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Building efficient, accurate, and generalizable reduced-order models of developed
turbulence remains a major challenge. This manuscript approaches this problem by de-
veloping a hierarchy of parameterized reduced Lagrangian models for turbulent flows,
and it investigates the effects of enforcing physical structure through smoothed particle
hydrodynamics (SPH) versus relying on neural networks (NNs) as universal function
approximators. Starting from NN parametrizations of a Lagrangian acceleration operator,
this hierarchy of models gradually incorporates a weakly compressible and parameterized
SPH framework, which enforces physical symmetries, such as Galilean, rotational, and
translational invariances. Within this hierarchy, two new parameterized smoothing kernels
are developed to increase the flexibility of the learn-able SPH simulators. For each model
we experiment with different loss functions which are minimized using gradient based
optimization, where efficient computations of gradients are obtained by using automatic
differentiation and sensitivity analysis. Each model within the hierarchy is trained on
two data sets associated with weakly compressible homogeneous isotropic turbulence:
(1) a validation set using weakly compressible SPH; and (2) a high-fidelity set from
direct numerical simulations. Numerical evidence shows that encoding more SPH structure
improves generalizability to different turbulent Mach numbers and time shifts, and that
including the novel parameterized smoothing kernels improves the accuracy of SPH at the
resolved scales.
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I. INTRODUCTION

Understanding and predicting turbulent flows is crucial for many engineering and scientific fields
and remains a great unresolved challenge of classical physics [1]. Turbulent flows are characterized
by strong coupling across a broad range of scales and obtaining accurate solutions over all relevant
scales currently requires computationally intensive numerical methods and is often prohibitive in
applications [2]. This motivates the development of reducing the computational cost by only simu-
lating large-scale structures instead of the full set of relevant scales [3]. Many data-driven techniques
have emerged (or matured) over the last decades, such as the proper orthogonal decomposition [4],
dynamics mode decomposition [5,6], Mori-Zwanzig [7–9], and also many other machine learning
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for turbulence techniques [10–15]. The main challenge of developing reduced models for turbulence
is in generalizing to flows not seen in training. This motivates our focus in this work on developing
reduced Lagrangian-based simulators which encode physical conservation laws independent of the
resolution using smoothed particle hydrodynamics (SPH).

SPH [16–18] has been widely applied to weakly and strongly compressible turbulence in
astrophysics and many engineering applications [19]. It is one of a small set of approaches based
on a Lagrangian construction: the fluid quantities follow the flow using particles as opposed to
the Eulerian approach which computes flow quantities at fixed locations on a computational mesh.
This mesh-free, Lagrangian approximation of Navier-Stokes (NS) is appealing because it naturally
unmasks correlations at the resolved scale from sweeping by larger scale eddies [20,21] making SPH
useful for understanding advection dominated flows, mixing and dispersion, and turbulent transport.
One of the main advantages of SPH is that the conservation of mass, energy, and momentum can
be enforced within a discrete formulation, ensuring conservation independent of the resolution.
Furthermore, the mesh-free nature of SPH is advantageous for highly compressible flows as the
Lagrangian particles naturally resolve the variable density regions. Recently [22,23], SPH has been
connected to large eddy simulations (LES) as a method to coarse grain the Navier-Stokes equations.
Furthermore, developing approximation-optimal SPH models (and simulators) for turbulent flows
is an ongoing area of research [24], to which this paper contributes by developing two new pa-
rameterized smoothing kernels and a physics-informed machine learning framework for estimating
the parameters of a weakly compressible SPH formulation fit to direct numerical simulation (DNS)
data.

Numerical simulators were recently blended with modern machine learning tools [25–35] out
of which a promising field, coined physics-informed machine learning (PIML), is emerging (and
being rediscovered [36]). As set, some eight years ago at the first Los Alamos National Laboratory
workshop with this name [37], PIML was meant to pivot the mixed community of machine learning
researchers, on the one hand, and scientists and engineers, on the other, to discover physical
phenomena/models from data. Early work incorporating scientific domain knowledge (e.g., from
physics in the form of differential equations) and computational scheme within machine learning
algorithms dates back to the 1990s [36]. However, in the context of modern machine learning and
specifically deep learning, interest in this area has been revived [38–41]. In part, this is due to
the increased computational power afforded by parallelism across both central, vector, or tensor
processing units, along with notable achievements across disciplines (such as scientific applications
[42], data-compression algorithms [43], computer vision [44], and natural language processing
[45]). The main computational utilities and strategies of the PIML includes embedding physical
structure into learn-able models, applying neural networks (NNs) as function approximators [46],
differential programming using automatic differentiation [40,47], and optimization tools to mini-
mize a loss function.

In this manuscript we focus specifically on building PIML scheme(s) which take advantage
of the Lagrangian formulation. Other works have pursued similar directions; one of the earliest
contributions to this field was made in Ref. [41], where SPH-related models were used alongside
regression forests (a classical machine learning technique). In Ref. [48] evolutionary algorithms
were applied to optimize parameters in SPH flows. Differentiable programming techniques were
utilized in Ref. [27] for Lagrangian robotic control of flows and in Ref. [33] where a continuous
Convolutional NN approach was developed. NNs were used in Ref. [35] to train a closure model for
Lagrangian dynamics of the velocity gradient tensor in homogeneous isotropic turbulence on the
Direct Numerical Simulation (DNS) data. It was shown in Refs. [49–52] that skillful embedding of
NN helps to improve Particle Image Velocimetry techniques to map a Lagrangian representation of
the flow into its Eulerian counterpart. Most recent approach of our team [23], which is most related
to this work, consisted in developing a fully differentiable, NN-based, and Lagrangian large eddy
simulator trained on the mix of Eulerian and Lagrangian high-fidelity DNS data. It was shown in
Refs. [23] that the simulator is capable to fit and generalize with respect to Mach numbers, delayed
times and advanced turbulence statistics.
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We continue the thread of Ref. [23] and develop a hierarchy of learn-able, NN-enforced,
Lagrangian simulators to examine reduced-order physics at coarse-grained scales within the inertial
range of homogeneous isotropic turbulent flows. However, in this work we focus on constraining
the models using the SPH framework. Although including SPH structure will enforce physical
constraints, a priori it is not known if this will improve its ability to generalize to different turbulent
flows at these scales, since enforcing constraints decreases the expressiveness as compared to the
NN-based models. Thus, to explore these effects, a hierarchy of parameterized Lagrangian and
SPH-based fluid models are developed that gradually includes more of the SPH framework, ranging
from a neural ordinary differential equation (ODE)-based model [39] to a weakly compressible
parameterized SPH formulation. Each model is trained on two sets of the ground-truth data: (a)
a synthetic weakly compressible SPH simulator, and (b) Eulerian and Lagrangian data from a
high-fidelity DNS (similar to the one used in Ref. [23]). Given our focus in this work is on
resolving only the large-scale structures within the inertial range, the ground-truth data is properly
coarse-grained, where each model is trained on three different resolutions (N = 123, 163, 203). An
efficient gradient descent is developed using modern optimizers (e.g., Adam by Ref. [53]), and
mixing automatic differentiation (both forward and reverse mode) with the local sensitivity analyses
(such as forward and adjoint-based methods).

A formulation of this hierarchy along with the learning framework is given in Sec. IV, where
a brief background of the weakly compressible SPH framework used in this work is provided
in Sec. II. In Sec. V, we first validate the methodology and learning algorithm on the synthetic
ground-truth SPH data, in which we show the ability to recover parameters within the SPH model
as well as to learn the equation of state using NNs (embedded in the SPH framework). Furthermore,
in Sec. V, each model is trained on high-fidelity weakly compressible (i.e., low Mach number) DNS
data using field and statistical-based loss functions. Then a detailed analysis of each model is carried
out, from which we show that adding SPH informed structure not only increases the interpretability
of the models, but improves generalizability over varying Mach numbers and timescales with respect
to both statistical and field-based quantitative comparisons. We observe that NNs (considered
as universal function approximators [46]) embedded within this structure, such as those used in
approximating the equation of state, also improves this generalizability over the standard weakly
compressible SPH using the cubic smoothing kernel. Moreover, we show that the new proposed
smoothing kernels (introduced in Sec. IV), which when included in the fully informed SPH-based
model, performs best at generalizing to different DNS flows.

II. SMOOTHED PARTICLE HYDRODYNAMICS

One of the most prominent particle-based Lagrangian methods for obtaining approximate numer-
ical solutions of the equations of fluid dynamics is SPH [54]. Originally introduced independently
by Refs. [16,55] for astrophysical flows, however, over the following decades, SPH has found a
much wider range of applications, including computer graphics, free-surface flows, fluid-structure
interaction, bioengineering, compressible flows, galaxies’ formation and collapse, high-velocity
impacts, geological flows, magnetohydrodynamics, and turbulence [19,24]. Below, we give a brief
formulation of a weakly compressible SPH framework, and in Sec. III we use this SPH structure as
the basis of our physics-informed machine learning models.

Essentially, SPH is a discrete approximation to a continuous flow field by using a series of
discrete particles as interpolation points (using an integral interpolation with smoothing kernel
W ). Using the SPH formalism the partial differential equations (PDEs) of fluid dynamics can be
approximated by a system of ODEs for each particle (indexed by i), ∀i ∈ {1, 2, ...N} :

dri

dt
= vi, (1)

dvi

dt
= −

N∑
j �=i

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

+ �i j

)
∇iWi j + f ext, (2)
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FIG. 1. SPH particles advancing in time driven by external forcing fext used as training data to validate the
learning algorithm, where coloration is added for visualization purposes and ti+1 − ti ≈ 50�t .

where Wi j = W (||ri − r j ||, h), Pi, and ρi represents the smoothing kernel, pressure, and density,
respectively, at particle i. �i j is an artificial viscosity term [18] used to approximate the vis-
cous terms. Density and pressure (for the weakly compressible formulation) are computed by
ρi = ∑

j m jW (|ri − r j |, h) and P(ρ) = c2ρ0

γ
[( ρ

ρ0
)γ − 1].

