerically solved by adopting
a standard semidiscretization procedure; viz. they are first discretized in space and then inte-
grated in time. In particular, spatial operators are treated using second-order central-differencing
schemes, and time-advancement is performed by means of a third-order strong-stability preserving
(SSP) Runge-Kutta explicit approach [52]. The convective terms are expanded according to the
Kennedy-Gruber-Pirozzoli (KGP) splitting [53,54], which has been recently assessed for high-
pressure supercritical fluids turbulence [55]. The method preserves kinetic energy by convection
and is locally conservative for mass, momentum, and total energy. This numerical framework
provides stable computations without the need for any form of artificial dissipation or stabilization
procedures.

IV. RESULTS AND DISCUSSION

Microconfined high-pressure transcritical turbulence is studied by means of DNS strategies
based on the flow physics framework described in Sec. III. Data is obtained utilizing the in-house
compressible flow solver RHEA [56]. The problem setup and discussion of results are described
below.

A. Problem setup

As illustrated in Fig. 3, the channel flow setup is chosen to study and characterize high-pressure
supercritical fluids turbulence at the microscale. In particular, the fluid selected is N2, whose critical
pressure and temperature are Pc = 3.4 MPa and Tc = 126.2 K. The fluid system is at a supercritical

054608-7



BAREA, MASCLANS, AND JOFRE

δT,hw

δT,cw

δv,cw

δv,hw

δρ

δcw

δhw

Hot wall Thw/Tc = 1.5

Cold wall Tcw/Tc = 0.75

∇F

∇ρ
Gas-like

Pseudoboiling

Liquid-like

C
O

L
D

H
O

T

FIG. 4. Hydrodynamic scales of the transcritical turbulent channel flow studied.

bulk pressure of Pb/Pc = 2 and confined between cold (cw) and hot (hw) isothermal walls, separated
at a distance H = 2δ with δ = 100 μm the channel half-height, at Tcw/Tc = 0.75 and Thw/Tc = 1.5,
respectively. This problem setup imposes the fluid to undergo a transcritical trajectory by operating
within a thermodynamic region across the pseudoboiling line. Based on preliminary theoretical
estimations [2], the friction Reynolds number selected at the cold wall is Reτ,cw = ρcwuτ,cwδ/μcw =
100, with uτ = √

(μ/ρ)(d〈u〉/dy) the friction velocity at walls, to ensure fully developed turbulent
flow conditions; the ρcw and μcw values are obtained from the thermophysical model described
in Sec. III. The mass flow rate in the streamwise direction is imposed through a body force f
controlled by a proportional feedback loop (gain kp = 0.1) aimed at reducing the difference between
the desired (Reτ,cw = 100) and measured (numerical) Reτ,cw values.

The computational domain is 4πδ × 2δ × 4/3πδ in the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively. The streamwise and spanwise boundaries are set periodic, and
no-slip conditions are imposed on the horizontal boundaries (x-z planes). The grid is uniform in
the streamwise and spanwise directions with resolutions in wall units (based on cw values) equal
to �x+ ≈ 9.8 and �z+ ≈ 3.3, and stretched toward the walls in the vertical direction with the first
grid point at y+ = yuτ,cw/νcw ≈ 0.1 and with sizes in the range 0.2 � �y+ � 2.3. Thus, based
on preliminary studies, this grid arrangement corresponds to a DNS of size 128 × 128 × 128 grid
points. The simulation strategy starts from a linear velocity profile with random fluctuations [57],
which is advanced in time to reach turbulent steady-state conditions after approximately 5 flow-
through-time (FTT) units; based on the bulk velocity ub and the length of the channel Lx = 4πδ, an
FTT is defined as tb = Lx/ub ∼ δ/uτ . Finally, flow statistics are collected for roughly 10 FTTs once
steady-state conditions are achieved.

