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Fluid inertia is known to exert a dominant control over transport processes in fracture
flows. In particular, recirculating flows readily arise in inertial rough fracture flows and
have been shown to cause anomalous transport by trapping particles. However, under-
standing of the combined effects of fluid inertia and solute diffusion on reactive transport
involving fluid-solid reactions has thus far been elusive. This study investigates reactive
transport involving an irreversible fluid-solid bimolecular reaction for wide ranges of
Reynolds (Re) and Péclet (Pe) numbers and elucidates how the interplay between inertia
and diffusion effects controls the dynamics of reactive transport. Solute diffusion (Pe)
controls mainly the total reaction amount, whereas fluid inertia (Re) governs the reaction
dynamics by inducing complex flow structures such as flow channeling and recirculating
flows. Specifically, recirculating flows are shown to facilitate fluid-solid reactions by
increasing the residence time of particles near the fluid-solid interfaces, and such trapping
effects increase as Pe increases. Further, flow channeling and recirculating flows exert
dominant control over the transport of both reactants and products. We elucidate the
reactive transport dynamics by analyzing particle trajectories and quantifying Lagrangian
velocity statistics and reaction-related measures. Based on the improved understanding, we
then propose an upscaled reactive transport model that incorporates Lagrangian velocity
statistics and velocity-dependent reaction probability, and show that the upscaled model
successfully captures reactive transport over wide ranges of Re and Pe.

DOI: 10.1103/PhysRevFluids.8.054502

I. INTRODUCTION

The reactions between dissolved reactants in the fluid phase and mineral components in the solid
phase in fracture flows govern many subsurface processes and applications such as groundwater
contamination and remediation, geothermal energy extraction, nuclear waste disposal, geologic
carbon sequestration, karst formation, and global biogeochemical cycling [1–15]. Surface reactions
in channel flows also govern many hydrologic processes and engineering applications such as
hyporheic flow, microfluidic mixers, water filtration technologies, fuel cells, and catalytic reactors
[16–27].

In such contexts, reactive transport dynamics can vary widely depending not only on the
structural heterogeneity of channel geometry, but also on inertia and diffusion regimes. Recent
studies indeed have shown that the interplay between fluid inertia and reactant diffusion is a key
controlling factor for reactive transport in rough fracture flows [28–32]. More specifically, fluid
inertia can induce complex flow structures, such as flow channeling and recirculating flows, in
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rough fracture flows [32–37]. These flow structures govern the advective transport of reactants. On
the other hand, the diffusion of reactants leads to mixing and chemical reactions. Therefore, the
respective roles of inertia and diffusion effects on reaction dynamics should be properly understood
to accurately predict reactive transport in fracture flows.

The effects of fluid inertia and solute diffusion on conservative solute transport in rough fracture
flows have been widely investigated [33–36,38–44]. Previous studies have shown that recirculating
flows developed at inertial flow regimes can induce non-Fickian (anomalous) transport, manifested
as both the anomalously early arrival and late-time tailing of tracers compared to those in Fickian
transport [33–36,38]. For example, recirculating flows increase flow channeling by narrowing the
effective aperture of a fracture, thereby inducing early arrivals of solutes at downstream locations.
On the other hand, recirculating flows induce late arrivals of solutes by increasing the solute
residence time via a trapping effect, where the degree of the trapping effect has been demonstrated
to be highly sensitive to solute diffusivity [38].

Recent studies have also shown the strong effects of recirculating flows and solute diffusion
on reactive transport in fracture flows. For example, Lee and Kang [45] and Yoon and Kang
[46] revealed that the increased residence time of reactants in recirculating flows causes mixing-
induced fluid-fluid reaction hot spots in channel flows. With regard to fluid-solid reactions, Deng
et al. [30] discussed the potential effects of recirculating flows’ trapping effect on fluid-solid
reactions, and Zhou et al. [47] showed the effects of recirculating flows on the effective disso-
lution rates and channel dissolution patterns. Sund et al. [48] and Sherman et al. [49] focused
more on investigating the trapping effect of recirculating flows on the transport of solutes with
bimolecular fluid-solid reactions, such as removal of reactants at the reaction location or adsorbing
and desorbing processes in idealized sinusoidal channels. However, the studies are limited to
relatively low Reynolds number regimes [Re < O(1)] [48,49], although inertia effects can vary
considerably in fracture flows. Further, we currently lack a comprehensive understanding of the
effects of fluid inertia and solute diffusion on reactive transport with surface reactions. Although
it is known that inertia and diffusion effects can vary widely in rough fracture flows, their
compounding effects on reactive transport involving fluid-solid reactions have thus far remained
elusive.

To improve the fundamental understanding of reactive transport involving fluid-solid reactions
in rough fracture flows, we study such transport over wide ranges of inertia and diffusion regimes.
We consider a simple instantaneous bimolecular fluid-solid reaction, A + Solid → C, where A
converts to C via a surface reaction. The use of such a simple reaction allows us to focus on
the effects of inertia and diffusion on the reactive transport dynamics. We then systematically
explore wide ranges of inertia and diffusion regimes using Lagrangian-based reactive transport
simulations and elucidate the respective role of inertia and diffusion on the fluid-solid reactive
transport dynamics. Based on the improved understanding, we also propose an upscaled reac-
tive transport model with fluid-solid reactions by incorporating the velocity-dependent reaction
probability into the spatial Markov model. The velocity-dependent reaction rule effectively cap-
tures the inertia and diffusion effects on the fluid-solid reactions, and the proposed upscaled
model successfully captured the full reactive transport dynamics, including reactants and products.
To the best of our knowledge, this is the first study that successfully captures both reactants
and products from the fluid-solid reactions using a continuous time random walk (CTRW)
framework.

