
PHYSICAL REVIEW FLUIDS 8, 054605 (2023)
Editors’ Suggestion

Hidden scale invariance of turbulence in a shell model:
From forcing to dissipation scales

Alexei A. Mailybaev *

Instituto de Matemática Pura e Aplicada—IMPA, Rio de Janeiro, Brazil

(Received 2 February 2023; accepted 11 April 2023; published 10 May 2023)

Intermittency is one of the central obstacles for understanding small-scale dynamics in
the fully developed hydrodynamic turbulence. The modern approach is largely based on the
multifractal theory of Parisi and Frisch which is, however, phenomenological. It was shown
recently that the intermittency can be related to the hidden scale invariance. The latter is a
statistical scaling symmetry unbroken in a rescaled (projected) formulation of equations of
motion. In the present paper, we consider a shell model of turbulence and describe how the
hidden symmetry manifests itself through all scales, both in the inertial interval and in the
transition to forcing and dissipation ranges. In the inertial interval, we derive anomalous
scaling laws from the hidden symmetry. Then we show how a complicated form of the
dissipation range is controlled by intermittent rescaled Reynolds numbers within a large
range of dissipation scales. This dissipative intermittency can be removed by using a
special class of dissipation models. For such models, the hidden scale invariance is restored
both in the inertial interval and the dissipation range. Overall, the presented approach
deduces the multifractal theory and some of its basic conclusions from the hidden scaling
symmetry of equations of motion.

DOI: 10.1103/PhysRevFluids.8.054605

I. INTRODUCTION

In stationary statistics of fully developed hydrodynamic turbulence, one traditionally distin-
guishes the forcing range of large scales, the dissipation range of very small scales, and the inertial
interval in between [1]. At scales of the inertial interval, both forcing and viscous forces are
negligible. Description of these regions relies on the scale invariance of the underlying Navier-
Stokes equations. In the absence of (or far from) physical boundaries, these symmetries are
formulated as

t, x, u, ν �→ λ1−ht, λx, λhu, λ1+hν, (1)

where u(x, t ) is a velocity field and ν is a kinematic viscosity. Relation Eq. (1) defines a family
of space-time scaling symmetries depending on two real parameters, λ > 0 and h ∈ R. One of the
major obstacles for the theory of turbulence is that all scaling symmetries Eq. (1) are broken in the
stationary statistics, contrary to the initial self-similarity hypothesis of Kolmogorov’s 1941 (K41)
theory relying on h = 1/3 [1,2].

The observed statistics in the inertial interval shows that moments of velocity fluctuations δu�

depend on a scale � in the form of power laws 〈δup
� 〉 ∝ �ζp . Scaling exponents ζp in these relations

depend nonlinearly on p, which is the manifestation of small-scale intermittency. Such (so-called
anomalous) scaling also affects a large part of the dissipation range [3]. The observed intermittency

*alexei@impa.br

2469-990X/2023/8(5)/054605(32) 054605-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1437-6204
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.054605&domain=pdf&date_stamp=2023-05-10
https://doi.org/10.1103/PhysRevFluids.8.054605


ALEXEI A. MAILYBAEV

is successfully described by the Parisi-Frisch multifractal theory [1,4] associating different fractal
dimensions to different exponents h in Eq. (1). This theory, however, is phenomenological, i.e., it
does not follow from equations of motion.

Until now, three-dimensional (3D) incompressible Navier–Stokes system have not allowed
numerical simulations at very large Reynolds numbers; see, e.g., Ref. [5]. For this reason, much
attention is paid to simplified (toy) models as a playground for testing theoretical ideas. Shell models
[6–8] are a such class of models, which successfully describe intermittent properties of turbulence;
we refer to Refs. [9–13] for some related studies in this direction. In the present paper, we focus on
one of most popular shell models called the Sabra model [14].

It was shown recently that the anomalous scaling of structure functions can be generated
by Perron-Frobenius eigenmodes of the hidden scaling symmetry [15]. This symmetry refers
to equations of ideal fluid dynamics written for dynamically rescaled velocities and time. Geo-
metrically, the rescaling procedure is a projection in phase space, which enables the emergence
of new symmetries. Unlike the broken scaling symmetries Eq. (1), there is numerical evidence
that the hidden scale invariance is restored in the inertial interval both for the Navier-Stokes
system [16] and shell models [17]. The emerging hidden-symmetry formalism naturally unifies
the self-similarity ideas going back to Kolmogorov [9,11,18] with the multifractality of Parisi and
Frisch [4,19].

The present paper reports on further developments in this direction. First, we reveal some extra
details on scaling laws, including the relation of hidden symmetry with the anomalous dissipation
and multifractal spectrum. Our central goal, however, is the analysis of the transition between the
inertial interval and the dissipation (or forcing) range. We argue that this transition is controlled
by the hidden-symmetric state and its stability. For example, a transition to the forcing range is
governed by an exponentially decaying mode. The situation is very different in the dissipation
range because viscous terms in the rescaled formulation are intermittent. This leads to a gradual
breaking of the hidden symmetry within a large range of scales. Lastly, we show that the intermittent
dissipation is an artifact of a specific (viscous) dissipation term in the equations of motion. We
introduce a class of models with a viscous cutoff, in which the hidden symmetry can be extended
to all small scales, including the dissipative ones. As an application of this symmetry, we derive
a functional form of structure functions valid at all small scales, both in the inertial interval and
dissipation range.

Our general conclusion is that the concept of hidden symmetry provides a firm theoretical basis
for the small-scale analysis of fully developed turbulence. This approach reformulates (and validates
in this form) the original Kolmogorov’s ideas, in which the h = 1/3 scaling symmetry is replaced
by the hidden scale invariance.

We start with a description of the Sabra shell model and its rescaled version in Sec. II.
Section III defines and verifies the hidden scaling symmetry in the inertial interval and studies
its consequences for structure functions, energy flux, and large deviations. Section IV uses the
hidden symmetry for studying a transition from the forcing and dissipation ranges to the inertial
interval. Section V presents a class of viscous-cutoff shell models, which possess the extended form
of hidden scale invariance at dissipation scales. We conclude by discussing the obtained results
and their applicability to the Navier-Stokes system. Some technical derivations are gathered in the
Appendix.

II. SHELL MODEL AND ITS RESCALED REPRESENTATION

Shell models of turbulence mimic the Navier-Stokes flow using a geometric sequence of spatial
scales �n = 2−n�0, where �0 is an integral scale and n an integer shell number. Thus, large scales
correspond to shell numbers around zero, while small scales are given by large shell numbers. The
associated wave numbers are defined as kn = 1/�n = 2nk0. Velocity fluctuations δu(�n) at different
scales are represented by complex variables un ∈ C, which are called shell velocities. We denote by
u = (un)n∈Z the full (bi-infinite) state vector.

054605-2



HIDDEN SCALE INVARIANCE OF TURBULENCE IN A …

A. Shell model equations and scaling symmetries

We consider the constant forcing at the integral scale expressed via the boundary conditions

u0(t ) ≡ u0 > 0, un(t ) ≡ 0 for n < 0, (2)

where u0 is a real positive constant. The Sabra shell model [14] is formulated as

dun

dt
= k0Bn[u] − νk2

nun, n > 0, (3)

where Bn[u] is a quadratic form defined in the case of intershell ratio 2 as

Bn[u] = i2n

(
2un+2u∗

n+1 − un+1u∗
n−1

2
+ un−1un−2

4

)
, (4)

and ν � 0 is a viscosity parameter. The quadratic term in Eqs. (3) imitates the convective and
pressure terms of the Navier–Stokes system. It is designed such that the shell model possesses two
inviscid invariants, the energy E[u] = 1

2

∑
n |un|2 and helicity H[u] = ∑

n(−1)nkn|un|2, analogous
to the invariants in 3D ideal flows [14].

The dimensionless Reynolds number is defined as R = u0�0/ν. In this paper, we describe the
fully developed turbulent state, i.e., the stationary (long-time) statistics for very large Reynolds
numbers. By saying very large we mean that both R and its logarithm are large. We remark that the
limit R → ∞ is often studied as the limit of small viscosity ν → 0 with fixed �0 and u0.

One can see that Eqs. (3) and (4) are invariant with respect to space-time scalings of the form

t, un, ν �→ 21−ht, 2hun+1, 21+hν. (5)

Here the exponent h ∈ R defines an arbitrary factor 21−h for time scaling, and the shift of shell
numbers mimics the space scaling because �n+1 = �n/2. Hence, transformations Eqs. (5) generate
a symmetry group of space-time scalings (discrete in space and continuous in time), which is anal-
ogous to space-time scaling symmetries Eq. (1) of the Navier–Stokes equations. These symmetries
are broken at the integral scale �0 by the boundary conditions Eqs. (2).

B. Rescaled velocities and time

The theory we develop in this paper is based on the hidden scaling symmetry. This symmetry is
different from and weaker than symmetries Eqs. (5), i.e., it can be restored in a statistical sense even
when all symmetries Eqs. (5) are broken. Such a symmetry emerges when equations of motion are
written in terms of rescaled (projected) variables as we describe below.

Let us fix some reference shell number m � 0. We define a corresponding state-dependent
velocity amplitude Am[u] and a temporal scale (turnover time) Tm[u] as

Am[u] =
√∑

j�0

α j |um− j |2, Tm[u] = �m

Am[u]
. (6)

In this expression, the role of the prefactors α j is to suppress the contribution from distant scales
(much larger than �m) and also ensure that the amplitude is strictly positive. As we show in Sec. III G,
for all our purposes it is enough to choose 0 < α < 0.37. We use α = 1/8 in the numerical
simulations.