B. Estimation of hydrodynamic scales

As a first step of the analysis, the hydrodynamic scales of the problem shown in Fig. 4 are
estimated based on scaling arguments. In the case of confined turbulent flows, the size of the larger
vortical motions are in the order of the channel half-height δ, whereas the smallest flow scales
are typically found in the viscous region of the boundary layers and correspond to δv = δ/Reτ .
However, in the specific case of this work, due to the temperature difference imposed between
the hot and cold walls, the system is not symmetric in the wall-normal direction, and as a result
the largest scales correspond to δcw ≈ 107 µm and δhw ≈ 93 µm for the cold and hot regions,
respectively. Similarly, the viscous scale at the cold wall is δv,cw ≈ 1 µm, while it is virtually halved
to δv,hw ≈ 0.5 µm for the hot wall. It is also worth noting the existence of a Batchelor scale related
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FIG. 5. Time-averaged streamwise velocity u+ along the wall-normal direction y+ for the cold (cw) and
hot (hw) walls of the high- (HP) and low-pressure (LP) cases.

to temperature variations. This scale can be estimated as δT,cw ∼ δcw/
√

Prcw ≈ 73 µm for the cold
region, while it increases to δT,hw ∼ δhw/

√
Prhw ≈ 94 µm for the hot region.

In the case of high-pressure transcritical systems, an additional length scale δ∇ρ can be defined
with respect to the large localized density variations across the pseudoboiling line. In this regard, as
proposed by Jofre and Urzay [21], the average density gradient scale is estimated as

δ∇ρ ∼ ρl − ρg

〈‖∇ρ‖〉 ≈ 31.4 µm, (14)

where ρl ≈ 574 kg/m3 and ρg ≈ 196 kg/m3 correspond, respectively, to the supercritical-like liquid
and gas density limits of the pseudoboiling region based on the methodology introduced by Wang
et al. [58], and 〈‖∇ρ‖〉 is the ensemble-averaged value of the density gradients across the domain.
Therefore, these results indicate that the density gradient scale is 30× and 60× larger than the
viscous scale related to the cold and hot walls, respectively.

C. Characterization of flow statistics

The purpose of this subsection is to characterize the turbulent flow in the high-pressure (HP)
transcritical case based on first- and second-order statistics. Particularly, Fig. 5 shows the time-
averaged streamwise velocity as a function of distance to the wall in viscous units, whereas
Fig. 6 depicts the Favre-averaged fluctuations of the three components of velocity u+

rms, v+
rms, and

w+
rms. In addition, the time-averaged profiles for the cold and hot walls are compared against a

reference case corresponding to an equivalent isothermal channel setup at low pressure (LP) of
Pb/Pc = 0.03 with Reτ = 100. Based on the results presented in Fig. 5, it can be seen that the
three profiles exhibit the typical linear behavior u+ = y+ of turbulent flows in the viscous sublayer
region (y+ < 5). However, the HP profiles deviate to lower values from the LP result starting at
the buffer layer (5 � y+ < 35); to correct these deviations, different transformations have been
recently proposed [29–31] that, if adapted to high-pressure transcritical flows, may be applicable.
This deviation is gradually accentuated in the log-law region (y+ � 35), which is indicative that
the HP case is characterized by larger turbulent intensities resulting in a more flattened shape
of the velocity profile as indicated by the friction Reynolds numbers listed in Table I. However,
focusing on the Favre-averaged velocity fluctuations for the high-pressure system depicted in Fig. 6,
turbulence intensity is significantly different between the hot (gaslike) and cold (liquidlike) walls
in the streamwise direction. In particular, the hot wall presents larger fluctuations in the viscous
sublayer and buffer region, while turbulence intensity grows following a concave parabola from
the cold wall to the center of the channel. An equivalent, although significantly less pronounced,
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FIG. 6. Favre-averaged fluctuations of velocity u+
rms, v+

rms, and w+
rms along the wall-normal direction y+ for

the cold (cw) and hot (hw) walls of the high- (HP) and low-pressure (LP) cases.

behavior is observed for the fluctuations in the spanwise direction, whereas they virtually collapse
to the same curve for the wall-normal velocity. Finally, regarding the LP case, the Favre-averaged
velocity fluctuations closely resemble those of Moser et al. [59], which report maximum values of
streamwise velocity fluctuations in the buffer layer. However, in comparison, the HP system presents
significantly larger fluctuations, suggesting a modification of the turbulent characteristics that will
be thoroughly investigated in the following sections.