Briefly, Eq. (2) is an approximation of Euler’s equations for weakly compressible flows, with
an added artificial viscosity term �i j . In this manuscript, a deterministic external forcing f i

ext =
[θinj/ke(t )]vi consistent with DNS (as seen in Ref. [56]) provides the energy injection mechanism,
where ke is the kinetic energy and θinj is an energy injection rate parameter. We also utilize an
artificial viscosity �i j described in Eq. (A5), which approximates in aggregate the contributions
from the bulk and shear viscosity (α), a Nueman-Richtmyer viscosity for handling shocks (β)
[18,57], as well as the effective, eddy viscosity effect of turbulent advection from the under-resolved
scales, i.e., scales smaller than the mean-particle distance (see Appendix A for a more detailed
discussion).

Figure 1 shows consecutive snapshots of an exemplary multiparticle SPH flow in three-
dimensional space, where coloration is added for visualization purposes. We use a standard set of
parameters for weakly compressible flows (see Ref. [58]) α = 1.0 (bulk-shear viscosity), β = 2α

(Nueman-Richtmyer viscosity), c = 10, γ = 7.0 with energy injection rate θ = 0.5, and determin-
istic external forcing (see Appendix A for more details on the parameters and equations such as
the equation of state and artificial viscosity). To validate the learning algorithm, an inverse problem
is solved on “synthetic” SPH data; given a sequence of snapshots of SPH particle flows, estimate
the parameters of the SPH model that best fits the SPH flow data over a predefined timescale. The
results of this inverse problem can be found in Sec. V (and Appendix D).

III. HIERARCHY OF REDUCED LAGRANGIAN MODELS

We develop a hierarchy of parameterized Lagrangian models at coarse-grained scales that gradu-
ally includes the SPH framework. The motivation for this is twofold: (1) systematically analyze the
effect of including more physical structure, and (2) a priori, we do not know which of the following
Lagrangian models (i.e., what level of SPH framework versus NN parametrizations) will best fit the
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DNS ground-truth data, as well as generalize to different flow regimes not seen in training. The NNs
used in this work are multilayer perceptrons (MLPs) with hyperbolic tangent activation functions
which serve as universal function approximators [46] and are embedded within the ODE structure
evolving particles in the Lagrangian frame. It was found through hyperparameter tuning that two
hidden layers were sufficient for each model using a NN. Defining X := {X i := [ri, vi]T , ∀i ∈
{1, .., N}}, each of the parameterized Lagrangian models take on the general form

∀i : dX i/dt = F i(X (t, θ), θ) := (vi, %F i(X , θ))T , (3)

where the acceleration operator F is uniquely parameterized in the following.
(1) NODE. In this least informed (and most flexible) neural ODE-based [39] Lagrangian model,

the entire acceleration operator is approximated by a NN, with the exception of f ext. Note that
no pairwise interaction between particles is assumed, which increases the flexibility of this model
over SPH-based parametrizations along with the generic NN structure used to approximate the
acceleration of particles. This model is most related to the work done by Chen et al. [39] where
we make an additional modification by considering the interaction of particles to be within a local
cloud (using a cell linked list algorithm [59]). We assume that velocities, vi(t ), and coordinates,
ri(t ), of N particles evolve in time according to

dvi

dt
= NNθ (ηr (ri j ), ηv (vi j )|∀ j : ||ri j || � 2h) + f ext(θinj ), (4)

where ri j = ri − r j , vi j = vi − v j , ηr (ri j ), and ηv (vi j ) are min-max normalizations, NNθ : R2dm →
Rl → Rl → Rd (d = 2, 3 is the space dimension, m is the fixed number of particles that are closest
to the ith particle in each cloud, and l is the height, or number of nodes, of the hidden layer).
Although this NN is approximating a function which is interpretable (acceleration), the individual
parameters of the NN are not. With some tuning, it was found that m ∈ {20, 21, ...30} and l ∈
{5, 6, ..., 12} generally produce the best fit. θ and θinj are the trainable parameters.

(2) NN summand. In the direction of including more of the SPH-based physical structure,
pairwise interaction is assumed represented via a sum over the ith particle neighborhood (again
using a cell linked list algorithm), where the summand term is approximated by a NN. Here, Eq. (2)
is modeled by the Lagrangian-based ODE

dvi

dt
=

N∑
j

NNθ (ηr (ri j ), ηv (vi j )) + f ext(θinj ), (5)

where NNθ : R2d → Rl → Rl → Rd , ηr (ri j ), and ηv (vi j ) are min-max normalizations. With some
tuning, l ∈ {5, 6, ...} generally produce the best fit. θ and θinj are the trainable parameters.

(3) Rotationally invariant NN. In this formulation, built on the top of the NN summand, we use
a neural network of the form NNθ : R4 → Rl → Rl → R to approximate the pairwise part of the
acceleration term in Eq. (2), where the rotational invariance is hard coded by construction (about a
rotationally invariant basis expansion using the difference vector ri j)

dvi

dt
=

N∑
j

NNθ

(
Pi

ρ2
i

,
Pj

ρ2
j

, ri j · vi j, ||ri j ||2
)

ri j + f ext(θinj ). (6)

With some tuning, l ∈ {5, 6, ...} generally produce the best fit. θ and θinj are the trainable parameters.
(4) ∇P NN. In this model, we embed a neural network NN within the SPH framework to

approximate the gradient of pressure contribution [i.e., ∇P term in SPH Eq. (2)] and explicitly
include the artificial viscosity term �:

dvi

dt
= −

N∑
j

m j[NNθ (ri j ) + �i j]∇Wi j + f ext(θinj ), (7)

054602-5



MICHAEL WOODWARD et al.

where NNθ : Rd → Rl → Rl → R. l ∈ {5, 6, ...} generally produce the best fit. θ, α, β [from
�(α, β )] and θinj are the trainable parameters.

(5) EoS NN. Approximating the equation of state (EoS) with a NN in the weakly compressible
SPH formulation:

dvi

dt
= −

∑
j

m j

[
Pnnθ (ρi )

ρ2
i

+ Pnnθ (ρ j )

ρ2
j

+ �i j

]
∇Wi j + f ext(θinj ), (8)

where Pnnθ (ρ) : R → Rl → Rl → R. l ∈ {8, 9, ..., 12} generally produce the best fit. θ, α, β [from
�(α, β )] and θinj are the trainable parameters.

(6) SPH-informed. Fixed smoothing kernel. In this formulation, the entire weakly compress-
ible SPH structure is used, and the physically interpretable parameters α, β, γ , c, p0, θinj from
P(ρ)(c, γ , p0) and �(α, β ) are learned

dvi

dt
= −

∑
j

m j

(
Pi

ρ2
i

+ Pj

ρ2
j

+ �i j

)
∇Wi j + f ext(θinj ). (9)

(7) SPH-informed. Including parameterized W . In this formulation, the entire weakly compress-
ible SPH structure is used along with a novel parameterized smoothing kernel (described below),
and the physically interpretable parameters α, β, γ , c, p0, a, b, θinj from P(ρ)(c, γ , p0), �(α, β ),
and W (a, b) are learned (a, b are parameters defined below for a parameterized smoothing kernel):

dvi

dt
= −

∑
j

m j

(
Pi

ρ2
i

+ Pj

ρ2
j

+ �i j

)
∇Wi j (a, b) + f ext(θinj ). (10)

Let us emphasize that, as more of the SPH-based structure is added into the learning algorithm,
the learned models become more interpretable; i.e., the learned parameters are associated with the
actual physical quantities.

The choice of smoothing kernels is important, and effects the consistency and accuracy of results
[54], where bell-shaped, symmetric, monotonic kernels are the most popular [60]; however, there
is disagreement on the best smoothing kernels to use [61]. In this work, we introduce two new
smoothing kernels to increase the flexibility of the SPH model as well as to allow the optimization
framework to “discover” the best shaped kernel for our application (see Appendix A for more
details). Our parameterized smoothing kernel of the first type is

W1(r; h, a, b) =
{
σ1(a, b)(1 − (r/(2h))a)b, 0 � r < 2h,

0, otherwise.
(11)

Here the parameters a, b control the shape of the kernel, h sets the spatial scale of the kernel, and
constant, σ , dependent on the parameters a, b and the problem dimensionality, is chosen to guarantee
normalization,

∫
drW1(r; h, a, b) = 1, thus

σ1(a, b) = 3�(b + 3/a + 1)

32πh3�(b + 1)�(3/a + 1)
.

Our parameterized smoothing kernel of the second type, which is introduced to make the second
derivative at the origin, r = 0, smooth and thus to examine the effects of the kernel smoothness on
the quality of the trained models, is as follows:

W2(r; h, a, b) = 1

hDσ2(a, b)

(√
a2 + 1 −

√
a2 + (r/(2h))2

)
×(1 − (r/(2h))2)2

×
{

(1 + b(r/(2h))2), 0 � r < 2h
0, otherwise

; (12)
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σ2(a, b) = 4π{[
√

1 + a2(32(87 + 22b) + 21a2[−48(5 + b)

+ a2(−380 + 96b + 5a2[−30 + (46 + 21a2)b])])]/80640

+ [a4[−32 + 16a2(−2 + b) + 7a6b + 10a4(−1 + 2b)]

× (log (a2) − 2 log [1 +
√

1 + a2])]/512},

whereas with the smoothing kernel of the first type, σ2 is introduced to enforce normalization of the
kernel.

IV. MIXED MODE GRADIENT-BASED OPTIMIZATION: EFFICIENT
PARAMETER ESTIMATION

We develop a mixed mode method, mixing local sensitivity analysis (SA) with forward and back-
wards automatic differentiation (AD) for efficiently computing the gradients of the loss functions
(discussed in Appendix B).

SA is a classical technique found in many applications, such as gradient-based optimization,
optimal control, parameter identification, model diagnostics [62,63]. There are other ways that gra-
dients can be propagated through numerical simulators, such as using differentiable programming
[40], which allows for a simple and flexible implementation of gradient-based learning algorithms,
however this can require higher memory costs due to storing large computational graphs when
computing gradients using reverse mode [39]. The two main local SA methods are the direct, or
forward, method and the adjoint method (see Appendix B 1 d for more details). Like forward mode
AD, the forward SA method is more efficient when the number of parameters is much less than the
dimension of the system and the adjoint method is more efficient when the number of parameters
is much larger than the dimension of the system [63]. Therefore, in regards to this work, when
the number of particles N is large, the forward SA method will be more efficient for the models
described above (since the NNs are relatively small compared to the dimension of the system when
N is large). When differentiating functions within the local SA frameworks we mix forward mode
and reverse mode AD [47,64] (depending on the input and output dimension of each function
to be differentiated, which can include NNs) for improved efficiency over the fully differentiable
programming technique.