We now normalize all variables with respect to the reference shell m; see Eqs. (6). This yields
the rescaled velocities U (m)

N as functions of the intrinsic time τ (m) defined implicitly as

U (m)
N = um+N

Am[u]
, dτ (m) = dt

Tm[u]
, (7)

with the initial time τ (m) = 0 corresponding to t = 0. We denote by U (m) = (U (m)
N )N∈Z the full

(bi-infinite) rescaled state.
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For m = 0 and boundary conditions Eqs. (2), we find Am[u] = u0 and the rescaled variables
reduce to the usual dimensionless form U (0)

N = uN/u0 and τ (0) = tu0/�0. Expressions (6) and (7)
considered for m + 1 yield

Am+1[u] =
√

|um+1|2 +
∑
j�1

α j |um+1− j |2 =
√

|um+1|2 + αA2
m[u] = Am[u]

√
α + ∣∣U (m)

1

∣∣2
(8)

and, as a consequence, the expressions

U (m+1)
N = U (m)

N+1√
α + ∣∣U (m)

1

∣∣2
, dτ (m+1) = 2

√
α + ∣∣U (m)

1

∣∣2
dτ (m) (9)

relating the rescaled variables for different reference shells.
One can check using Eqs. (6) and (7) that the rescaled velocities satisfy the identity

A0[U (m)] =
√∑

j�0

α j
∣∣U (m)

− j

∣∣2 = 1. (10)

Hence, transformation Eqs. (7) for velocity variables can be seen as a projection onto the hypersur-
face Eq. (10); see Ref. [15] for a general theory of such projections, which are related to the time
scaling. In particular, multiplying original velocities u by any positive factor leaves the rescaled
velocities U (m) intact. Thus, the rescaling is not invertible: one cannot express u in terms of U (m)

alone.
We remark that a specific choice of Am[u] in Eq. (6) is not particularly important. In fact, one

can write an equivalent formulation of hidden symmetry for a large class of positive, homogeneous
and scale invariant expressions for Am[u]; see Ref. [15] for more details.

C. Rescaled equations

Performing the transformation Eqs. (7), the shell model Eqs. (3) take the form (see Refs. [19,20]
and Appendix 1 for derivations)

dU (m)
N

dτ (m)
= BN [U (m)] − U (m)

N

m−1∑
j=0

α jRe
(
U (m)∗

− j B− j[U
(m)]

)

− UN

Rm[u]

(
4N −

m−1∑
j=0

α j4− j |U− j |2
)

, N > −m. (11)

Here Re(·) denotes the real part, quadratic terms BN [U ] are given by Eq. (4), and we introduced the
local Reynolds number as

Rm[u] = Am[u]�m

ν
. (12)

Analogous transformation of boundary conditions Eqs. (2) yields (see Appendix 1)

U (m)
−m =

√√√√α−m −
m−1∑
j=0

α j−m
∣∣U (m)

− j

∣∣2
, U (m)

N = 0 for N < −m. (13)

Equations (11)–(13) define a rescaled system for the velocities U (m)
N as functions of τ (m). Notice

that Rm[u] is not expressed in terms of U (m), i.e., viscous terms of the rescaled system are not
expressed in terms of rescaled variables.
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III. INTERMITTENCY IN THE INERTIAL INTERVAL

In a classical description of fully developed turbulence, the forcing is limited to large scales
of order �0 (the forcing range), while the viscous effects become considerable only at very small
scales (the dissipation range) [1]. The scales in between form the so-called inertial interval, where
both forcing and viscous effects can be neglected. In this section, we establish the hidden scale
invariance in the inertial interval and show that the phenomenon of intermittency is a consequence
of this new symmetry. Thus, we naturally identify the inertial interval with scales at which the
hidden symmetry is restored in a statistical sense. Then, boundary conditions and viscous terms
break the hidden symmetry at scales of the forcing and dissipation ranges. The precise extent of
the inertial interval is derived later in Sec. IV from the analysis of hidden-symmetry breaking. We
anticipate this result here and define the scales �n of inertial interval as

R− 1
1+hmax � �n

�0
� 1, (14)

where the exponent 1/(1 + hmax) ≈ 0.58 corresponds to the maximum Hölder exponent hmax of a
hidden-symmetric state.

A. Hidden scale invariance

In the present section, we assume that all shell numbers under consideration belong to the inertial
interval. Therefore, we ignore both viscous and forcing (boundary) effects in system Eqs. (2)–(4).
We refer to the resulting system of equations as the ideal shell model, which takes the form

dun

dt
= k0Bn[u], n ∈ Z. (15)

This system imitates the Euler equations for ideal fluid. Its scaling symmetries have the form

t, un �→ 21−ht, 2hun+1 (16)

for any h ∈ R, which follow from Eqs. (5), ignoring the relation for viscosity.
Let us transform system Eqs. (15) to equations for rescaled variables Eqs. (7). This yields

dUN

dτ
= BN [U ] − UN

∑
j�0

α jRe(U ∗
− jB− j[U ]), N ∈ Z, (17)

which follows from Eqs. (11) after dropping the viscous terms and the boundary (large-scale) limit
in the sums. Here we also (temporarily) dropped the superscript (m), thereby stressing that the
rescaled ideal system Eqs. (17) does not depend on a choice of the reference shell. Hence, this
system has a symmetry corresponding to a shift of the reference shell:

m �→ m + 1. (18)

Explicit form of this symmetry follows from relations Eqs. (9) as

U, τ �→ Û , τ̂ , (19)

where the new rescaled state Û = (ÛN )N∈Z and time τ̂ are defined as

ÛN = UN+1√
α + |U1|2

, d τ̂ = 2
√

α + |U1|2 dτ. (20)

In Appendix 2, we show explicitly that system Eqs. (17) is invariant with respect to the transforma-
tion Eqs. (19) and (20). This is what we call the hidden scaling symmetry.

The important property of transformation Eqs. (19) and (20) is that it defines a statistical
symmetry [15]. Statistical properties of the rescaled system are computed with the rescaled time
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τ , and they can be tested using averaged observables (test functions) ϕ(U ) as

〈ϕ(U )〉τ = lim
T →∞

1

T

∫ T

0
ϕ(U (τ )) dτ =

∫
ϕ(U ) dμ(U ). (21)

The last expression contains a probability measure dμ(U ) of the statistically stationary state. The
hidden symmetry transformation Eqs. (19) and (20) changes the statistics, i.e., transforms the
stationary probability measure μ �→ μ̂. Denoting the state transformation in Eq. (19) as Û = G(U ),
the new measure is expressed using the standard dynamical system analysis [21] as

μ̂ = G
μ̄, dμ̄(U ) =
√

α + |U1|2
〈
√

α + |U1|2〉μ
dμ(U ). (22)

Here the pushforward in the first expression corresponds to the change of state, while the second
expression reflects the change of time; see Ref. [15] for more details and precise mathematical
formulations. We say that the hidden symmetry is restored in the statistical sense if the probability
measure remains invariant under the hidden symmetry transformation. By construction, such prop-
erty implies the statistical self-similarity: statistics of the rescaled state U (m) with respect to time
τ (m) does not depend on the reference shell m.

Transformation Eqs. (19) and (20) does not depend on the parameter h and, therefore, it is not
equivalent to any of the original scaling symmetries Eqs. (16). In particular, the hidden symmetry
may be restored for a statistically stationary state even when all original scaling symmetries Eq. (16)
are broken. We refer to Ref. [17] for a general theory and Ref. [22] for an analytic example.
Numerical simulations of Refs. [17,19] and our results below strongly support the conjecture that
the hidden symmetry is restored for the statistics of rescaled variables within the inertial interval.
From now on, we assume this property and analyze its consequences for the turbulent dynamics.

B. Universality of Kolmogorov multipliers

Let us return to use the superscript (m) for the rescaled variables. In this subsection, we consider
the so-called Kolmogorov multipliers inspired by Kolmogorov’s ideas of 1962 [18]. For a shell
model, these multipliers were defined as the ratios |un/un−1| in Refs. [9,11]. Numerical studies
reported in these works suggested that single-time statistics of multipliers is independent of the
shell number n in the inertial interval, and this universality motivated the first formulation of hidden
symmetry [17]. Using definition Eqs. (7), multipliers are expressed in terms of the rescaled variables
as

∣∣∣∣ un

un−1

∣∣∣∣ =
∣∣∣∣∣ U (m)

N

U (m)
N−1

∣∣∣∣∣, n = m + N. (23)

As a consequence of the statistical hidden symmetry, the statistics of ratios |U (m)
N /U (m)

N−1| considered
as functions of τ (m) do not depend on the reference shell m. Using this self-similarity property, one
can show the universality of single-time (but not multitime) statistics of multipliers as functions of
the original time t [16].

For our purposes, we introduce a generalized version of Kolmogorov multipliers as ratios of
velocity amplitudes: An[u]/An−1[u]. This definition has several advantages compared to Eq. (23),
e.g., avoiding pathologies caused by a vanishing denominator. Taking n = m + N , we express the
generalized multiplier in terms of rescaled velocities Eqs. (7) as (see Appendix 3)

An[u]

An−1[u]
= XN [U (m)], n = m + N, (24)
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FIG. 1. (a) Collapse of PDFs for the multipliers x0 = X0[U (m)] computed for the shells m = 7, . . . , 12 from
the middle of inertial interval; the inset shows the same graphs with a logarithmic vertical scale. (b) Collapse
of level curves for the joint two-time PDF of the multipliers x0 = X0[U (m)(τ (m) )] and x′

1 = X1[U (m)(τ (m) + 1)]
for m = 7, . . . , 12. The results use simulations with R = 1010 and T = 104. For convenience, we subtracted
the minimum value

√
α in multiplier axes.

where the functions XN [U ] are defined as

XN [U ] =
√

α + α|UN |2∑
j�1 α j |UN− j |2 . (25)

Note that all XN [U ] � √
α.