Focusing on the temperature distribution, different behaviors can be observed. In particular, Fig. 7
depicts the time-averaged temperature increment in viscous units �T + = (T − Tw )/Tτ , with Tw the
wall temperature and Tτ = [κ/(ρcPuτ )(d〈T 〉/dy)], along the wall-normal direction y+, and Fig. 8
presents the Favre-averaged temperature fluctuations. As indicated by Fig. 7, the time-averaged
temperature increment values at the cold wall are roughly 2–4× larger than at the hot wall due
to the larger Prandtl number achieved; viz. as listed in Table I, Pr is approximately 2× larger at
the cold wall. This behavior is mainly a consequence of the higher thermal inertia (larger values
of density and specific heat capacity) of the supercritical liquidlike fluid found at the cold part of
the channel with respect to the supercritical gaslike fluid occupying the hot region. Additionally, as
shown in Fig. 8, the temperature fluctuations are larger at the cold side of the channel in comparison
to the hot region. Consequently, the degree of convective-dominated mixing is higher at the cold
part, roughly a factor of 4 as indicated by the Nusselt number in Table I, which enhances the
transport of supercritical liquidlike fluid toward the hot side. In detail, the fluctuations at the hot wall
follow a convex trajectory peaking at y+ ≈ 5–7 with value T +

rms ≈ 1.5, whereas for the cold wall the
fluctuations present a maximum of T +

rms ≈ 6.5 at y+ ≈ 15, followed by an oscillatory shape with a
minimum of T +

rms ≈ 5.0 at y+ ≈ 60. In connection to the temperature distribution, Fig. 9 depicts the
variation of time-averaged ρ/ρc, with ρc ≈ 313 kg/m3 the critical density, along the wall-normal
direction for the cold and hot walls. The results indicate that (i) the most rapid variations of density
are found in the buffer layers of the two walls, and (ii) density reaches the critical value toward the

TABLE I. Friction Reynolds, Prandtl, and Nusselt numbers for the low- and high-pressure cases.

Wall Reτ Pr Nu

Low-pressure Both 100 0.71 –
High-pressure Cold 100 2.14 5.75

Hot 176.38 0.97 21.47
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FIG. 7. Time-averaged increment of temperature �T + along the wall-normal direction y+ for the cold (cw)
and hot (hw) walls of the high-pressure (HP) case.
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FIG. 8. Favre-averaged fluctuations of temperature T +
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(cw) and hot (hw) walls of the high-pressure (HP) case.
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FIG. 9. Time-averaged density ρ/ρc along the wall-normal direction y+ for the cold (cw) and hot (hw)
walls of the high-pressure (HP) case.
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FIG. 10. JPDFs of the second and third velocity-gradient tensor invariants for the small scales of the flow.
Columns correspond to: HP cold wall (first), HP hot wall (second), and LP (third). Rows correspond to: viscous
sublayer (first), buffer layer (second), and log-law region (third).

center of the channel. In particular, the buffer layer of the hot/top wall is where the pseudoboiling
region is mostly located in a time-averaged sense.

D. Velocity-gradient tensor invariants

The topology of turbulent flow motions at different scales is analyzed in this section. Similar to
the work by Blackburn et al. [41], the analyses are based on JPDFs of the velocity-gradient tensor
invariants, which are described in Sec. II, conditioned on distance from the walls. In particular, the
characterization is performed at two scales corresponding to (i) the smallest flow motions and (ii) at
a scale comparable to the density gradient scale estimated in Sec. IV B. Additionally, the invariants
are normalized as Qi

∗ = Qi(δ/ub
2) and Ri

∗ = Ri(δ/ub
3), where subscript i refers to the different

tensors A, S, and W . Focusing first on the smallest flow scales, Fig. 10 displays the JPDFs of the
second and third invariants of the velocity-gradient tensor conditioned on different distances from
the walls. Upon observation of the three sets of JPDFs, it can be noted the similarity between the
distributions of the cold wall of the HP case (first column) and the LP setup (third column). These
distributions indicate that the smallest flow scales tend to present a higher tendency for vortical
events as they separate from the wall, which is typical in wall-bounded isothermal turbulent flow
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[41]. Specifically, the data for these two columns (first and third) is spread across the SFS and
UN/S/S regions, which is indicative of a tendency of divergent stretching motions as schematically
represented in Fig. 1. However, the most notable differences with respect to the reference LP
case are found in the hot wall region of the HP setup. Particularly, in the viscous sublayer, the
distribution of data is noticeably more spread, indicating the presence of a wider range of intensities
of the near-wall motions; this behavior is usually found in regions far from the wall. Moreover,
the existence of a more rounded distribution for the most probable events indicates that the small
scales of the flow do not present a clear preference for a specific topology; viz. flow motions are
balanced between divergent and convergent trajectories and tube- and sheetlike structures. As it will
be studied in Sec. IV E, this result is an important characteristic of the hot region of the HP case
as it will contribute to a notable increase of the effects of derived flow variables, like, for example,
vorticity and dissipation. Regarding the other two wall regions (second and third rows), the flow
topologies present distributions more aligned with the typical behavior of isothermal turbulence
in which there is a predominance of vortex stretching and dissipative events as indicated by the
characteristic teardrop shape [39].

