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Inertial particles in stably stratified flows play a fundamental role in geophysics, from
the dynamics of nutrients in the ocean to the dispersion of pollutants in the atmosphere.
We consider the Maxey-Riley equation for small neutrally buoyant inertial particles in the
Boussinesq approximation and discuss its limits of validity. The main motivation is the
study of phytoplankton and oceanic particles in turbulent flows. We show that particles
behave as forced damped oscillators, with different regimes depending on the particles
Stokes number and the fluid Brunt-Väisälä frequency. Using direct numerical simulations
we study their dynamics and show that small neutrally buoyant particles in these flows tend
to cluster in regions of low local vorticity. The particles, albeit small, behave fundamentally
differently than tracers.
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I. INTRODUCTION

Dispersion of inertial particles by turbulent flows plays a fundamental role in many geophysical
systems, from cloud formation and the dispersion of pollutants in the atmosphere to the dynamics
of plankton in the ocean [1–4]. In spite of their interest, the dynamics of particles in these systems is
poorly understood. We know the equations of motion of small particles (i.e., such that the Reynolds
number at the particle scale is much smaller than unity [5]), and in recent years experiments [6] and
particle-resolved simulations [7] have provided valuable insights into particles’ dynamics in other
regimes. However, particle transport problems in geophysics necessarily require reduced models
that simplify the physics, as even in the cases in which a simulation can be done resolving a broad
range of scales, an ensemble of runs to get statistical information becomes rapidly unfeasible. This
has resulted, e.g., for stratified flows as in the oceans and the atmosphere, in the modeling of inertial
particles simply as Lagrangian trancers [8] or using simplified models [9,10].

Modeling geophysical flows pose other challenges, even without particles. Stably stratified
turbulence is anisotropic, and as a result it is fundamentally different from homogeneous isotropic
turbulence (HIT) [11–13]. In these flows stratification reduces the vertical velocity, confining the
flow into a quasihorizontal layered motion, also generating vertically sheared horizontal winds
(VSHWs) with strong vertical variability [14]. The stratification results in a restoring force, allowing
for the excitation of waves that can coexist with the turbulence. The spectral scaling of stably
stratified turbulence is also different than in HIT, with a rich behavior depending on the scale
considered, and on many dimensionless parameters. In broad terms, stably stratified turbulence
displays an anisotropic subrange with a direct energy cascade between the buoyancy and Ozmidov
scales [15,16]. Studies also indicate that larger-scale quasihorizontal motions can be a continuous
source of small scale turbulence as long as the local Reynolds number does not drop below a
threshold [17].
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Many recent studies have considered stably stratified flows from a Lagrangian perspective (i.e.,
by considering tracers, or particles with inertia, that are transported by such flows). As an example,
the Lagrangian transport of tracers in stably stratified turbulence was studied in Refs. [18,19].
However, the general equations of motion for inertial particles submerged in turbulent flows are
not clear. For very small particles the Maxey-Riley approximation provides a set of equations for
their dynamics [5]. As particles become larger, Basset-Boussinesq and Faxen corrections become
relevant, but for even larger particles such perturbative expansion breaks down. The case of stably
stratified turbulence is simpler than HIT in some way: most particles and aerosols are much smaller
than the dissipation scale, and thus the Maxey-Riley approximation should hold (except for, e.g.,
large rain droplets in clouds, or snowflakes). But even in this regime, the derivation of the equa-
tions requires certain approximations and depend on the form of the equations for the fluid [20,21].

A fundamental feature of particles in homogeneous and isotropic turbulent flows is their
preferential concentration. Turbulence sometimes separates the particles instead of mixing them.
The detailed mechanisms by which turbulence affects particle motions are still unclear. In the
homogeneous and isotropic case, and for the average concentration, the main mechanisms behind
the well known case of heavy particles clustering are centrifugal expulsion [5] and the sweep-stick
mechanism [22]. Evidence of preferential concentration of heavy particles in laboratory experiments
and numerical simulations was reported, e.g., in Ref. [23]. Multiscale flow effects may be also
relevant [24,25], and the role of other effects in preferential concentration, such as finite particle
radius or the effect of large-scale flows, are still unclear [26–28]. However, it is important to note
that not all particles cluster in homogeneous and isotropic turbulence. While small heavy particles
do cluster, experimental [27] and numerical [29] evidence indicate that small neutrally buoyant
particles (the case that will be of interest in this work) in the isotropic and homogeneous case
sample turbulence homogeneously and do not cluster. In the particular case of stratified turbulence
it has been shown that different inertial particles cluster for a wide range of parameters [21]. Vertical
confinement caused by density stratification produces strong fractal clustering at isopycnic surfaces.
Clustering was found to depend on a single parameter, the combination of the Stokes time τp of the
particles and the Brunt-Väisälä frequency of the flow. In the limit of small τp (i.e., small inertia),
clustering was found to increase monotonically with τp [21].

In this work we consider the Maxey-Riley model for small inertial particles [5], from which
we derive an equation for the dynamics of inertial particles in stably stratified flows. The main
motivation is the case of oceanic flows in which particles, such as phytoplankton, seaweed, and
other oceanic particles, are transported by the turbulent flow [30–33]; other applications include
particles with small or negligible settling velocity in atmospheric flows such as those found in the
stratosphere [34]. We perform direct numerical simulations of the Boussinesq equations for the
fluid, together with the Maxey-Riley equation for one million particles. We derive a simple model
for the particles vertical displacement, and compare the model with the simulations to show that
particles behave as forced damped oscillators with different regimes depending on the Stokes and
Froude numbers. We characterize the dependence of the stratification-induced vertical confinement
of the particles on these two parameters. Finally, we study the formation of clusters using Voronoi
tessellation, and show that particles in stably stratified flows tend to accumulate in regions with low
vorticity, at least for the range of parameters considered in the present study.