We consider loss functions of the form, L(X , θ) = ∫ t f

0 
(X , θ, t )dt , where X and θ are, respec-
tively, the matrix of states X (defined above) and the vector of parameters. 
 is some measure of
performance at time t . Since our overall goal involves learning Lagrangian and SPH-based models
for turbulence applications, it is the underlying statistical features and large-scale field structures
we want our models to learn and generalize with. Thus, two different loss functions are considered;
(1) a field-based loss L f which tries to minimize the difference between the large-scale structures
found in the Eulerian velocity fields, and (2) a statistical-based loss Lkl which tries to capture the
small scale statistical characteristics of turbulent flows using well known single-particle statistics
[65]. In the experiments below, first only the L f is used, then a combination of the L f and Lkl are
used with gradient descent to first guide the model parameters to reproduce large-scale structures
with L f , then later refine the model parameters with respect to the small scale features inherent in
the velocity increment statistics by minimizing Lkl.

The field-based loss L f is introduced by setting 
(X , θ, t ) = ‖V f (t ) − V̂
f
(t )‖2/Nf , where

V f
i = ∑Nf

j=1(mj/ρ j )v jWi j (||r f
i − r j ||, h). This uses the same SPH smoothing approximation to

interpolate the particle velocity onto a predefined mesh r f (with Nf grid points). The statistical-
based loss function Lkl, using a Kullback-Leibler (KL) divergence, is also introduced by
setting 
 = ∫ ∞

−∞ Pgt (t, zgt , x) log(Pgt (t, zgt , x)/Ppr (t, zpr (θ), x))dx, where zgt = zgt (t ), and zpr (θ) =
zpr (θ, t ) represent single-particle statistical objects over time of the ground-truth and predicted data,
respectively. For example, we use the velocity increment, zi(t ) = (δui, δvi, δwi ), where δui(t ) =
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FIG. 2. Using a NN embedded within the SPH framework to approximate Eq. (8) using Lf . We see that
P(ρ ) is well approximated, where Ptruth is the ground-truth solution and Pnn is the NN approximation. We
note that the underlying ground-truth data has 99.73% of density values within the black dotted vertical lines
(within 3 standard deviations), and so the NN does well at approximating the ground truth within the data seen
in training; however, it fails to capture the global shape of the function. Furthermore, we see that the parameters
that were used to generate the synthetic SPH training data are learned where the initial guesses are uniformly
distributed about (0,1).

ui(t ) − ui(0) and z ranges over all particles. Here P(t, z(t ), x) is a continuous probability distribution
(in x) constructed from data z(t ) using kernel density estimation (KDE), to obtain smooth and
differentiable distributions from data [66]), that is P(τ, z, x) = (Nhkde)−1 ∑N

i=1 K ((zi − x)/hkde)
(where hkde is a smoothing parameter selected in this work as hkde = 0.9 based on Silverman’s
rule [66]).

The gradient ∂θL = ∫ t f

0 ∂X
(X , θ, t )dθX (θ, t ) + ∂θ
(X , θ, t )dt, is computed with the forward
SA equation by simultaneously integrating the states [Eq. (3)] along with the sensitivities Sk

i :=
dX i/dθk according to

∀i :
dSk

i

dt
= ∂F i(X (t ), θ)

∂X i
Sk

i + ∂F i(X (t ), θ)

∂θ k
, (13)

Where a mixed mode AD is used to compute the derivatives of ∂F i/∂θ and within ∂F i/∂X i (see
Appendix B for more details).
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FIG. 3. Losses converging over iterations when trained on DNS up to the Kolmogorov timescale with Mt =
0.08. The physics-informed SPH-based models achieve the lowest losses. Each model is seen to interpolate
onto the DNS field data as seen in the u component of velocity snapshots in Fig. 4 within in the training
window.

V. RESULTS: TRAINING AND EVALUATING MODELS

First, the methodology is validated on “synthetic” SPH data, by training each model in the
hierarchy on the SPH data and testing their ability to interpolate and generalize. For example, in
Fig. 2 we see the ability for NNs embedded within the SPH framework to learn the equation of
state. Figure 2 provides further validation of the mixed mode learning algorithm for performing
parameter estimation by learning the parameterized SPH “physics-informed” from SPH data (see
Appendix D such as Fig. 23 for more details). Next, we analyze the hierarchy of models trained on
weakly compressible (low Mach number) Eulerian-based DNS data where the models are evolved
on a coarse-grained scale using N = 123, 163, 203 particles.

A. DNS data

Our “ground-truth” Lagrangian data are generated by tracking simultaneously multiple particles
advected by velocity which we extract from the Eulerian DNS (solving the Navier-Stokes equations)
of weakly compressible, thus low Mach number, stationary Homogeneous Isotropic Turbulence.
Our numerical implementation of the Eulerian DNS is on a 2563 mesh over the three-dimensional
box, � = [0, 2π ]3. We use sixth-order compact finite differences for spatial discretization and the
fourth-order Runge-Kutta scheme for time advancement, also imposing triply periodic boundary
conditions over the box. The velocity field is initialized with 3D Gaussian spectral density enforcing
zero mean condition for all components.

A large-scale linear quasisolenoidal forcing term is applied to the simulation at wave number
|k| < 2 to prevent turbulence from decaying [56]. The forcing method allows the specification
of the Kolmogorov scale at the onset and ensures that it remains close to the specified value.
The simulations presented here have η/�x = 0.8, where �x is the grid spacing. Compared to a
standard (well-resolved) spectral simulation with ηkmax = 1.5, where kmax is the maximum resolved
wave number, which has η/�x = 1.5/π , the contraction factor is ≈0.6 [56,67] and the maximum
differentiation error at the grid (Nyquist) scale is less than 3.5%. Compared to a spectral method
with ηkmax = 1, which has η/�x = 1/π , the contraction factor is ≈0.4 [56,67] and the maximum
differentiation error at the Nyquist scale is less than 0.2%. The initial temperature field is set to be
uniform and the initial pressure field is calculated by solving the Poisson equation. More details
about the numerical method and setup can be found in Refs. [56,68]. The simulation is conducted
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FIG. 4. Volume plots of snapshots over time comparing Eulerian u velocity component of coarse-grained
DNS data (at the same resolution of the models and at Mt = 0.08) to the predictions made with the trained
models. This qualitatively shows that as more SPH structure is included, the better is the ability of the model
to generalize all the way to the longest (physically relevant) timescale, teddy (which is the turnover timescale of
the largest eddy of the flow) even when it is trained on the shortest relevant timescale tη. We see the large-scale
structures present in the u velocity are best captured with the SPH informed models, and predictions degrade
as more reliance is put on using a neural network to parametrize the acceleration operator [72].

until the turbulence becomes statistically stationary, which is verified based on the evolution of the
kinetic energy and dissipation [56,68].

Once a statistically steady state of HIT is achieved, we apply a Gaussian filter to smooth the
spatio-temporal Eulerian data for velocity at the resolved scale, d , and then inject the filtered flow

TABLE I. DNS cases for training and validation of models.

Case number 1 2 3

Turbulent Mach number Mt 0.08 0.16 0.04
Taylor Reynolds number Reλ 80 80 80
Kolmogorov timescale tη 2.3 1.2 4.7
Usage Training Validation Validation
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FIG. 5. Comparing learned smoothing kernels W1(r; h, a, b) and W2(r; h, a, b) with standard cubic Eq. (A1)
and quartic Eq. (A2) kernels. Notice the shape of the learned parameterized smoothing kernels includes a
relatively larger contribution from particles farther away and shallower gradients for nearby particles. See
Table IV for the learned parameters.

with 163 noninertial Lagrangian fluid particles. We use a Gaussian filter, which is commonly used
in LES, with a filtering length scale of the order or larger than the scale d that can be resolved for
the particles. In dimensionless units, where the energy containing scale, L, which is also the size of
the box, is L = 2π , the smallest scale d we can resolve with this number of particles is π/8, i.e., 16
times smaller than the size of the domain.

The particles are placed in the computational domain, [0, 2π ]3, where the initial condition is set
as an SPH equilibrium solution (particles are evolved according to SPH with no external forcing
until particles reach an equilibrium position [69]), and then we follow trajectories of the passively
advected particles for time, τ , which is of the order of (or longer) than the turbulence turnover
time of an eddy of size comparable to the resolved scale, d , i.e., τ = O(d2/3/ε1/3), where ε is the
estimate of the energy flux transferred downscale within the inertial range of turbulence. Note that
d is bounded from above by the size of the box, i.e., L = 2π in the dimensionless units of our
DNS setting, and from below by the Kolmogorov (viscous) scale, η = O(ν3/4/ε1/4), where ν is the
(kinematic) viscosity coefficient.
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FIG. 6. Measuring the generalization error using the field-based loss Lf normalized with respect to the total
kinetic energy 〈ke〉 from DNS. (a) The generalization error over t is computed over 20 different timescales
ranging from the Kolmogorov time to the eddy turn over time. (b) Generalization error over Mt is computed
using three different turbulent Mach numbers Mt , 0.04, 0.08, and 0.16, integrated up to the eddy turn over
timescale. We see that the SPH-informed model with the parameterized smoothing kernel W2(a, b) performs
best at generalizing with time and turbulent Mach numbers. Furthermore, the NNs embedded within the SPH
structure, namely (∇P)nn and Pnn, showing improvements over the standard SPH model.