The analysis continues by focusing on the JPDFs of the second and third invariants of the rate-
of-strain tensor for the smallest flow scales depicted in Fig. 11. Two main topologies need to be
considered. First, disklike structures tend to be formed by convergent flow trajectories when data is
distributed toward the axisymmetric expansion line (right side of the QS-RS diagram). Alternatively,
if the data is skewed toward the axisymmetric contraction line (left side of the QS-RS diagram),
then rodlike structures tend to be generated by divergent flow trajectories. In this regard, similar to
Fig. 10, the distributions in Figs. 11(a), 11(c) 11(d), 11(f), 11(g), and 11(i) show analogous shapes:
(i) predominance of disklike topologies connected to high dissipation rates in the viscous sublayer
due to wall constraints, whereas (ii) data tends to be biased toward the axisymmetric expansion line
(rodlike topologies) as it separates from the wall. Related to the distributions of the HP hot wall,
the most probable topologies are found along the RS

∗ axis, corresponding to the two-dimensional
straining limit, which, for the case of large negative QS

∗ values, contributes to generating high levels
of dissipation. For the viscous sublayer region (first row), it is, however, important to highlight the
significant difference (roughly 3–5×) in magnitude of the HP hot wall with respect to the reference
LP and HP cold wall cases. Concentrating in the buffer layer (second row), the most probable
flow motions do not present any particular dominant trend as both axisymmetric contraction and
expansion lines contain similar amounts of data, which is typically referred to as biaxial strain.
Consequently, the high levels of dissipation observed near the HP hot wall, in addition to the large
density variations across the pseudoboiling region mostly contained within the buffer layer of this
wall, are probably responsible for modifying the standard topologies from axisymmetric expansion
toward biaxial strain. Finally, the distributions corresponding to the log-law region (third row) are
similar to the canonical LP distributions, where data is biased toward the axisymmetric expansion
lines following convergent trajectories.

The examination of the small-scale topologies culminates by studying the ratio between the
second invariant of the rate-of-strain and rate-of-rotation tensors depicted in Fig 12. Starting with
the viscous sublayer (first row), it can be observed that neither strain nor rotation events dominate
as the distributions lay along the 45 line, which is the usual behavior for isothermal wall-bounded
turbulent flow. However, the maximum magnitudes for the HP hot wall are 3× larger compared to
other two cases, suggesting the presence of more intense shear and rotation motions in that region.
These flow motions tend to create the structures observed by Blackburn et al. [41], and highlighted
by Soria et al. [39], known as vortex sheets. Throughout this region, as it will be characterized
in Sec. IV E, vorticity values are the highest resulting in large mixing rates. This high level of
vorticity is attenuated in the buffer layer (second row), which is connected to lower values of
dissipation. In addition, the small skewness along the QW

∗ axis suggests a slight predominance
of rotationlike motions over shear-related topologies. However, despite the fact that the distribution
is evenly balanced between both axes in the HP case, the more probable events in the logarithmic
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FIG. 11. JPDFs of the second and third rate-of-strain tensor invariants for the small scales of the flow.
Columns correspond to: HP cold wall (first), HP hot wall (second), and LP (third). Rows correspond to: viscous
sublayer (first), buffer layer (second), and log-law region (third).

layer are slightly skewed toward rotation motions. Moreover, it is important to highlight that vortex
sheet structures become less dominant away from walls.

As certain differences have been observed between (especially) the HP hot wall and the reference
LP case, flow topologies are further characterized by focusing at spatial lengths comparable to the
density gradient scale estimated in Sec. IV B. The selection of this scale, as discussed in Sec. IV E, is
based on the fact that density variations are notably responsible, through a baroclinic-type instability,
for modifying the flow structures with respect to the standard isothermal LP case. In this regard,
JPDFs results of flow topologies at this larger scale are depicted in Fig. 13 for the center region
contained between y+

bw ≈ 30 and y+
tw ≈ 55. Two main observations can be inferred from the figure.