This paper is structured as follows. In Sec. II we present methods for rough fracture generation,
fluid flow, and reactive transport simulations. In Sec. III we discuss the key characteristics of fluid
flow and fluid-solid reaction dynamics in rough fracture flows. In Sec. IV we analyze Lagrangian
velocity statistics and characterize reaction probability in terms of the Lagrangian velocity statistics.
Based on these, we then propose an upscaled modeling framework that is efficiently parameterized
as a function of Lagrangian velocity statistics. Finally, in Sec. V we present the conclusion of the
study.
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FIG. 1. (a) Example of rough fracture geometry, with aperture a and fracture length 100a. Vertical arrows
show the inlet and outlet of fluid and the injection location of solute particles. Particles are injected at x = 10a.
(b) Schematic of fluid-solid bimolecular reaction process. C particles are released when A particles react with
solid surfaces. (c) Trajectory of A particle that reacts in recirculation zone at Re = 1 and Pe = 103. Locations
of entrance (green downward triangle), reaction (red dot) and exit (magenta upward triangle) in recirculation
zone are indicated.

II. SIMULATION METHODS

A. Generation of rough fractures

To study reactive transport in rough fracture flows, we first generate an ensemble of self-affine
profiles, which are often observed in nature [50–52]. The self-affine profiles are scale-invariant,
such that the standard deviation of the height difference �z between two points separated by lateral
distance �x can be expressed as

σ�z(�x) = λ−Hσ�z(λ�x), (1)

where λ is the scaling factor, and H is the Hurst exponent that determines the surface roughness.
We consider the Hurst exponent H = 0.7, which is a commonly observed value in nature [2,53,54].
Note that the surface profile is flat for H = 1 and becomes rougher as the value of H decreases.
We generate 2D fracture geometries as shown in Fig. 1(a), using the successive random addition
algorithm [55,56]. Note that the channel flows are often simplified as 2D as considered in this study,
but the 3D flow effects can potentially be important in fluid-solid reactions [35,45]. Understanding
3D flow effects on reactive transport with surface reactions should be the topic of future study. The
longitudinal length of the fracture is 100a, where a is the aperture. We generate an ensemble of ten
rough fracture realizations with the same length, aperture, and roughness parameter H = 0.7.

B. Flow simulations

We simulate fluid flow through the generated rough fractures by solving the steady-state incom-
pressible Navier-Stokes equations [Eq. (2)] and the continuity equation [Eq. (3)] using the finite
volume method [57]:

�u · �∇�u = − 1

ρ
�∇p + ν∇2�u, (2)

�∇ · �u = 0, (3)
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where t is the time, �u is the fluid velocity, p is the pressure, ν is the fluid kinematic viscosity,
and ρ is the fluid density. We set a constant flux condition on the fluid inlet boundary and a zero-
gradient pressure condition on the fluid outlet boundary [Fig. 1(a)]. At the fracture walls, the no-slip
boundary condition is imposed. We quantify the fluid inertia effect using Reynolds number (Re),
defined as

Re = ūa

ν
, (4)

where ū is the mean fluid velocity. We solve the flow equations at Re = [1, 10, 20, 40, 60, 80, 100] to
encompass a wide range of steady inertia flow regimes [44]. The discretization of fracture domains
is 10 000 grid cells in the x direction and 100 grid cells in the y direction; thereby, a single-cell
size is a/100 × a/100. We confirmed that flow fields with a finer discretization exhibit negligible
difference.

C. Reactive transport simulations with surface reactions

We quantify the diffusion effect using the Péclet number (Pe), defined as

Pe = ūa

D
. (5)

We consider Pe = [102, 103, 104] to investigate a wide range of diffusion regimes. In this study,
we vary Re and Pe values independently by adjusting the fluid kinematic viscosity, ν, and the
molecular diffusivity, D, to discern the respective roles of inertia and diffusion on the dynamics
of reactive transport. A similar approach was recently used to elucidate inertia and diffusion effects
on conservative and mixing-induced reactive transport [32,38,46,58]. The ranges of Re = [1–100]
and Pe = [102–104] are in the observable range of Schmidt number, Sc = Pe/Re, which represents
various combinations of fluids and solutes under various thermodynamic conditions [59–61]. To
avoid case-specific results, we consider ten rough fracture realizations with the length of 100a and
the aperture of a for each combination of Re and Pe. In total, we run 10(H ) × 7(Re) × 3(Pe) = 210
reactive transport simulations.

For surface reactions, we consider an irreversible fluid-solid bimolecular reaction as follows:

A(aq) + Solid → C(aq). (6)

The reactant species, A, and product species, C, are dissolved chemical species in the fluid phase.
On the other hand, Solid represents a reactive mineral species that is assumed to be sufficient
and evenly distributed on the fracture surfaces such that the reactivity is constant across the solid
boundaries and over time. We also assume that the aperture evolution is negligible during the
reactive transport simulations. This allows us to simplify the modeling approaches and to focus
on the role of flow fields on reactive transport dynamics. The effects of aperture evolution due to
dissolution on reactive transport should be a topic of future research. The reaction between the
chemical species A and the solid surfaces releases the chemical species C as a passive solute into
the fluid, as schematically shown in Fig. 1(b). Similar setups of the bimolecular fluid-solid reactions
have been used in previous studies to understand reactive transport processes in channel and porous
media flows [48,49,62–64]. However, the previous studies are limited to relatively narrow Péclet
and Reynolds number regimes [Re < O(1)] and did not track the product particle. It is important to
track both reactant and product species under wide ranges of mass diffusion and fluid inertia regimes
in subsurface processes. For example, in the carbon mineralization process, dissolution of mafic and
ultramafic rocks by CO2-dissolved acidic fluid releases cations, such as calcium and magnesium,
into the fluid; then the cations react with CO2 and form stable carbonate minerals [65,66]. Therefore,
the fluid-solid reaction, such as mineral dissolution, is a critical step in the carbon mineralization
process, and understanding the respective transport of reactant and product ions under various mass
diffusion and fluid flow conditions is essential to understand the carbon mineralization process
rigorously. In addition to that, the simple fluid-solid reaction can be considered as a building block
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of more complex reactions such as mineral dissolution and precipitation [30,63,64,67–70], fate of
contaminated water [71,72], metabolic activity in biofilms [14], water filtration and purification
[20–23], and catalytic surface reactions [26,27].

