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We propose a pairwise influence framework for the complex unsteady compressible
particle-laden flow problem by accounting for the scattered hydrodynamic waves emitting
from neighboring particles in a Euler-Lagrange simulation. It has been observed from
particle-resolved (PR) simulations of randomly dispersed particle beds under a loading
shock that the compressible pseudoturbulence dominates the flow system even after the pri-
mary shock has passed, which causes fluctuations observed in the forces experienced by the
particle. Moreover, the fact that each particle exists in the vicinity of a random arrangement
of other particles modifies the time history of the drag force experienced by each particle
during and after the passage of the shock. First, the scattering flow field due to an incoming
shock interacting with a single sphere is constructed using an analysis of the flow in the
acoustic limit. Then we examine the validity of the compressible Maxey-Riley-Gatignol
force model by comparing the force prediction against a PR simulation of two interacting
particles for various particle arrangements and incoming shock strength. Subsequently, the
neighboring influences are stored as a library of maps that can be used readily in the calcu-
lation of the perturbation force. Finally, the pairwise interaction assumption is evaluated by
comparing the force predicted with the model with PR simulations of a randomly packed
particle bed of 10% volume fraction for both water and air as the fluid medium for an
incoming shock Mach number 1.22. With a considerably lower cost for the implementation
of the model compared to PR simulations, it is verified that the model is reasonably
accurate in pinpointing particles whose peak force is significantly larger or smaller than
the mean drag but also to capture the prolonged fluctuations after the initial shock.
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I. INTRODUCTION

Numerical and experimental work on the interaction between a planar shock wave and a random
distribution of particles (see Refs. [1–9]) highlights the rich flow phenomena in such systems.
The force on the particles remains zero before the shock arrival, rapidly increases to a maximum
when the shock is located approximately near the particle center, then slowly decays to a value
that corresponds to the postshock uniform flow. Although the above general trend is followed by
all particles, the actual force history experienced by each particle within the random distribution
substantially differs from one to another. In particular, particle-to-particle variation of key quantities,
such as the magnitude of peak force, the time at which the peak force is realized, and the steady force
long after the passage of the shock, is comparable in magnitude to their mean values averaged over
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the entire bed of particles. This particle-to-particle variation in force experienced by the different
particles is due to interaction among the randomly distributed particles [6,10].

All the particles within the bed see nominally the same shock propagating past them. However,
as the moving shock touches the first layer of particles, the incident primary shock wave is both
transmitted through the particle layer and reflected backward. Upstream particles interacting with
the incoming shock produce disturbances that travel with the incoming shock downstream to other
particles, thus creating a different local flow condition for the downstream particles. Additional
disturbances from the downstream particles travel upstream and can exist in between particle pairs.
Interaction between the transmitted waves can create a shock focusing effect, but, in general, the
total energy dissipates as the first shock penetrates deeper into the bed [5,6]. Thus, in addition to the
primary shock, each particle also sees the waves emanating from all other particles that are located
upstream and downstream. The perturbation flow due to the neighboring particles has a substantial
influence in altering the force experienced by each particle.

From the perspective of the fluid flow, the compressible flow passing through the bed of particles
substantially differs from the standard uniform postshock flow behind a propagating planar shock. A
substantial amount of spatial and temporal fluctuation is generated around the particles contributing
to the chaotic nature of the flow within the bed and these fluctuations are termed pseudoturbulence.
The complex particle-to-particle variation seen in the force evolution of each particle is due to the
perturbation flow or pseudoturbulence generated by its neighbors [11–13]. Several mechanisms,
including flow acceleration due to the blockage effect of the particles, transmitted waves around the
particles, and waves that are reflected off the particles, contribute to pseudoturbulence.

The interaction between different particles in the cluster is extremely complicated. Even in the
case of a steady high-speed compressible flow over a random distribution of particles, each particle
is subjected to the near wake, far wake, and the recompression region created by other particles in
the neighborhood [7,8,14–16]. Experimental works that analyze the motion of multispheres are also
insightful but such analysis is hard to achieve due to the rapid evolution of the particles. Park and
Park [17] conducted experiments in a shock tunnel with free-stream Mach No. 6 and performed
separation trajectory analysis for single and multiple spheres aligned in a ring shape. Whalen
and Laurence [16] designed a suspension gadget that enabled the release of numerous equal-sized
spheres.

Other works have addressed the force estimation on a sphere under the influence of a disturbing
neighbor in the compressible flow regime. Laurence et al. [18] based their estimation on the
analytical blast wave analogy in both two and three dimensions in the hypersonic regime. One
of the interesting phenomena observed in their study, dubbed shock-wave surfing, was also studied
extensively in Laurence and Deiterding [19]. Marwege et al. [20] provided insightful means to
estimate forces experienced by bodies immersed in the compressible wake of a leading sphere
under steady compressible incoming flow. Register et al. [21] also studied the trajectory of a second
particle by time-marching it with the aid of a finely computed force map, which was constructed
using steady-state two-sphere simulations.

A. Pairwise modeling approach

The pairwise interaction extended point particle (PIEP) approach has proven to be successful in
explaining the complex interaction between the flow and a random distribution of particles in the
incompressible steady flow limit [22,23]. The overarching goal is to develop a similar theoretical
framework that can explain shock interaction with a distribution of particles.

Particle-resolved (PR) simulations of particle-laden compressible flows offer direct access to all
the above-mentioned complex flow physics. However, PR simulations of shock-particle interactions
pose a great computational challenge. The wide range of lengths and timescales in the system
increase the simulation cost and thus hinder the simulation of a large distribution of particles. When
compared to the size of the particle, one typically needs O(104) grid points resolving the particle
surface to capture the diffraction of the shock waves and the postshock flow around the particle [5].
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As a result, PR simulations of shock-particle interactions have typically been limited to systems
consisting of hundreds to thousands of particles [6,10,24]. For practical applications consisting
of millions of particles, one must resort to Euler-Lagrange (EL) or Euler-Euler (EE) approaches
[25–32].

In the EL approach, the fluid phase is treated in the Eulerian frame, while particles are individ-
ually tracked or followed in the Lagrangian frame of reference. Furthermore, the grid resolution
is typically chosen to resolve the large-scale features of the flow and therefore will be of the
order of a particle diameter or larger. Since the flow is not resolved on the scale of a particle, a
first-principles evaluation of force on the particle is not possible. A point-particle model must be
employed, which models the instantaneous force on the particle as a function of the state of the
flow surrounding the particle. For accurate prediction of the force, the state of the surrounding flow
must be properly characterized by taking into account both the macroscale flow (i.e., the planar
shock and the postshock flow) and the pseudoturbulence generated by the neighboring particles.
This leads to the following three fundamental challenges of accurate point-particle modeling of
shock interaction with a random distribution of particles: (i) Compressible flow features such as
shocks and contact discontinuities are often much thinner than the particle diameter. Therefore,
even the macroscale flow around the particle cannot be taken to be spatially uniform on the scale
of the particle. (ii) The timescale of the shock crossing a micron-sized particle is of the order of
only nanoseconds. Thus, the particle sees a highly transient flow as the shock passes over it, and
the unsteady effect must be properly accounted for in the point-particle model. (iii) As discussed
earlier, each particle also sees the pseudoturbulence generated by its neighbors, which must also be
accounted for in the point-particle model if we want to capture the substantial particle-to-particle
variation in shock-induced force.

Commonly used point-particle models, such as the standard drag model, do not account for
the above challenges. To capture the effect of rapid time variation, one must adopt the Basset–
Boussinesq–Oseen (BBO) equation to calculate the unsteady force on the particles [33]. In the
present context of shock interaction with a random distribution of particles, the compressible
version of the BBO equation (C-BBO) must be used [34,35]. It must be noted that the unsteady
force on a particle depends on the history of flow as the shock passes over the particle. Spatial
variation of the surrounding flow on the scale of the particle requires the use of the compressible
Maxey–Riley–Gatignol (C-MRG) equation [34–37] in the particle force calculation. The C-MRG
equation is qualitatively similar to the C-BBO equation, except that the undisturbed fluid properties
are expressed as surface and volume averages over the particle.