II. EQUATIONS OF MOTION

In this work we solve numerically the incompressible Boussinesq equations for the velocity u
and for mass density fluctuations ρ ′,

∂t u + u · ∇u = −∇(p/ρ0) − (g/ρ0)ρ ′ẑ + ν∇2u + f, (1)

∂tρ
′ + u · ∇ρ ′ = (ρ0N2/g)u · ẑ + κ∇2ρ ′, (2)

∇ · u = 0, (3)
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where p is the correction to the hydrostatic pressure, ν is the kinematic viscosity, f is an external
mechanical forcing, N is the Brunt-Väisälä frequency (which in this approximation sets the strat-
ification), and κ is the diffusivity. In terms of the background density gradient, the Brunt-Väisälä
frequency is N2 = −(g/ρ0)(dρ̄/dz), with d ρ̄/dz the imposed (linear) background stratification,
and ρ0 the mean fluid density. We write scaled density fluctuations ζ in units of velocity by defining
ζ = gρ ′/(ρ0N ). All quantities are then made dimensionless using a characteristic length L0 and a
characteristic velocity U0 in the domain, resulting in

∂t u + u · ∇u = −∇(p/ρ0) − Nζ ẑ + ν∇2u + f, (4)

∂tζ + u · ∇ζ = Nu · ẑ + κ∇2ζ . (5)

Inertial particles are modeled using the Maxey-Riley model, but we consider an approximation
consistent with those made to obtain the Boussinesq equations, in addition to assuming that the
typical length over which the velocity field changes appreciably is much larger than the particle
radius a. Under the latter hypothesis the Faxén terms are negligible. Under the Boussinesq approx-
imation for a stratified flow, Eqs. (4) and (5) are obtained from the Navier-Stokes equations after
neglecting all density fluctuations except for those in the buoyancy force. Thus, for the dynamics
of the particles we also consider the density and the mass of the fluid displaced by the particles
in terms of their mean values, respectively, ρ f ≈ ρ f = ρ0 and m f ≈ m f = ρ0Vp (where Vp is the
volume of the particles), except in the gravity term. In that term we consider the entire fluid density
dependence, ρ f = ρ0 + d ρ̄/dz(z − z0) + ρ ′, for a linear background density profile. As the flow is
stably stratified, d ρ̄/dz < 0. Under these approximations the equation for the particles results in

v̇
(

1 + 1

2

m̄ f

mp

)
= 6πaρ̄ f ν

mp
[u(x, t ) − v(t )] + 3

2

m̄ f

mp

D

Dt
u(x, t )

− g

[
1 − 1

ρp

(
ρ0 + d ρ̄

dz
(z − z0) + ρ ′

)]
ẑ + 6πa2ρ̄ f ν

mp

∫ t

0

d

dτ
[u(x, τ ) − v(τ )]

× dτ√
πν(t − τ )

, (6)

where x is the particle position, v is the particle velocity, u(x, t ) is the fluid velocity at the particle
position, D/Dt is the Lagrangian derivative, d/dt is the time derivative following the particle
trajectory, and ρp is the particle mass density (particles are assumed to be spherical). For a fluid
at rest, note particles will be at equilibrium (i.e., neutrally buoyant) when 1 − ρ f /ρp = 0, and that
there is some freedom on how ρ0 and z0 are chosen. In particular, without loss of generality we
can choose ρp = ρ0, such that particles are neutrally buoyant at z = z0 in the absence of density
fluctuations.

Multiplying and dividing the buoyancy term in Eq. (6) by ρ0, we have

v̇
(

1 + 1

2

m̄ f

mp

)
= 6πaρ̄ f ν

mp
[u(x, t ) − v(t )] + 3

2

m̄ f

mp

D

Dt
u(x, t )

− ρ0

ρp

[
g

ρ0

d ρ̄

dz
(z − z0) + g

ρ ′

ρ0

]
ẑ + 6πa2ρ̄ f ν

mp

∫ t

0

d

dτ
[u(x, τ ) − v(τ )]

dτ√
πν(t − τ )

,

(7)

where the first term inside the brackets in the buoyancy is −N2, while the second term is Nζ .
Reordering the terms in the equation and using dimensionless units, we finally obtain

v̇ = 1

τp
[u(x, t ) − v(t )] − 2

3
N[N (z − z0) − ζ ]ẑ + D

Dt
u(x, t ) +

√
3

πτp

∫ t

0
dτ

d
dτ

[u(x, τ ) − v(τ )]√
t − τ

,

(8)
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where the particle relaxation time is τp = (mp + m̄ f /2)/(6πaρ̄ f ν). For a spherical particle τp =
a2/(3ν), with γ = m̄ f /mp = 1. We define the Stokes number as St = τp/τη, where τη = (ν/ε)1/2

is the Kolmogorov timescale and ε is the fluid kinetic energy dissipation rate. Note that any other
choice for γ = m̄ f /mp is equivalent to changing the reference value ρ0, and results in the particles
being neutrally buoyant at a different height (or equivalently, it results in a redefinition of z0).