Reactive transport involving the fluid-solid reaction is described using the advection-diffusion
equation with reactive boundary conditions [49,73,74] as follows:

∂Ci(x, t )

∂t
+ �∇ · [�u(x)Ci(x, t )] = �∇ · [D �∇Ci(x, t )] i = A and C ∀ x ∈ �fluid, (7a)

∂CA(x, t )

∂t
= −D

∂CA

∂n
∀ x ∈ �surface, (7b)

∂CC (x, t )

∂t
= D

∂CA

∂n
∀ x ∈ �surface, (7c)

where CA(x, t ) and CC (x, t ) are the reactant and product concentration fields, respectively, at time
t . Moreover, D is the molecular diffusivity, and n is the normal vector pointing toward the fluid
from the fracture surfaces. The advection-diffusion equation [Eq. (7a)] governs the transport of A
and C in the fluid phase, whereas the reactive boundary conditions [Eqs. (7b) and (7c)] determine
the fluid-solid reaction at the fracture surfaces. We consider a catalytic reaction such that the A
particles that diffuse toward the surfaces instantaneously convert into the C particles at the contact
locations between the A particles and the surfaces. In such a reaction system, the reaction rate is
directly determined by the diffusive flux toward the fracture surfaces [75–80]. The simplicity of this
catalytic reaction allows us to focus on the role of transport-limited, specifically diffusion-limited,
reaction on the fluid-solid reactive transport dynamics [62]. Figure 1(c) shows an example of a
particle trajectory where an A particle enters a recirculating flow, is converted into a C particle by
the collision with the surface, and exits from the recirculating flow.

To numerically solve Eq. (7), we use a Lagrangian method [81–83]. The Lagrangian approach
can simulate solute transport without numerical dispersion, allowing particle motions to be accu-
rately captured even at high-Pe regimes [81,82]. The particle motion is described by the discretized
Langevin equation [84]:

x(t + �t ) = x(t ) + �u(x(t ))�t +
√

2D�tη(t ), (8)

where x(t ) is a particle trajectory, �t is a time step, and η(t ) represents independent and identically
distributed Gaussian variables with zero mean and unit variance. For each simulation, we inject 5 ×
104 A particles as a flux-weighted line injection at the downstream location of x = 10a [Fig. 1(a)].
At each time step �t , the A particles first move via advective particle motion, followed by a diffusion
step. The advective step is solved using a streamline-based particle-tracking algorithm that honors
no-slip boundary conditions [81,82]. To determine the time step �t for each particle movement, we
compute characteristic advection and diffusion times; then we choose the smaller between the two.
Thus, the time step is not fixed and dynamic. The characteristic advection time, �tadv, is defined as
a time for a particle to travel to a grid cell boundary from its position by advection [82], and the
characteristic diffusion time step is defined as �tdiff = (dx/10)2/Dm. Here dx is the grid cell size,
and Dm is the molecular diffusion coefficient. Thus, �tdiff is the characteristic time required for a
solute particle to move a tenth of the grid cell size by diffusion, which is a strong constraint to avoid
any numerical artifacts. Additionally, the size of the time step (�t) used in the simulation could
affect the outcomes [85,86]. To address this issue, we conducted tests using smaller time steps (�t/2
and �t/4) and observed that the essential simulation results remain consistent and independent of
the time step. However, to gain a deeper understanding of the impact of the time step on the particle-
tracking algorithm for a bimolecular fluid-solid reaction, further theoretical analysis is necessary in
future research [85,86]. We consider a reflection boundary condition when the particles encounter
the fracture walls during the diffusion step [49,58,87]. If an A particle collides with fracture surface,
the A particle converts into a C particle at the collision location. The C particle gets released into
the fluid phase via the reflection boundary condition, and the C particle continues to be transported

054502-5



LEE, YOON, AND KANG

FIG. 2. (a), (b) Normalized Eulerian velocity magnitude fields at Re = 1 and 100 with streamlines. Velocity
magnitudes are normalized based on maximum velocity for a given case. (c), (d) Delineated recirculation zones
in gray and main flow channels in white. (e) Ratio of recirculation area over entire domain area as function of
Re. Circles and error bars show mean and standard deviation, respectively, of ten realizations.

without further reactions. Movies showing examples of the reactive transport simulations can be
found in the Supplemental Material [88].

III. SIMULATION RESULTS AND ANALYSIS

A. Inertia effects on flow properties

Transport and reaction processes in rough fracture flows are fundamentally controlled by the
underlying flow fields [38,45,58]. Thus, we first analyze the flow properties at different Re values
to quantify the inertia effects on fluid flow. Figures 2(a) and 2(b) show the normalized velocity
fields with streamlines at Re = 1 and 100. The color bar shows the normalized velocity magnitudes,
where the normalization is based on the maximum velocity magnitude for a given case. In contrast
to the Re = 1 case, significant recirculation zones are observed at Re = 100 [Fig. 2(b)]. The
recirculating flows, induced by the interplay between fluid inertia and rough surfaces, reduces
the effective aperture, thereby also enhancing the flow focusing (channeling) along the center of
the fracture.