The accuracy of the C-MRG equation for predicting the force on an isolated particle with
air and water as the ambient fluid medium has been established [38]. The performance of the
C-MRG model was substantially better and highlighted the importance of the unsteady and
nonuniform nature of the planar shock propagating over a particle. It must be emphasized that
all point-particle models, including the C-MRG model, are based on the undisturbed flow seen
by the particle, where undisturbed flow refers to the flow that would exist in the absence of
the particle. In the case of an isolated particle, the undisturbed flow is simply the planar shock
propagating over the particle. In the case of a planar shock propagating over the distribution of
particles, the undisturbed flow of a particle includes the pseudoturbulence created by all other
neighbors. Since the details of pseudoturbulence are not known in an EL or EE simulation, the
undisturbed flow of a particle within a random distribution must be approximated. It is noted that
the C-MRG model, like other point-particle models, requires the undisturbed flow of the particle
to not be corrupted by the self-induced velocity of the particle. If the self-induced perturbation
is substantial, then a correction procedure is required to extract the true undisturbed flow of the
particle. Such a correction procedure has been developed in the incompressible regime [39–43] but
not in the compressible regime. The self-induced perturbation will not be an issue in the present
paper.

We now address the challenge of calculating the undisturbed flow of a particle (henceforth
referred to as the reference particle, whose time evolution of force is the quantity of interest), taking
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into account the pseudoturbulence created by its neighbors. In an EL simulation, pseudoturbulence
is a subgrid quantity that is not computed and therefore must be modeled. Pseudoturbulence and
its effect must be evaluated based on the following macroscale information: the planar shock
flow approaching the particle (i.e., the macroscale flow) and the microscale information of the
relative location of the neighboring particles. In the context of steady incompressible flow over
a random distribution of particles, Akiki and coworkers [22,23,44] introduced the concept of a
PIEP model where pseudoturbulence was modeled as a superposition of perturbation flow generated
by each neighbor in response to the ambient flow around it. They observed that the application
of the MRG model (because of the incompressible flow) using the pairwise superposition of the
perturbation flows of neighbors yielded a good prediction of the particle-to-particle variation in the
force.

The primary purpose of this paper is to develop a compressible pairwise interaction extended
point-particle (C-PIEP) framework and test its ability to predict the force on a particle in the pres-
ence of neighbors subjected to a propagating planar shock. The compressible nature of the present
problem adds to the complexity of modeling pairwise interaction [22,44–46]. More specifically,
the problem of shock-particle interaction is inherently unsteady, while previous development of
pairwise interaction perturbation flow and force maps have been in the context of steady flows.
Extension of these maps to unsteady conditions and proper accounting of the unsteady forces within
the framework of pairwise superposition is not straightforward.

We simplify the modeling task by considering the small-time limit. We will consider the short-
time pairwise superposition of force on a particle immediately following the propagation of a shock.
The time-dependent nature of the perturbation flow will be accounted for with an analytic solution
that is available in the acoustic limit. The compressible unsteady force map will be developed
under the linear assumption of inviscid weakly compressible perturbation. This allows the use of
a classical acoustic scattering solution. The setup consists of a pair of disturbing-disturbed spheres
that are subjected to an incoming weak planar shock. We are interested in analytically calculating
the perturbation flow generated by the disturbing sphere and its influence on the force history of
the disturbed sphere. This setting is analyzed with a fundamental solution of the acoustic field (see
Hasegawa and Yosioka [47], Lamb [48], and Morse [49]).

As a planar shock propagates over a pair of particles, the force on the reference perturbed
particle is calculated with the C-MRG model with the undisturbed flow over the reference
disturbed particle approximated as a superposition of the undisturbed planar shock wave and
the perturbation flow computed with the acoustic scattering solution of a shock wave around
the perturbing neighboring particle. The results of the C-MRG model are compared against those
obtained from corresponding two-particle PR simulations. The C-MRG model will allow for the
investigation of contributions arising from pressure-gradient and inviscid unsteady force compo-
nents. The contributions to the two force components from a perturbing neighbor are stored as
respective perturbation maps. Using these maps, the perturbing influence of each neighbor can be
evaluated and added to obtain the total perturbation force. The utility of this pairwise superposition
approach will be evaluated by comparing its prediction against corresponding PR simulation
results.

This paper is organized as follows: In Sec. II, as the first step of pairwise interaction model
development, we start with a closed-form solution of acoustic scattering solution of a weak shock
by a sphere. The acoustic approximation is then validated against PR simulation results. In Sec. III
we then present the compressible Maxey-Riley-Gatignol (C-MRG) force model and its validation
against PR simulation results at the level of two interacting particles. Then, in Sec. IV, the approach
is extended to a random array of particles using the compressible pairwise interaction approximation
and demonstrated against PR-simulation results of shock propagation over a random distribution of
particles. This section also presents the force component maps obtained from the acoustic limit
solution. Finally, conclusions are drawn in Sec. V.
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II. UNSTEADY COMPRESSIBLE PIEP MODEL

A. Closed-form solution of scattering of a weak shock by a sphere

The aerodynamic force on the disturbed reference sphere will be evaluated in terms of its
undisturbed flow using the C-MRG model. In this section, we start with the compressible Navier-
Stokes equations and obtain an explicit expression for the undisturbed flow of the reference particle
subjected to a weak shock in the presence of another disturbing sphere:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = ∇ · σ , (2)

where ρ is the density of the fluid, u is the fluid velocity, and σ is the stress tensor, which
for an inviscid flow reduces to −pI. The flow is assumed to be isentropic, so pressure p is
a function of fluid density. The undisturbed flow of a particle will include both the original
planar shock, which corresponds to the macroscale component, and the scattered flow field of
the disturbing neighbors, which corresponds to the microscale component of the undisturbed
flow.

We consider a planar shock approaching two nearby spherical particles, one of which is the
disturbed or the reference particle, the modeling of whose force is the object of interest, while
the other is the disturbing particle. The incoming planar shock is denoted by the superscript in and
the perturbation flow due to the scattering by the disturbing neighbor is denoted by the superscript
sc. Thus, the pressure, density, and velocity fields that the reference particle is subjected to can be
represented as

pun = p0 + pin + psc, ρun = ρ0 + ρ in + ρsc, uun = uin + usc, (3)

where ρ0 and p0 are, respectively, the background density and pressure, while the background
velocity is zero. The superposition gives the undisturbed flow of the reference particle and is denoted
by the superscript un.

Substituting Eqs. (3) into Eqs. (1) and (2) and linearizing, we obtain the following equations for
the scattering part:

∂ρsc

∂t
+ ∇ · (ρ0usc) ≈ 0, (4a)

∂ (ρ0usc)

∂t
≈ ∇ · (−pscI), and (4b)

psc ≈ cg
2ρsc, (4c)

where cg is the postshock speed of sound.
The incoming and scattered velocity fields can be written in terms of velocity potentials as uin =

∇φin and usc = ∇φsc. If we consider a monochromatic incoming plane wave of a unit amplitude of
the form uin = exp{−i(kz − ωt )}ez, the corresponding incoming velocity potential can be expressed
as [34]

φin =
∞∑

n=0

Cn(2n + 1)(−i)n jn(kr)Pn(cosϕ)eiωt , (5)

where jn is the spherical Bessel function of the first kind of order n, Pn is the Legendre polynomial
of the first kind of order n, and Cn = i/k is the amplitude (note i = √−1). The wave number k
and frequency ω are related by ω/k = c0, where c0 is the the preshocked ambient speed of sound.
In this paper, a spherical coordinate is used with r being the radial direction, θ defined as the
azimuthal angle, and ϕ as the polar angle. The flow direction z is then defined as z = r cosϕ.
When the monochromatic wave is scattered by the disturbing sphere, the scattered potential can be
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expressed as

φsc =
∞∑

n=0

Cn(2n + 1)(−i)nSnh(2)
n (kr)Pn(cosϕ)eiωt . (6)

Using the no-penetration boundary condition on the surface of the scattering sphere, one can solve
for the scattering coefficient Sn to obtain

Sn = −{n jn(kR) − (kR) jn+1(kR)}
nhn(kR) − (kR)hn+1(kR)

, (7)

where R is the radius of the sphere. As can be observed from Eqs. (5) and (6), they are not functions
of the azimuthal direction θ and therefore the solution has rotational symmetry with respect to the
flow direction.