In this work, we consider three turbulence cases for training and testing the model with com-
parable Reynolds numbers, Reλ ≈ 80 and turbulent Mach numbers, Mt = 0.04, 0.08, and 0.16, as
shown in Table I [23]. The Taylor Reynolds number is calculated from the turbulence Reynolds
number, Ret , using the isotropic turbulence formula Reλ = √

20/3Ret [70], where Ret = k2
t /(νε),

with kt the turbulent kinetic energy based on the filtered velocity. The turbulent Mach number in
DNS is defined as Mt = (2kt )1/2/cs. In the limit of low Mach number, for single component flows,
density can be expanded as ρ ≈ ρ0 + ρ1, where ρ1 ∼ M2

t ρ0 [71], so that M2
t is proportional to

the fluid density deviation from the uniform distribution. Note that any particle-based modeling
of turbulence requires introducing, discussing, and analyzing compressibility simply because any
distribution of particles translates into fluid density which is always spatially nonuniform, even if
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FIG. 7. Predictive performances of coarser resolution models with N = 123 particles. Measuring the
generalization error using the field-based loss Lf normalized with respect to the total kinetic energy 〈ke〉 from
DNS. (a) The generalization error over t is computed over 20 different timescales ranging from the Kolmogorov
to the eddy turn over time. (b) Generalization error over Mt is computed using 3 different turbulent Mach
numbers Mt , 0.04, 0.08, and 0.16, integrated up to the eddy turn over timescale. We see that the SPH-informed
model with the parameterized smoothing kernel W2(a, b) performs best at generalizing with respect to time and
turbulent Mach numbers.

slightly. Therefore, even if we model fully incompressible turbulence, we should still introduce an
effective turbulent Mach number when discussing a particle-based approximation, which for the
weakly compressible limit can be approximated as M2

t ∼ |ρ − ρ0|/ρ0.
For the Mt = 0.08 case and over each resolution set (N = 123, 163, 203), training takes place

on the order of the Kolmogorov timescale tη. When measuring the performance of each model,
generalization errors are computed over different turbulent Mach numbers as well as over different
timescales (for Mt = 0.08) up to the eddy turn over time. Furthermore, when DNS data is used
in training, the equation of state used in Eqs. (10) and (9) is P(ρ; c, γ , p0) = c2ργ + p0, to be
consistent with the DNS formulation used, where the background pressure term p0 is added as a
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FIG. 8. Predictive performances of finer resolution models with N = 203 particles. Measuring the general-
ization error using the field-based loss Lf normalized with respect to the total kinetic energy 〈ke〉 from DNS.
(a) The generalization error over t is computed over 20 different timescales ranging from the Kolmogorov time
to the eddy turn over time. (b) Generalization error over Mt is computed using three different turbulent Mach
numbers Mt , 0.04, 0.08, and 0.16, integrated up to the eddy turn over timescale. We see that the SPH-informed
model with the parameterized smoothing kernel W2(a, b) performs best at generalizing with respect to time and
turbulent Mach numbers. We see that the improvements by using the SPH-informed model with parameterized
smoothing kernel W2(a, b) become greater at the finer scale resolutions. We also note that the DNS data are
not fully barotropic, like in the weakly compressible SPH framework. Thus, for the training Mt , Pnn is more
flexible and learns a better fit for equation of state than what is used in the standard SPH model. However, this
model may suffer from over-fitting as seen in panel (b).

correction for SPH (the pressure gradient term in the SPH framework is not invariant to changes in
this background pressure term; see Appendix A).

B. Training and evaluating models

Parameter estimation (i.e., training) is performed on each model on the order of the Kolmogorov
time using the mixed mode gradient-based optimization with the field-based loss function (and
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TABLE II. Rotational and translational invariance errors in trained models.

Model Rotational Translational

NODE 3.5 × 10−4 4.1 × 10−4

NN summand 3.4 × 10−5 7.9 × 10−33

Rot-invariant NN 1.5 × 10−32 3.3 × 10−32

∇P - NN 2.6 × 10−6 4.5 × 10−32

EoS NN 4.1 × 10−32 1.2 × 10−31

SPH-informed: Wcubic 3.5 × 10−32 8.5 × 10−32

SPH-informed: Wquartic 2.1 × 10−31 5.4 × 10−31

SPH-informed: W (a, b) 2.4 × 10−32 1.1 × 10−31

SPH-informed: W2(a, b) 3.4 × 10−32 1.2 × 10−31

statistical-based loss Appendix C using velocity increment) until convergence (see Fig. 3). Once all
the models are trained, they are used to make forward predictions over larger timescales as seen in
Fig. 4 (on the order of the eddy turn over time) and over different turbulent Mach numbers as seen
in Table I. The future state predictions are evaluated with respect to loss functions as a performance
measure, and detailed statistical comparisons are given.

The shapes of the novel learned parameterized smoothing kernels are reported in Fig. 5. We use
the field-based loss normalized with respect to the total kinetic energy from DNS as a quantitative
measure comparing each model over larger timescales and different turbulent Mach numbers as seen
in Figs. 6–8. The errors in translational and rotational symmetries are recorded in Table II, which
shows that as more SPH-based structure is included, conservation of linear and angular momenta is
enforced. Furthermore, the single-particle statistics, acceleration pdfs, and energy spectrum (as seen
in Figs. 9–12, respectively) are used to evaluate the statistical performance of each model as external
diagnostics (not used in training). The results in these figures show that the SPH informed model
using the novel parameterized smoothing kernel W2 [Eq. (10)] performs best at generalizing, with
respect to the statistical and field-based performance evaluations, to larger timescales and different
turbulent Mach numbers, as well as enforces physical symmetries and improves interpretability over
the less informed models.

Discussing in slightly more detail, Fig. 6 clearly shows that there is a gradual improvement in
generalizability as more physics-informed SPH-based structure is included in the model. Although
the most generalizable model is the fully parameterized SPH informed model using the new
parameterized smoothing kernel W2(a, b), there is a close match between Pnn [using a NN to
approximate the equation of state within the SPH framework Eq. (8)] and (∇P)nn [using a NN to
approximate the SPH-based pressure gradient Eq. (7)] and the SPH-W2(a, b) model. Thus, within the
SPH-informed models, using a NN embedded within the SPH framework (such as in approximating
the equation of state and pressure gradient term) can actually improve generalizability over the
uninformed models and the standard SPH-informed model when using the classical cubic or quartic
smoothing kernels. However, relying on a NN to approximate the full acceleration operator without
including any conservation laws, although still being able to interpolate, does not generalize nearly
as well as the SPH-informed models.

In Figs. 9 and 10, the acceleration statistics comparing smoothing kernels and each model,
respectively, are reported for one eddy turn over time with Mt = 0.08 (as seen in training) and
Mt = 0.16, and Mt = 0.04. In this figure, we see a clear improvement in generalization with respect
to the acceleration statistics as more SPH structure is used and improving the accuracy of the SPH
framework using the novel parameterized smoothing kernels. A similar trend is observed in the
single-particle statistics as seen in Fig. 11. However, even the SPH informed models seem to struggle
to provide a close match to DNS acceleration when generalizing to Mt = 0.04 flow, indicating a
limitation to this approach. However, we should note that the only parameter that was changed in
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FIG. 9. Comparing acceleration statistics over time, and turbulent Mach numbers of the trained SPH-based
models showing the learned parameterized smoothing kernels are a closer match to DNS as compared to the
cubic and quartic smoothing kernels over longer timescales as well as at different Mach numbers Mt = 0.04
and Mt = 0.16. However, each model misses the intermittent behavior seen in the long tails from DNS, and
performs poorly on the Mt = 0.04 indicating limitations of this approach.
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FIG. 10. Comparing acceleration statistics over time, and turbulent Mach numbers of all trained models
showing the learned parameterized smoothing kernels are a closer match to DNS as compared to the cubic
and quartic smoothing kernels on over longer timescales as well as at different Mach numbers Mt = 0.04 and
Mt = 0.16. Here the smoothing kernels as compared in Fig. 9 are reported again to compare all the models

making forward state predictions for different turbulent Mach numbers was θinj, to be consistent
across models and with the DNS external forcing. Finally, in Fig. 12, the energy spectrum shows
some of the key statistical differences in the model predictions, that the less informed models,
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FIG. 11. A diagnostic check comparing single-particle statistics on larger timescales (roughly 20 times
longer than seen in training), with the new parameterized smoothing kernels SPH-informed model having the
best fit. In this case, each is not seen in training, so represent an external diagnostic, however, in the Appendix C
we see the effects of including the velocity increment statistical-based loss.

although able to interpolate on the training window like the other models, predict more energy to be
distributed in the small scales and less in the large scales as compared to DNS (and as seen in the
volume plots of the u component of velocity field Fig. 4), whereas the SPH informed models provide
a closer match to the large to small scale energy cascade. For further analysis of the smoothing
kernels and experiments using a combination of L f and Lkl see Appendix C.

Table III Shows a comparison of run-times and memory used for training each model on an
Intel Core i9-10900X CPU, applying one step of the training algorithm (see Appendix B) using 2D
models with 1024 particles. In the numerical experiments presented in this manuscript convergence
was typically observed between 300–1000 iterations for both 2D and 3D training sets. Thus, in
summary of training the 2D models, NODE required up to 1.3–4.3 CPU hours, NN-sum required
up to 3.5–11.5 CPU hours, Rot-inv up to 2.4–8.1 CPU hours, ∇P-NN required up to 2.5–8.1 CPU
hours, EoS NN required up to 0.7–2.5 CPU hours, and SPH-informed models required up to 0.5–1.7
CPU hours. Scaling up to 3D flows with 4096 particles required up to 240 CPU hours for the most
expensive NN-Sum model to achieve convergence.
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FIG. 12. Comparing energy spectrum over time; t = 2.8s ∼ tη is on the Kolmogorov timescale, and t =
16.8s ∼ teddy is at the scale of the eddy turn over time. We see that the SPH-based parameterized models
captures the energy cascade seen in DNS on both the training timescale and in generalizing to larger timescales.
Furthermore, as seen qualitatively seen in Fig. 4, the less informed models do not capture the cascade and
show more energy in the small scale structures and less in the large scales. However, the fully parameterized
SPH-informed models show a dissipation rate from the large to small scales to be larger than DNS.

VI. CONCLUSIONS

Combining SPH-based modeling, deep learning, automatic differentiation, and local sensitivity
analysis, we have developed a learn-able hierarchy of parameterized “physics-explainable” La-
grangian models, and trained each model on both a validation set using weakly compressible SPH
data and a high-fidelity DNS data set (at three different resolutions) to find which model minimizes
generalization error over larger timescales and different turbulent Mach numbers. We proposed two
new parameterized smoothing kernels, which, once trained on DNS data, improve the accuracy of
the SPH predictions compared to DNS, with the second kernel, W2(r; h, a, b) (which is smooth at
the origin), performing best.

Starting from a Neural ODE-based model, we showed that incrementally adding more physical
structure into the Lagrangian models using SPH has several important benefits:

(i) Improves generalizability: As seen in Appendix D 2 and Sec. V, where we test the ability
of the models to predict flows under different conditions not seen in training. The general trend
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TABLE III. Comparing (2D) models: Run-times and memory, t ∼ tλ: One iteration.