We delineate recirculation zones using the zero-integral-flux method [89] and quantify the area
of the recirculation zones at each Re case. Figures 2(c) and 2(d) show the delineated recirculation
zones in gray and the main flow channels in white at Re = 1 and 100. We then calculate the ratio
of the recirculation area over the entire domain area for the ensemble of ten realizations. As shown
in Fig. 2(e), the ratio of the recirculation area is negligible up to Re = 20 but then increases up
to approximately 23% at Re = 100. The increasing trend is approximately linear from
Re = 20 to Re = 100.

We further quantify the inertia effects on the flow fields by plotting the probability density
functions (PDFs) of the Eulerian velocity magnitudes. Figure 3 shows the PDFs of the velocity
magnitudes in the entire domain, main flow channel, and recirculation zones at Re = 1 and 100.
The recirculation zones led to the noticeable differences between the velocity PDFs for Re = 1 and
100 (blue circles and red triangles, respectively). First, the effects of strong recirculating flows at
Re = 100 are evident in the slow velocities. As shown in Fig. 3(a), the probabilities of slow velocities
(velocity magnitudes smaller than 10−2 m/s, the vertical dashed line) are noticeably higher at Re =
100 (solid red line with triangles) than at Re = 1 (solid blue line with circles). This is because the
recirculation zones consist of slow velocities, as shown by the yellow line with triangles in Fig. 3(a).
This implies that the recirculation zones will act as trapping zones where particles are kept near the
fracture surfaces for an extended time, as evidenced by the particle trajectory in Fig. 1(c).
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FIG. 3. Probability density functions (PDFs) of Eulerian velocity magnitudes from (a) full domain (FD)
at Re = 1 (solid blue line with circles) and Re = 100 (solid red line with triangles) and recirculation zones
(RZ) at Re = 100 (solid yellow line with triangles). (b) Velocity PDFs of main flow channel (MC) at Re = 1
(solid blue line with circles) and Re = 100 (solid red line with triangles). Note that “full domain” refers to the
entire domain, including the main flow channel [white area in Figs. 2(c) and 2(d)] and recirculation zones [gray
area in Figs. 2(c) and 2(d)]. The vertical dashed lines indicate the location of 10−2 m/s on the x axis. Eulerian
velocity magnitudes are obtained from ensemble of ten realizations.

The enhanced flow channeling at Re = 100 is evident from Fig. 3(b). The velocity PDFs of
the main channel at Re = 100 (solid red line with triangles) and Re = 1 (solid blue line with
circles) have a similar shape, but the Re = 100 case shows a higher probability for higher velocity
magnitudes (velocity magnitudes greater than 10−2 m/s, the vertical dashed line). This is because
the recirculating flows increase the velocities in the main flow channel by decreasing the effective
aperture. The strong flow channeling will cause the particles to travel through the fracture faster,
which may inhibit fluid-solid reactions because the channeling will inhibit particles from reaching
the fracture walls. On the other hand, the flow channeling will increase the spreading of reactants,
which may contribute to fluid-solid reactions. We investigate the effects of the aforementioned flow
properties on transport and reaction dynamics in the following subsections.

B. Inertia and diffusion effects on reactive transport

1. First-passage time distributions

We next present and discuss the first-passage time distributions (FPTDs), also known as break-
through curves, for each combination of Re = [1, 100] and Pe = [102, 103, 104]. We examine both
conservative tracer scenarios and reactive tracer scenarios, in which we inject 5 × 104 particles
for each simulation. In the conservative scenario, we inject passive tracers that do not undergo
any reactions. The comparison of FPTDs obtained from the conservative and reactive transport
simulations is helpful for understanding both the transport and reaction dynamics. Figure 4 shows
the FPTDs at x = 90a for the conservative scenario (blue lines) and for the reactive scenario (red
lines showing the FPTDs of reaction-product C particles). Because both the reactant A particles
and the product C particles behave as passive tracers in the fluid phase, we can view the product C
particles as a subset of the conservative particles. Figure 4(a) shows the FPTDs for the conservative
scenario and of the C particles at two different Re values, where Pe/Re is fixed to 100. The other
figures show the FPTDs at two different Re values but with fixed Pe values of 102, 103, and 104.

First, an increase in the Re and Pe significantly increases the overall spreading. For both the
conservative-scenario particles and reaction products, the early arrival and late-time tailing in the
FPTDs intensify as the Re and Pe increases [Fig. 4(a)]. To elucidate the effects of inertia, we
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FIG. 4. First-passage time distributions (FPTDs) at x = 90a. The y axis is normalized based on total
number of injected particles, whereas the x axis is normalized based on one pore volume injection (1 PVI), i.e.,
time required to inject fluid volume equal to that of the fracture domain. (a) Solid red lines indicate FPTDs of
conservative scenario particles (conservative transport), whereas dashed blue lines indicate FPTDs of product
C particles (reactive transport) in cases wherein Re and Pe increase proportionally (Pe/Re = 100). Re = 1
and Pe = 102 (triangles) and Re = 100 and Pe = 104 (circles). (b)–(d) Solid orange lines indicate FPTDs
of conservative scenario particles (conservative transport), whereas dashed sky-blue lines indicate FPTDs of
product C particles (reactive transport) at Re = 1 (triangles) and 100 (circles) for Pe = [102, 103, 104].

compare FPTDs at two different Re values but with fixed Pe [Figs. 4(b)–4(d)]. The increase in
Re clearly leads to enhanced spreading. Early arrival and late tailing are the two key features of
non-Fickian transport, and the role of recirculating flows in inducing such anomalous transport in
rough fracture has been demonstrated [33–35,38,58,90,91]. This study shows that the inertia effect
also exerts a dominant control over reactive transport with heterogeneous reactions. As discussed in
the previous section, an increase in Re develops recirculating flows, and recirculating flows enhance
the flow channeling. Therefore, as Re increases, both the conservative and product C particles can
arrive earlier through the fast main flow channels and also arrive later because of the trapping effect
of the recirculating flows.