A planar shock propagating along the z axis is now expressed as a superposition of monochro-
matic planar wakes as

uin
sh(z, t ) = ug H (−(z − Zs(t )))êz = 1√

2π

∫ [
ug

(
δ(k)

2
− i√

2πk
eikZs (t )

)]
︸ ︷︷ ︸

ũsh (k)

e−ikzdkêz, (8)

where ug is the postshock gas velocity, H is the Heaviside function, Zs(t ) is the location of the shock
front as a function of time, and ez is a unit vector along the z direction. From Eq. (7), we note that
e−ikzez = ∇φin. Making this substitution, we obtain

usc
sh(z, t ) = 1√

2π

∫
ũsh(k) ∇φscdk . (9)

The density of the incoming shock and the scattered field by the disturbing sphere can be expressed
as

ρ in
sh(z, t ) = ρg H (−(z − Zs(t )))ez = 1√

2π

∫
ρg

[
δ(k)

2
− i√

2πk
eikZs (t )

]
︸ ︷︷ ︸

ρ̃sh(k)

e−ikzdk

ρsc(z, t ) = 1√
2π

∫
ρ̃sh(k)

−∇2φsc

ik
dk, (10)

where ρg is the postshock density. Scattered pressure can then be obtained from the isentropic
relation Eq. (4c).

1. Numerical evaluation

We now briefly address the evaluation of the scattered fields through numerical integration of
the expressions given in Eqs. (11) and (12). These evaluations will be made in nondimensional
variables with D as the length scale and c0 as the velocity scale. Furthermore, noting that the
nondimensional wave number and frequency of each monochromatic wave are the same, these
integrals are numerically evaluated over the frequency space. The numerical integration introduces
two parameters: ωtr, which is the largest frequency considered in the integration by limiting the
integrals to |ω| < ωtr and Nω, which is the number of frequencies included in the numerical
integration. Thus, the frequency resolution of integration is �ω = ωtr/Nω. Furthermore, in the
representation of the scattered velocity potential, the summation given in Eqs. (5) and (6) must
be limited to a large but finite value of ntr, which is the third numerical parameter.

The proper choice of the three numerical parameters, ntr, ωtr, and Nω, is established through
simple experimentation. First, the sensitivity of the summation of the scattered velocity potential
is investigated based on the magnitude of the nth term. Since the denominator of the scattering
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FIG. 1. The plot of normalized streamwise velocity at the point xp = (0, 0, 2D) analytically calculated with
the acoustic scattering theory: (a) Convergence with increasing frequency range included in the integration.
Results are shown for ωtr = 250, 500, 1000, and 1500 (nω was kept at 1400). (b) Convergence with increasing
number of frequency samples used in the integration for nω = 1400, 2100, and 2800 (ωtr was kept at 500). Also
shown in (b) is the particle-resolved simulation result for a shock Mach number of M = 1.05.

coefficient Sn grows larger as n increases, the terms being summed decay with increasing n. It is
observed that if the first 300 terms are included in the summation, the neglected higher-order terms
are smaller than 10−15 times the largest term of the series. As a result, we choose ntr = 300.

The convergence with increasing ωtr is presented in Fig. 1(a), where streamwise velocity nor-
malized by ug at a point xp = (0, 0, 2D) is presented as a function of time. Note that the velocity
presented is uun, which includes both the planar shock and the scattered fields. The time axis has
been shifted by t0, which is the time of arrival of the planar shock at the point xp, and normalized
by the time it takes for the shock to cross a particle radius (i.e, normalized by τ = D/us, where us is
shock velocity). The flow and the shock propagation are in the z direction and the disturbing sphere
of unit diameter is located at the origin. Without the scattering effect of the disturbing sphere, the
velocity would be a unit-step function. Thus, the deviation from the step function is the scattering
effect of the disturbing sphere. From the figure, it can be seen that ωtr = 500 is sufficient and this
has been verified at other points within the domain. Figure 1(b) shows the same result on a longer
time time for varying nω. It is clear from the figure that Nω = 1400 is adequate and this result has
been confirmed at other points within the scattered field. In Fig. 1(b), we also plot PR inviscid
simulation results of normalized streamwise velocity at the point xp for a planar shock propagating
past a single sphere of unit radius. The results of the lower Mach number simulation M = 1.05
are in reasonable agreement. There are quantitative differences in the magnitude of the predicted
postshock peak and, as a result, in the subsequent decay rate. These differences are partly due to
the finite Mach number of the PR simulation and the difficulty in capturing sharp discontinuities
with a Fourier expansion. It must be pointed out that in the analytical calculation, the gradient and
Laplacian of velocity potential are calculated with second-order finite difference approximation to
a relative accuracy of 10−8.

2. Arrival time of the scattering signal

As shown in the schematic presented in Fig. 2, consider the disturbing sphere located at the origin
and the disturbed reference sphere located at position xr . We are interested in evaluating the first
arrival time of the scattered field from the disturbing sphere to the reference sphere. With the help
of the Huygens–Fresnel principle, it is possible to estimate the time it takes for the scattered wave
generated at the surface of the scattering particle to travel to the surface of the reference sphere. For
the theoretical estimation, we assume the speed of propagation to be at the speed of the shock us.

054301-7



HSIAO, SALARI, AND BALACHANDAR

FIG. 2. A schematic illustrating the concept of scattering time tsc, which captures the delay of the signal
received by a point B on the reference particle from the instance when the shock (marked as vertical blue line)
first touches the scattering sphere. The sphere radius is 1 in this case.

We start by defining the reference time t = 0 to be when the planar shock contacts the upstream
front of the disturbing sphere. As the shock propagates over the disturbing sphere, the surface point
marked A encounters the shock after a time tl = l/us, where l is the streamwise distance of point A
from the leading edge. Huygens–Fresnel principle states that the point on a wavefront can be viewed
as a source for a spherical wavelet. As a result, the scattered field from point A will first arrive at
the point marked B on the reference sphere (B lies on the line connecting point A and the center
of the reference sphere). The time it takes for an acoustic signal to travel from point A to point B
can be evaluated from their distance. Together, the first time of arrival of the scattered field can be
evaluated as

tsc(zB, yB) = min
0�l�2

ttotal = min
0�l�2

⎧⎪⎨
⎪⎩

l

us
+

√
(l − 1 − zB)2 + (yB − √

2l − l2)2

us

⎫⎪⎬
⎪⎭ , (11)

where, without loss of generality, we have assumed point B to be on the y − z-plane and its location
(0, yB, zB) is a function of l (see Fig. 2). Here the first arrival time is the minimum over all possible
values of ttotal, the total time since the shock first touch the disturbing sphere.

The accuracy of this estimate in the acoustic limit is tested in the following manner. The
normalized streamwise velocity of the scattered field only (without the planar shock) evaluated
at ten different points [see inset of Fig. 3(a)] is shown in the figure, where the time axis has been
shifted by the estimated first arrival time given in Eq. (13) and normalized by τ . From the figure,
it is clear that the theoretical estimate of first arrival time using the Huygens–Fresnel principle is
quite accurate. The corresponding normalized streamwise velocity of the scattered field at the ten
different points computed using a PR inviscid simulation of a shock propagating over an isolated
particle is shown in Fig. 3(b).

As a further evaluation of the estimation of arrival time, we compute the arrival time at the
reference sphere whose center is located at (0, 3

√
2, 0) and (0,3,0) relative to the disturbing sphere,

with the shock propagating along the z direction. The arrival time computed as a function of l for
the two different locations is plotted in Fig. 4. In the two cases, the minimum values of tsc = 1.6803
and 2.8927 were achieved at l = 0.39 and 0.36. These particle locations were chosen since the PR
simulations of Mehta et al. [50] considered these relative locations at a shock Mach number of
Ms = 1.22. Their observed first arrival times are tsc = 1.7 and 2.97 respectively.
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FIG. 3. (a) The velocity signal of the scattered field computed using the acoustic solution Eq. (10) at the
points shown in the inset. The time axis has been shifted by the first arrival time tsc, which is a function of
the location of the individual points. (b) The corresponding scattered velocity plots computed from a particle-
resolved simulation at Ms = 1.05.