First, as shown in Figs. 13(a)–13(d) and analogously to the small scales, similar distributions are
observed for the HP and LP cases for the second and third invariants of the velocity-gradient
and rate-of-strain tensors. Second, the distributions for the ratio between the second invariant of
the rate-of-strain and rate-of-rotation tensors depicted in Figs. 13(e) and 13(f), however, present
notably different shapes: roundlike for HP hot wall, and arrowedlike for LP. Regarding the arrowed
distribution, data is mostly concentrated along the 45 line, which highlights the predominance of
vortex sheets structures. These vortical-like motions are considered to be more dissipative and
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FIG. 12. JPDFs of the second rate-of-strain and rate-of-rotation tensor invariants for the small scales of the
flow. Columns correspond to: HP cold wall (first), HP hot wall (second), and LP (third). Rows correspond to:
viscous sublayer (first), buffer layer (second), and log-law region (third).

associated to larger enstrophy values, which form rollers as they develop in time. Thus, for the LP
case, the turbulent flow topologies behave similarly at the small and density-gradient scales since
similar distributions are observed. On the contrary, the rounder shapes close to the origin observed
for the HP hot wall case suggest a larger likelihood of finding vortex tube structures associated with
irrotational dissipation mechanism. These structures are typically less dissipative than vortex sheets,
and are connected to the high values of vortex stretching and baroclinic torque shown in Figs. 14(b)
and 14(c).

E. Vorticity transport decomposition

As previously introduced, to characterize the intrinsic flow mechanisms responsible for the
higher levels of flow fluctuations identified close to the hot wall of the HP system, which can be
linked to vorticity generation and distribution as discussed below, the vorticity transport equation is
considered as follows:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u − ω(∇ · u) + 1

ρ2
∇ρ × ∇P + ∇ ×

(
1

ρ
∇ · τ

)
, (15)

054608-15



BAREA, MASCLANS, AND JOFRE

−1.0 −0.5 0.0 0.5 1.0
RA

�

−1.0

−0.5

0.0

0.5

1.0

Q
A

�

10−4

10−3

10−2

10−1

100

(a)

−1.0 −0.5 0.0 0.5 1.0
RA

�

−1.0

−0.5

0.0

0.5

1.0

Q
A

�

10−4

10−3

10−2

10−1

100

(b)

−1.0 −0.5 0.0 0.5 1.0
RS

�

−2.0

−1.5

−1.0

−0.5

0.0

Q
S

�

10−4

10−3

10−2

10−1

100

(c)

−1.0 −0.5 0.0 0.5 1.0
RS

�

−2.0

−1.5

−1.0

−0.5

0.0

Q
S

�

10−4

10−3

10−2

10−1

100

(d)

0.0 0.5 1.0 1.5 2.0
QW

�

0.0

0.5

1.0

1.5

2.0

−Q
S

�

10−4

10−3

10−2

10−1

100

(e)

0.0 0.5 1.0 1.5 2.0
QW

�

0.0

0.5

1.0

1.5

2.0

−Q
S

�

10−4

10−3

10−2

10−1

100

(f)

FIG. 13. JPDFs at the density gradient scale of the flow. Columns correspond to: HP (first), LP (second).
Rows correspond to: QA versus RA (first), QS versus RS (first), and −QS versus QW (third).

where ω = ∇ × u is the vorticity vector, Dω
Dt = ∂ω

∂t + (u · ∇)ω is the material derivative contain-
ing the temporal and advection terms, (ω · ∇)u − ω(∇ · u) is the vortex stretching mechanism,
(1/ρ2)∇ρ × ∇P is the baroclinic torque with ∇P resulting from the external force driving the
flow in the streamwise direction, and ∇ × ( 1

ρ
∇ · τ) is the dissipation of the viscous stresses. It is
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FIG. 14. Magnitude of the vorticity transport terms for the HP and LP cases: (a) material derivative,
(b) vortex stretching, (c) baroclinic torque, and (d) viscous diffusion; all terms are normalized by (uτ /δ)2.

important to note that the baroclinic torque term becomes important at the regions of the HP case
where density variations are large, i.e., across the pseudoboiling line. In those regions, the cross
product between the imposed pressure difference and density gradients results in the generation of
intense vortical motions that contribute to the destabilization of the flow and the subsequent increase
in turbulent fluctuations.