Second, in general, there are large differences between the conservative and product C particles in
the early-arrival regimes, whereas those in the late-arrival regimes are almost identical. The double-
headed arrows in Fig. 4 indicate the differences in the early arrivals, and these differences magnify
as both Re and Pe increase. The difference is not noticeable at Pe = 102 [Fig. 4(b)] but becomes
significant as Pe increases [Figs. 4(c) and 4(d)]. This is mainly due to the natures of the fluid-
solid reaction and the diffusion effect. The A particles that stay near the fracture walls have higher
chances to undergo reactions compared to the A particles that stay near the channel center. Therefore,
the reaction probability is larger for the particles with larger arrival times, leading to a similar
tailing behavior between the conservative-scenario particles and product C. On the other hand, the
A particles that stay near the channel center tend not to undergo the reaction, leading to significant
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FIG. 5. (a) Mass ratio of product C particles to injected A particles estimated at breakthrough location
x = 90a for Re = 1 (blue bars) and Re = 100 (red bars) at Pe = [102, 103, 104]. (b) Percentage change in
reaction amount between Re = 100 and Re = 1 ((Nc@Re=100 − Nc@Re=1)/Nc@Re=1) for three Pe values.

differences in the early arrivals. Such effect diminishes as the diffusion effect increases because the
increase in diffusion allows particles to easily travel across in the fracture-width direction.

Figure 5(a) shows the ratio of the number of product C particles to the number of injected A
particles at the breakthrough location x = 90a as a function of Pe for both Re = 1 and 100. When
the ratio is one, it indicates that all the injected particles underwent the reaction. The figure shows
that Pe is the primary control on the overall reaction amount. At Pe = 102, most A particles
undergo reactions because of the enhanced diffusion, leading to the identical FPTDs between the
conservative-scenario particles and product C particles [Fig. 4(b)]. To quantify the inertia effect on
the overall reaction amount, we estimated the percentage change in the number of the C particles
between the Re = 100 and Re = 1 cases ((

∑
Nc@Re=100 − ∑

Nc@Re=1)/
∑

Nc@Re=1) at fixed Pe
values. As shown in Fig. 5(b), the percentage increases as Pe increases (0.3% at Pe = 102, 8% at
Pe = 103, and 75% at Pe = 104). This indicates that the recirculation zones facilitate the fluid-solid
reactions and that this effect increases as Pe increases. The 2D recirculation zones are advectively
disconnected from the main flow channel [33,34], and the recirculating flows could act as reaction
barriers for fluid-solid reactions [30]. However, for the transport-limited reaction considered in this
study, once the particles enter the recirculation zones via diffusion, the trapped particles have a
significantly higher chance to undergo reactions. In three dimensions, recirculation zones and main
flow channel are connected through advective flow paths, and such connectivity can strongly affect
mixing and transport [35,45]. Such 3D recirculating flow features would have a potential influence
on surface reactions. Therefore, the effects of 3D recirculating flows on fluid-solid reaction requires
a future work.

2. Reaction dynamics

To further quantify the effects of inertia and diffusion on reactive transport dynamics, we
characterize the bulk fluid-solid reaction dynamics using the global (effective) reaction rate, RC ,
defined as the time derivative of the C particle accumulation, NC , as defined as follows [63]:

RC = dNC

dt
. (9)

Figure 6 shows the time evolution of the global reaction rate for combinations of Re = [1, 100] and
Pe = [102, 103, 104]. Figure 6(a) shows the results for two cases wherein the ratio of Pe to Re is
fixed to 100, whereas Figs. 6(b)–6(d) show the results for Re = 1 and Re = 100 at three different Pe.
Figure 6(a) can be understood as showing two cases wherein the solute-solvent combinations are
fixed, but the injection rates differ by two orders of magnitude. On the other hand, Figs. 6(b)–6(d)
help to discern the respective effects of Re and Pe on the global reaction rate. The results show that
the early reaction regime is controlled mainly by Pe, whereas the later regime is more sensitive to
Re. Specifically, for the same Pe, Re = 1 and Re = 100 result in similar initial global reaction rates,
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FIG. 6. (a) Time evolution of global reaction rate (RC) at Re = 1 and Pe = 102 (solid blue line) and Re =
100 and Pe = 103 (solid red line). Global reaction rates (RC) at Re = 1 (solid sky-blue lines) and Re = 100
(solid orange lines) for (b) Pe = 102, (c) Pe = 103, and (d) Pe = 104. Time is normalized by one pore volume
injection (1 PVI).

and increasing the Pe significantly decreases the initial global reaction rates [see the y intercepts in
Figs. 6(b)–6(d)].

The facilitation of fluid-solid reactions by the increase in fluid inertia (Re) is evident in the later
stages of the reactive transport: the increase in Re significantly enhances the reaction duration, and
this effect intensifies as Pe increases. This is because the recirculating flows increase the residence
time via the trapping effect, which enhances reaction. Because the trapping effect increases as Pe
increases, the enhanced reaction rate and the prolonged reaction duration at Re = 100 become more
evident as Pe increases. The reaction enhancement by the increase in Re is consistent with the result
in Fig. 5(b).