III. PAIRWISE SUPERPOSITION USING C-MRG EQUATION

The C-MRG model of force on a particle due to an undisturbed flow is given by [34,35,38]

F = −Sp punns︸ ︷︷ ︸
Fun

+ 3Vp

∫ t

−∞
Kiu

[
∂ (ρur )uns

∂t
+ (ρu)uns · ∇uun

r
s
]

ξ

dξ︸ ︷︷ ︸
F iu

. (12)

In the above equation, the first term on the right-hand side, Fun, corresponds to the undisturbed flow
force (also known as the pressure-gradient force) due to the undisturbed flow of the particle. It is
simply given by the surface integration of pressure, where ()

s
indicates an average over the surface

of the sphere and Sp is the surface area of the sphere (Vp in the second term denotes the volume of
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FIG. 4. Time of arrival as a function of l to determine the first time of arrival of the scattered field (blue
lines) and the comparison with tsc measured in two-sphere PR simulation (red lines) performed at a shock Mach
number of 1.22.
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the sphere). The surface average is computed with the Lebedev quadrature of order 974 [51], which
was found to yield converged values. The second term F iu corresponds to the inviscid unsteady
force (which is the compressible analog of the added-mass force) due to the undisturbed flow.

Just as any other force model, the above expression predicts the force on a particle with the
undisturbed flow, characterized by the pressure pun, density ρun, and the velocity fields uun as inputs.
In evaluating the two force contributions given in Eq. (14), the undisturbed pressure and velocity
are required only on the surface of the particle. Note that in the above expression uun

r is the radial
component of undisturbed velocity on the particle surface. The advantage of the above formulation
over the standard drag law is that (i) it accounts for the spatial variation of the undisturbed flow on
the scale of the particle with the surface and volume averages and (ii) accounts for the time variation
of the undisturbed flow with the history integral in the second term, where Kiu is the history kernel
and it is a function of the delay time t − ξ and the Mach number based on relative velocity.

The accuracy of the above model has been carefully evaluated in the context of an isolated
particle subjected to a planar shock [38]. In this case, since there is no disturbing second sphere
as neighbor, the undisturbed flow of the isolated particle is simply given by pun = p0 + pin and
uun = uin, where superscript in simply refers to the incident planar shock. Thus, the undisturbed
flow of an isolated particle subjected to a shock is known and well-characterized. By comparing the
model prediction against PR simulations for both air and water as the fluid medium, Behrendt et al.
[38] established the accuracy of the C-MRG model for the case of an isolated particle.

Our objective here is to use the C-MRG model in evaluating force on a particle where the
undisturbed flow includes not only the incident planar shock but also the scattering fields of
the neighboring particles. In other words, the undisturbed flow of the reference particle is given by
the summation Eq. (3). While the macroscale portion of the undisturbed flow is from the incoming
shock, the microscale portion due to the scattering of the neighboring spheres will be taken to be the
analytical acoustic solution of the previous section. Before we proceed to consider the perturbation
flow due to a distribution of neighbors, we will demonstrate the procedure with the disturbance flow
created by a single neighbor.

A. Particle-resolved two-sphere simulations

Towards evaluating the accuracy of the C-MRG model in the context of two nearby particles
subjected to a planar shock, we have performed PR inviscid simulations using the in-house
finite-volume solver, RocfluMP, which solves the governing compressible Euler equations on an
unstructured grid. The time evolution of the flow is computed with the fourth-order Runge-Kutta
method [52]. Multiple works have confirmed the accuracy of the solver [6,34,38,50,53]. An ex-
ample two-particle simulation is shown in Fig. 5, where the two particles are of the same size
and are separated 2.5 radii along the flow direction. Thus, as the shock propagates from left to
right, the downstream particle is sheltered by the upstream neighbor. The advantage of this inline
arrangement is that the flow remains axisymmetric, thus simplifying the computation. The inflow
and outflow boundaries are 16 diameters away from the center of the leading sphere. The height of
the computational domain is 15 diameters. The spheres are rigid and remain fixed in the domain.

We use 1000 grid points to resolve the surface of each sphere. In the region outside of the sphere,
Triangle [54], a two-dimensional mesh generator was used to generate 5.9 × 106 elements. The
initial condition for the simulation is set up as a shock interface that is placed 0.25 radius upstream
of the upstream end of the sphere, as can be seen in Fig. 5. The blue region is the pre-shock gas
and the green region is the postshock gas. Once the simulation starts, the inlet boundary condition
(which has the same gas state as the green region) will push the shock downstream and let it interact
with the spheres.

Figure 5 shows snapshots of the pressure field for a weak shock of Mach number M = 1.05.
First, from Fig. 5(b) one can see that as the shock hits the leading sphere, a stagnation region
forms and creates higher pressure in front. Then, as can be seen from Fig. 5(c), the leading sphere
blocks part of the incoming shock front and creates a delay in shock propagation behind the leading
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FIG. 5. Snapshots of the two-sphere PR simulation pressure field for an inline arrangement where the
centers are separated by a distance of 1.25D. The spheres are marked in white. Incoming shock Mach number
is Ms = 1.05. The unit for the color bar is Pa. The time stamp for each of the figures is (a) 0 s, (b) 1.2 × 10−4 s,
(c) 2.4 × 10−4 s, (d) 3.6 × 10−4 s, (e) 4.8 × 10−4 s, (f) 6 × 10−4 s, (g) 7.2 × 10−4 s, and (h) 8.4 × 10−4 s. Here
τ = D/us = 2.22 × 10−4 s.

sphere. The shock then hits the front of the second sphere in Fig. 5(d) and creates a higher pressure
region. In Fig. 5(e), it is evident that the reflected shock from both the tail of the leading sphere
and the front of the trailing sphere bounces back and forth in the region between the two spheres,
then propagate outwards in Fig. 5(f). The outward propagating spherical waves keep spreading and
lose their strength. As shown in Fig. 5(h), near the centerline, the deformed shock front profile
slowly recovers. The time evolution of force experienced by the particles is obtained by surface
integration of the computed pressure distributions. Axisymmetric PR simulations were performed
for other inline arrangements with different separation distances between the two particles and at
other values of shock Mach numbers. The grid resolution of these simulations was comparable
and adequate since further refinement did not change the drag force experienced by the reference
particle.

PR simulations were also performed for a planar shock propagating over two spheres that are
arranged side by side with their centers separated by specified distances. The in-line configuration
is axisymmetric about the flow direction and thus permits an axisymmetric simulation. The side-by-
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FIG. 6. Snapshots of inviscid PR simulation pressure fields of two side-by-side spheres whose centers are
separated by 1.5D. The spheres are marked in white. Incoming shock mach number is Ms = 1.05. The unit
for the color bar is Pa. The time stamp for each of the figures is (a) 0 s, (b) 1.2 × 10−4 s, (c) 2.4 × 10−4 s,
(d) 3.6 × 10−4 s, (e) 4.8 × 10−4 s, (f) 6 × 10−4 s, (g) 7.2 × 10−4 s, and (h) 8.4 × 10−4 s.

side arrangement requires a three-dimensional simulation and is therefore more expensive. However,
the flow is symmetric about both the bisector plane that is normal to the line connecting the two
sphere centers and the plane that slices both spheres in half. This allows simulation in only one-
fourth of the simulation domain with symmetry conditions on the two planes. The grids are locally
refined around the sphere and the smallest element in the refined region is set to be 1/40D [5]. These
simulations employ a resolution of 9.5 million grid points in the domain, see Fig. 6

B. C-MRG prediction and comparison with PR simulation results

This section will compare the force prediction of the C-MRG model against that obtained from
the two-particle PR simulations. Three different two-particle configurations are considered and, in
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all cases, the disturbing particle is taken to be located at the origin and the position of the reference
sphere whose force is being considered is varied. The three cases to be compared are (i) the center
of the reference sphere is 1.25 diameters downstream of the disturbing sphere, (ii) the center of the
reference sphere is 2.5 diameters downstream of the disturbing sphere, and (iii) the center of
the reference sphere is 1.5 diameters displaced along the transverse y direction from the center
of the disturbing sphere. First, we test the accuracy of the C-MRG model for a weak planar shock
of Mach number 1.05.