III. NUMERICAL SET UP

Besides the Stokes number that characterizes the particles, Eqs. (4) and (5) have two controlling
parameters for the fluid, the Reynolds and Froude numbers,

Re = LU

ν
, Fr = U

LN
, (9)

where L = π/(2u′2)
∫

E (k)/k dk and U = 〈|u|2〉1/2 are, respectively, the characteristic Eulerian in-
tegral length and the root-mean-square (r.m.s.) flow velocity [with E (k) the isotropic kinetic energy
spectrum, and u′2 = U 2/3]. Using these parameters we can also define the buoyancy Reynolds
number

Rb = Re Fr2, (10)

which provides an estimation of how turbulent the flow is at the buoyancy scale Lb = U/N , and plays
an important role characterizing the flow dynamics. For Rb � 1 strong stratified turbulence can de-
velop, while for Rb 	 1 turbulent motions are strongly damped by viscosity. Although geophysical
flows typically have large Rb (observations in the ocean thermocline yield Rb ≈ 102–103 [35]),
computational power limits the values of Rb that can be directly simulated. Considering numerical
limitations here we study flows with Rb from 13 to 76. Previous studies show that Rb > 10 suffices
to attain sufficiently strong turbulence in the small scales [36]. The Ozmidov scale, Loz = 2π/koz

(with koz =
√

N3/ε), also plays an important role in the dynamics, as for scales sufficiently small
compared with Loz the flow is expected to recover isotropy. For Rb > 1, Loz is larger than the
Kolmogorov dissipation scale η, and quasiisotropic turbulent transport can be expected to take place
at the smallest dynamical scales in the flow.

Setting these parameters and choosing the forcing prescribes the numerical simulations. For the
forcing we use Taylor-Green forcing [37], which is a two-velocity components forcing that generates
pairs of large-scale counter-rotating eddies perpendicular to the stratification, with a shear layer in
between. Its expression is given by

f = f0[sin(k f x) cos(k f y) cos(k f z)x̂ − cos(k f x) sin(k f y) cos(k f z)ŷ], (11)

where f0 is the amplitude of the forcing, k f = 1/L0 is the forcing wave number, and L0 a unit
length. This flow has been used before to study stratified turbulence [17,19]. In the stratified case it
generates a large-scale circulation with VSHWs (i.e., with a nonzero mean horizontal velocity) only
in the shear layer between the large-scale Taylor-Green vortices (see Ref. [38] for a movie of the
development of the mean horizontal wind in this layer). Note that this forcing is constant in time,
thus introducing no new timescale in the system. The Froude number in Eq. (9) can be considered as
the ratio between the resulting frequency of the large-scale eddies and the Brunt-Väisälä frequency.

The Boussinesq fluid equations, Eqs. (4) and (5), were solved in a triply periodic domain using
a parallelized and fully dealiased pseudospectral method, and a second-order Runge-Kutta scheme
for time integration [39]. The equation for the particles, Eq. (8), was solved using third-order spline
interpolation to estimate the forces at the particles positions, and with a second-order Runge-Kutta
method for the time evolution [40].

We performed several direct numerical simulations of the Boussinesq equations with different
Froude numbers, using a spatial resolution of Nx = Ny = 768 and Nz = 192 grid points, in a triple
periodic domain of length Lx = Ly = 2πL0 in the horizontal directions and Lz = H = πL0/2 in the
vertical direction. Three different Brun-Väisälä frequencies are considered (times are measured in
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TABLE I. Relevant parameters of the fluid simulations. NT0 is the Brunt-Väisälä frequency in units of
T −1

0 = U0/L0, Fr is the Froude number, Re is the Reynolds number, Rb is the buoyancy Reynolds number, L is
the flow integral scale, η is the Kolmogorov scale, Lb is buoyancy length, and LOz is the Ozmidov length scale.
All lengths are in units of the unit length L0.

Run NT0 Fr Re Rb L/L0 η/L0 Lb/L0 LOz/L0

N04 4 0.20 1900 76 1.27 0.0065 0.25 0.30
N08 8 0.12 1700 24 1.07 0.0065 0.13 0.10
N12 12 0.09 1600 13 1.00 0.0065 0.09 0.06

units of a unit turnover time T0 = L0/U0, with U0 a unit velocity, see Table I for all the relevant fluid
parameters). All simulations have a Prandtl number Pr = ν/κ = 1 (which should be considered as a
turbulent Plandlt number [41,42]). The kinematic viscosity is chosen so that the Kolmogorov scale
η = (ν3/ε)1/4 ≈ 0.0065L0 is well resolved, where the kinetic energy dissipation rate is computed
as ε = ν〈|ω|2〉 and ω = ∇ × u is the vorticity. This results in κη ≈ 1.6, where κ = Nx/(3L0) is the
maximum resolved wave number, corresponding to spatially well resolved simulations [43,44].