The results have direct implications on the well-known discrepancy between effective reaction
rates measured under fluid flow conditions and the reaction rates measured under well-mixed con-
ditions [3,14,31,92–99]. For fluid-solid reactions, the effective reaction rates depend on the reactant
concentrations near the fracture surfaces, and flow structures and diffusion affect spatiotemporal
distribution of reactants [28,29,100]. The estimated global reaction rates highlight the effects of
fluid inertia and solute diffusion on the effective reaction rates.

The time evolution of the total number of C particles further highlights the inertia and diffusion
effects on fluid-solid reaction dynamics. As shown in Fig. 7, fluid inertia increases the generation
rate of C particles, as shown by the slopes. Specifically, the slopes are consistently larger at Re =
100 than at Re = 1, and the difference between these two cases increases as Pe increases. This
is because of the flow channeling and trapping effects by recirculation zones; the flow channeling
increases overall spreading of the particles, and once the A particles are trapped, they are more
likely to react with the walls because the diffusion effect becomes dominant in the recirculation
zones. Figure 7 confirms that recirculation zones facilitate the fluid-solid reaction, and that such an
effect intensifies as Pe increases. Note that the magnitude of the slope is more sensitive to Pe than
to Re, which is consistent with the results shown in Fig. 6.

Figure 7 also shows that fluid inertia increases the reaction duration, which is defined as the time
interval between the first and last reactions. The differences in reaction duration between Re = 1
and Re = 100 are denoted by �T [Figs. 7(a)–7(c)]. The increased reaction duration at Re = 100
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FIG. 7. Number of product C particles normalized based on total number of injected particles at Re = 1
(solid blue lines) and Re = 100 (solid orange lines) for (a) Pe = 102, (b) Pe = 103, and (c) Pe = 104. Each line
represents the average of ten realizations, and time is normalized based on one pore volume injection (1 PVI).
(d) Percentage of reactions that occurred in recirculation zones (RZ) in �T (blue solid line with circles) and
for the entire time (entire T, orange solid line with triangles) at Re = 100 as function of Pe.

shows that the recirculating flows increase not only the global reaction rate but also the reaction
duration. To directly estimate the role of recirculating flows on the reactive transport dynamics, we
estimated the percentage of the reactions that occurred in recirculation zones during �T and during
the entire reaction duration for Re = 100. Figure 7(d) shows that the percentage is consistently
larger during the �T period (red lines) than in the entire reaction duration (blue lines). Furthermore,
the percentage increases as Pe increases. This indicates that the recirculation zones play a more
dominant role in the fluid-solid reaction at high Pe regimes and at later times. The result confirms
that the recirculating flows are the main cause of the prolonged reaction duration.

To elucidate the relation between transport and reaction dynamics, we now quantify the reaction
frequency as a function of Lagrangian velocity magnitudes. First, for each particle trajectory, we
estimate average Lagrangian velocity magnitudes at every �x = a. In other words, we estimate the
average Lagrangian velocity whenever a particle travels a longitudinal distance of a. Subsequently,
we sample the velocity values for the injected A particles up to the point when they undergo reactions
and the velocities at which the A particles underwent reactions. From this information, we count
the total frequency of each velocity class from all sampled velocities (All in Fig. 8) and from the
velocities at which the A particles underwent reactions (Reac in Fig. 8). Note that we discretized the
velocity magnitudes into 100 classes (bins) that are equally spaced in log scale.

Figure 8 highlights the importance of the underlying flow fields on heterogeneous reactions.
First, small velocity magnitudes (<100) exhibit significantly higher frequencies at Re = 100 than at
Re = 1. This is because the recirculating flows that develop at Re = 100 significantly enhance the
frequencies of small velocities. Second, the solid (velocity frequencies for A particles) and dashed
(velocity frequencies at reaction locations) lines are almost identical at small velocity magnitudes
(<100) but exhibit a large discrepancy at larger velocity magnitudes (>100). This result indicates
that the A particles are highly likely to undergo reactions at small velocities, but not at high
velocities. Last, particles experience broader velocity ranges at Re = 100 than at Re = 1. In the
following section, we use the understanding of reaction dynamics that we have established thus far
to upscale the reactive transport.
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FIG. 8. Frequencies of sampled velocities up to point when particles undergo reactions (solid blue lines for
Re = 1 and solid orange lines for Re = 100) and sampled velocities at which reactions occurred (blue dashed
lines for Re = 1 and red dashed lines for Re = 100) at Pe = [102, 103, 104].

IV. UPSCALED MODEL FOR REACTIVE TRANSPORT WITH FLUID-SOLID REACTIONS

In this section, we present the development of a parsimonious upscaled model that effectively
captures reactive transport. The upscaled model helps identify the key factors controlling the
fluid-solid reactive transport dynamics. It can also effectively capture the key reactive transport
processes without substantial computational resources. The computation time is 40 to 800 times
faster, depending on the Re and Pe combination, for the upscaled model. Note that the computation
time depends on the number of particles used in the upscaled model and this comparison assumes
that the parameters for the upscaled model are known. In recent years, upscaled models based on
continuous-time random walk (CTRW) theory have been successfully applied to both conservative
[38,39,58,101–110] and reactive transport in heterogenous media [46,48,49,58,62,87,110–113].
However, it is currently unclear how to upscale reactive transport with surface reactions over
wide ranges of inertia and diffusion regimes in rough fracture flows. Here we extend the spatial
Markov model (SMM), a type of CTRW that explicitly honors velocity correlation [104]. We extend
the SMM by incorporating a reaction probability model that is parameterized with Lagrangian
velocities.