Model with FSA Run-time (s) Memory (GiB)

NODE 15.50 9.62
NN summand 41.60 15.61
Rotationally invariant NN 29.16 9.70
∇P NN 29.37 9.51
EoS NN 8.87 5.19
SPH-informed 6.03 3.52

emerged: as more physics-informed SPH-based structure was embedded in the model, the lower
the generalization errors became (both with respect to the loss function used in training and with
the external statistical diagnostics). Furthermore, using NNs embedded within the SPH framework
to approximate unknown functions can improve generalizability over the standard formulation, but
the fully parameterized SPH including the novel parameterized smoothing kernels outperformed the
rest.

(ii) Learn new smoothing kernels: A key ingredient in the construction of the SPH method relies
on the properties of the smoothing kernel. Two novel parameterized and learn-able smoothing
kernels—nonsmooth and smooth at the origin, respectively—were developed. We showed that
introducing the parametrization freedom in the kernels increases flexibility of the physics-informed
SPH-based models and improves generalizability.

(iii) Enforces physical symmetries: The parameterized framework automatically enforces the
Gallilelian invariance and allows to keep conservation of linear and angular momenta (translational
and rotational invariances) under control across the scales of coarse-graining, see Table II.

(iv) Improves Interpretability: as the learned parameters become physically meaningful—in a
critical contrast to parameters of the NN models which are physics-agnostic. For example, and as
seen in Appendix C, our approach is capable to reconstruct with minimal error (counted against the
ground-truth) physical parameters, associated with the equation of state, artificial shear and bulk
viscosity and external forcing.

(v) More efficient to train: As seen in Table III, where we compare different models within the
generalized SPH hierarchy.

(vi) Robust with respect to different levels of coarse-graining: The reported results hold under
different resolutions within the inertial range of scales, namely, at N = 123, 163, 203, as seen in
Figs. 7 and 8.

In future works, we plan to go beyond the weakly compressible SPH Lagrangian modeling
discussed so far and include compressible effects such as shocks. Specifically, we aim to further
investigate SPH as a reduced-order Lagrangian model of highly compressible turbulent flows, and
further investigate the ability to improve and optimize the SPH framework using the two new
parameterized smoothing kernels proposed in this work, parameterized artificial viscosities and
regularization terms.

The Julia source code of our parameterized Lagrangian simulators, the gradient-based learning
algorithm, sensitivity calculations for each model in the above hierarchy, and the post processing
tools can be found in Ref. [73].
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APPENDIX A: SPH (IN MORE DETAIL)

1. Basic formulation

In this Appendix we give a summary of SPH, most of which can be found in Refs. [17,18,58,69].
SPH is a discrete approximation to a continuous flow field by using a series of discrete particles.
Starting with the trivial identity

A(r) =
∫

V
A(r′)δ(r − r′)dr′,

where A is any scalar or tensor field. Using the smoothing kernel W (for interpolation onto smooth
“blobs” of fluid) and after a Taylor expansion it can be shown that (according to symmetry of
smoothing kernel [58])

A(r) =
∫

V
A(r′)W (|r − r′|, h)dr′ + O (h2).

where W is constrained to behave similar to the δ function,∫
V

W (r, h)dr = 1, lim
h→0

W (r, h) = δ(r).

The choice of smoothing kernels is important, and effects the consistency and accuracy of results
[54], where bell-shaped, symmetric, monotonic kernels are the most popular [60]; however, there is
still disagreement on the best smoothing kernels to use (but generally should satisfy the conditions
outlined in Ref. [61]). Commonly used are the B-spline smoothing kernels with a finite support
(approximating a Gaussian kernel). The cubic smoothing kernel used in this work has the following
form:

w(q) = σ

⎧⎪⎨
⎪⎩

1
4 (2 − q)3 − (1 − q)3 0 � q < 1,
1
4 (2 − q)3 1 � q � 2,

0 2 � q,

(A1)

where W (|r − r j |, h) = h−dw(q) with q = |r − r j |/h, and σ = σ (d ) = [1/π if d =
3, 10/7π if d = 2] is a normalizing constant to satisfy the integral constraint on W (see
Refs. [18,58,60] for more details). The finite support allows one to use neighborhood list algorithms
discussed below to utilize computational advantages (only requires a local cloud of interacting
particles instead of all the particles in the computational domain that would be required with a
Gaussian kernel). The quartic smoothing kernel (see Ref. [61]) used in this work is

w(q) = σ

{
(2/3 − 9/8q2 + 19/24q3 − 5/32q4) 0 � q < 2,

0 2 � q,
(A2)

where σ = 315/(208πh3) for d = 3.
In Sec. IV, two new parameterized smoothing kernels are introduced, where the shapes are

described by the algebraic equations Eqs. (11) and (12). This is done to increase the flexibility of the
SPH model as well as to allow the optimization framework to “discover” the best shaped kernel for
our application. Both kernels are introduced to cover a wide range of possible shapes, not necessarily
bell-shaped (see Fig. 13 below), although both satisfy the conditions for approximating the δ

function. The main difference between the two is that W2(a, b) has a smoother second derivative
and may reduce the likelihood of particle pairing as compared to W1(a, b), however, we postpone
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FIG. 13. Varying shapes for the two new parameterized smoothing kernels as compared to the cubic and
Wendland kernel for d = 3. The optimization framework is applied to discover the best fit shape (see Fig. 5).

a deeper analysis of this comparison until future work, in which we will analyze the effects to
changing kernels with standardized compressible flows (such as the Sod shock and Sedov blast
wave [74]).

SPH can be formulated through approximating integral interpolants of any scalar or tensor field
A by a series of discrete particles

〈A(r)〉 =
∫

V
A(r′)W (|r − r′|, h)dr′ ≈

∑
i

mi
A(ri )

ρ(ri )
W (|r − ri|, h), (A3)

(i.e., a convolution of A with W ), where dr′ denotes a volume element and W (r, h) is the smoothing
kernel. Each particle represents a continuous “blob” of fluid and carries the fluid quantities in the
Lagrangian frame (such as pressure Pi, density ρi, velocity vi, etc.)

The convenience of this method becomes apparent when the differential operators are approxi-
mated (see Ref. [61] for a more detailed derivation). Using the integral interpolation,

〈∇rA(r)〉 =
∫

V
∇rA(r′)W (||r − r′||2, h)dr′.
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Now, using the particle approximation

〈∇rA(r)〉 ≈
∑

i

mi
A(ri )

ρ(ri )
∇rW (||r − ri||2, h)),

where we see that in this direct approach to approximate the gradient operator we only need to know
the gradient of the smoothing kernel (which is usually fixed beforehand). Multiple methods have
been proposed and different methods are best suited for different problems. Similar approximations
hold for taking the divergence or curl of a vector field [16]. The most common ”symmetrized”
approximation of the gradient operator is derived from the following identity,

∇rA(ri ) = ρ

[
A(ri )

ρ2
∇rρ − ∇r

(
A(ri )

ρ

)]
,

and is approximated with particles as

∇rAi ≈ ρi

N∑
j

m j

(
Aj

ρ2
j

− Ai

ρ2
i

)
∇riWi j . (A4)

2. Approximation of flow equations

The above integral interpolant approximations using series of particles can be used to discretize
the equations of motion [as seen in Eq. (2)], with more details found in Refs. [16,18]. Each particle
carries a mass mi and velocity vi, and other properties (such as pressure, density, etc.). We can use
Eq. (A3) to estimate the density everywhere by

ρ(ri ) =
∑

j

m jW (|ri − r j |, h),

where although the summation is over all particles, because the smoothing kernel has compact
support the summation only needs to occur over the smoothing radius [here 2h as seen in Eq. (A1)].
Another popular way to approximate the density is through using the continuity equation and
approximating the divergence of the velocity field in different ways [17]. In what follows we use
the notation Ai = A(ri ). Using the gradient approximation defined above [Eq. (A4)], the pressure
gradient could be estimated by using

ρi∇rPi =
∑

j

m j (Pj − Pi )∇riWi j,

where Wi j = W (|ri − r j |, h). However, in this form the momentum equation dtv = − 1
ρ
∇rP does not

conserve linear and angular momentum [17]. To improve this, a symmetrization is often done to the
pressure gradient term by rewriting ∇rP

ρ
= ∂r( P

ρ
) + P

ρ2 ∇rρ. This results in a momentum equation for
particle i discretized as

dvi

dt
= −

∑
j

mi

(
Pj

ρ2
j

+ Pi

ρ2
i

)
∇riWi j,

which produces a symmetric central force between pairs of particles and as a result linear and angu-
lar momentum are conserved [17], however is not invariant to changes in background pressure p0.
Next, including an artificial viscosity term and external forcing, the full set of ODEs approximating
PDEs governing fluid motion (namely Euler’s equations with an added artificial viscosity �) is

dri

dt
= vi ∀i ∈ {1, 2, ...N}
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dvi

dt
= −

N∑
j �=i

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

+ �i j

)
∇riWi j + f ext.

In this work, we start by using the weakly compressible formulation by assuming a barotropic
fluid, where equation of state (EoS) is given by

P(ρ) = c2ρ0

γ

[(
ρ

ρ0

)γ

− 1

]
,

as in Ref. [18], where ρ0 is the initial reference density, and γ = 7 is used. In future work, we plan
on including the energy equation to extend these methods for highly compressible applications.

There are many different forms of artificial viscosity that have been proposed [75]. In this work,
we use the popular formulation of �i j that approximates the contribution from the bulk and shear
viscosity along with an approximation of Nueman-Richtmyer viscosity for handling shocks [18,57]:

�i j =
{−αci jμi j+βμ2

i j

ρi j
, vi j · ri j < 0,

0, otherwise,
(A5)

where ci j = 0.5(ci + c j ) and ci = √
dP(ρi )/dρ represents the speed of sound of particle i and

μi j = hvi j · ri j

|ri j |2 + εh2
, ρi j = 0.5(ρi + ρ j ).