In the application of the C-MRG model given in Eq. (14) to the shock-two-particle interaction
problem, we assume the following superposition to hold in the evaluation of force on the reference
particle:

punns = pinn
s + pscns

, (ρu)uns = (ρu)in
s + (ρu)scs

,

(ρur )uns = (ρur )in
s + (ρur )scs

, uun
r

s = uin
r

s + usc
r

s
. (13)

The pressure, density, and velocity fields of the incident shock are known from the propagating
planar shock relations. The corresponding scattered fields from the disturbing particle are taken
to be those given by the analytic acoustic solution. These superpositions when substituted into
the C-MRG equation yield the undisturbed and the inviscid unsteady force components. The total
force on the reference particle normalized by πR2ρpsu2

ps/2 is plotted as a function of normalized time
(t−sc)/(τps) in the two-particle cases, where ups is the postshock fluid velocity and τps = D/cps

is the timescale based on the postshock speed of sound. In each case, the force predicted by the
C-MRG model is compared against the companion PR simulation.

1. Weak shock comparison

The comparisons are shown in Fig. 7, where Fig. 7(a) shows the C-MRG and PR simulation
results of an isolated particle, where F in denotes the C-MRG force prediction of an isolated particle
due to only the incident shock. Thus, Fig. 7(a) establishes the accuracy of the C-MRG model for
an isolated particle in the absence of any scattered field. This comparison establishes the baseline
that the C-MRG model is quite accurate in capturing the rapid rise of force as the shock propagates
over the front half of the particle. The magnitude and the time of peak force are also well captured.
Slight differences appear in the decay of the force as the shock moves over the back half of the
particle. It can be noted that the inviscid force becomes negative (i.e., temporarily the inviscid force
on the sphere points opposite to the flow direction) as the shock is located slightly downstream
of the particle. These features and the good predictive capability of the C-MRG model have been
previously discussed [34,38]. Figure 7(b) shows the force contribution from the scattered field of the
disturbing sphere located 1.25 diameters upstream. This contribution is computed as the difference
between the total force experienced by the reference particle in the two-sphere case and the total
force experienced by the reference particle in the absence of the second particle. The total force
on the reference particle is the sum of forces shown in Figs. 7(a) and 7(b). First, it should be
noted that the force due to the scattered field is substantial. The initial sharp negative peak and
the subsequent positive peak followed by an oscillatory approach to zero seen in the PR simulations
are well captured by the C-MRG model. The arrival times of both the shock and the scattered field
are important in determining how they superpose. In the present calculation, the shock arrival time
is dictated by the shock speed, and the scattering arrival time is computed by the model.

However, there are important differences. The first is, while the trend of the negative peak is
captured well, the magnitude of the sharp peak is underpredicted. The negative peak is due to the
neighboring particle blocking part of the shock, such that the shock front goes around the particle
and arrives at the reference particle later in time. This delay in time is somewhat mispredicted
by the model and this is perhaps due to the linear assumption involved both in the evaluation of
the scattered field using the acoustic approximation, as well as in the derivation of the C-MRG
model. The second difference is in the distinct bump that can be seen in the PR simulation result
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FIG. 7. Normalized drag force experienced by the reference particle as a planar shock passes over it,
plotted as a function of time-shifted by the time of shock arrival and normalized by τ . In each case, the PR
simulation result is compared against C-MRG prediction for Ms = 1.05. (a) Force on an isolated particle.
(b) Force contribution of only the scattered field due to an upstream neighbor located inline with its center 1.25
D upstream of the center of the reference particle. (c) Scattered flow force due to an inline neighbor located 2.5
D upstream. (d) Drag force due to the scattered field of a neighbor located 1.5 D to the lateral side. In all four
cases, the individual components in terms of the undisturbed flow force Fun and the inviscid unsteady force F iu

are also shown.

after the shock has propagated past the reference particle. In Fig. 7(b), this bump can be observed
at (t − tsc)/τps ≈ 1. This bump arises from the pressure wave that reverberates in the streamwise
gap between the two particles. When the pressure is positive, it contributes to a higher force and
when negative contributes to a lower force magnitude. This mechanism of wave reflections between
the two spheres is not captured in the C-MRG model. The C-MRG model accounts only for the
perturbation flow generated by the reference particle in response to its undisturbed flow in an
unbounded domain. Whereas, in the presence of the neighbor, the perturbation flow gets reflected
off the neighbor. A complete accounting of this interparticle interaction requires the implementation
of the method of reflections pursued in Stokes flow, which is beyond the scope of the C-PIEP model.

Figure 7(c) shows the force contribution from the scattered field of the disturbing sphere located
farther upstream at 2.5 diameters. Though the separation between the two spheres has increased, the
force due to the scattered field remains substantial. The pattern of the initial sharp negative peak and
the subsequent positive peak followed by an oscillatory approach to zero can again be observed, and
this trend is well captured by the C-MRG model. The negative peak is still underestimated by the
C-MRG model due to reasons mentioned above. It can be observed that with increasing separation
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between the spheres the effect of pressure oscillation resulting from repeated reflections in the gap
between the two particles decreases in magnitude.

Figure 7(d) shows the scattered force contribution for the third two-particle case, where the
disturbing sphere is located laterally at a separation of 1.5 diameters. The effect of the scattered
field on the drag force is substantial even in the case of the side-by-side arrangement. However, the
scattered field of a neighbor appears to have a stronger influence on the drag force of a downstream
particle than on a laterally displaced particle. It must be noted that while the peak in Fig. 7(c) remains
narrow and negative, the corresponding perturbation force in Fig. 7(d) is positive and extends over a
longer time. The drag force in Fig. 7(d) is significantly smaller than in Fig. 7(c) since the reference
particle in the side-by-side configuration happens to be in a region where the disturbance changes
sign (this will be evident later in Sec. IV A). Furthermore, as we will see below, in the lateral case,
the reference particle experiences a substantial lift force. The increase in total drag in the lateral
case is due to the blockage effect of the neighbor. The oscillations seen in the PR simulation are
due to the repeated reflection of waves between the two particles. The C-MRG model recovers
the force trend quite well, however, as can be expected, it does not account for the oscillations
arising from the wave reflections between the two particles. With the increasing lateral separation
between the two particles, we can expect the oscillation amplitude to decrease and the comparison to
improve.

The C-MRG model allows for the separation of the force due to the incident shock and the
scattered field into (i) undisturbed flow and (ii) inviscid unsteady contributions [i.e., separate the two
terms of the right-hand side of Eq. (14)]. Also plotted in Fig. 7 are time evolutions of Fun and F iu.
Figure 7(a) shows the undisturbed flow and inviscid unsteady contributions of the primary shock.
Those due to the scattered field of the disturbing neighbor are presented in the other three frames.
The sum of the two contributions is the C-MRG model prediction denoted as F in in Fig. 7(a) and as
F sc in the other three frames. In all cases, the undisturbed flow and inviscid unsteady contributions
are comparable in magnitude. Only for a very short duration immediately following the arrival
of the scattered field, the two contributions reinforce each other to create a strong negative peak
in the inline cases. At later times, the two contributions oscillate, but in a phase-shifted manner.
Nevertheless, especially from Fig. 7(c), it is clear that both these contributions are needed to explain
the effect of the scattered field.