We verify the statistical hidden scale invariance of multipliers Eqs. (24) numerically using a
long-time simulation of shell model Eqs. (2)–(4) with R = 1010; see Appendix 4 for details of
numerical simulations. Figure 1(a) shows an accurate collapse of probability density functions
(PDFs) of the multiplier x0 = X0[U (m)], where the shells m = 7, . . . , 12 are chosen from the middle
of inertial interval (14). Figure 1(b) shows a similar collapse for two-time joint PDFs of the
multipliers x0 = X0[U (m)(τ (m) )] and x′

1 = X1[U (m)(τ (m) + 1)] taken at the rescaled-time interval
�τ (m) = 1. We stress that the use of rescaled time τ (m) is crucial for the universality of multitime
statistics. Such universality does not hold for multipliers as functions of the original time t .

C. Structure functions and scaling laws

Structure functions are traditional observables for the analysis of intermittency in fully developed
turbulence [1]. For a shell model, structure functions are usually defined as time-averaged velocity
moments, 〈|un|p〉t for p ∈ R. These averages, however, diverge for p � −2. In this subsection, we
consider the moments of velocity amplitudes Am[u] given by Eqs. (6), which do not diverge. Other
formulations are considered in Sec. III E.

Let us introduce the structure function as

Sp(�m) = 〈
Ap

m[u]
〉
t , p ∈ R, (26)

where 〈·〉t denotes an average with respect to time t � 0. Numerical tests suggest that these
averages do not depend on (generic) initial conditions at t = 0. Furthermore, the structure functions
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FIG. 2. (a) Logarithms of structure functions Sp(�m ) = 〈Ap
m[u]〉t for odd orders p = −7, −5, . . . , 15. Bold

red lines show the power-law dependence Sp(�m ) ∝ �
ζp
m in the inertial interval. The gray region corresponds

to the intermittent dissipation range Eq. (74). Red circles mark the p-dependent cutoff scales Eq. (76).
(b) Anomalous exponents ζp computed in the interval −10 � p � 18 with the step �p = 0.2. The shaded
area indicates error bounds, and the blue line corresponds to the K41 linear dependence p/3. Dashed lines
indicate the slopes hmax and hmin at large negative and positive p. The results use simulations with R = 1010

and T = 5 × 104.

demonstrate accurate power-law scalings

Sp(�m) ∝ �
ζp
m (27)

in the inertial interval for both positive and negative orders p as shown in Fig. 2(a). We remark
that using the proper definition Eq. (14) of the inertial interval increases the accuracy of measured
exponents ζp, as we explain later in Sec. IV B. The nonlinear dependence of exponents on p shown
in Fig. 2(b) is a distinctive feature of intermittency [1,6,14]. This property implies that all original
scaling symmetries Eqs. (16) are broken in the stationary statistics. In particular, intermittency
breaks the K41 prediction ζ K41

p = p/3. For this reason, exponents ζp are called anomalous.

D. Derivation of anomalous exponents from the hidden symmetry

Following the derivations presented earlier in Refs. [15,19], we now demonstrate that the anoma-
lous power-law scaling of structure functions Eq. (27) follows from the hidden scale invariance. As
the first step, we express structure functions in terms of multipliers. Recalling our definition of
multipliers Eqs. (24), we express the velocity amplitude as the product

Am[u] = u0

m−1∏
j=0

X− j[U
(m)], (28)

where we used A0[u] = u0 following from Eqs. (6) and (2). Changing from the original time average
〈·〉t to the average 〈·〉τ (m) with respect to rescaled time τ (m) � 0, one can express the structure
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function Eqs. (26) as (see Appendix 5 for derivation)

Sp(�m) = up
0

〈( ∏m−1
j=0 X− j[U (m)]

)p−1〉
τ (m)〈( ∏m−1

j=0 X− j[U (m)]
)−1〉

τ (m)

. (29)

Next we express time averages as integrals with respect to corresponding probability measures.
For this purpose, we use the subsripts � and − to denote the sequences

x� = (x0, x−1, x−2, . . .), x− = (x−1, x−2, . . .). (30)

Let dμ(m)(x�) be a probability measure describing the statistics of multipliers x� = X�[U (m)] as
functions of τ (m). Expressing the product

m−1∏
j=0

X− j[U
(m)] =

m−1∏
j=0

x− j (31)

and using the ergodicity assumption, one writes Eq. (29) in the form

Sp(�m) = up
0

∫ ( ∏m−1
j=0 x− j

)p−1
dμ(m)(x�)∫ ( ∏m−1

j=0 x− j
)−1

dμ(m)(x�)
. (32)

For further analysis, it is convenient to write this expression as

Sp(�m) = up
0

∫
dμ(m)

p , (33)

where dμ(m)
p is a positive (generally not a probability) measure defined as

dμ(m)
p (x�) = 1

cm

⎛
⎝m−1∏

j=0

x− j

⎞
⎠

p−1

dμ(m)(x�), cm =
∫ ⎛

⎝m−1∏
j=0

x− j

⎞
⎠

−1

dμ(m)(x�). (34)

Our goal now is to relate the measures dμ(m)
p for different m. Let p(m)(x1|x�) be a conditional

probability density of x1 = X (m)
1 [U (m)] given the values of multipliers x� = X�[U (m)]. Then, one

can express the probability measure dμ(m+1)
p (x�) for the multipliers x� = X�[U (m+1)] as (see

Appendix 5 for the derivation)

dμ(m+1)
p (x�) = xp

0 p(m)(x0|x−) dx0 dμ(m)
p (x−). (35)

Here μ(m)
p (x−) denotes the image of measure μ(m)

p (x�) by the change (shift) of variables x� =
(x0, x−1, . . .) �→ x− = (x−1, x−2, . . .). It is convenient to introduce a linear operator L(m)

p [dμ] acting
in the space of measures dμ(x�) as

dμ′ = L(m)
p [dμ], dμ′(x�) = xp

0 p(m)(x0|x−) dx0 dμ(x−). (36)

Then, Eq. (35) takes the compact form

dμ(m+1)
p = L(m)

p

[
dμ(m)

p

]
. (37)

Iterating this formula yields

dμ(m)
p = L(m−1)

p ◦ L(m−2)
p ◦ · · · ◦ L(1)

p

[
dμ(1)

p

]
. (38)

So far, the derivations were general. Now we use the property of hidden scale invariance. It
implies that the statistics of multipliers in the inertial range does not depend on the reference shell
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FIG. 3. Compensated structure functions �
−ζp
m Sp plotted as functions of the shell number m for p =

−1, 2, 5. These graphs confirm that the prefactors Cp in Eqs. (43) are constant in the inertial interval (indicated
by bold red lines), but they change in the intermittent dissipation range (gray region). Red circles mark the
p-dependent cutoff scales Eq. (76). The results use simulations with R = 1010 and T = 5 × 104.

m. In particular, this independence refers to the conditional probability density p(m) and, hence, to
the linear operator L(m)

p as

p(m)(x1|x�) ≈ ρ(x1|x�), L(m)
p ≈ p. (39)

Here ρ(x1|x�) is the hidden-symmetric conditional density and p is the corresponding operator
expressed by Eq. (36) as

dμ′ = p[dμ], dμ′(x�) = xp
0 ρ(x0|x−) dx0 dμ(x−). (40)

According to numerically studies of Refs. [9,11,17], multipliers at distant shells become statistically
independent (correlations decay exponentially at distant shell numbers). Hence, both the density
ρ(x1|x�) and the operator p can be approximated using a truncation of the sequence x� to a finite
number of adjacent multipliers [19].

For the final step, we notice that the linear operator p is positive (mapping positive measures
to positive measures). Hence, its spectral radius is given by a real positive (Perron-Frobenius)
eigenvalue λp satisfying the eigenvalue problem [15,23,24]:

p[dνp] = λp dνp. (41)

The eigenvector dνp(x�) is a positive measure defined up to a positive factor, which we normalize
by the condition

∫
dνp = 1. Under the nondegeneracy assumption (referring to strict positivity and

compactness [23], Sec. 19.5), the Perron-Frobenius eigenvalue λp is larger than absolute values of
all remaining eigenvalues. Hence, measures Eq. (38) in the inertial interval (for large m) have the
asymptotic form

dμ(m)
p ≈ Cpλ

m
p dνp, (42)

where the coefficient Cp does not depend on m. Substituting expression Eq. (42) into Eq. (33) with
�m = 2−m�0, we recover the asymptotic power law for the structure function as

Sp(�m) ≈ Cpup
0

(
�m

�0

)ζp

, ζp = − log2 λp. (43)

We derived the scaling exponents ζp in terms of the Perron-Frobenius eigenvalues λp. Generally,
this relation yields the exponents depending nonlinearly on the order p, i.e., the intermittency
[15,22]. Also, our derivation shows that the scaling laws are asymptotically precise, i.e., the
prefactors Cp are constants independent of m. This property is verified numerically in Fig. 3.
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FIG. 4. (a)–(e) Marginal densities fp(x0) from Eq. (44) for p = −2, −1, 2, 4, and 6. Each panel shows the
collapse of six densities for reference shells m = 8, . . . , 13. Insets show the divergence of the same densities
if anomalous exponents ζp in Eq. (45) are replaced by the K41 values p/3. (f) Collapse of marginal densities
fψ (ψ ) given by Eq. (56) for m = 8, . . . , 13. The results use simulations with R = 1010 and T = 5 × 104.

According to Eq. (38), prefactors Cp are determined by the statistics at small m. Hence, they depend
on the forcing conditions.