This artificial viscosity term was constructed in the standard way following Refs. [75,76]: The
linear term involving the speed of sound was based on the viscosity of an ideal gas. This term
scales linearly with the velocity divergence, is negative to enforce �i j > 0, and should be present
only for convergent flows (vi j · ri j < 0). The quadratic term including (vi j · ri j )2 is used to prevent
penetration in high Mach number collisions by producing an artificial pressure roughly proportional
to ρ|v|2 and approximates the von Neumann-Richtmyer viscosity (and should also only be present
for convergent flows). There are several advantages to this formulation of �i j ; mainly it is Galilean
and rotationally invariant, thus conserves total linear and angular momentum. A more detailed
derivation is found in Ref. [58] (along with other formulations of artificial viscosities).

In practice the summation Eq. (2) over all particles is carried out through a neighborhood list
algorithm (such as the cell linked list algorithm with a computational cost that scales as O (N )
[59]). We also note that Eq. (2) can also be derived from Euler-Lagrange equations after defining a
Lagrangian, see Ref. [58] (for respective analysis of the inviscid case, when the artificial viscosity
term is neglected), then an artificial viscosity �i j term can be incorporated by using the SPH
discretizations; see Ref. [54] for details.

Although the above SPH framework is the most common and contains the same elements as most
formulations [18,54,61,74,77,78], additional terms can be included to address certain applications
and situations. For example, a particle regularization can be included in an attempt to correct issues
occurring in certain applications involving particle instabilities and anisotropic distributions which
can decrease the accuracy of SPH. In the works of Lind et al. [77], a particle shifting is introduced
for incompressible SPH solvers to reduce noise in the pressure field by using Fick’s law of diffusion
to shift particles in a manner that prevents highly anisotropic distributions. In Marrone et al. [78],
the authors introduce a density diffusion term for simulating violent impact flows. However, in this
work, we do not incorporate any of these additional particle type regularization terms (on top of the
artificial viscosity term which also acts to regularize the particle distributions) for two main reasons:
(1) it is not expected that these additional particle regularization terms will have a significant effect
for the resolutions considered in this study (as it was found that the artificial viscosity term used
was sufficient), and also because (2) the primary focus of this manuscript is to develop a hierarchy
of parameterized reduced Lagrangian models for turbulent flows, and to investigate the effects of
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enforcing physical structure within a Lagrangian framework through SPH versus relying on neural
networks (NNs) as universal function approximators.

3. External forcing

To approach a stationary homogeneous and isotropic turbulent flow, a deterministic forcing is
used (for simplifying the learning algorithms), which is commonly used in CFD literature (e.g., as
in Ref. [56] which is what is used in generating the ground-truth DNS data) for analyzing stationary
homogeneous and isotropic turbulence. Then,

f i
ext = θinj

KE
vi, KE = 0.5

N

N∑
k=1

ρk
(
u2

k + v2
k + w2

k

)
is the kinetic energy computed at each time step, θinj represents the rate of energy injected into the
flow.

4. Numerical algorithm for forward solving SPH

We use a velocity Verlet (leapfrog) numerical scheme for generating the SPH ground-truth data
and for making prediction steps required in our gradient-based optimization described in Eq. (IV).
Using the notation

X = {(ri, vi )|∀i ∈ {1, ..., N}}, ρ = {ρi|∀i ∈ {1, ..., N}},
dri

dt
= vi,

dvi

dt
= F i(ρ, X ),

we proceed according to the following algorithm:
1: Compute ρk using Eq. (A3),
2: Compute Fk

i (ρk, X k ) using Eq. (2),

3: v
k+ 1

2
i = vk

i + �t

2
Fk

i ,

4: rk+1
i = rk

i + �tv
k+ 1

2
i ,

5: Compute ρk+1 using Eq. (A3),

6: Compute F
k+ 1

2
i (ρk+1, X k+ 1

2 ) using Eq. (2),

7: vk+1
i = v

k+ 1
2

i + �t

2
F

k+ 1
2

i ,

repeated for each time step, k ∈ {0,�t, ..., T }, where the time step, �t , is chosen according to the
Courant-Friedrichs-Lewy (CFL) condition, �t � 0.4h/c. This algorithm has the following physical
interpretation: It prevents spatial information transfer through the code at a rate greater than the
local speed of sound (small in the almost incompressible case considered in this manuscript).

APPENDIX B: METHODS

In this Appendix, we provide further details into the methods of this work, including loss
functions, sensitivity analysis, and the learning algorithm.

1. Loss functions

In this section, we consider three different loss functions: trajectory-based (Lagrangian), field-
based Eulerian, and Lagrangian statistics-based, described in the following three subsections. Since
our overall goal involves learning Lagrangian and SPH-based models for turbulence applications,
it is the underlying statistical features and large-scale field structures we want our models to learn

054602-25



MICHAEL WOODWARD et al.

and generalize with. This is discussed further in Appendix D and Sec. V, where we compare the
statistical and field-based generalizability of each model within the hierarchy.

a. Trajectory-based loss function

A naive loss function to consider is the mean-squared error (MSE) of the difference in the
Lagrangian particles positions and velocities, as they evolve in time,

Ltr (θ) = MSE(X , X̂ (θ)) = ‖X − X̂ (θ)‖2/N,

where X and X̂ are the particle states—the ground-truth and the predicted, respectively. Minimizing
this loss function will result in discovering optimal parameters such that the predicted trajectories
gives the best possible match (within the model) for each of the particles. However, the Lagrangian
tracer particles are noninertial, whereas the SPH particles have mass, thus the trajectory-based loss
function is not consistent with the data.

b. Field-based loss function

The field-based loss function tries to minimize the difference between the large-scale structures
found in the Eulerian velocity fields,

L f (θ) = MSE (V f , V̂
f
) = ‖V f − V̂

f ‖2/Nf ,

where V f
i = ∑Nf

j=1(mj/ρ j )v jWi j (||r f
i − r j ||, h) uses the same SPH smoothing approximation to

interpolate the particle velocity onto a predefined mesh r f (with Nf grid points). Lets recall that
SPH is, by itself, an approximation for the velocity field, therefore providing a strong additional
motivation for using the field-based loss function.

c. Lagrangian statistics-based loss function

To approach learning Lagrangian models that capture the statistical nature of turbulent flows,
one can use well established statistical tools/objects, such as single-particle statistics [65]. In this
direction, consider the time integrated Kullback-Leibler divergence (KL) as a loss function

Lkl(θ) =
∫ t f

t=0

∫ ∞

−∞
Pgt (t, zgt , x) log

(
Pgt (t, zgt , x)

Ppr (t, zpr (θ), x)

)
dxdt,

where zgt = zgt (t ), and zpr (θ) = zpr (θ, t ) represent single-particle statistical objects over time of
the ground-truth and predicted data, respectively. For example, we can use the velocity increment,
zi(t ) = (δui, δvi, δwi ), where δui(t ) = ui(t ) − ui(0) and z ranges over all particles. Here P(t, z(t ), x)
is a continuous probability distribution (in x) constructed from data z(t ) using kernel density
estimation (KDE), to obtain smooth and differentiable distributions from data, as discussed in
Ref. [66]), that is

P(τ, z, x) = (Nh)−1
N∑

i=1

K ((zi − x)/h),

where K is the smoothing kernel (chosen to be the normalized Gaussian in this work). In the
experiments below, a combination of the L f and Lkl are used with gradient descent to first guide
the model parameters to reproduce large-scale structures with L f , then later refine the model
parameters with respect to the small scale features inherent in the velocity increment statistics by
minimizing Lkl.

d. Forward and Adjoint-based Methods Supplemental

Let us, first, introduce some useful notations for our parameterized SPH-informed models;
X i = (ri, vi )T , X = {X i|i = 1, ...N}, where, ri = (xi, yi, zi ), and, vi = (ui, vi,wi ), are the posi-

054602-26



PHYSICS-INFORMED MACHINE LEARNING WITH …

tion and velocity of particle i, respectively. Also, θ = [θ1, ..., θ p]T where p is the number of model
parameters. Now, each parameterized Lagrangian model in the hierarchy can be stated in the ODE
form

∀i : dX i/dt = F i(X (t, θ), θ) = (vi, %F i(X , θ))T , (B1)

where F i(X , θ) = v̇i is the parameterized acceleration operator as defined in the above hierarchy.
Forward and adjoint-based sensitivity analyses (FSA, ASA), analogous to forward and reverse mode
AD, respectively, can be used to compute the gradient of the loss function (see Appendix B 1), as
seen in Eq. (B2):

∂θL =
∫ t f

0
∂X
(X , θ, t )dθX (θ, t ) + ∂θ
(X , θ, t )dt . (B2)

Briefly, FSA computes the sensitivity equations (SE) for Sk
i = dX i/dθ k , by simultaneously inte-

grating a system of ODEs: (∀i, ∀k = 1, · · · , p : )

dSk
i

dt
= ∂F i(X (t ), θ)

∂X i
Sk

i + ∂F i(X (t ), θ)

∂θ k
, (B3)

which has a computational cost that scales linearly with the number of parameters (for derivations
of FSA and ASA, see Appendix B). Sk

i is computed by solving the IVP Eq. (13) with the initial
condition Sk

i (0) = 0 (assuming X (0) does not depend on θ). After solving for Sk
i , the gradient

is computed directly from Eq. (B2) which is used with standard optimization tools (e.g., Adam
algorithm of Ref. [53]) to update the model parameters iteratively to minimize the loss (see
Appendix B). As opposed to the FSA method, the ASA approach avoids needing to compute dθX by
instead numerically solving a system of equations for the adjoint equation (AE) Eq. (B9) backwards
in time, according to Appendix B 2 a. Once λ is computed through integration backwards in time,
the gradient of the loss function can be computed according to, ∂θL = − ∫ t f

0 λT ∂F/∂θdt .
The computational cost of solving the AE is independent of the number of parameters, however,

for high-dimensional time-dependent systems, the forward-backward workflow of solving the AE
imposes a significant storage cost since the AE must be solved backwards in time [62,79]. Through
hyperparameter tuning we found that the number of parameters O (1) � p � O (9 ∗ 102) for the best
fit models within the hierarchy, and so for N � 1000, the dimension of the system is much larger
than p so FSA is more efficient, and therefore FSA forms our main structure to compute the gradient.
The gradient is computed over all parameters found from using SA over all particles; alternatively
stochastic gradient descent (SGD) could be used, however, for each batch all the particle would need
to be simulated forward in time (since each particle is interacting with all neighboring particles)
requiring a full forward solve for each batch, defeating any computational advantages of SGD.

e. Mixed mode AD

In both FSA and ASA described above, the gradient of F i with respect to the parameters,
∂F i(X (τ ), θ)/∂θ, and the Jacobian matrix, {∂F i(X (τ ), θ)/∂X j |∀i, j}, need to be computed. In
this manuscript, we accomplish this with a mixed mode approach, i.e., mixing forward and reverse
mode AD within the FSA framework, where the choice is based on efficiency. This is determined
by the input and output dimensions of the function being differentiated. Depending on the above
model used, several functions need to be differentiated and a mixture of forward and reverse mode
can be implemented within the FSA system for optimizing efficiency. For example, when computing
∂F i(X (τ ), θ)/∂θα with AD, where F i(θ) : Rp → R2d , if p � 2d , then reverse mode AD is more
efficient than forward mode [47].
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FIG. 14. (a) Measuring (using the Lf normalized with the average kinetic energy) the generalization error
over (a) 20 longer timescales up to the eddy turn over time and (b) over 3 different Mt ∈ {0.04, 0.08, 0.16} at the
eddy turn over timescale of each fully parameterized SPH informed models, comparing two new parameterized
smoothing kernels with two classic smoothing kernels. This shows that the new parameterized smoothing
kernels outperform in their ability to generalize to other DNS flows as compared to the the cubic and quartic at
this spatial resolution using N = 4096 particles.