In the drag force experienced by the side-by-side case in Fig. 7(d), it is interesting to point out that
during the interval 0 � t − tsc � τps, the behavior of both components resembles Fig. 7(a), which
suggests that the effect of the scattered field is essential to reinforce the strength of the incident
shock, although with a time delay of tsc. This reinforces the intuitive expectation that the blockage
effect of the side-by-side neighbor increases the postshock flow. This simple augmentation of
the streamwise flow remains accurate only for a short duration after which the time evolution of the
force contributions is complex. Also, the scattered field propagating in the y direction will contribute
to a lift force, which we shall consider below.

2. Finite shock comparison

We now investigate the accuracy of the C-MRG model and the superposition given in Eq. (13)
at higher shock intensities. The two inline configurations presented in Fig. 8 are now considered
at progressively higher shock Mach numbers of Ms = 1.1, 1.22, and 1.55. The comparison of drag
forces obtained from PR simulations and predicted by the C-MRG model are presented in Fig. 8. In
the limit of shock Mach number being close to unity, the postshock incident flow and the scattered
fields are close to the acoustic limit. Thus, in this limit, the error in C-MRG prediction arises from
two main factors: (i) the limitation of C-MRG not accounting for the wave interactions between the
two particles and (ii) any numerical error in approximating the scattered field and in the evaluation
of convolution integrals of the C-MRG equation. When the incident shock is of finite amplitude (i.e.,
Ms > 1), there are additional sources of error that arise from the nonlinear nature of the resulting
flow. The acoustic scattering field is now only an approximation. It can be seen that the C-MRG
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FIG. 8. Normalized drag force experienced by the reference particle as a planar shock passes over it. In
each case, the PR simulation result is compared against C-MRG prediction and the force contribution of only
the scattered field is presented. (a) and (b) are for Ms = 1.1. (c) and (d) are for Ms = 1.22. (e) and (f) are
for Ms = 1.55. (a), (c), and (e) are for an inline configuration where the two particle centers are separated by
1.25D. (b), (d), and (f) are for an inline configuration where the two particle centers are separated by 2.5D.

model reasonably captures the behavior of the force contribution on the reference particle due to the
scattered field, although the difference between the prediction and the PR simulation result tends to
increase with Ms. The primary differences are again the amplitude of the negative peak as well as the
positive peak that follows. The finite Mach numbers prediction can be improved by (i) improving the
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FIG. 9. The normalized lateral force experienced by the reference particle as a planar shock passes over
the side-by-side particle pair. In each case, the PR simulation result is compared against C-MRG prediction.
(a) Ms = 1.05 and (b) Ms = 1.55.

representation of the undisturbed flow of the reference particle beyond the acoustic approximation,
(ii) adapting the C-MRG model to finite Mach numbers with improved kernels, and (iii) accounting
for the effect of wave reflections between the particles. Also, we point out that the magnitude of the
normalized force decreases with the Mach number since the forces are normalized by the postshock
velocity and postshock density. The stronger the shock, the stronger the postshock conditions, thus
lowering the normalized force magnitude.

In the two inline cases, the effect of the scattered field only alters the drag force of the reference
particle. Due to axisymmetry, the lateral force remains zero. In contrast, in the case of shock
propagation over two size-by-side particles, the influence of the neighbor will not only alter the
drag force as seen in the previous figures but will also introduce a nonzero transverse force. Figure 9
presents the normalized transverse force as a function of normalized and shifted time for the Mach
number cases of Ms = 1.05 and 1.55. Note that the incident planar shock has no direct contribution
to the lateral force and as a result, the entire lateral force is due to the scattering effect of the
neighbor. Also plotted in each figure are Fun and F iu components of the lateral force. tsc adequately
captures the timing of the rise of the lateral force. The values of the first peak in the lateral force
shown in Fig. 9(a) compared to the drag contribution observed in Fig. 7(d) is larger since the
reflected shock emitted from the disturbing sphere primarily travels in the transverse direction.

The lift force for the stronger Ms = 1.55 shock is shown in Fig. 9(b). The agreement is only
qualitative; there are quantitative differences between the simulated force and the model prediction.
Although the amplitude of the lateral force variation is reasonably predicted, it can be observed
that there is a time shift that appears to increase. This behavior can also be observed in Fig. 9(a),
although the shift there is smaller. The C-MRG model evaluated with the acoustic approximation
of the scattered flow assumes the disturbance to travel at the ambient speed of sound, whereas the
disturbance waves from the finite Mach shock are expected to travel differently. The disturbance
must arrive at a lateral location while being advected downstream by the finite Mach number flow.
This has the effect of slowing down the effective velocity in the lateral direction due to the Doppler
effect.

IV. C-MRG MODEL WITH PAIRWISE SUPERPOSITION

We now proceed to extend the above analysis to a distribution of particles subjected to a planar
shock, similar to those considered in several recent investigations [6–8,10,55–57]. We will again
consider the situation where the particles are held stationary during the shock propagation, which

054301-17



HSIAO, SALARI, AND BALACHANDAR

is a reasonable assumption in the limit when particle density is much larger than the gas density
and when attention is focused on the short time immediately following shock propagation. In
evaluating the force, each particle within the distribution, one at a time, must be considered as the
reference particle. The chosen reference particle will then be subjected to the incident planar shock
plus the scattered flow of its neighbors. Under the pairwise interaction assumption [22,23,44], the
perturbation flow induced by the collective action of all the neighbors is represented as a sum of
perturbations (or scattered field) due to individual neighbors. This pairwise superposition of the
undisturbed flow of the reference particle can be represented as

punn
s = pinn

s +
J∑

j=1

psc
j n

s
, (ρu)uns = (ρu)in

s +
J∑

j=1

(ρu)sc
j

s
,

(ρur )uns = (ρur )in
s +

J∑
j=1

(ρur )sc
j

s
, uun

r
s = uin

r

s +
J∑

j=1

usc
r, j

s
. (14)

In the above, the index j corresponds to the jth neighbor of the reference particle. The sum from 1
to J is intended to cover the influence of all the neighbors, with j = 1 corresponding to the closest
neighbor, j = 2 the second closest, and so on. Typically, J can be restricted to O(10) since neighbors
that are closest to the reference particle are expected to have the greatest influence.

In the above superposition, we intend to approximate the pressure, density, and velocity perturba-
tions of the jth neighbor in terms of the acoustic approximation to the scattering of the propagating
shock presented in section II. The superposition is only an approximation for the following reasons.
First, the scattered fields considered in Sec. II are the disturbance fields created by an isolated
particle subjected to a planar shock. In the present case, each neighbor is not subjected to a perfect
planar shock. Each neighbor, in fact, encounters a shock that is modified by the perturbations
induced by all its neighbors. Second, while the scattered field of the nearest neighbor may arrive at
the reference particle relatively unaffected by the presence of all other distant particles, the same
is not true of the scattered field of distant neighbors. The scattered field from a neighbor that is
farther away may be modified by other closer neighbors before it arrives at the reference particle.
Third, the acoustic approximation ignores the nonlinear nature of finite amplitude shock. In essence,
these approximations will influence the accuracy of the undisturbed flow and the resulting force
evaluation. Nevertheless, for lack of any better theoretical approach, we proceed with the linear
assumption implicit in the pairwise superposition, ignoring nonlinear interactions presented by the
N-body problem.

A. Perturbation maps

The advantage of the pairwise interaction approximation is that the perturbing pressure and
velocity influence of a neighbor can be precomputed and stored. In particular, the surface av-
erages contained in quantities −Sp pnS , ∂ (ρur )

S
/∂t , ρuS , and ∇ur

S that appear in the C-MRG
equation given in Eq. (14) can be computed and stored as fields. These fields are functions of time
and also depend on xP the relative location of the reference particle with respect to the disturbing
neighbor (which is taken to be located at the origin). Since the scattered field of the disturbing
neighbor is axisymmetric, the variation of xP only over the upper half of the y − z-plane needs to
be considered.