We have already confirmed numerically the hidden scale invariance for multipliers, which
determine the universal linear operator Eqs. (40). It remains to verify relations Eqs. (42) and (43)
given by the Perron-Frobenius eigenmode Eq. (41). For this purpose, recalling that x� = (x0, x−),
we compute the marginal densities

fp(x0) =
∫

dνp(x�) dx−, (44)

where the measure dνp is approximated from Eqs. (42) and (43) as

dνp ≈ 1

Cp

(
�m

�0

)−ζp

dμ(m)
p . (45)

Equations (41)–(43) are verified by showing that the densities fp(x0) are independent of m in the
inertial interval for any fixed order p. The densities fp(x0) are computed numerically as explained
in Appendix 4 and the results are presented in Figs. 4(a)–4(e) for p = −2,−1, 2, 4, 6. Each panel
shows six graphs for the shells m = 8, . . . , 13 in the middle of inertial interval. The accurate
collapse of these graphs provides the strong numerical support to our theory; see also Ref. [19]
for other numerical tests. To emphasize the high quality of the collapse, the insets of the same
panels show how the densities diverge if ζp in Eq. (45) are replaced by the K41 exponents p/3.
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E. Scaling of generalized structure functions

Here we generalize the previous results to a larger class of observables. Consider a sequence of
real-valued (not necessarily positive) functions �m[u] for integer numbers m ∈ Z. We assume that
these functions have the property of positive homogeneity of a given degree p,

�m[au] = ap�m[u], a > 0, (46)

and satisfy the condition of scale invariance:

�m[u] = �m−1[u′], u′ = (u′
n)n∈Z = (un+1)n∈Z. (47)

The generalized structure function of order p is defined as the time-averaged value:

Sψ (�m) = 〈�m[u]〉t . (48)

Examples include both the standard structure functions 〈|um|p〉t for �m[u] = |um|p and the structure
functions Eqs. (26) for �m[u] = Ap

m[u]. Another important example considered in the next Sec. III F
is related to a flux of energy.

We now derive the asymptotic power law for the generalized structure function using the results
of the previous section. The transformation of Eq. (48) to rescaled variables yields the expression
(see Appendix 5)

Sψ (�m) = up
0

∫
ψ p(m)

ψ (ψ |x�) dψ dμ(m)
p (x�), (49)

where the measure dμ(m)
p (x�) is defined in Eqs. (34) and p(m)

ψ (ψ |x�) denotes a conditional proba-
bility density for the variable ψ = �0[U (m)] given the values of multipliers x� = X�[U (m)]. The
hidden scale invariance implies that the densities

p(m)
ψ (ψ |x�) ≈ ρψ (ψ |x�) (50)

do not depend on the reference shell m within the inertial interval. Combining this property with
Eqs. (42), (43), and (49), yields

Sψ (�m) ≈ IψCpup
0

(
�m

�0

)ζp

, Iψ =
∫

ψρψ (ψ |x�) dψ dνp(x�), (51)

provided that the integral Iψ is finite and nonzero.
We remark that Eqs. (51) yields not only the scaling law but also a pre-factor, where both the

exponent ζp and the forcing-dependent coefficient Cp are the same for all generalized structure
functions of a given order p. We would like to stress the importance of the nondegeneracy condition,
0 < |Iψ | < ∞. For example, in the standard definition of structure functions, one takes �m[u] =
|um|p and Eqs. (51) yield 〈|um|p〉t ∝ �

ζp
m . This relation, however, does not hold for p � −2, since the

corresponding integral Iψ and structure function diverge. If Iψ = 0, then the power law in Eqs. (51)
vanishes. However, the asymptotic power-law scaling of Sψ (�m) may still exist: it can be related to
the next (after the Perron-Frobenius) leading mode of the linear operator p; see Eqs. (38) and (39).
This argument also applies if Cp = 0, which may occur for a special form of forcing.

As a final remark, let us mention integrated multi-time correlation functions considered in
[25–27]. We expect that our generalized characterization of scaling laws can further be extended
to such observables.

F. Hidden symmetry of anomalous dissipation

As another example of generalized structure function, let us consider a flux of energy. Multiply-
ing both sides of the inertial-interval Eqs. (15) by u∗

n and taking real part, after some elementary
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manipulations using Eq. (4), one derives the local energy balance

d

dt

|un|2
2

= �n − �n+1. (52)

Here �n is the energy flux from shell n − 1 to n given by

�n[u] = kn Im

(
un+1u∗

nu∗
n−1 + unu∗

n−1u∗
n−2

4

)
. (53)

One can see that �m[u] = �m[u]/km is a generalized structure function of order p = 3 satisfying
conditions Eqs. (46) and (47).

Using Eqs. (51) with p = 3, we obtain

〈�m[u]〉t = km〈�m[u]〉t ≈ IψC3
u3

0

�0

(
�m

�0

)ζ3−1

, (54)

where we expressed km = 1/�m. If IψC3 �= 0, then ζ3 = 1 is the only exponent compatible with the
condition 〈�m[u]〉t = 〈�m+1[u]〉t following from Eq. (52). This fact, well-known by the name of
dissipation anomaly [28], implies that the average flux of energy approaches an asymptotic value

〈�m[u]〉t ≈ IψC3u3
0

�0
(55)

in the inertial interval, which is independent of Reynolds number.
We verify the hidden symmetry property Eq. (50) numerically by considering the functions

fψ (ψ ) =
∫

ψρψ (ψ |x�) dν3(x�), (56)

where ρψ and dν3 are approximated, respectively, using p(m)
ψ and Eq. (45) with ζ3 = 1; see

Appendix 4 for more details. Figure 4(f) shows the functions fψ (ψ ) computed for different m.
The accurate collapse of these functions verifies our conclusions based on the hidden symmetry and
yields Iψ = ∫

fψ dψ ≈ 0.41. The latter provides a positive value to the energy flux Eq. (55).

G. Large deviation theory and multifractality

Our derivation of anomalous power laws for structure functions has much in common with the
large deviation theory for a Markov process [1,9,11]. The analogy becomes transparent if one takes
a logarithm of the multiplicative relation Eq. (28) divided by m. After elementary manipulations,
this yields

Wm = − 1

m
log2

Am[u]

u0
= w1 + w2 + · · · + wm

m
, (57)

where

wn = − log2 Xn−m[U (m)] = − log2
An[u]

An−1[u]
(58)

is a negative logarithm of the multiplier Eqs. (24). Considering w1, . . . ,wm as random variables,
one identifies Wn with their sample mean. The hidden symmetry assumption Eqs. (39) implies that
the probability of the next variable wm+1 conditioned on wm,wm−1, . . . does not depend on m. Also,
these variables become statistically independent at distant shells [9,11,19]. Hence, the sequence
w1,w2, . . . has properties of a generalized Markov chain. Notice, however, that the hidden scale
invariance has an intrinsic feature distinguishing it from a Markov chain: the change m �→ m + 1
must also be accompanied by the change of rescaled time, τ (m) �→ τ (m+1).

We now derive the Parisi-Frisch multifractal (phenomenological) theory of turbulence [1,4] as a
large deviation theory following from the hidden scale invariance. Indeed, combining Eq. (57) and
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the power-law scaling Eqs. (43) of structure functions Eqs. (26), one obtains〈
Ap

m[u]
〉
t

up
0

= 〈2−mpWm〉t ≈ 2−mζpCp. (59)

For convenience, we use here exponential functions with base 2 and recall that �m/�0 = 2−m.
The crucial property of velocity amplitudes Am[u] is that they define exponents ζp for all p ∈ R;
see Fig. 2. In this case, one can apply the Gärtner–Ellis theorem; see Ref. [29], Sec. 3.3.1 and
Appendix 6. This theorem yields the large deviation principle for large m formulated as the
probability

P(Wm ∈ [h, h + dh]) ≈ 2−mJ (h) dh. (60)

Here J (h) is the rate (Cramér) function defined as

J (h) = sup
p∈R

(ζp − ph). (61)

Since ζp is a concave function of p, relation Eq. (61) is solved implicitly as

h = dζp

d p
, J = ζp − p

dζp

d p
. (62)

The inverse of Eq. (61) reads (see Appendix 6)

ζp = inf
h∈R

(ph + J (h)). (63)

Using relations Eq. (57) and �m/�0 = 2−m, we express

Wm = h ⇒ Am[u] = u0

(
�m

�0

)h

. (64)

Then, the large deviation principle Eq. (60) is written (less formally) as

Am[u] ∼ u0

(
�m

�0

)h

with probability P ∼
(

�m

�0

)J (h)

. (65)

The multifractal theory follows if one identifies J (h) with a (fractal) codimension of a subset
corresponding to the scaling law Am[u] ∝ �h

m. Indeed, as in the multifractal model [1,4], one
represents the averaged moment of Am[u] in the form

〈
Ap

m[u]
〉
t ∼ up

0

∫ (
�m

�0

)ph+J (h)

dμ(h), (66)

where the exponents ph and J (h) are due to the velocity amplitude and probability in Eq. (65), and
dμ(h) measures a contribution of different h. Then, the power law 〈Ap

m[u]〉t ∝ �
ζp
m is given by the

smallest exponent ph + J (h) provided by Eq. (63).
Figure 5(a) shows graphs of expressions Eqs. (62) computed numerically using the exponents

from Figs. 2(b) and 5(b) presents the resulting function J (h). Error estimates shown in Fig. 5(a)
become large for large (negative and positive) orders p. We remark that these errors are not only due
to statistical fluctuations but are also due to oscillations emerging from the forcing and dissipation
regions; see Sec. IV. Even though large errors hinder the analysis of large orders, Fig. 2(b) suggests
that the asymptotic dependence of ζp is linear for large |p|. This implies that the exponents h
corresponding to finite rates J (h) have finite lower and upper limits. We estimate them numerically
as

hmin � h � hmax, hmin ≈ 0.173 ± 0.015, hmax ≈ 0.72 ± 0.06. (67)
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FIG. 5. (a) Scaling exponent h and fractal codimension J given by Eqs. (62) as functions of p. The
shaded area indicates error bounds. (b) The resulting function J (h). Circles correspond to integer values of
p = −6, . . . , 14. The results use simulations with R = 1010 and T = 5 × 104.

Using the exponent hmax in Eq. (65), one obtains the steepest decay of velocity amplitudes in the
inertial interval as

|um| ∼ Am[u] ∼ u0

(
�m

�0

)hmax

= u02−mhmax . (68)

It follows that the sums with respect to j, which appear in Eqs. (6) and other similar expressions,
converge exponentially in the inertial interval for any α < 4−hmax ≈ 0.37. Recall that our numerical
simulations use α = 1/8.