2. Forward sensitivity analysis

In general, the loss functions in this work can be defined as

L(X , θ) =
∫ t f

0

(X , θ, t )dt .

The forward SA (FSA) approach simultaneously integrates the state variables along with their
sensitivities (with respect to parameters) forward in time to compute the gradient of L:

dθL =
∫ t f

0
∂X
(X , θ, t )dθX (θ, t ) + ∂θ
(X , θ, t )dt, (B4)

where, through using the chain rule, we see that the sensitivities of the state variables with respect
to the model parameters (dθX ) are required to compute the gradient of the loss. Assuming that the
initial conditions of the state variables do not depend on the parameters, then ∂X (0)/∂θα = 0. Now,
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FIG. 15. Plotting Energy spectrum over different timescales and comparing each smoothing kernel. Each
model does well at capturing energy spectrum on the Kolmogorov timescale, however, on the eddy turn over
time, the quartic and W (a, b) seem to perform marginally better.

define the sensitivities as Sk
i := dX i/dθ k . Then, from Eq. (3) we derive

dSk
i

dt
= dF i(X (t ), θ)

dθ k
, (B5)

then resulting, after applying the chain rule, in

dSk
i

dt
= ∂F i(X (t ), θ)

∂X i
Sk

i + ∂F i(X (t ), θ)

∂θα
. (B6)

Since the initial condition X (0) does not depend on θ, then Sk
i (0) = 0. Now, computing the gradient

of the loss function reduces to solving a forward in time initial value problem (IVP) by integrating
simultaneously the state variables X i defined in the main text, and sensitivities Sk

i , defined in
Eq. (B6).

To integrate Eq. (B6) the gradient of F i with respect to the parameters, both ∂F i(X (τ ), θ)/∂θα

and the Jacobian matrix, ∂F i(X (τ ), θ)/∂X i need to be computed. In this work, this is done with
a mixed mode approach. ∂F i(X (τ ), θ)/∂θα , with F i(θ) : Rk → R2d , is computed with AD (the
choice of forward or reverse mode is determined by the dimension of the input and output space),
where k is the number of parameters and d is the dimension. For example, if k � 2d (as is the
case when NNs are used), then reverse mode AD is more efficient than forward mode [64]. The
Jacobian matrix is computed and obtained through mixing symbolic differentiation packages (or
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FIG. 16. A diagnostic check comparing single-particle statistics on larger timescales (roughly 20 times
longer than seen in training), with the new parameterized smoothing kernels SPH-informed model having the
best fit. Each is not seen in training, so represent an external diagnostic.

analytically deriving by hand), as well as mixing AD. For example, when there are NNs used for the
parameterization of the right hand side, then according to expression for the Jacobian from the main
text, AD derivatives will need to be computed on different functions each with potentially different
dimensions of input and output space. The AD packages used in this work were both ForwardDiff.jl
[80] for forward mode and Zygote.jl [81] for reverse mode. The Jacobian matrix for 2D problems is

∂Fi(X (t ), θ)

∂X i
=

⎛
⎝ [0]2 I2

∂F i(X (t ), θ)

∂X i

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0]2 I2

∂F x
i

∂x1
i

∂F x
i

∂x2
i

∂F x
i

∂x3
i

∂F x
i

∂x4
i

∂F y
i

∂x1
i

∂F y
i

∂x2
i

∂F y
i

∂x3
i

∂F y
i

∂x4
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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FIG. 17. Measuring the relative error of Lf as a percentage of total kinetic energy. The generalization error
over Mt is computed over three different turbulent Mach numbers Mt ∈ {0.04, 0.08, 0.16} and on the order
of the eddy turn over timescale. We see that the parameterized smoothing kernel W2 outperforms under this
field-based measure.

FIG. 18. The field-based loss converging, using Lf to guide large-scale structures then switching to Lkl to
capture small scale statistical characteristics found the velocity increment distribution. Figure 19 shows the
shape of the smoothing kernels is similar as with only using Lf .
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FIG. 19. Learned parameterized smoothing kernels compared to cubic and quartic smoothing kernels.

where, the individual derivatives ∂F y
i

∂xd
i

are computed with AD (reverse or forward mode depending
on model chosen from Sec. III, and a similar formulation is carried out in 3D).

a. Adjoint method

This section provides an outline of the adjoint SA (ASA) method used in this work (for more
details, see Refs. [62,82]). However, we note that the main results of the text did not require
using the adjoint method because the FSA was found to be more efficient (since a relatively small
number of parameters were needed compared to the number of particles as discussed in Sec. IV),
but we include this as a reference to the associated source code that has the option of using ASA
in case the number of parameters becomes large enough (p � 2 ∗ D ∗ N). Again, the goal is to
compute the gradient of the loss function. This is a continuous time-dependent formulation, where
the goal is to minimize a loss function L(X (θ, t ), θ) which is integrated over time, L(X , θ) =∫ t f

0 
(X , θ, t )dt , subject to the physical structure constraints (ODE or PDE), H (X , Ẋ , θ, t ) = 0,
and the dependence of the initial condition, g(X (0), θ) = 0, on parameters. Here, H is the explicit
ODE form obtained through the SPH discretization equations Eq. (3) (discretization of PDE flow
equations),

H (X , Ẋ , θ, t ) = Ẋ (t ) − F (X (t ), θ). (B7)
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FIG. 20. Single-particle statistics on larger timescales (roughly 20 times longer than seen in training), with
the new parameterized smoothing kernels having the best fit. In this case, the velocity increment distribution is
used in learning with Lkl.

A gradient-based optimization algorithm requires that the gradient of the loss function,

dθL(X , θ) =
∫ t f

0
∂X
(X , θ, t )dθX (θ, t ) + ∂θ
(X , θ, t )dt,

be computed. The main difference in the FSA and ASA approach is that in the ASA calculating
dθX is not required (which avoids integrating the additional k ODEs as in FSA). Instead, the adjoint
method develops a second ODE (size of which is independent of k) in the adjoint variable λ as a
function of time (which is then integrated backwards in time).

The following provides a Lagrange multiplier approach to deriving this ODE in λ. First define

L =
∫ t f

0
(
(X , θ, t ) + λT (t )H (X , Ẋ , θ, t ))dt + μT g(X (0), θ), (B8)

where λ and μ are the Lagrange multipliers. Now, since H and g are zero everywhere, we may
choose the values of λ and μ arbitrarily; also as a consequence of H and g being everywhere zero,
we note that ∇θL = ∇θL.
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FIG. 21. Comparing energy spectrum over time; t = 2.8 s ∼ tη is the Kolmogorov timescale, and t =
16.8s ∼ teddy is at the scale of the eddy turn over time. We see that when, using Lf then Lkl, as more SPH
structure is included in the models the better it is at capturing energy contained in the large scales, however
the less informed models overestimate the energy contained in small scales and the SPH-informed models
underestimate the energy contained in the small scales.

Now, taking the gradient of Eq. (B8), and simplifying

∇θL =
∫ t f

0
[∂X
dθX + ∂θ
 + λT (∂X HdθX + ∂Ẋ HdθẊ + ∂θH )]dt + μT [∂X (0)gdθX (0) + ∂θg].

Integrating the equation by parts, and eliminating, dθẊ , we arrive at

∇θL =
∫ t f

0
{[∂X
 + λT (∂X H − dt∂Ẋ H ) − λ̇

T
∂Ẋ H]dθX + ∂θ
 + λT ∂θH}dt + λT ∂Ẋ HdθX |t f

+ (−λT ∂Ẋ H + μT g)|0dθX (0) + μT ∂θg.

Since the choice of λT and μ is arbitrary, we set λT (T ) = 0 and μT = (λT ∂Ẋ H )|0(g|X (0) )−1, to avoid
needing to compute dθX (T ) and thus canceling the second to the last term in the latest (inline)
expression. Now, assuming that the initial values of the state variables, X (0), do not depend on
the parameters, then dθX (0) = 0, and, g = 0. Furthermore, we use a loss function 
 that does not
depend on θ explicitly, so that, ∂θ
 = 0. And finally, we can avoid computing dθX at all other times
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TABLE IV. Learned SPH parameters.

Model ĉ α̂ β̂ γ̂ p̂0 θ̂ â b̂

SPH-informed: Wcubic 0.55 0.19 −0.29 1.69 −0.3 0.0013
SPH-informed: Wquartic 0.53 0.19 −0.25 1.82 −0.28 0.0013
SPH-informed: W (a, b) 0.48 0.21 0.62 2.05 −0.24 0.0009 2.82 3.05
SPH-informed: W2(a, b) 0.50 0.19 0.44 2.05 −0.26 0.0006 1.43 0.53

t > 0 by setting

∂X
 + λT (∂X H − dt∂Ẋ H ) − λ̇
T
∂Ẋ H = 0.

The resulting equation for the time derivative of λ can be restated as the following adjoint equa-
tion (AE):

λ̇
T = ∂X
 − λT ∂F

∂X
, λ(t f ) = 0, (B9)

where we also used that according to Eq. (B7), ∂X H = −∂XF and ∂Ẋ H = I2d .
Combining all of the above, we see that the simplified equation for the gradient of the loss

function is

∇θL = ∇θL =
∫ t f

0
λT ∂θHdt,

which, according to Eq. (B7), becomes

∇θL = −
∫ t f

0
λT ∂F

∂θ
dt .