Once the flows in these simulations have reached a turbulent steady state (we integrated the
system for 50 large-scale turnover times), we randomly distributed particles in a horizontal strip of
width H/5 centered around z0 = H/2 (i.e., at the height of the shear layer of the Taylor-Green flow),
with initial velocities equal to the fluid velocity at the center of each particle. The dynamics of the
particles neglected the last term in Eq. (8) (i.e., the Basset-Boussinesq history term). However, that
term was computed a posteriori to estimate its relevance in the dynamics. Particles were one-way
coupled, and thus they can be considered as test particles: they do not collide, and their volume
fraction is irrelevant for the flow dynamics. Thus, the number of particles should be considered
solely as a way to improve the statistics. In each simulation in Table I we added three sets of different
particles with 106 particles each, with three different values of τp (or equivalently, different Stokes
numbers), resulting in a total of nine datasets of particles with different values of Fr and St. Particles
were integrated for almost 20 large-scale turnover times. Table II lists the relevant parameters of all
these datasets, including the particle Reynolds number Rep = a|u − v|/ν in each case, which in
our simulations takes values from 0.1 to 4.2. Note that Tables I and II should be read together, as
we can have, e.g., particles with St = 0.3 in a flow with N = 4/T0, or the same particles in a flow
with N = 8/T0 or 12/T0. As a rule, the Basset-Boussinesq force is smaller than the drag force in all
simulations except in the cases with St = 3; for those particles the Basset-Boussinesq history term
becomes comparable to the Stokes drag (even though both terms are smaller than buoyancy and
added mass forces), and Rep also becomes larger than unity. Thus, studying particles with larger St
would require taking the Basset-Boussinesq force into account (see, e.g., Ref. [20]), as well as other
corrections to the Maxey-Riley equation.

To put these dimensionless values in context, we consider the case of oceanic flows. The
Froude number in the ocean varies from ≈10−2 for the large-scale ocean circulation, to 10−1

at vertical scales of the order of H = 1 km [45]. At the latter case the typical Brunt-Väisälä

TABLE II. Relevant parameters of the particles in all simulations. St is the Stokes number, τp/T0 is the
Stokes time in units of T0, a/η is the particle radius in units of the Kolmogorov scale, and Rep are the respective
particles Reynolds numbers for all the Brunt-Väisälä frequencies.

Rep

Label St τp/T0 ap/η NT0 = 4 NT0 = 8 NT0 = 12

St03 0.3 0.024 1.08 0.2 0.2 0.1
St1 1 0.076 1.85 0.7 0.5 0.2
St3 3 0.235 3.38 4.2 2.7 1.6
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frequency is N ≈ 10−3 s−1. Using these length and timescales to put dimensions in simulation N08,
r.m.s. horizontal velocities result ≈0.08 m s−1, comparable to typical velocities in the ocean of
0.1 m s−1 [45]. Of course, the separation of scales in the simulations is smaller than in realistic
oceanic flows. As a result, for the particles we compare their size and timescales with those of the
smallest dynamical scales in the system. Oceanic particles in the lower mixed layer or in the upper
seasonal thermocline have a Kolmogorov timescale τη ≈ 3 s, resulting in Stokes numbers between
St ≈ 0.3 to 3, corresponding to variations in particle radius between 1 to 3 mm [31] (to be compared
against Kolmogorov dissipation scales between 0.1 and 10 mm [46]). Also, for oceanic particles in
this size range the mass ratio is γ ≈ 1.003 [30]. In the case of phytoplankton (and, in particular,
of nanoplankton and microplankton) their typical sizes vary between 2 to 200 microns [32]. Taking
into account that they are found in the mixed layer, the Stokes number varies between St ≈ 10−5

to 10−1 while the ratio a/η varies in the range of 0.02 to 2. Seaweed provides another example for
which modified Maxey-Riley equations (in this case, using effective parameters) have been used for
their modeling (see Refs. [10,33]).

Before proceeding to the detailed analysis of the results, the reader can find as Supplemental
Material [38] several movies that provide a first qualitative description of the system dynamics.
Stratified turbulence spontaneously develops layers with strong horizontal winds and smaller ver-
tical velocities, this can be seen in a movie that shows the early time evolution of the flow. Once
particles are added they move horizontally, advected by the horizontal winds, and in comparison
they displace less vertically. The vertical displacement can be seen in a movie that shows the
vertical dispersion of particles with different St in the flow with Fr = 0.20. In this movie, vertical
motions can be qualitatively associated to a combination of internal gravity waves and turbulent
eddies (see Secs. IV and V for details). Particles with smaller St are trapped more frequently by
eddies, increasing their vertical dispersion, while particles with larger St tend to oscillate around
the equilibrium. The horizontal displacement of the particles is shown in another movie of particles
with St = 1 and Fr = 0.12. Not only the particles are carried by the horizontal winds and eddies, but
they also cluster, generating regions in which the particles accumulate strongly. This phenomenon
of preferential concentration of particles will be discussed in detail in Sec. VI.

IV. SPECTRA AND PARTICLE VERTICAL DISPLACEMENT MODEL

We first study the power spectrum of the particles’ vertical velocity. Figure 1 shows this
spectrum for different values of the Froude and Stokes numbers; frequencies are normalized by
the Brunt-Väisälä frequency of the carrier flow. A peak is always present at ω ≈ N , and for small
Fr a second peak at lower frequencies is observed. Its position and amplitude depends on Fr, while
its amplitude depends only weakly on St. The peak at ω ≈ N is followed for larger frequencies by
a steep spectrum, and decays slowly for smaller frequencies.