The total and decomposed terms of the vorticity transport equation normalized by (uτ /δ)2 are
shown in Fig. 14 for the HP and LP cases based on ensemble-averaged quantities of 10 snapshots at
different FTTs. Four principal observations can be inferred from the results. First, as it can be seen in
Fig. 14(a), the HP system (especially the hot wall) exhibits larger magnitudes of vorticity transport
compared to the reference LP case; viz. almost an order of magnitude larger for the hot wall in the
viscous sublayer and buffer layer. Second, for the HP and LP cases, the vortex stretching mechanism
quantified in Fig. 14(b) presents peak values in the buffer layer. However, this mechanism is more
intense for the hot wall of the HP system as it presents values that are roughly 5× larger than for
the LP case. This observation can be related to Fig. 12(b) where data is concentrated along the 45
line, which is indicative of a predominance of vortex sheets structures responsible for enhanced
dissipation; this result is reinforced by Fig. 11(b) in which the invariant QS

∗ presents significantly
larger negative values. Third, regarding the baroclinic torque for the HP case (which is negligible
for the isothermal LP system), Fig. 14(c) shows a difference of approximately 30× between the hot
and cold walls. This large difference is caused by the strongly localized density gradients found in
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the vicinity of the hot wall. In particular, due to angular momentum conservation, the baroclinic
torque generated increases the amount of flow rotation, which in turn enhances the importance of
vortex stretching mechanisms. Moreover, as observed in Fig. 13, the flow instabilities generated by
this baroclinic torque contribute also to the formation of vortex tubes of a size similar to the density
gradient scale. Finally (fourth observation), as a result of higher vorticity levels, the viscous stresses
depicted in Fig. 14(d) indicate that vorticity dissipation is almost an order of magnitude larger for
the hot wall of the HP system than for the reference LP case, which is indicative of the presence of
more intense turbulent motions in the former.

V. SUMMARY AND CONCLUSIONS

This work has aimed at studying the multiscale flow topologies of microconfined high-pressure
transcritical turbulent channel flow based on velocity-field tensor invariants. In this regard, first,
the principal hydrodynamic scales of the problem have been estimated based on scaling arguments.
Second, the main features of the turbulent flow have been characterized by means of first- and
second-order flow statistics. Third, the invariants of the velocity-gradient, rate-of-strain, and rate-of-
rotation tensors have been analyzed at different length scales through the distributions represented
by JPDFs. Finally, the unique features of the turbulent flow have been comprehensively studied by
leveraging the insight provided by the variable-density vorticity transport equation.

The computational results obtained in this work have revealed distinct flow topologies for the
HP system with respect to the LP reference case, especially in the hot region where the largest
density gradients are mostly found. In particular, for the hot wall of the HP case, the second and
third invariants of the velocity-gradient tensor present topologies typical of the outer layer near the
wall region, whereas the rate-of-strain tensor reveals the presence of higher dissipation rates, which
are 3 − 5× larger in the viscous sublayer region. Additionally, the second invariant of the rate-of-
rotation and rate-of-strain tensors indicates the formation of more powerful dissipative flow motions
near the wall. Finally, as a result of the strong localized density variations across the pseudoboiling
region, the flow topologies at spatial lengths comparable to the density gradient scale tend to favor
vortex tube structures over vortex sheets. As identified from analyzing the terms composing the
vorticity transport equation, this result is a consequence of the large values of baroclinic torque in
that region, which are responsible for increasing the amount of vorticity in the system.

As future research, it would be very valuable to: (i) investigate how the multiscale flow topolo-
gies are impacted when varying the operating conditions of the system in terms of pressure and
temperature, (ii) further study and characterize flow statistics in the vicinity of walls where the
transformation models need to be adapted for high-pressure transcritical systems, (iii) expand the
study to different flow configurations (e.g., boundary and mixing layers, duct flows), and (iv)
analyze the kinematics of the flow topologies by considering their time evolution. Finally, once
a comprehensive understanding of the flow topologies is obtained across various conditions, the
ultimate step would be to develop RANS and LES models to facilitate the computational design
and optimization of microconfined turbulent flow systems operating at high-pressure transcritical
regimes.
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