Therefore, to compute the gradient, the IVP expression Eq. (B9) needs to be integrated backwards
in time for λ(t ), starting from λ(t f ) = 0. Similar to the FSA formulation found above, both ∂XF
and ∂θF , are computed with a mixture of forward and reverse mode AD tools, depending on the
dimension of the input and output dimension of the functions to be differentiated.

3. Learning algorithm

In what follows, we combine all of the computational tools and techniques introduced so far to
outline the mixed mode learning algorithm.
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Algorithm 1. Mixed Mode Learning Algorithm.

APPENDIX C: EVALUATING MODELS: ADDITIONAL RESULTS

In this Appendix, we include additional results of the trained models, for example, using the
combination of L f and Lkl.

1. Comparing smoothing kernels

In Fig. 5 we compare four different smoothing kernels included when learning the fully pa-
rameterized SPH model; two standard and fixed smoothing kernels, namely the cubic Eq. (A1)
and quartic Eq. (A2) splines (which follow the Gaussian bell shape); and two novel parameter-
ized smoothing kernels that are learned from DNS data when training the fully parameterized
SPH-informed model Eq. (10). We provide numerical evidence that shows including these novel
parameterized smoothing kernels in training improves the ability of the SPH informed model to
solve the interpolation problem and generalize to flows not seen in training as in Fig. 14. This result
seems to suggest that an improvement to the SPH construction can be made, at least in the weakly
compressible setting at the resolved scales as seen in this work, by considering smoothing kernels
which are not of the classical bell shape, but rather of the more flexible and parameterized form

054602-36



PHYSICS-INFORMED MACHINE LEARNING WITH …

FIG. 22. Solving an inverse problem for the fully physics-informed model on 3D SPH flow with determin-
istic external forcing on 4096 particles over the SPH-based parameters. The solid lines show the SPH model
parameters [initially chosen to be uniformly distributed about (0,1)] converging to the dashed lines representing
the ground-truth parameters. Here the Lkl + Lf loss function (see Appendix B 1) is used (where Lf is used in
pretraining up to 2100 iterations as seen in the small increase in the loss as the Lkl is added in).

proposed in Eqs. (11) and (12). Future work could be done in this direction to further analyze and
compare these new smoothing kernels with regards to convergence and consistency. We further
compare these smoothing kernels from the trained SPH models by making forward predictions
and evaluating the acceleration statistics (Fig. 9), energy spectrum (Fig. 15), and single-particle
statistics (Fig. 16), from which we can conclude that the new parameterized smoothing kernels,
especially W2, has the best generalizability, i.e., improves the accuracy of SPH over the standard
cubic and quartic smoothing kernels to match DNS at different timescales and turbulent Mach
numbers with respect to field-based and statistical measures. The learned parameters are tabulated
in Table IV.

The learned parameters found from training the SPH-based models are found in Table IV.
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FIG. 23. Solving the inverse problems for 3D SPH flow using Lf with a linear deterministic external forcing
on 4096 particles over physical parameters including the rate of energy injection θinj. Notice the field-based
loss (using MSE) converging to machine precision, validating the learning algorithm and its stability. We
also note that the smoothness of the convergence of the loss is most likely due to the relatively small
number of parameters in this constrained optimization problem leading to a smooth loss landscape with an
identifiable global optimum within a reasonable neighborhood of initial parameters. For example, when NNs
were embedded withing in the ODE structure, the loss functions were observed to have some fluctuation along
a downward trend toward convergence.

2. Generalizability: Training with statistical loss

In this section we show numerical evidence of the generalizability of the models when using
the Lkl defined above. This is not reported in the main text as there are only slight differences
seen in the results. However, the largest difference is seen in Fig. 17 when compared to Fig. 6,
namely, the generalization error in the rotational invariant model (when measured with L f /〈ke〉)
has improved by roughly 50%. The first part of training is guided by L f , then switched to Lkl

to first guide the parameters to reproduce large-scale structures, then converge the loss using the
Lkl to learn the small scale characteristics seen in the velocity increment statistics (see Fig. 18).
Furthermore, this was done to drive the distributions close enough to avoid large sensitivities of the
KL divergence with respect to the predicted and target distributions. In what is shown below, we
see that by using the statistics-based loss, the models perform better at generalizing with respect to
the single-particle statistics (as seen in Fig. 20 when only L f was used. However, now the energy
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FIG. 24. The velocity increment distribution learned over each model in the hierarchy Sec. III on the
timescale tλ using the Lkl + Lf loss function and the FSA method. We see that, on the learned timescale,
all the models do well at capturing the small scale Lagrangian velocity increment statistics, however, only the
more physics-informed models do well at generalizing to larger timescales not seen in training.

spectrum (Fig. 21) of each model performs worse at generalizing to longer time scales. This could
be due to the fact that the models are overfit to reproduce the velocity increment of the DNS particles
and degrade with respect to other measures. This suggests that the field-based loss is a better choice
to capture the energy spectrum, and the Lkl is better to improve generalizability with respect to
single-particle statistics. The main conclusion between experimenting with both loss formulations
is that the SPH-based parameterization using W2 performs best with respect to both statistical and
field-based measures at generalizing over longer timescales and different Mach numbers.
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FIG. 25. Single-particle dispersion statistic distribution being used as a diagnostic check on each model in
the hierarchy Sec. III on the learned timescale and on the eddy turn over timescale.

APPENDIX D: VALIDATING METHODOLOGY: TRAINING AND EVALUATING
MODELS ON SPH DATA

In this Appendix, we test the learning algorithm by training the hierarchy of models on “syn-
thetic” SPH data, and see if the learned parameters of the fully parameterized SPH model converge
to the true parameters, as well as test if the other models can interpolate onto the flow. Furthermore,
we demonstrate the effects of incrementally embedding physical structure into the Lagrangian
models. We show the ability of the mixed mode FSA + AD method to learn the parameterized
Lagrangian and SPH-based simulators on SPH flow data (as seen in Sec. II) with the field-based
loss and a mixture of field-based and statistical-based loss functions. We show that each model
is capable of solving the interpolation problem, which we evaluate using several quantitative and
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FIG. 26. Snapshots of SPH particles evolving, comparing the ground-truth SPH data to the learned models,
where learning is done with the Lkl + Lf loss function. Even though the training is occurring on the shortest
(physically relevant) timescale tλ the more physics-informed models are able to generalize to much longer
timescales—all the way to the longest (physically relevant) timescale, teddy (which is the turnover timescale of
the largest eddy of the flow).

qualitative diagnostics, but as more physical structure is embedded in the model, the better is
the generalizability to flows not seen in training and the better it conserves linear and angular
momentum.

Each parameterized Lagrangian model within the hierarchy (see Sec. III) is trained under
equivalent conditions: (a) on the same SPH samples (see Sec. II) of fixed temporal duration (which
we choose to be equal to the timescale required for a pair of neighboring particles to separate by the
distance which is on average a factor of O(1) larger than the pair’s initial separation and henceforth
denoted tλ); (b) with the same loss function Lkl + L f ; (c) with the FSA method; and (d) with a
deterministic forcing f ext (Appendix A 3 with constant rate of energy injection).

1. Interpolation of models: SPH data

In Fig. 22 (and Fig. 23) we see that the physics-informed parameterized SPH simulator is
learnable; the estimated physical parameters α̂, β̂, ĉ, γ̂ , and energy injection rate ˆθinj converging
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TABLE V. Errors in rotational and translational symmetries on trained models.

Trained model Rotational error Translational error

NODE 4.59 6.57
NN Sum 5.42 1.51
Rot Inv 1.21 × 10−27 4.22 × 10−27

∇P 1.20 × 10−2 1.48 × 10−27

EoS NN 3.49 × 10−28 1.18 × 10−27

Phys Inf 2.31 × 10−27 7.88 × 10−27

to the true values where the initial guess for each parameter is uniformly distributed about (0, 1).
Furthermore, these figures show that the Weakly compressible SPH flow is more sensitive to
the parameters α and β, which control the strength of the artificial viscosity term, compared
to parameters c and γ , which control the local slope and shape of the EoS. This is due to the
weakly compressible nature of the flow being less sensitive to changes in the speed of sound.
Figure 2 illustrates the ability of the mixed mode method applied to the EoS-NN model to learn
(approximate) physically interpretable functions [namely, the barotropic equation of state P(ρ)]
using NNs embedded within an SPH model. However, we notice that the learned EoS Pnn(ρ) begins
to deviate from the Ptruth(ρ) outside the domain of densities that are seen in training.

In Fig. 24, we see that each model is capable of learning the parameters so that the underlying
velocity increment distributions are approximated on the timescale on which learning takes place.
Furthermore, In Fig. 25 we test the trained models on their ability to reproduce the distribution
associated with the single-particle dispersion statistic [65] (showing how far the particle disperses
from its initial condition on a set timescale). Here it is important to note that the dispersion statistic
was not enforced in the Lkl loss, and so Fig. 24 illustrates an external diagnostic test. From this
we find that without enforcing the dispersion statistic in the loss function, the less informed models
(namely, NODE and NN summand) fail to reproduce the true dispersion statistics on both timescales
(tλ, and teddy).

These figures show that the Lagrangian models introduced in Sec. III are learn-able (i.e.,
interpolated on the SPH training set). We arrive at these results applying the methods described
in Appendix B 1 d to a mixture of the loss functions Lkl + L f introduced in Appendix B 1.

2. Generalizability (extrapolation capability) on SPH flow data

When the training is complete (i.e., when the loss function reaches its minimum, and conditions
are set as described in Appendix D) we validate extrapolation capability of the models on a
validation set and test data set. The validation data set corresponds to data generated from the same
initial conditions but are longer in duration (up to the eddy turn over time, see Fig. 26). The test
set corresponds to flow derived from the setting corresponding to stronger turbulent Mach numbers
(which we control by increasing intensity of the injection term, f ext, while keeping the integral, i.e.,
energy injection scale, constant, thus increasing the turbulent mach number, Mt ). Furthermore, we
measure the errors in the physical symmetries (Table V), showing that including the SPH framework
(even with NNs embedded within SPH) conserves linear and angular momentum.
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