IV. BREAKING OF THE HIDDEN SYMMETRY BY DISSIPATION AND FORCING

In this section, we investigate how the hidden scale invariance is broken by the dissipation at
small scales and by the forcing at large scales. For this paper, we consider PDFs of multipliers
x0 = X0[U (m)] as observables at different reference shells m. Figure 6 presents these PDFs for large
forcing scales [Fig. 6(a)] and small dissipation scales [Fig. 6(b)] compared to the hidden-symmetric
PDF from the inertial interval. One can see the divergence of PDFs as the reference shell moves
away from the inertial interval. For a global picture, we present in Fig. 6(c) the L1 norm (integrated
absolute value) of a difference between the PDF at shell m and the hidden-symmetric PDF from
the inertial interval. One can see that this norm vanishes in the inertial interval featuring the
hidden-symmetric statistics. Below in this section, we analyze separately how the hidden symmetry
is broken in its left (forcing) and right (dissipation) sides.

A. Forcing range

It is known from numerical simulations that the large-scale statistics depends on forcing (given in
our case by the boundary conditions with parameters �0 and u0) but does not depend on viscosity for
very large Reynolds numbers. A similar conclusion follows for the rescaled formulation, in which
the boundary conditions take the form Eq. (13). Figure 7 confirms that PDFs of multipliers converge
as R → ∞. Figure 8(a) demonstrates another type of convergence: PDFs of multipliers approach
the hidden-symmetric form with increasing reference shell m. It follows from Fig. 8(b) presenting
the same graph in vertical logarithmic scale that the convergence is exponential in m in the region
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FIG. 6. Divergence of PDFs of multipliers x0 = X0[U (m)] from the hidden-symmetric form (red dotted line)
for shells in (a) forcing and (b) dissipation ranges. (c) L1 norm of a difference between the multiplier PDF at
shell m and the hidden-symmetric PDF. The results use simulations with R = 1010 and T = 104.
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FIG. 7. Collapse of PDFs of the multipliers x0 = X0[U (m)] for reference shells m = 1, 2, 3 in the forcing
range. Six curves in each panel correspond to simulations with R = 108, 109, 1010, and T = 104, as well as to
the viscous cutoff models with s = 20, 25, 30 considered in Sec. V.
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FIG. 8. L1 norm of the difference between PDFs of the multipliers x0 = X0[U (m)] at shells m = 1, . . . , 12
and the hidden-symmetric PDF: (a) linear and (b) logarithmic vertical scale. Solid lines correspond to R =
1010, and dashed lines to the viscous cutoff model with s = 30. The dotted gray line indicates an exponential
dependence.

2 � m � 8:

‖� PDF‖1 ∝ 2−ζF m ∝ �ζF
m , ζF ≈ 1.1. (69)

Relation Eq. (69) suggests a natural interpretation of the observed statistical properties in the
forcing range, namely, the exponential decay features a leading (slowest) mode with the Lyapunov
exponent −ζF in a transition from the boundary state at scale �0 to the stable hidden-symmetric state
at small scales �m � �0. Theoretical understanding of this transition requires a consistent stability
theory of the hidden-symmetric state, whose development would be an interesting direction for
further research.

Finally, let us consider the statistics of original shell velocities characterized by structure func-
tions Sp(�m) = 〈Ap

m[u]〉t . We showed in Sec. III D that the power law Eqs. (43) in the inertial interval
is a consequence of the two limits: convergence of the multiplier statistics to the hidden-symmetric
state Eqs. (39) and the subsequent convergence of the measures dμ(m)

p to the Perron–Frobenius state
Eq. (42). Therefore, the convergence of structure functions to power laws from the forcing side is a
complicated process, whose better understanding requires the stability theory already mentioned in
the previous paragraph. We visualize this convergence by plotting a discrepancy in the asymptotic
relation Eqs. (43) defined as �

−ζp
m Sp − Cp, where we used �0 = u0 = 1. Such graphs for p = 2, 3, 4

are presented in Fig. 9 together with the exponential mode (dotted line) from Fig. 8(b).

B. Intermittent dissipation range

The self-similarity of the inertial interval is manifested in the rescaled formulation Eqs. (11). Let
us now investigate the role of viscous dissipation in this system. It turns out that rescaled viscous
terms are neither localized at specific shells nor do they have a closed form in terms of rescaled
variables. The latter is because the intermittent Reynolds numbers Eq. (12) are proportional to
amplitudes Am[u]. The consequence is a complicated structure of the dissipation range, which we
now describe.

The rescaled formulation is designed by setting the reference shell m at a scale of interest. Then
the local statistics is described in terms of time τ (m) and variables U (m)

N , where the index N takes zero
or moderate values. The hidden self-similarity considered in Sec. III follows under the assumption
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FIG. 9. Deviations of structure functions from the power law in the forcing range for p = 2, 3, 4 in
logarithmic vertical scale. The dashed line shows the exponential mode ∝2−ζF m.

that the viscous term in Eqs. (11) is negligible, i.e., that the local Reynolds number

Rm[u] = Am[u]�m

ν
� 1 (70)

given by Eq. (12) is large. Using Eq. (65) of the large deviation principle in Eq. (70), we have

Rm[u] ∼ �mu0

ν

(
�m

�0

)h

= R

(
�m

�0

)1+h

with probability P ∼
(

�m

�0

)J (h)

, (71)

where R = �0u0/ν. Recall that the exponent h varies in a finite interval Eqs. (67). Hence, combining
Eqs. (70) and (71), we find that dissipation effects are negligible at all times for the scales

�m

�0
� R−1/(1+hmax ), (72)

with 1/(1 + hmax) ≈ 0.58. Similarly, dissipation effects are dominant at all times for very small
scales

�m

�0
� R−1/(1+hmin ), (73)

with 1/(1 + hmin) ≈ 0.85.
Let us consider the range

R− 1
1+hmin � �m

�0
� R− 1

1+hmax , (74)

which separates the larger scales Eq. (72) with negligible dissipation and very small scales Eq. (72)
with dominant dissipation. At scales of this range, local Reynolds numbers Eq. (71) are either
small or large with certain probabilities, i.e., the viscous dissipation acts intermittently [3]. For
this reason, we will refer to scales Eq. (74) as the intermittent dissipation range. A consequence
of this dissipative intermittency is the gradual breaking of the hidden symmetry within the whole
range Eq. (74). This is indeed confirmed in Fig. 6(c) for the statistics of multipliers x0 = X0[U (m)],
which shows that a difference between the multiplier PDF and the hidden-symmetric PDF grows
continuously from zero to a constant value in the gray region (74). The constant attained at small
scales Eq. (73) is equal to 2 because the multiplier distribution approaches the Dirac delta with
x0 ≈ 0. Figure 10 shows the same graph but in vertical logarithmic scale. One can notice from both
Figs. 6(c) and 10 that the deviations from the hidden-symmetric state are only moderately small
at scales �m/�0 ∼ R−1/(1+hmax ) (m ≈ 19). The ultimate relaxation to the hidden-symmetric statistics
requires a few extra shells, e.g., 14 � m � 18 in Fig. 10.
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FIG. 10. Difference between the PDF of multiplier x0 = X0[U (m)] at shell m and the hidden-symmetric
PDF presented in vertical logarithmic scale. The results use a simulation with R = 1010 and T = 104.

Our analysis suggests a natural definition of the inertial interval: it is a range of scales at which
the hidden scale invariance is restored in a statistical sense. At small scales, the hidden symmetry
condition is given by Eq. (72). Thus, we identify the inertial interval with the scales Eq. (14), as
stated in the beginning of Sec. III.

C. Structure functions in the intermittent dissipation range

Now let us study viscous effects in the statistics of original velocities, which we observe using
the structure functions Sp(�m). Here our analysis resembles the phenomenological description of the
intermediate dissipation range introduced in Refs. [3,30]. We remark that though the concepts of
intermittent and intermediate dissipation ranges are strongly related, the first refers to the breaking
of hidden symmetry while the latter refers to (and depends on) specific order p of the structure
function.

Following Ref. [3], we observe that a dominant contribution to the structure function Eq. (66) of
a given order p comes from amplitude fluctuations Eq. (65) of the form

Am[u] ∼ u0

(
�m

�0

)H (p)

, H (p) = dζp

d p
. (75)

Here h = H (p) provides the minimum exponent ph + J (h) as follows from Eqs. (62) and (63) for
a concave function ζp. It follows from Eqs. (70) and (71) that viscous terms are negligible for
fluctuations with h = H (p) if

�m � η(p) = R− 1
1+H (p) �0. (76)

This condition defines a family of viscous cutoffs �m ∼ η(p) depending on the order p of a structure
function. These cutoffs are clearly seen in Fig. 2(a), where they correspond to the breakdown of
power-law dependence Sp(�m) ∝ �

ζp
m . At smaller scales �m � η(p) (larger shell numbers), shell

velocities decay to zero at a much faster rate [3]. Neglecting velocities at scales �m � η(p) in the
sum of Eqs. (6), one can show that our structure functions have a monofractal power-law scaling
Sp(�m) = 〈Ap

m[u]〉t ∝ αpm/2 for very small (far dissipation) scales �m � η(p); see Fig. 2(a).
The extension of power laws until the cutoffs Eq. (76) can only be approximate. Indeed, this

derivation assumed that fluctuations Eq. (65) with different h are independent, which is unlikely the
case. Thus, we expect that the gradual breaking of hidden symmetry affects all structure functions
at all scales of the intermittent dissipation range Eq. (74). This point of view is confirmed in Fig. 3.
One can see that viscous effects change the prefactors Cp of power laws Eqs. (43), which deviate
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from constant values in the range Eq. (74). The cutoff Eq. (76) marks a scale at which the deviation
becomes so large that it overcomes the power-law dependence.