The origin of the two peaks in the spectra can be explained by a simple model derived from the
equation of motion of the particles. Equation (8) can be rewritten in terms of the particles’ vertical
position z using that ż = vz and z̈ = v̇z, resulting in

z̈ = 1

τp
[uz(x, t ) − ż] − 2

3
N[N (z − z0) − ζ ] + D

Dt
uz(x, t ), (12)

where the Basset-Boussinesq history force was neglected. Rearranging terms in Eq. (12) we arrive
at the following expression,

z̈ + 1

τp
ż + 2

3
N2z = z̈wav + 1

τp
żwav + 2

3
N2zwav, (13)

where we assumed that vertical displacements of fluid elements are caused by internal gravity
waves, and thus we defined zwav = z0 + ζ/N , żwav = uz(x, t ), and z̈wav = Duz/Dt . Equation (13)
is the equation of a driven damped oscillator with system frequency

√
2/3N , damping constant

(2τp)−1, and forcing fwav = z̈wav + żwav/τp + 2N2zwav/3. The pulsation of the damped system is
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FIG. 1. Power spectra of the particles’ vertical velocity, for different values of the Froude and Stokes
numbers. (a) St = 0.3 and (b) St = 3, for different Fr (indicated in the insets). Power decreases with increasing
stratification. (c) Fr = 0.20 and (d) Fr = 0.09, for different St (indicated in the insets). The value of St has a
small effect in the amplitude of the main peak.

2 = 2N2/3 − (2τp)−2. For particles with small inertia this results in an over-damped system
(i.e., 2 < 0) and when perturbed, particles slowly decay to the equilibrium position following
fluid elements. Particles with large inertia result instead in weak damping (2 > 0), and perturbed
particles oscillate around the equilibrium as they decay, only weakly following the fluid elements.
Indeed, the dependence of the frequency of oscillation with τp is in qualitative agreement with the
results in Figs. 1(c) and 1(d); note that as St increases, the main peak of the spectrum moves from
ω ≈ N to lower frequencies (as a reference, for St = 3 Eq. (13) yields a frequency  ≈ 0.82N).

Equation (13) can be integrated numerically if fwav is prescribed. As we do not know the precise
evolution of uz as seen by each particle, we assume uz is a random colored process. The spectrum
of the fluid vertical velocity in many stably stratified flows is compatible with the Garrett-Munk
spectrum, as observed in oceanic observations [47] and in numerical simulations [19]. This is a flat
power spectrum for frequencies ω � N , resulting from the superposition of internal gravity waves,
followed by a power law decay for ω > N . Thus, we consider a random superposition of oscillators
of the form

zwav = u0 Re

⎛
⎝N�ω>N/4∑

ω

eiωt+φω

ω
+

ω>N∑
ω

N
eiωt+φω

ω2

⎞
⎠, (14)

where φω are random phases (note that, as we are interested only in vertical motions, the dependence
of traveling waves on x and y can be ignored or absorbed into the random phases), and u0 is an
amplitude chosen so that żwav has the same r.m.s. value as that of uz in the numerical simulations.
The power spectrum of żwav that results is compatible with oceanic observations of the Garret-Munk
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FIG. 2. Power spectrum of the particles’ vertical velocity from the model in Eq. (13) for different values
of Fr and (a) St = 0.3 and (b) St = 3. Note the decrease in the power with decreasing Fr. Same for different
values of St and for (c) Fr = 0.20 and (d) Fr = 0.09. The value of St changes the frequency of the main peak
and the amplitude of the secondary peak.

spectrum [2,47]. In other words, this process results in żwav being a random variable compatible with
that spectrum.

Figure 2 shows the power spectrum obtained after integrating Eq. (13) using this random process
as the forcing, for different values of the Brunt-Väisälä frequency and the Stokes number. Spectra
are qualitatively similar to those shown in Fig. 1. The spectra display two peaks, the main one close
to ω ≈ N . At fixed Fr, increasing St results in a broadening of this peak towards smaller frequencies.
The second peak at lower frequencies has increasing amplitude with decreasing Fr, and appears at
similar frequencies as those in Fig. 1. It is natural to ask whether these peaks are caused by the
forcing or by the damped oscillations of the particles. Changing the forcing while still maintaining
the Garret-Munk spectrum for uz (e.g., setting fwav = z̈wav) yields the same qualitative results, which
indicates the peaks in the spectra are partially associated to the damped dynamics of the particles.
Also, changing the lower cut-off frequency in Eq. (14) (i.e., the choice of ω > N/4) has no effect on
the position of the main peak close to ω ≈ N and on the spectrum at higher frequencies, although it
has a small effect on the position of the second peak at lower frequencies.

Equation (13) can be also rewritten in terms of the vertical slip velocity, vslip = uz − vz. Taking
y = z − zwav, Eq. (13) results in the homogeneous damped harmonic oscillator equation. As before,
the resulting oscillation frequency is 2 = 2N2/3 − (2τp)−2, with exponential decay rate (2τp)−1.
Noting that ẏ = vslip, we can expect the vertical slip velocity of the particles to display overdamped
or underdamped oscillations depending on the sign of 2. Figure 3 shows vslip for particles in the
numerical simulations with St = 3 (τp = 0.235T0) in an stratified fluid with N = 12/T0 and 8/T0.
Both cases have 2 > 0, and dynamics reminiscent of underdamped oscillations can be identified
in the time series. The power spectrum of vslip for multiple simulations, also shown in Fig. 3, shows
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FIG. 3. Time series of the vertical slip velocity for two particles with St = 3 in stratified fluids with (a) Fr =
0.09 and (b) Fr = 0.12. Shaded regions indicate motions reminiscent of underdamped oscillations. (c) Power
spectrum of the particles’ vertical slip velocity, for different values of Fr and St (see inset). Overdamped
particles show no peak in the spectrum, while underdamped particles display a peak at frequencies indicated
by the vertical dashed lines.

peaks at the expected value of  in these two simulations, and no peaks in the other simulations
with 2 < 0. Thus, the dynamics of the individual particles is compatible with randomly forced
damped oscillators, with both τp and N controlling the particles’ dynamical regime.