A. Lagrangian velocity statistics

We first characterize the Lagrangian velocity statistics which are the key input parameters to the
SMM. We discretize the particle trajectories as successive jumps of a fixed distance �x = a in the
longitudinal direction (mean flow direction):

x(n+1) = x(n) + �x, t (n+1) = t (n) + τ (n), (10)

where x(n) and t (n) are the particle location and time at a jump step n, and τ (n) is the transition
time. The transition time is related to the Lagrangian velocity v(n) as τ (n) = �x

v(n) . For each Re-
Pe combination, we sampled the Lagrangian velocities v(n) from all particle trajectories of ten
ensembles.

Lagrangian velocity statistics can be effectively characterized by velocity transition matrices, as
shown in Fig. 9(a). To construct the velocity transition matrices, the Lagrangian velocities, v(n) =
�x
τ (n) , are classified into the 100 velocity classes, i = [1, . . . , 100], which are evenly spaced in log
scale. Note that i = 1 and i = 100 are the slowest and fastest velocity classes, respectively. The
velocity transition matrices show the velocity transition probability (Ti j) between the current i and
next j velocity classes. The value of Ti j indicates the probability of sampling the jth velocity class
given the ith velocity class.

The transition matrices effectively capture the effects of both flow channeling and recirculating
flows on transport. First, the diagonal elements of the transition matrices tend to have larger
values compared to the off-diagonal elements, especially for high-velocity regimes (75 � i �
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FIG. 9. (a) Velocity transition matrices for combinations of Re = [1, 100] and Pe = [102, 103, 104].
(b) Velocity-dependent (Prxn|i) reaction probabilities as function of velocity classes for Re = 1 (dashed blue
lines with circle marks) and 100 (dashed red lines with circle marks) at Pe = [102, 103, 104]. Note that velocity
class 1 is the slowest velocity class, and 100 is the fastest velocity class.

100). Higher probabilities along the diagonal elements imply the tendency to maintain one’s
velocity. Thus, the diagonal values are large when the velocity correlation is large which is the
case for high-velocity regimes: the particles in the main flow channel are likely to continue to
experience fast velocities. Furthermore, the probability along the diagonal elements increases
as Re increases, which can be explained by the enhancement of flow channeling due to the
recirculating flows developed at Re = 100 [Fig. 2(b)]. The probability along the diagonal ele-
ments also increases as Pe increases because particles tend to stay in a streamline at high Pe
regimes.

Velocity correlation decreases as velocity magnitude decreases, especially for Re = 1, but an
interesting phenomenon arises at Re = 100. The particles with low velocities tend to transit to
higher velocities, as indicated by the red arrows in Fig. 9(a). This is because the trapped particles in
recirculating flows tend to experience high velocities in the main channel flow when they exit the
recirculation zones. A similar phenomenon was recently reported for solute transport in turbulent
channel flows over porous media [114].

Last, we compute the velocity-dependent reaction probabilities. We first obtain Ni and Nrxn,i,
where Ni is the total frequency of the sampled ith velocity class that A particles experience until
reaction, and Nrxn,i is the total frequency of the sampled ith velocity class at which reaction occurs.
We then calculate the velocity-dependent reaction probability at each ith velocity class, P[rxn|i], by
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dividing Nrxn,i by Ni as follows:

P[rxn|i] = Nrxn,i

Ni
, ı = [1, . . . , 100]. (11)

Figure 9(b) shows the velocity-dependent reaction probabilities for all combinations of Re =
[1, 100] and Pe = [102, 103, 104]. The figure shows that the reaction probabilities decrease as
velocity magnitude increases. This is because the fluid-solid reaction is more likely to occur at small
velocities. At Re = 100, the reaction probability decreases as Pe increases because the particles
become less likely to react due to low diffusivity. However, recirculation zones still enhance the
overall reaction amount because the recirculation zones significantly enhance the frequencies of
experiencing small velocities (as shown in Fig. 8), which have higher reaction probabilities than
those at high velocities. In particular, the red solid lines and red dashed lines in Figs. 8(a) and 8(b)
(Re = 100 and Pe = 102 and Re = 100 and 103 cases) almost overlap at small velocities. This means
that the reaction probability at the small velocities, which occurs mostly inside recirculating flows,
is almost one, as illustrated in the first and second panels (Pe = 102 and 103 cases) of Fig. 9(b).
However, for the Re = 100 and Pe = 104 case, the strong advection prevents particles to react even
at small velocity regions and therefore the reaction probability decreases significantly.

B. Upscaled model predictions

Here we extend the SMM framework by incorporating a reaction step with the velocity-
dependent reaction probability [Eq. (11)] as follows:

x(n+1) = x(n) + �x, t (n+1) = t (n) + τ (n), p =
{

A, otherwise
C, if P[rxn|i(n)] � ξ

, (12)

where i(n) is the velocity class at the nth step, p is the particle type (A or C), and ξ is a sampled
random variable from a uniform distribution between 0 and 1. The transport and reaction steps
sequentially iterate as follows. At the nth step, an A particle moves �x, and the transition time τ (n)

is determined based on the previous transition time τ (n−1) and the transition matrix [Fig. 9(a)]. The
A particle then converts to a C particle if the velocity-dependent reaction probability at the velocity
class i(n), P[rxn|i(n)], is larger than the sampled value ξ . The transport and reaction steps continue
sequentially. Once an A particle converts to a C particle, it remains as a C particle and undergoes
only the transport step. We refer to the SMM framework coupled with the reaction step as reactive
SMM.