In summary, we established a precise definition of the inertial interval as the range of scales
Eq. (14), at which the hidden symmetry is restored in a statistical sense. Breaking of hidden
symmetry in the forcing range does not depend on the (very large) Reynolds number, and the
convergence to a hidden-symmetric state is exponential in shell number. Breaking of hidden symme-
try at small scales occurs gradually in the intermittent dissipation range Eq. (74) and is controlled by
the intermittently fluctuating local Reynolds numbers Eq. (70). Despite the power laws for structure
functions seeming to extend beyond the inertial interval until the order-dependent cutoffs Eq. (76),
viscous terms alter their prefactors considerably. The latter has the practical implications: exponents
ζp are estimated more accurately in the p-independent range of scales Eq. (14), rather than in the
larger interval extended until the cutoff Eq. (76); see Fig. 2. Though our analysis reveals that the
complexity of dissipation range is closely related to the hidden self-similarity, a detailed analysis of
dissipation scales remains beyond our current approach. We show, however, in the next section that
the dissipation range can be understood for a different dissipation model.

V. HIDDEN-SYMMETRIC DISSIPATION

We have shown in Secs. III and IV that stationary statistics at very large Reynolds numbers
is controlled by the hidden scaling symmetry of the rescaled (projected) formulation. The hidden
self-similarity is restored in the inertial range Eq. (14) and gets broken in the forcing and dissipation
ranges. The transition mechanism from the inertial interval to the dissipation range is intricate,
since local Reynolds numbers appearing in the rescaled formulation are intermittent. In this section,
we describe a class of dissipative modifications of a shell model, whose rescaled formulations are
not intermittent. In these systems, the hidden scale invariance can be generalized in a way which
encompasses all small (both inertial and dissipative) scales. Despite the proposed dissipation models
being artificial, their extended self-similarity yields a deeper insight into the small-scale dynamics
of developed turbulence and has potential practical applications, e.g., the development of effective
dissipative closures. Also, this self-similarity provides a close analog of the Kolmogorov’s (K41)
theory, in which a broken scaling symmetry Eqs. (5) with h = 1/3 is replaced with the restored
hidden scale invariance.

A. Model with a viscous cutoff

We start with a specific model, which is constructed by modifying viscous terms in system
Eqs. (3). First, we define a sharp cutoff at the scale �s by setting

un ≡ 0 for n > s. (77)

For n � 0, we keep the same boundary conditions Eqs. (2). For the remaining shells, we consider
the equations

dun

dt
= k0B(s)

n [u], n = 1, . . . , s, (78)

where we introduce quadratic terms B(s)
n [u] extending the definition Eq. (4) as

B(s)
n [u] = Bn[u] +

{−2n|un|un, n = s − 1, s
0, otherwise. (79)

In this model, the dissipative term −2n|un|un is added in the equations of last two shells, s − 1 and
s. Remaining equations for n = 1, . . . , s − 2 have the ideal (inviscid) form Eqs. (15).

One can verify the energy balance equation

dE
dt

= �1 − ks−1|us−1|3 − ks|us|3, (80)
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where E[u] = 1
2

∑ |un|2 is the total energy. Here �1[u] = k1 Im(u2u∗
1u0) is the flux of energy from

shell n = 0 to shell 1, which is produced by the boundary condition Eqs. (2); see Eqs. (52) and (53).
The terms −ks−1|us−1|3 − ks|us|3 describe the energy dissipation at the cutoff shells s − 1 and s.

One can check that Eqs. (78) and (79) of our model are invariant with respect to the space-time
scalings

t, un, s �→ 21−ht, 2hun+1, s − 1 (81)

for any h ∈ R. This relation is analogous to the symmetry Eq. (5), but with the cutoff shift s �→
s − 1 substituting the scaling of viscosity. Symmetry Eqs. (81) is broken at the integral scale �0 by
boundary conditions Eqs. (2).

B. Extended hidden scale invariance

Let us transform Eqs. (78) and (79) using rescaled variables Eqs. (7) with n = m + N . Similarly
to Sec. II C and Appendix 1, in the interval 0 < m + N � s, one derives

dU (m)
N

dτ (m)
= B(S)

N [U (m)] − U (m)
N

m−1∑
j=0

α jRe
(
U (m)∗

− j B(S)
− j [U

(m)]
)
, −m < N � S, (82)

where we introduced

S = s − m. (83)

The cutoff Eq. (77) implies that

U (m)
N ≡ 0, N > S. (84)

At boundary shells, N � −m, the same conditions Eq. (13) remain valid.
Let us consider arbitrary small scales �m and �m+N , which satisfy the conditions

�s � �m ∼ �m+N � �0. (85)

Then, as in Sec. III A, one can neglect the upper bound in the exponentially converging sum of
Eq. (82). This yields

dUN

dτ
= B(S)

N [U ] − UN

∑
j�0

α jRe
(
U ∗

− jB
(S)
− j [U ]

)
, (86)

where we also dropped the superscript (m) to simplify the introduction of hidden symmetry. One
can verify that Eq. (86) is invariant under the transformation

UN , dτ, S �→ UN+1√
α + |U1|2

, 2
√

α + |U1|2 dτ, S. (87)

Derivation of this invariance follows the same steps as in Appendix 2. It corresponds to the change
of the reference shell m �→ m + 1 simultaneously with the cutoff shell s �→ s + 1, hence, leaving
their difference S = s − m intact. We refer to the transformation Eqs. (87) as the extended hidden
symmetry. This symmetry is similar to Eqs. (19) and (20), but takes into account the dissipative
terms and the cutoff in our new model. Thus, though the extended hidden symmetry is still broken
at large scales due to boundary conditions, it is not broken at small dissipation scales.

Formulation of symmetry Eqs. (87) does not depend on the exponent h, which makes it a
weaker symmetry: it can be restored in a statistical sense even if all original scaling symmetries
Eq. (81) are broken. Notice that different cutoff shells s define different systems of equations. Thus,
transformation Eqs. (87) relates solutions of different models with different s. This is different from
the hidden symmetry Eqs. (19) and (20) of the ideal system, which relates solutions for the same
system.
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FIG. 11. (a) Verification of the extended hidden symmetry: PDFs of multipliers x0 = X0[U (m)] depend
only on the difference S = s − m. Shown are three graphs with the cutoff s = 20, 25, 30 for each S = 1, 3, 5.
(b) PDFs of multipliers for s = 30, m = 6, . . . , 15 and s = 25, m = 6, . . . , 10 collapsing onto the inertial-
interval PDF (dotted red line) from Fig. 1(a). The inset presents the same plot with a vertical logarithmic scale.

C. Small-scale statistics of multipliers

We now verify numerically that the extended hidden symmetry Eqs. (87) is restored in small-
scale statistics of our viscous cutoff model. We will use the multiplier x0 = X0[U (m)] depending
on time τ (m) as the observable. The symmetry Eqs. (87) implies that the PDF of this multiplier
depends on shell numbers s and m through their difference S = s − m only. This property is verified
in Fig. 11(a) for S = 1, 3, 5. As S increases, the effect of viscous cutoff s at shell m decreases,
and PDFs converge to their hidden-symmetric form in the inertial interval. This is confirmed in
Fig. 11(b).

Let us study the dependence of statistical distributions on S = s − m. Figure 12 shows a differ-
ence (measured with L1-norm) between the multiplier PDF for any m and the hidden-symmetric
PDF from the inertial interval. The results are shown for different cutoffs, s = 20, 25, 30, as
functions of the shell number m [Fig. 12(a)] and S [Figs. 12(b) and 12(c)]. Figures 12(b) and 12(c)
shown in linear and logarithmic vertical scales demonstrate a precise self-similarity at all small
scales, i.e., both in the inertial interval and dissipation range. One can also see that the decay to the
inertial-interval PDF has the exponential asymptotic form

‖� PDF‖1 ∝ 2−ζDS, ζD ≈ 0.25. (88)

as shown by the dotted line in Fig. 12(c).
Symmetry Eqs. (87) is broken at large scales of the forcing range. In the forcing range, the

statistics coincides with the one of the original viscous shell model as described in Sec. IV A and
verified in Figs. 7 and 8. This reflects the independence of large-scale statistics not only of the cutoff
scale, but also of a specific dissipation mechanism.

In conclusion, stationary statistics in our viscous-cutoff model restores the extended hidden
symmetry at small scales, both in the inertial interval and dissipation range. Far from the forcing
and cutoff shells, the distribution approaches exponentially the universal distribution of the inertial
interval. We interpret these exponential convergences on both sides of the inertial interval as the
leading (left- and right-side) perturbation modes of a stable hidden-symmetric state described in
Sec. III.
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FIG. 12. (a) Difference between the PDF of multiplier x0 = X0[U (m)] at shell m and the hidden-symmetric
PDF from the middle of the inertial interval. The results are shown for cutoff shells s = 20, 25, 30. (b), (c) Same
plots as functions of S = s − m are presented in vertical linear and logarithmic scales. They collapse both in
the inertial interval and the dissipation region, confirming the extended hidden symmetry. The dotted line
demonstrates an exponential convergence to the inertial-interval PDF at large S.

D. Self-similarity of structure functions

We now return to original variables and analyze the scaling of structure functions Sp(�m) =
〈Ap

m[u]〉t at small scales. The formulation and conclusions based on the hidden scale invariance
Eqs. (19) and (20) in Sec. III remain valid in the inertial interval of the viscous cutoff model. We
recall the general formulas Eqs. (33), (34), and (38) expressing structure functions in terms rescaled
variables, which yield the asymptotic power-law scaling Eqs. (43) as a consequence of the hidden
scale invariance Eqs. (39) with Perron–Frobenius eigenmode Eq. (41). Figure 13 verifies the power-
law scaling with anomalous exponents ζp, which agree within error bounds with those of the original
viscous model in Fig. 2. Figure 14 presents the fractal codimension J (h) as described in Sec. III G,
in agreement with Fig. 5 of the original shell model.