V. VERTICAL DISPERSION OF INERTIAL PARTICLES

Stratification limits vertical motions of the particles, strongly impairing vertical dispersion,
and resulting in saturation of the mean squared vertical displacements of the particles with time.
Linear models predict this saturation to take place after t ≈ 2π/N , as particle displacements get
constrained vertically by stratification, resulting in oscillatory motions around the neutrally buoyant
equilibrium [48]. This was confirmed in numerical simulations with moderate Rb [11]. Later,
studies of vertical dispersion of tracers in stably stratified flows [18,19], and of small neutrally
buoyant particles with small St [20], explicitly confirmed the saturation of the mean squared vertical
dispersion. For neutrally buoyant inertial particles the saturation was found to be faster and stronger
than for Lagrangian tracers [20].

Figure 4 shows the particles’ mean squared vertical displacement in the simulations, 〈δz2(t )〉 =
〈[zi(t ) − zi(0)]2〉i (where the subindex i indicates the average is computed over all particle labels),
for different values of Fr and St. Time is normalized by 2π/N and 〈δz2(t )〉 is normalized by
(Uz/N )2, where Uz is the Eulerian r.m.s. fluid vertical velocity in the turbulent steady state. With this
normalization curves collapse from t = 0 to t � 2π/N , in a time interval with ballistic behavior. The
end of this regime at a time proportional to the wave period 2π/N , instead of the Lagrangian eddy
turnover time, indicates that the rapid early vertical displacements are caused by the inertial particles
following the inertial waves. Note also that there is more overshooting in the vertical displacements
(i.e., 〈δz2〉 reaches larger values in its maximum at the end of this ballistic stage) as St (and particle
inertia) increases. After this maximum, inertial particles oscillate around their equilibrium position,
displaying a plateau in the mean squared vertical displacements, as also reported in Ref. [20]. The
amplitude of the plateau is weakly dependent on St, and depends strongly on Fr (see Ref. [38] for a
movie showing the vertical displacements of the three different types of particles when N = 4/T0,
illustrating the confinement in vertical layers). This is different from the case of tracers in stratified
flows, which for sufficiently large Rb display some slow vertical dispersion at late times caused by
turbulent eddies or by diffusion [19].

The confinement of particles around a layer can be also characterized using the probability
density function (PDF) of finding a particle at a given height, either in terms of z, or of the density
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FIG. 4. Mean squared vertical displacements 〈δz2〉 as a function of time for different values of Fr and for
(a) St = 0.3 and (b) St = 3. Also, for different values of St and for (c) Fr = 0.20 and (d) Fr = 0.09. In all
cases, δz2 in normalized by U 2

z /N2, and time is normalized by 2π/N .

at each particle position (i.e., of how far the particle is from the equilibrium isopycnal). Figure 5
shows the PDF of z for different Fr and St, centered by the mean value and normalized by the
dispersion. It is interesting to note that as the value of Fr decreases, the asymmetry in the tail of
the PDF increases. While we cannot discard a single large event as the cause of this asymmetry,
long-lived skewed PDFs of the fluid vertical velocity have been reported in Ref. [49]. They can be
associated to the occurrence of extreme vertical drafts in stably stratified flows for values of Fr in
the range ≈0.05 to 0.30 [50], which can cause more frequent and larger vertical wanderings of the
particles. Figure 6 shows the same PDFs but in terms of the rescaled density fluctuations ζ at the
particles positions, also centered by the mean value and normalized by the dispersion. These PDFs
are closer to Gaussian and less sensitive to St but still display asymmetric tails for Fr = 0.09.

From Fig. 4 it seems apparent that particles are confined in a narrower layer as Fr decreases, but
this is not evident from Figs. 5 and 6 as the PDFs in those figures are normalized by their standard
deviations. Figure 7 shows the standard deviations in z and ζ of the particles, σz and σζ , respectively,
as a function of Fr−1 for all St considered. Note that both deviations (which can be considered as a
measure of the height of the confinement layer) are a fraction of Lb, and decrease with decreasing
Fr. The behavior of σz depends also on St for weak stratification. Sozza et al. [51] observed that for
large values of Fr, σz was larger for larger τp (i.e., larger St), the opposite behavior of what is found
here. The effect in Ref. [51] resulted from particles with more inertia being suspended from the
equilibrium position for longer. Here, the mean winds in the shear layer of the Taylor-Green flow
result in a different effect. Particles with more inertia are less affected by rapid vertical motions,
following instead the slower horizontal motions and averaging over the vertical fluctuations as they
move (see the movie in Ref. [38]). This is evident in Fig. 1, where it is observed that for the case with

054501-10



DYNAMICAL REGIMES AND CLUSTERING OF SMALL …

−6 −4 −2 0 2 4 6
(z − 〈z〉) /σz

10−5

10−4

10−3

10−2

10−1
P
D

F
(a)

Fr = 0.20
Fr = 0.12
Fr = 0.09

−6 −4 −2 0 2 4 6
(z − 〈z〉) /σz

10−5

10−4

10−3

10−2

10−1

P
D

F

(b)