The map of the streamwise component of −Sp pnS at six different time instances normalized by τ

is presented in the upper half of each frame of Fig. 10. The map must be interpreted in the following
manner. For any chosen point within the contour, for a reference particle that is centered at that
point, the streamwise component is given by the contour level, which according to Eq. (14) is equal
to the undisturbed flow drag. The black region is the disturbing particle and the white annular band
around it corresponds to the region within which the center of the reference particle cannot lie since
the distance between the two particles cannot be less than one particle diameter. Outside this band of
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FIG. 10. −Sp pnS disturbance maps. The inner black half circle denotes the location of the disturbing
particle and the region shaded in white denotes locations that the reference particle’s center cannot reach.
The upper half plots the streamwise component and the lower half plots the transverse component. D2ρ0c2

0 is
the normalizing factor and the quantities plotted are noted in the first frame.

the excluded region, the maps are created with 31 radial positions discretizing |xp|/D from 1.025 to
4 and 81 angular positions. The maps are also resolved with 501 time instances extending from −τ

to 5τ , where zero time corresponds to when the incoming shock first touches the black disturbing
sphere.
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FIG. 11.
∂ (ρur )

S

∂t
disturbance maps. The inner black half circle denotes the location of the disturbing

particle and the region shaded in white denotes locations that the reference particle’s center cannot reach. The
upper half plots the streamwise component and the lower half plots the transverse component. ρ0/D is the
normalizing factor and the quantities plotted are noted in the first frame.
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TABLE I. Values for the preshock ambient condition in the randomly packed PR simulations.

p0 (Pa) ρ (kg/m3) c0(m/s)

Water 101325 998 343.21
Air 101325 1.2041 1626.57

The corresponding transverse component of −Sp pnS is shown in the lower half of each frame of
Fig. 10. The outward propagating waves contributing to positive and negative fluctuations can be
seen in both the streamwise and transverse components. The temporal decay of the emanating waves
from the disturbing sphere is clear. Also, it can be seen that the intensity of the first train of positive
and negative regions (i.e., the intensity of blue and red regions) decreases over time. As a result, as
can be expected, the influence of the disturbing sphere (shaded black) on the reference particle
depends on the distance. With increasing distance, the undisturbed flow force on the reference
particle will decrease. From the spatial structure of the contours, it can be noted that the undisturbed
flow drag due to the scattered field is relatively low for a reference particle that is located laterally
with its center near the z = 0 plane, since the waves happen to change sign near this plane, except at
an early time and very close to the disturbing sphere. In contrast, the transverse component is zero
along the y = 0 plane and reaches a larger value to the lateral sides of the reference particle.

The corresponding contours of ∂ (ρur )
S
/∂t are shown here in Fig. 11. Again six different

time instances are shown and the upper and lower halves present the streamwise and transverse
components. Again, an outward propagating wave packet can be observed and due to the radial
expansion of the packet, its intensity decreases over time. It must be cautioned that the contours
shown in Fig. 10 directly correspond to streamwise and transverse force on the reference sphere,
whereas the contours shown in Fig. 11, only when weighted by the history kernel and integrated
over past times, correspond to inviscid unsteady force contribution due to temporal acceleration of
the scattered field of the neighbor. Thus, the inviscid unsteady force contribution on the reference
particle immediately after the arrival time of the scattered field will be negative and given by the
contour value. However, with the passage of time, the time integration will receive contributions
from past values of ∂ (ρur )

S
/∂t as well and thereby damping the level of the force oscillation. As

in the undisturbed flow force, here too, we observe the force to be lower along the z = 0 plane.
The maps of the other quantities are presented in the Supplemental Material [58]. From these sets
of maps, the perturbation of each neighbor can be calculated, which can then be added as given in
Eq. (14) and substituted into the C-MRG model to obtain the force prediction.

B. Validation with PR simulations

In this section, we will evaluate the capability of the C-MRG force model along with the pairwise
superposition of the primary shock with the disturbance fields of the surrounding neighbors in
predicting the time evolution of the force. In evaluating the surface average of the undisturbed flow
seen by each particle, we will use the maps presented in the previous section for the perturbation
of each neighbor. The model prediction will be compared against corresponding PR simulations of
shock propagation over a random distribution of particles. In this section, t = 0 corresponds to the
first instance the shock touches the leading particle and τ is defined as D/us, where us is the velocity
of the incident shock.

Results from two different PR simulations will be used for evaluating the C-MRG force model
prediction. Both are randomly distributed particle beds of volume fraction 10% and the location of
the particles is maintained identically the same in both simulations. The two cases use two different
fluids, namely, water and air. Both these data sets were previously considered by Behrendt et al.
[10]. The Mach number of both cases is 1.22. The specification of the thermodynamic properties
of the preshock region of the two data sets is tabulated in Table I. In the current C-MRG model,
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FIG. 12. Unsteady force comparison between PR simulation (red) and prediction using the C-MRG model
(blue) for a water shock through the particle bed. The orange curve is the force experienced by that particle
without any neighboring disturbances, subject to a pure shock. The green curve is the undisturbed contribution
and the cyan curve is the inviscid unsteady contribution. The streamwise location for each of the particle center
is p. 11: 1.00 D, p. 57: 4.17 D, p.74: 5.81 D, and p. 145: 11.65 D.

the inputs required to estimate the time-dependent force of a particle within the random bed are the
pre- and postshock fluid properties and the location of the particle and its immediate J neighbors.
Perturbation maps computed at 200 time instances after shock arrival were used to calculate the
scattered field of each of the J neighbors.

Figure 12 shows the time evolution of both the predicted force (blue line denoted as PIEP) and
the PR simulation result (red line denoted as PR) for the case of water as the fluid medium. Also
plotted in the figure as an orange dashed line is F in, which corresponds to the force due to the
primary incident shock alone without including the scattering effect of all the neighbors. Thus, the
difference between the red solid and orange dashed lines can be interpreted as the effect of neighbors
in altering the force. In the case of particle No. 11, shown in Fig. 12(a), the neighbors cause the
peak force to increase above that of an isolated particle subjected to shock. Whereas in the case of
particles numbered 57, 74, and 145 shown in Figs. 12(b)–12(d), the effect of neighbors decreases
the magnitude of peak force and delays the time of the peak force relative to the time of arrival of
the shock. It can be observed that the C-MRG model, although not perfect, can correctly identify the
increase and decrease of the peak force by accounting for the constructive and destructive influence
of the neighbors. The agreement between the simulation and C-MRG model prediction (red and
blue curves) is quite good not only in predicting the dominant positive peak but also the subsequent
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FIG. 13. Unsteady force comparison between PR simulation (red) and prediction using the C-MRG model
(blue) for an air shock through the particle bed. The orange curve is the force experienced by that particle
without any neighboring disturbances, subject to a pure shock. The green curve is the undisturbed contribution
and the cyan curve is the inviscid unsteady contribution. The streamwise location of the particle centers are
p. 60: 4.42 D and p. 145: 5.82 D.

oscillations, although the frequency of predicted oscillation becomes increasingly higher than that
obtained in the simulation at later times. Although not perfect, given the fact that there does not
exist any other theory, the C-MRG model’s prediction seems very encouraging.

Also plotted in each frame are two other results that correspond to the undisturbed flow force
and the inviscid unsteady force on the particle. Each of these components is in turn made up of
contributions from the primary incident shock as well as scattering fields from the J immediate
neighbors. It was observed in Fig. 7 that both the undisturbed flow force and the inviscid unsteady
force components are important in accurately capturing the time evolution of force on an isolated
particle subjected to a planar shock. It can be observed this conclusion remains valid even in the
case of a random distribution of particles. Furthermore, the initial shape of these forces also remains
qualitatively similar. Only their amplitude is altered and this results in the increase or decrease of
the peak observed in the overall force.

Figure 13 shows the time evolution of force of two different particles in the case of air as the
fluid medium. From the plots, it is clear that the CD is substantially lower in the case of air (note
that the actual force magnitude is expected to be far lower due to the lower density of air than
water). Nevertheless, we observe the peak force on individual particles to be substantially higher or
lower than that of an isolated particle. This clearly indicates the importance of the relative location
of neighbors in influencing the local undisturbed flow to the force experienced by a particle. The
C-MRG model is again able to capture the time evolution of force, including the magnitude and
timing of the peak, quite accurately. Here, it should be noted that the PR simulation with water as
the medium used the stiffened equation of state, while the simulation with air as the medium used
the ideal gas law for the equation of state. Despite these differences in the equation of state, the
C-MRG model is able to reasonably accurately account for the effect of neighbors. Of course, the
comparison is only qualitatively good at later times. This is perhaps due to the use of the acoustic
model and perhaps can be improved by evaluating the finite Mach number effect on the scattered
fields.