054605-23



ALEXEI A. MAILYBAEV

0 5 10 15 20 25 30
-100

-50

0

50

100
-5

-3

-1

1

3

5

7

9
11
13

-10 -5 0 5 10 15
-6

-4

-2

0

2

4

K41

FIG. 13. (a) Logarithms of structure functions Sp(�m ) = 〈Ap
m[u]〉t for odd orders p = −7, −5, . . . , 15 in

the viscous cutoff model with s = 30. Bold red lines show the power law dependence Sp(�m ) ∝ �
ζp
m in the

inertial interval. (b) Anomalous exponents ζp computed in the interval −10 � p � 18 with the step �p = 0.2.
The shaded area indicates error bounds, and the blue line corresponds to the K41 linear dependence p/3.
Dashed lines indicate the slopes hmax and hmin at large negative and positive p. The results use simulations with
T = 2 × 104.

Extended hidden symmetry Eqs. (87) is not limited to the inertial interval, and it relates statistical
properties of rescaled variables for different cutoffs s. Let us show that this symmetry implies
scaling relations for structure functions, which extend to the dissipation range. For this purpose,
we introduce a sufficiently large integer d estimating a number of shells in the dissipation range.
This number d does not depend on the cutoff shell s, as follows from the extended hidden symmetry.
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FIG. 14. (a) Scaling exponent h and fractal codimension J given by Eqs. (62) as functions of p for
the viscous cutoff model. The shaded area indicates error bounds. (b) The resulting function J (h). Circles
correspond to integer values of p = −6, . . . , 14. The results use simulations with s = 30 and T = 2 × 104.
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Then, the dissipation range contains the scales �m satisfying the inequalities

�s � �m � �s−d , (89)

and the remaining small scales

�s−d � �m � �0 (90)

belong to the inertial interval.
At scales of the inertial interval, expression Eq. (42) yields

dμ(m)
p ≈ Cpλ

m
p dνp. (91)

This relation is not valid for smaller scales of the dissipation range, where the hidden symmetry
Eqs. (19) and (20) is broken. However, the extended version of the hidden symmetry Eqs. (87)
remains valid. It implies that the statistical properties depend on m and s only through their
difference S = s − m. Hence, in the dissipation range Eq. (89), we can replace Eqs. (39) by the
relation

p(m)(x1|x�) ≈ ρ (s−m)(x1|x�), L(m)
p ≈ (s−m)

p , (92)

where we introduced the conditional probability density ρ (S) indexed by S = s − m, and the linear
operator (S)

p is given by Eqs. (40) with the density ρ (S). Consider a general relation Eq. (38) in the
dissipation range Eq. (89). Using Eqs. (92) and then Eq. (91) at scale s − d , we obtain

dμ(m)
p = L(m−1)

p ◦ L(m−2)
p ◦ · · · ◦ L(s−d )

p

[
dμ(s−d )

p

]
≈ Cpλ

s−d
p (S+1)

p ◦ (S+2)
p ◦ · · · ◦ (d )

p [dνp]

= Cp2−ζpm2−ζp(S−d )(S+1)
p ◦ (S+2)

p ◦ · · · ◦ (d )
p [dνp], (93)

where ζp = − log2 λp. Substituting Eq. (93) into Eq. (33) and recalling that 2−m = �m/�0 and 2S =
�m/�s yields the final expression

Sp(�m) ≈ Cpup
0

(
�m

�0

)ζp

Fp

(
�m

�s

)
, ζp = − log2 λp, (94)

with the function

Fp(2S ) =
{

2−ζp(S−d )
∫

(S+1)
p ◦ (S+2)

p ◦ · · · ◦ (d )
p [dνp], 0 � S < d

1, S � d.
(95)

Here we also assigned the value Fp(2S ) = 1 for S � d , such that Eq. (94) recovers the power law
Eqs. (43) in the inertial interval. Thus, expression Eqs. (94) describes the universal form of structure
functions at all small scales up to the cutoff.

One can recognize some analogy of relation Eqs. (94) with the formula from Kolmogorov’s K41
theory [1,2], which describes a functional dependence of energy spectrum on a wave number and
a viscous microscale. However, the K41 theory uses the scaling symmetry Eqs. (5) with h = 1/3,
which is broken in the turbulent statistics. On the contrary, relation Eqs. (94) follows from the
extended hidden symmetry Eq. (87), which is restored in a statistical sense.

We verify relation Eqs. (94) with numerical simulations in Fig. 15. Here, using simulations with
s = 20, 25, 30, we plot the compensated structure functions

1

Cpup
0

(
�m

�0

)−ζp

Sp(�m) ≈ Fp

(
�m

�s

)
(96)

as functions of s − m = log2(�m/�s). In agreement with Eqs. (94), one observes a high-quality
collapse of these functions both in the dissipation range and inertial interval. The collapse gets
broken only in the forcing range, which is located on the right side of each graph.
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FIG. 15. Compensated structure functions Eq. (96) of orders p = −1, 2, 4, 6 for cutoffs s = 20, 25, 30.
Using S = s − m in the horizontal axis, these functions collapse both in the dissipation range and inertial
interval.

E. General form of hidden-symmetric dissipation

The model Eqs. (77)–(79) is just a specific example in a large class of viscous-cutoff models
possessing the extended hidden symmetry Eqs. (87). One can use any dissipative terms in B(s)

n [u],
provided that they have the same scaling properties as Eq. (79). Precisely, this condition is formu-
lated as the positive homogeneity

B(s)
n [au] = a2B(s)

n [u], a > 0, (97)

and the scaling relation

B(s)
n [u] = 2B(s−1)

n−1 [u′], u′ = (u′
j ) j∈Z = (u j+1) j∈Z. (98)

One can verify that derivations of Sec. V B remain valid and lead to the rescaled formulation
Eqs. (82)–(84) with the extended hidden symmetry Eqs. (87).

Recovery of the extended hidden symmetry can facilitate future theoretical studies. For example
such models are more convenient for a detailed analysis of hidden-symmetric states. Also, these
models provide a general framework for optimal closures, which are universal with respect to the
cutoff scale; see Refs. [20,31,32] for recent studies in this direction.

VI. CONCLUSION

In this paper, we described how the hidden scaling symmetry governs the turbulent statistics in
a shell model at all scales of motion. The hidden symmetry emerges when equations of motion are
written for new velocities and time, which are rescaled dynamically. Geometrically, this rescaling is
a projection in the phase space [15]. Throughout this paper, we assume that the hidden symmetry is
recovered in a given statistical distribution, as numerical simulations strongly suggest. An important
direction for future research would be the formulation of equations (in a spirit of Ref. [11]) and
stability analysis of the hidden-symmetric statistics.

The paper contains three parts. The first part is dedicated to the inertial interval only. Here we
recalled the previous results [19] relating the anomalous scaling laws of structure functions with
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Perron–Frobenius eigenmodes induced by the hidden-symmetric statistics. We generalized these
results to a larger class of observables. In particular, we described how a constant flux of energy
to small scales (the dissipative anomaly [28]) emerges in a hidden-symmetric framework. Also, we
showed that the hidden self-similarity leads naturally to the large deviation theory, thereby providing
a theoretical justification of the Parisi-Frisch multifractal approach from first principles.

The second part is devoted to breaking of the hidden symmetry by forcing and viscous dissipa-
tion. In the transition from the forcing range to the inertial interval, we observed an exponentially
decaying mode of the stable hidden-symmetric state. The breaking of hidden symmetry in the
dissipation region is more intricate because of intermittently fluctuating viscous terms in the rescaled
formulation. We studied how this intermittency affects power laws and pre-factors of structure
functions. Such intermittency is closely related to the concept of intermediate dissipation range
introduced in Ref. [3].

In the third part, we demonstrated that the intermittency of rescaled viscous terms is not a general
feature but rather an artifact of the viscous dissipation model. We introduced a viscous-cutoff
model with modified dissipation terms, for which the hidden symmetry extends to all scales of the
dissipation range. This symmetry yields a self-similar functional form of structure functions valid
through the whole range of small scales, i.e., both in the inertial interval and dissipation range. This
result resembles the original Kolmogorov’s self-similarity of the dissipation range, but formulated
now for the statistically restored hidden symmetry.

The hidden symmetry has an analogous formulation for the incompressible Navier-Stokes sys-
tem, as shown both within a general theoretical framework [15] and by explicit derivations [16]. The
rescaled formulation of the Navier–Stokes system combines a projection induced by timescalings
(used in the shell model) with a projection induced by the Galilean symmetry (equivalent to
the quasi-Lagrangian description [33,34]). Though the intermittency is removed from the inertial
interval in the rescaled formulation, the rescaled viscous terms become intermittent [16], just
like in the shell model. This comparison suggests that the approach developed here for the shell
model is applicable for an analogous study of the 3D incompressible Navier-Stokes turbulence. In
particular, modified viscous-cutoff models, which recover an extended hidden symmetry at all small
scales, may help to overcome the current limitations of numerical simulations; we refer to a recent
numerical study [35] pursuing a similar goal from a different point of view.
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APPENDIX

1. Derivation of rescaled Eqs. (11) and (12)

Dropping the superscripts (m) for simplicity and using Eqs. (6) and (7), we write

dUN

dτ
= Tm

d

dt

um+N

Am
= 1

kmA2
m

dum+N

dt
− um+N

2kmA4
m

dA2
m

dt

= 1

kmA2
m

dum+N

dt
− um+N

kmA4
m

∑
j�0

α j Re

(
u∗

m− j

dum− j

dt

)

= 1

kmA2
m

dum+N

dt
− UN

kmA2
m

∑
j�0

α j Re

(
U ∗

− j

dum− j

dt

)
. (A1)
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Using Eqs. (2) and (3) with km = 2mk0 and then Eqs. (4), (7), and (12), yields

1

kmA2
m

dum+N

dt
= Bm+N [u]

2mA2
m

− νkm4N um+N

A2
m

= BN [U ] − νkm

Am
4NUN = BN [U ] − 4NUN

Rm[u]
. (A2)

The similar expression with N �→ − j for j � m − 1 reads

1

kmA2
m

dum− j

dt
= B− j[U ] − 4− jU− j

Rm[u]
, (A3)

and the derivatives with j � m vanish by boundary conditions Eqs. (2). Using expressions Eqs. (A2)
and (A3) in Eq. (A1) yields the rescaled Eqs. (11).