Fr = 0.20
Fr = 0.12
Fr = 0.09

−6 −4 −2 0 2 4 6
(z − 〈z〉) /σz

10−5

10−4

10−3

10−2

10−1

P
D

F

(c)

St = 0.3
St = 1
St = 3

−6 −4 −2 0 2 4 6
(z − 〈z〉) /σz

10−5

10−4

10−3

10−2

10−1

P
D

F

(d)

St = 0.3
St = 1
St = 3

FIG. 5. Normalized probability density functions (PDFs) of the z position of particles for different values
of Fr and (a) St = 0.3 and (b) St = 3. Same for different values of St and (c) Fr = 0.20 and (d) Fr = 0.09. The
black dashed lines indicate as a reference a normal distribution.

St = 0.3 the main peak of the power spectrum of the particles’ vertical velocity is above unity, while
for the case with St = 3 the peak is below unity. This confirms that particles with lower inertia are
more affected by the fluid vertical displacements, while particles with larger inertia are less affected
by them. Thus, the behavior of σz with St for larger Fr is not universal, and probably dependent on
the flow. However, the situation is different for σζ , as shown in Fig. 4(b): σz/(LbN ) = σz/U seems
to depend linearly on Fr−1, and is independent of St, at least in the range of parameters considered.
Note this amounts to the dispersion of the particles around the isopycnal decreasing linearly with
increasing Brunt-Väisälä frequency.

VI. CLUSTER FORMATION AND VORONOÏ TESSELLATION

The vertical confinement of particles has consequences for cluster formation. Clustering of
particles has been reported in oceanic flows. As an example, phytoplankton can form complex
structures with sizes of the order of the kilometer [46,52], also forming thin layers at depths that
correlate with regions of strong gradients in fluid density and vertical shear, which tend to occur
at the bottom of the mixed layer [53]. Another known case is that of sargassum, a type of seaweed
that serves as habitat for marine fauna, but which can carry high levels of arsenic and heavy metals,
causing major problems when decomposing near costal lines [33,54]. To quantify clustering in our
simulations we use Voronoï tessellation. Tessellations have been shown to be useful to characterize
preferential concentration of particles, see, e.g., Refs. [6,55–59], with the standard deviation of
the Voronoï cell volumes or areas being associated to the amount of clustering [23,56,57]. For
heavy particles in stratified turbulence, clustering has also been studied using radial distribution
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FIG. 6. Normalized PDFs of the rescaled density fluctuations ζ at the particles positions, in simulations
with different Fr and (a) St = 0.3 and (b) St = 3. Same for particles with different St in flows with (c) Fr = 0.20
and (d) Fr = 0.09. Black dashed lines indicate a normal distribution.

functions [60], which give the ratio of the number of particle pairs found at a given separation to
the expected number of pairs if particles are uniformly distributed. A Voronoï tessellation assigns a
cell to each particle, so that each point in that cell is closer to that particle than to any other particle.
Large tessellation cells correspond to voids (i.e., regions with far apart particles), while small cells
correspond to clustered particles. While in the case of homogeneous and isotropic turbulence both
three-dimensional (3D) and two-dimensional (2D) tesselations have been used, here we restrict
ourselves to 2D tessellation as most of the particles remain in the thin layers discussed in the
previous section. To that end, we project all particles into a plane, and consider only their x and
y coordinates.

Figure 8 shows the PDFs of the normalized areas of the Voronoï cells, A = A/〈A〉, where A is the
area of each cell. The figure also shows as a reference the PDF of a random Poisson process (RPP),
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FIG. 7. Standard deviations of (a) the particles’ positions in z normalized by the buoyancy length and (b) the
fluid density variations at particles’ positions, ζ , normalized by the buoyancy length and the Brunt-Väisälä
frequency, as a function of the inverse of the Froude number.
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FIG. 8. (a) PDFs of the normalized Voronoï area A for different values of Fr and St. (b) The logarithm (with
base 10) of the volumes centered around their mean and normalized by their dispersion. The black dashed line
indicates as a reference a random Poisson process, i.e., the PDF of randomly distributed particles. Note that,
in addition to the simulations discussed so far, a new simulation with St = 6 and Fr = 0.12 is added in this
figure to confirm that for fixed Fr, maximum clustering takes place for intermediate values of St.

which corresponds to particles randomly distributed in space [61,62]. The first crossing from the
left between the PDFs and the RPP is often used to define clusters: an excess of smaller cells are
an indication of a spatial accumulation of particles in certain regions of the flow. Note that particles
in the flow with Fr = 0.20 are closer to the RPP. This is to be expected, as small neutrally buoyant
particles do not cluster in the limit of homogeneous and isotropic turbulence (i.e., in the limit of
Fr → ∞, see Ref. [29] for a numerical study of small neutrally buoyant particles in this regime and
Ref. [27] for a laboratory study). More importantly, clustering increases rapidly as Fr is decreased.
The strongest clustering is obtained for intermediate stratification at Fr = 0.12 and St = 1. This
indicates that although the increase in stratification is favorable for cluster formation, its effect is
not monotonous with Fr, or with St. To confirm that maximum clustering occurs in the vicinity of
St = 1, a new simulation (not discussed before) is shown only in Fig. 8, with St = 6 and Fr = 0.12,
which (even though for this St neglecting the Basset-Boussinesq force is less justified) displays less
clustering and can be compared with the other particles with different values of St at the same Fr.