Figure 10 shows the FPTDs of the A and C particles from the direct numerical simulations (DNS)
and the reactive SMM predictions for combinations of Re = [1, 100] and Pe = [102, 103, 104] at
the two breakthrough locations (x = [20a, 90a]). Figure 10(b) shows the FPTDs of A particles that
survived until they reached the breakthrough locations. The reactive SMM accurately captures the
FPTDs of both A and C particles in all Re and Pe cases at both locations (x = [20a, 90a]). The
good performance of the model indicates that the effects of inertia and diffusion on the reactive
transport with fluid-solid reactions can be effectively described by the reactive SMM.

To elucidate the importance of honoring the velocity-dependent reaction probability for the reac-
tive transport predictions, we also perform upscaled modeling with an average reaction probability.
We derive the average (velocity-independent) reaction probability from the concept of the survival
probability Psur = (1 − Prxn )Njump , i.e., the probability of the A particles to not undergo reactions
while they take Njump steps along the x direction (mean flow direction). Note that Njump is determined
as a quotient of the longitudinal travel distance and �x. The average reaction probability can be
expressed with the survival probability, as follows:

Prxn = 1 − P
1

Njump
sur , where Psur = 1 − NC

Ninj
, (13)
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FIG. 10. (a) FPTDs of C particles from direct numerical simulations (DNS) (solid blue lines) and FPTDs
from reactive SMM predictions (dashed orange lines) at x = [20a, 90a]. (b) FPTDs of A particles from direct
numerical simulations (DNS) (solid green lines) and FPTDs from reactive SMM predictions (dashed brown
lines) at x = [20a, 90a].

where NC is the total number of the product C particles, and Ninj is the total number of injected A
particles. The velocity-independent reaction probabilities for all combinations of Re = [1, 100] and
Pe = [102, 103, 104] are shown in Table I. Note that the average reaction probability honors the total
reaction amount but does not account for the velocity dependence of reaction probability.

Figure 11 shows the FPTDs of the C particles from DNS and from SMM predictions with the
average reaction probability, Prxn, for combinations of Re = [1, 100] and Pe = [102, 103, 104] at
both locations (x = [20a, 90a]). At Pe = 100, the SMM with the average reaction probability
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TABLE I. Average reaction probabilities for combinations of Re = [1, 100] and Pe = [102, 103, 104].

Prxn Pe = 102 Pe = 103 Pe = 104

Re = 1 0.050 0.0054 0.00034
Re = 100 0.052 0.0059 0.00059

still reasonably captures the FPTDs because the velocity correlation is weak when diffusion is
strong. However, the accuracy significantly deteriorates as Pe increases (at both locations of
x = [20a, 90a]). When the advective transport is strong, the particle movements become sensi-
tive to the flow properties, and thus the fluid-solid reactions are strongly affected by the flow
properties. Therefore, as Pe increases, the model with the average reaction probability results in
poor predictability because the model does not honor the flow effects on the reaction probability.
This result confirms that transport and reaction dynamics are intimately coupled, and that both
transport and reaction dynamics can be well captured by reactive SMM but not by models that do
not honor the velocity-dependent reaction probability. Note that the upscaled model is validated
with the diffusion-limited catalytic reaction system only. So further study is necessary to verify the
model’s capability for other reaction systems.

V. CONCLUSIONS

In this study we investigated the effects of fluid inertia and solute diffusion on reactive transport
involving fluid-solid reactions in rough fracture flows. To focus on the Re and Pe effects on reactive
transport, we considered an irreversible and instantaneous fluid-solid reaction, A + Solid → C,
using the Lagrangian-based reactive particle-tracking method. We improved the fundamental un-
derstanding of inertia and diffusion effects on reactive transport and, consequently, successfully
upscaled the reactive transport.

FIG. 11. FPTDs of C particles from direct numerical simulations (DNS) (solid blue lines) and from model
predictions (dashed orange lines) with the average reaction probability at x = [20a, 90a].
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Both fluid inertia and solute diffusion are shown to control the fluid-solid reactive transport
dynamics. Solute diffusion (Pe) controls mainly the total reaction amount, whereas fluid inertia
(Re) governs the reaction dynamics by inducing complex flow structures such as flow channeling
and recirculating flows. Flow channeling, featured by fast velocities and high-velocity correlation,
limits fluid-solid reactions. For example, in high-Pe regimes, the particles in the flow channeling
region tend to stay in the fast flow channel, which limits surface reactions. By contrast, in low-Pe
regimes, the injected particles can easily traverse the fracture width via diffusion, lowering the
prominence of the flow channeling effect.

Recirculating flows are shown to significantly affect surface reactions via the trapping effect.
The recirculation zones exhibit slow velocities and are advectively separated from the main flow
channels. Once particles enter these recirculation zones, the trapped particles stay for a long time
near the fracture surfaces, which increases reaction probability. Our study explicitly showed that
these recirculating flows can significantly facilitate surface reactions and increase reaction duration
via the trapping effect for the transport-limited reaction considered in this study. Further, we showed
that such inertia and diffusion effects on fluid-solid reactions can be effectively captured by the
velocity-dependent reaction probability.

Based on this improved understanding of the fluid-solid reaction dynamics in rough fracture
flows, we successfully upscaled the reactive transport in rough fracture flows by incorporating the
velocity-dependent reaction probability into the spatial Markov model. The proposed reactive SMM
accurately captured the transport of both the reactant and product particles. The good performance of
the proposed reactive SMM demonstrates that reactive transport in fracture flows can be effectively
upscaled using Lagrangian velocity statistics and the velocity-dependent reaction rule. The proposed
upscaled model could be incorporated into a network-scale model such that one can accurately
incorporate the effects of fracture-scale processes in network-scale reactive transport.
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