We now proceed to evaluate the difference between the force evolution obtained in the PR
simulation and the C-MRG model prediction for all the particles of the random bed. For such
a comparison, we use the peak value of the force as the comparison metric. The neighbors can
influence the value of the peak force in different ways: if several neighbors directly block the
reference particle by being on the upstream side, the reference particle will effectively see a
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FIG. 14. Peak force comparisons for the case of (a) water and (b) air shock. Each of the points is colored
corresponding to the quarter in which the center is located. Colors red, blue, green, and purple correspond to
upstream, left-of-center, right-of-center, and downstream sections of the bed. Several particles are highlighted
in each figure and the force curves experienced by these particles are shown in Figs. 12 and 13. The mean
peak drag has been subtracted: CD,peak denotes the peak value for each particle and the overline () denotes the
average value.

weaker shock and therefore the peak shock value will be smaller. On the other hand, if there are
disturbing spheres located upstream, but to one side, they channel the flow between them towards
the reference particle, thus generating a larger peak drag [10]. Scatter plots of peak predicted force
with the C-MRG model against the actual PR simulation peak force for water and air are shown
in Fig. 14. In both cases, the mean drag averaged over all the particles has been subtracted, since
it has been shown to be dictated by the average shock strength as it passes through the bed [10].
Thus the focus is on the model’s ability to predict whether a particle will experience a higher- or
lower-than-average force based on the influence of its neighbors. It is clear from the scatter plots
that the model is not perfect, for, otherwise, in a perfect model all the data points would have fallen
along the 45◦ line. Nevertheless, it is quite clear that the model can identify those particles whose
peak force is substantially larger or smaller than the mean. The correlation coefficient for the case
of water is 0.558 and for air is 0.587. In fact, we can partition the 200 particles within the bed
into four sections: upstream, left-of-center, right-of-center, and downstream subslabs of particles,
each containing about 50 particles. In the most upstream section of the bed, the strength of the
primary incident shock remains unaffected, while in the subsequent sections the incident shock
seen by the particles is modified (weakened) by the upstream particles. Since the model assumes the
incident shock to remain unaffected, it can be expected that the model performance is likely to be at
its best in the upstream section. The correlation coefficient calculated only with the upstream
particles yields 0.767 and 0.805 for water and air, respectively. It should also be pointed out that
comparisons between the PIEP model prediction and PR results in the incompressible regime for
steady flow over a random distribution of particles yielded similar results, where the model is not
perfect but was able to capture a significant portion of the actual trend [22].

We then consider the time gap between when the peak drag force is reached and the earlier
moment when the leading shock first touches the particle. The difference between the simulation
result and the model prediction of the time gap is shown in Fig. 15 for all particles as a function
of their axial location. The results for both water and air are shown. The timing is captured well
for the first few particles in the bed and as the depth z increases, the delay goes larger, and the
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FIG. 15. The time delay between when the drag force in PR simulation reaches the maximum and that
predicted by the model. The horizontal axis is the depth in z where the particles sit and the vertical axis is the
time delay observed. The blue circles denote results for the water shock case and the red crosses are for the air
shock case.

difference is more severe for the air shock case compared to the water shock case. Behrendt et al.
[10] provided similar findings, as the shock front strength decreases faster for an air shock compared
to a water shock going through the particle bed. In the current model, we assume the shock strength
to be constant, regardless of its axial location. In reality, the disturbing spheres see disturbed and
deformed shock fronts. These secondary interactions are not considered in the model.

Another important effect of neighbors is that they prolong the duration of force fluctuation due
to wave reflections between the particles. In the case of an isolated particle shown in Fig. 7(a),
the force oscillations die out rapidly in contrast to force fluctuations seen by the different particles
seen in Fig. 12. This can be quantified in terms of rms force fluctuation Frms, which is computed
by taking rms of the force oscillation within a time window for each of the particles. The start of
this time window is when the primary shock passes the particle and the force crosses zero and the
end of the time window is 9τ , after the moment the primary shock touches the reference sphere.
The rms force fluctuation of the different particles can then be averaged to obtain 〈Frms〉. The
average rms force fluctuation obtained from the PR simulation is compared with that predicted
by the model in Table II for both water and air. Also shown for comparison is that of an isolated
particle. The magnitude of the oscillation for water is larger than that for air, as, in general, F in is
higher in magnitude. Compared to the small postshock oscillation values observed in F in

rms, 〈F PR
rms〉 is

significantly larger, and the C-MRG model is able to capture the increased force fluctuations due
to neighbor interactions. Since the current model only considers the effect of disturbing particles
on a reference particle, the secondary effects such as wave reflection between the particles are
ignored. These secondary reflections tend to create more force oscillation contributing to enhanced
pseudoturbulence. Hence, it is to be expected that 〈F PR

rms〉 is larger than 〈F PIEP
rms 〉. It is also interesting

TABLE II. rms values of postshock oscillation for PR simulation (superscript PR) and the model (super-
script PIEP).

F in
rms

〈
F PR

rms

〉 〈
F PIEP

rms

〉
Water 0.2366 1.4193 1.1660
Air 0.0980 0.6442 0.4278
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to observe that PIEP prediction is closer to PR results in the case of water due to perhaps reduced
compressibility effects and wave reflections.

V. CONCLUSIONS

As a planar shock propagates through a randomly placed particle bed, it is observed that in
addition to the transmitted shock and the waves reflected by the upstream edge of the bed, there are
distorted compression and rarefaction waves that linger within the particle bed. Aside from using
PR simulation to study common systems as such in nature, existing force models consider only
individual particles interacting with the shock. In this paper, we construct a framework to account
for the particle-wave-particle interaction by extending the incompressible PIEP approach to the
unsteady compressible regime.

A classical solution of scattering acoustic waves from a hard sphere is utilized to reconstruct
the flow field due to a moving shock. We established the accuracy of a numerical evaluation of
the analytical spherical harmonics solution to model the flow field by comparing it with the results
of a PR simulation of a single sphere subject to a planar shock. In the process, we formulated
relations for the timing of the scattered shock signal to arrive using the Huygens-Fresnel principle.
To step-by-step verify the validity of the compressible Maxey-Riley-Gatignol (C-MRG) force model
in conjunction with the acoustic scattering theory, two-sphere force predictions are compared to
corresponding two-particle PR simulations subjected to a planar shock. It is observed that even
though higher-order wave interactions between the two particles are not considered, the C-MRG
model predicts well the time evolution of the drag and lift forces, even at finite shock Mach
numbers.

We store the key components of the C-MRG force expression as influence maps in the form
of data libraries and investigate the superposition assumption by reading the maps to obtain the
individual influence of each neighbor and sum up the influences to approximate the force compo-
nents of a reference particle. The C-MRG model is computed with the approximate undisturbed
flow fields to obtain the force prediction. Since the force is time dependent, we use the peak force
as the shock propagates over a particle as the proxy to the time evolution and analyze the peak
predictions of the drag forces compared to PR simulation. This comparison is made for both water
and air as the surrounding fluid for a randomly packed particle bed at a volume fraction of 10%.
It is observed that the model captures well the particle-to-particle peak drag variation based on the
location of the neighboring particle. The effectiveness of the model slightly decays as the shock
front is deeper into the bed, as the shock front seen by each disturbing neighboring sphere is more
deformed. This effect is more severe in the air shock system compared to the water shock system.
The model is also capable of predicting the persistent drag oscillations from disturbance waves
bouncing between the particles even after the passage of the primary shock. Thus, the C-MRG
model pairwise superposition of the scattering of the neighbors is a cost-effective computational
method to resolve the particle forces in EL simulations. As future work, it will be interesting to
consider a larger range of volume fractions of the dispersed phase and Mach numbers to investigate
the limit of this pairwise interaction model.
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