The clusters seem to form in regions of the flow with low vertical vorticity, thus resulting from
centrifugal vortex expulsion [5]. To illustrate this Fig. 9 shows the Voronoï areas of a random subset
of 104 particles with St = 0.3, in the three simulations with Fr = 0.20, 0.12, and 0.09. Red regions
in Figs. 9(a), 9(b), and 9(c) correspond to cells larger than the average (voids), and blue areas to
cells smaller than the average (clusters). A movie with the time evolution of the particles in the
case with Fr = 0.12 can be seen in Ref. [38]. Figures 9(d), 9(e), and 9(f) show the squared vertical
vorticity ω2

z averaged in each Voronoï cell, and normalized by its mean value (as a reference, the
bottom panels show the same vorticity at full resolution, i.e., not coarse-grained). Note there is some
correlation between these panels: regions of low vorticity seem to correspond to smaller Voronoï
areas, specially for small Fr. A similar correlation between clusters and low vorticity regions was
reported before for the case of heavy particles in stratified turbulence in Ref. [60]. We also use the
distance correlation,

dCorXY = μXY

(μXX μYY )1/2
, (15)

where μXY , μXX , and μYY are, respectively, the correlation and autocorrelation functions between
variables X and Y as defined in Refs. [63,64]. This coefficient is expected to give a better estimation
of correlation than the Pearson correlation coefficient when the relation between variables is not
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FIG. 9. Comparison between Voronoï particles’ areas A and the flow vertical vorticity. The first row shows
the Voronoï areas of 104 particles with St = 0.3, for (a) Fr = 0.20, (b) 0.12, and (c) 0.09. In the middle row, the
normalized squared flow vertical vorticity ω2

z is coarse-grained to the Voronoï areas, for the same three values
of Fr, respectively, in (d), (e), and (f). The bottom row shows the full resolution ω2

z for the three values of Fr in
(g), (h), and (i).

necessarily linear. We obtain dCorAω2
z
= 0.20, 0.25, and 0.31, respectively, for Fr = 0.20, 0.12,

and 0.09. The correlation increases with stratification.
Figure 10 further confirms this correlation by showing joint PDFs of A vs ωz

2 for all simulations
and particles. In the panels of Fig. 10 the vertical dashed lines indicate, from left to right, the first and
second crossings of the PDFs of A with the RPP (i.e., the values of A below and above which cells
correspond, respectively, to clustered particles and to voids). Particles in voids tend to be in regions
of larger vorticity, and the correlation is more clear as Fr decreases. As a reference, we indicate
different slopes with straight lines. Note that for strong stratification (Fr = 0.12), the shape of the
PDFs becomes almost insensitive to the value of St. Overall, a correlation between large Voronoï
areas and large vorticity appears independently of the Stokes number in the strongly stratified cases.

VII. CONCLUSIONS

We presented a numerical study of the transport and spatial accumulation of light neutrally
buoyant inertial particles in stably stratified turbulent flows, using the Maxey-Riley equation for
small particles. We showed that in the stratified case, the equation can be written as the equation of a
driven damped oscillator, with two regimes controlled by the inverse squared particle response time,
τ−2

p , and the flow Brunt-Väisälä frequency, N . When the former is larger particles are overdamped,
while when the latter is larger particles are underdamped. This results in the appearance of two
peaks in the power spectrum of the particles’ vertical velocity, the main peak with frequency
 ≈ [2N2/3 − (2τp)−2]−1/2.

As observed in previous studies of light and heavy particles in stably stratified turbulence [20,60],
the vertical dispersion of particles is strongly confined in layers. The width of this layer depends on
the Stokes and Froude numbers. However, when studied in terms of density isopycnals, the width
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FIG. 10. Joint PDFs of A and ωz
2. From left to right, St = 0.3, 1, and 3. From top to bottom, Fr = 0.20,

0.12, and Fr = 0.09. As an example, panel (a) has St = 0.3 and Fr = 0.20, (b) has St = 1 and Fr = 0.20,
(c) has St = 3 and Fr = 0.20, (d) has St = 0.3 and Fr = 0.12, and so on. Vertical dashed lines, from left to
right, indicate, respectively, the first and second crossings of the PDF of A with the RPP. Several slopes are
indicated with red dashed curves only as a reference.

becomes independent of the particles’ Stokes number (at least, in the range of parameters considered
in this study), and varies with the Brunt-Väisälä frequency.

This vertical confinement also has a strong impact in the clustering of particles, and in the
physical mechanism behind cluster formation. We showed that a two-dimensional Voronoï tesse-
lation can be used to study clusters; previous studies using other methods for vertically confined
particles can be seen in Refs. [60,65]. Our analysis indicates that in sufficiently stratified flows
the formation of clusters is governed by centrifugal vortex expulsion, independently of whether
the Stokes number is smaller or larger than unity. Moreover, clustering is strongly enhanced
as stratification is increased, and this enhancement takes place also when only considering the
two-dimensional positions of the particles, i.e., independently of the particles’ vertical confinement.
This result can be important to compute particle collisions and particle-turbulence interactions in
atmospheric problems [66,67], and in oceanic flows where patches of phytoplankton and of nutrients
are commonly observed [31,46,52]. The result is also reminiscent of observations of clustering in
floaters in free surface flows, where the large-scale flow circulation can play an important role in
particle accumulation [68].
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