It immediately follows from boundary conditions Eqs. (2) and relation Eqs. (7) that U (m)
N = 0 for

N < −m. Using conditions Eqs. (2) and squared first relation in Eqs. (6), one can express

u0 =
√√√√α−mA2

m[u] −
m−1∑
j=0

α j−m|um− j |2. (A4)

Then, relations Eqs. (7) and (A4) for the remaining rescaled velocity U (m)
−m yield

U (m)
−m = u0

Am[u]
=

√√√√α−m −
m−1∑
j=0

α j−m

( |um− j |
Am[u]

)2

=
√√√√α−m −

m−1∑
j=0

α j−m
∣∣U (m)

− j

∣∣2
. (A5)

2. Derivation of the hidden scaling symmetry

We now show the invariance of system Eqs. (17) with respect to the hidden scaling transformation
Eq. (19) and (20). Using the new variables given by Eqs. (20), we write

dÛN

d τ̂
= 1

2
√

α + |U1|2
d

dτ

UN+1√
α + |U1|2

= 1

2(α + |U1|2)

dUN+1

dτ
− UN+1

2(α + |U1|2)2
Re

(
U ∗

1
dU1

dτ

)
.

(A6)
Substituting the derivatives from Eqs. (17) yields

dÛN

d τ̂
= 1

2(α + |U1|2)

(
BN+1[U ] − UN+1

∑
j�0

α jRe(U ∗
− jB− j[U ])

)

− UN+1

2(α + |U1|2)2

(
Re (U ∗

1 B1[U ]) − |U1|2
∑
j�0

α jRe(U ∗
− jB− j[U ])

)

= BN+1[U ]

2(α + |U1|2)
− UN+1

2(α + |U1|2)2

∑
j�−1

α j+1Re(U ∗
− jB− j[U ]). (A7)

Using Eqs. (20) and (4) and changing the summation variable j′ = j + 1 yields

dÛN

d τ̂
= BN [Û ] − ÛN

∑
j′�0

α jRe(Û ∗
− j′B− j′ [Û ]), (A8)

which has the same form as the original Eqs. (17).
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3. Expressions for generalized multipliers

Using Eqs. (6), we derive

An[u]

An−1[u]
=

√ ∑
j�0 α j |un− j |2∑

j�0 α j |un−1− j |2 =
√

|un|2 + ∑
j�1 α j |un− j |2∑

j�1 α j−1|un− j |2 =
√

α + α|un|2∑
j�1 α j |un− j |2 . (A9)

Dividing both sides of the last fraction by A2
m[u] and using Eqs. (7) yields

An[u]

An−1[u]
=

√
α + α|un|2/A2

m[u]∑
j�1 α j |un− j |2/A2

m[u]
=

√√√√α + α
∣∣U (m)

N

∣∣2

∑
j�1 α j

∣∣U (m)
N− j

∣∣2 = XN [U (m)], (A10)

where n = m + N and the last expression follows from definition Eq. (25).

4. Details of numerical simulations

In the shell model, we take �0 = u0 = 1 and consider rescaled variables for α = 1/8. Simulations
are performed using MATLAB solvers [36] (ode15s for the original viscous model and ode45
for the viscous-cutoff model), with the tolerances RelTol = 10−7 and AbsTol = 10−8. For initial
conditions, we use the K41-like state un = e−iθn k−1/3

n with independent random phases θn. Skipping
the initial time interval �t = 20, which contains transient behaviors, we use the data obtained in the
long time interval t ∈ [0, T ]. In simulations, we evaluate the rescaled times for different reference
shells by integrating respective equations, which are written using definitions Eqs. (6) and (7) as
dτ (m)/dt = kmAm[u].

We evaluate statistical properties using a standard histogram approach with weight coefficients
proportional to time steps. Notice that statistics of rescaled variables must be computed using the
respective time τ (m). Computation of marginal densities fp(x0) for measures dμ(m)

p (x�) is performed
similarly with the extra weight coefficient, which follows from expression Eqs. (34). An alternative
way follows from the comparison of Eqs. (26) and (33): one can estimate fp(x0) as a sum of
quantities Ap

m[u]�t/(T �x0) within each bin of the multiplier x0, where �t is a step in the original
time and �x0 is a bin size. A similar histogram approach can be applied for computing the densities
fψ (ψ ) from Eq. (56).

Exponents ζp in Figs. 2 and 13 are computed using the least squares method. The errors are
estimated as four root-mean-square deviations divided by the number of interpolating shells. We
stress that such error estimates are not very reliable, because they refer to statistical fluctuations
only, while deviations can also be caused by forcing and dissipation effects.

5. Structure functions in terms of rescaled variables

We write Eqs. (26) as

Sp(km) = lim
T →∞

1

T

∫ T

0
Ap

m[u]dt = lim
T →∞

∫ T
0 Ap

m[u]dt∫ T
0 dt

. (A11)

After the change of time dt = dτ (m)/(kmAm) from Eqs. (6) and (7), we obtain

Sp(km) = lim
T (m)→∞

∫ T (m)

0 Ap−1
m [u]dτ (m)∫ T (m)

0 A−1
m [u]dτ (m)

=
〈
Ap−1

m [u]
〉
τ (m)〈

A−1
m [u]

〉
τ (m)

, (A12)

where the limit τ (m) = T (m) corresponds to t = T , and Am[u] must be expressed as a function of
τ (m). For the latter, we use Eq. (28), which yields Eq. (29).
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By definition, the joint statistics of multipliers x1 = X1[U (m)] and x� = X�[U (m)] is given by
the probability measure

p(m)(x1|x�) dx1 dμ(m)(x�). (A13)

Let us find the measure dμ(m+1)(x̃�) describing the statistics of multipliers x̃� = X�[U (m+1] as
functions of time τ (m+1). The times τ (m) and τ (m+1) are related by Eqs. (6), (7), and (24) as

dτ (m+1)

dτ (m)
= km+1Am+1[u]

kmAm[u]
= 2X1[U (m)]. (A14)

Hence, the change of time from τ (m) to τ (m+1) introduces the density factor x1/〈X1[U (m)]〉τ (m) in the
probability measure; see, e.g., Ref. [21], Sec. 10.3. Using Eqs. (24), one derives the identity

x̃� = (x̃0, x̃−) = (x1, x�) (A15)

for the multipliers x̃� = X�[U (m+1)]. Using this relation and the time factor in Eq. (A13), we obtain

dμ(m+1)(x̃�) = x1 p(m)(x1|x�)

〈X1[U (m)]〉τ (m)
dx1 dμ(m)(x�) = x̃0 p(m)(x̃0|x̃−)

〈X1[U (m)]〉τ (m)
dx̃0 dμ(m)(x̃−). (A16)

Using Eqs. (34), (A16), and (A15), we derive the expression Eq. (35) as follows:

dμ(m+1)
p (x̃�) =

(∏m
j=0 x̃− j

)p−1

∫ (∏m
j=0 x̃− j

)−1
dμ(m+1)

dμ(m+1)(x̃�)

= x̃p
0 p(m)(x̃0|x̃−)

( ∏m
j=1 x̃− j

)p−1

∫
p(m)(x̃0|x̃−) dx̃0

(∏m
j=1 x̃− j

)−1
dμ(m)(x̃−)

dx̃0 dμ(m)(x̃−)

= x̃p
0 p(m)(x̃0|x̃−) dx̃0

(∏m
j=1 x̃− j

)p−1

∫ (∏m
j=1 x̃− j

)−1
dμ(m)(x̃−)

dμ(m)(x̃−)

= x̃p
0 p(m)(x̃0|x̃−) dx̃0 dμ(m)

p (x̃−), (A17)

where we also used the full probability condition
∫

p(m)(x̃0|x̃−) dx̃0 ≡ 1.
Consider now the sequence �m[u] and rescaled velocities from Eqs. (7). Using relation Eqs. (46)

with a = Am[u] and relation Eqs. (47) iteratively m times, we have

�m[u] = �0[U (m)]Ap
m[u]. (A18)

Then, similarly to Eq. (29) derived in Eqs. (A11) and (A12), one obtains

〈�m[u]〉t =
〈
�0[U (m)]

(∏m−1
j=0 X− j[U (m)]

)p−1〉
τ (m)〈( ∏m−1

j=0 X− j[U (m)]
)−1〉

τ (m)

. (A19)

Consider the measure

ρ
(m)
f (ψ |x�) dψ dμ

(m)
0 (x�), (A20)

describing the joint statistics of the variable ψ = �0[U (m)] and the x� = X�[U (m)]. Using this
measure in Eq. (A19) yields the relation Eq. (49), where the measure dμ(m)

p (x�) is defined in
Eqs. (34).
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6. Derivations using the Gärtner–Ellis Theorem

In Ref. [29], Sec. 3.3.1, the Gärtner–Ellis Theorem is formulated under the assumption that

λ(k) = lim
m→∞

1

m
log〈emkXm〉 (A21)

exists and is differentiable for all k ∈ R, where Xm is a sequence of real random variables with
positive integer indices m. Then Xm satisfy the large deviation principle expressed as

P(Xm ∈ [x, x + dx]) ∼ e−mI (x)dx, (A22)

with a rate function I (x) given by

I (x) = sup
k∈R

(kx − λ(k)). (A23)

Expression Eq. (A23) is the Legendre transform and its well-known inverse reads

λ(k) = sup
x∈R

(kx − I (x)). (A24)

One can verify that Eqs. (A21)–(A24) take the form Eqs. (59)–(61) and (63) if one identifies

k = p, Xm = −Wm log 2, x = −h log 2, λ(k) = −ζp log 2, I (x) = J (h) log 2. (A25)
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