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Droplet breakup is an important phenomenon in the field of microfluidics to generate
daughter droplets. In this work, a novel breakup regime in the widely studied T-junction
geometry is reported, where the pinch-off occurs laterally in the two outlet channels,
leading to the formation of three daughter droplets, rather than at the center of the junction
for conventional T-junctions which leads to two daughter droplets. It is demonstrated that
this new mechanism is driven by surface tension, and a design rule for the T-junction
geometry is proposed. A model for low values of the capillary number Ca is developed to
predict the formation and growth of an underlying carrier fluid pocket that accounts for
this lateral breakup mechanism. At higher values of Ca, the conventional regime of central
breakup becomes dominant again. The competition between the new and the conventional
regime is explored. Altogether, this novel droplet formation method at T-junction provides
the functionality of alternating droplet size and composition, which can be important for
the design of new microfluidic tools.

DOI: 10.1103/PhysRevFluids.8.054201

I. INTRODUCTION

Droplet formation is a ubiquitous process in both nature and industry. In the context of microflu-
idics, the controllable generation of microdroplets has enabled a wide range of applications, opening
a new era for biological and chemical analysis and synthesis [1–3]. The formation of droplets is the
first step to achieve in the pipeline in order to achieve versatile functionalities such as microreactors
[4–6], mini-incubators [6–8], material templates [9–11], digital counters [12–14], or single cell
platforms [15–18]. To date, droplet formation mechanisms in rectangular microchannels have been
widely studied and can be classified in two main categories [19–24]: the mechanisms driven by
hydrodynamic forces and those driven by surface tension. In the former category, the carrier flow is
brought to the dispersed phase to generate viscous and/or inertial forces destabilizing the interface,
and surface tension acts as the stabilizing force. In the latter, the interface breakup is purely driven
by an imbalance in capillary pressure induced by an abrupt change of confinement [25]. The first
category of droplet production processes is flexible in operation and advantageous in producing
a high droplet throughput [6,22,26]. Although limited by the flow rate, the second category is
advantageous for monodisperse droplet production and parallelization [27–29].

Droplet formation can result from the emulsification of a continuous phase or from the breakup
of an existing droplet. The latter process enables us to adjust the initial droplet size to increase
droplet production rate or to provide new functionalities, such as up-concentration [30,31]. One of
the most studied geometries for droplet breakup is the T-junction, where a straight channel splits
perpendicularly into two lateral channels. Following the seminal work by Link et al. [32], various
studies have investigated the dynamics of the droplet breakup process for both short [33–39] and
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elongated droplets [40–46]. Other studies also investigated how to modify the topography of the
T-junction to perform asymmetric droplet breakup [47–49]. In all those configurations, droplets do
not break up at small capillary numbers Ca = μV/γ and are split into two daughter droplets above
a critical capillary number Cac = μVc/γ , with μ the viscosity of the carrier fluid, γ the interfacial
tension, and V the speed of the droplet. The breakup process is here driven by the hydrodynamic
stress exerted by the carrier flow which enables to deform and break the interface.

In this study, we report a novel droplet breakup regime in T-junctions that is surface-tension
driven. In this regime, the droplet interface ruptures symmetrically in the two lateral channels away
from the junction, which gives birth to three daughter droplets instead of two. We show that this
regime only occurs in T-junctions that have a different aspect and width ratio compared to the ones
presented so far in the scientific literature. The height h of the channels must be larger than the
width of the inlet channel wi, which itself must be larger than the width of the outlet channel wo:
h > wi > wo. We describe the underlying mechanism of the new droplet breakup mechanism and
provide a geometry design rule predicting the occurrence of the new regime in a T-junction. We also
propose a semiquantitative model accounting for the gutter flows to describe the dynamical process
of the new breakup regime. Finally, we show that the conventional central breakup also occurs in the
new T-junctions under certain flow conditions. Both central and lateral breakup regimes can develop
independently, but the droplet breakup regime actually occurring is the faster one.

II. EXPERIMENTAL AND NUMERICAL METHODS

A. Device fabrication

To create the microchannels, a silicon mold fabricated by dry reactive ion etching (DRIE) was
used. First, a 1.5-µm photoresist layer was deposited on double-side polished silicon wafers and
was patterned with standard photolithography including steps of exposure and development to
obtain the two-dimensional (2D) channel shape. The exposed wafer area was then etched using
the Bosch process (DRIE, Alcatel AMS 200). The obtained channel depth is proportional to the
etching duration, and the value is measured with a surface profilometer (Tencor Alpha-Step 500).
After the Si mold was silanized within a desiccator filled with trichlor-(1H,1H,2H,2H-perfluoroctyl)
(called PFOT in the following) for 5 h, we pour polydimethylsiloxane (PDMS) prepolymer (1:10
ratio mixture) onto the Si mold and cure in an 80◦ oven for 3 h. We peel the PDMS replicas from
the mold and, after punching inlet and outlet holes, seal the channels by bonding to a PDMS-coated
glass slide (oxygen plasma bonding, 500 mTorr, 45 s, 29 W). Coating of the glass slide (standard
25 × 75 × 1 mm) is done by spin coating a thin layer of PDMS prepolymer at 1700 rpm for 35 s,
then curing in the oven (as above). The hydrophobicity of the surfaces was naturally regained by
placing PDMS in the oven for 3 days.

B. Experiments

The experiments were performed under an inverted microscope (Nikon Eclipse TE 300) and
imaged with a high-speed camera (Phantom Miro M310). Depending on the flow rates, frame
rates up to 50 000 frames per second were used for recording the droplet breakup process. A
customized ImageJ script is used to automatically recognize the droplets and obtain the intensity
profile. A MATLAB (Mathworks) script is used for calculating the droplet speed and length.
The results were confronted to the observations to ensure accuracy. To conduct the experiments,
constant flow rates were fed to the system using CETONI Nemesys syringe pumps (low-pressure
module, Cetoni GmbH, Germany), 100-µl gastight glass syringes (Hamilton 1700 Series), and
Tygon tubings (Masterflex). To avoid possible fluctuations in the system, we used the actual droplet
speed determined from the video to determine the capillary number. QX200 Droplet Generation Oil
from Bio-Rad (containing surfactant) was used as the continuous phase to avoid droplet coalescence.
Deionized water was used as the dispersed phase. The viscosity of the droplet generation oil was
measured using a rheometer (DHR-3 TA): μ = 2.3 mPa s. The interfacial tension between the
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FIG. 1. (a) Geometry of the T-junctions used throughout our study: Both aspect ratio h/wo and width ratio
wi/wo are larger than unity. The eye shows the observation perspective during experiment. (b) Time sequence
of a lateral breakup process for a short (blue) and a long (red) droplet. Inset shows the interface at the moment
of rupture (red arrow), captured at a frame rate of 50 000 fps.

two phases (γ ) was measured with the pendant drop method (Kruss Advance 1.6.2.0) and equals
γ = 1.6 mN/m. The contact angle of water on PDMS was measured as 110◦.

C. Numerical simulations

The closed system for the three unknowns z̄(η, t ), k̄(η, t ), and Lp(t ) from Eqs. (A5) and (A7) was
solved numerically using the COMSOL Multiphysics software, based on the finite-element method.
More precisely, the system (A5) is implemented directly in the “General form PDE” component
of the software, and its weak form has been spatially discretized over the interval ξ ∈ [0, 1] using
first-order polynomials (corresponding to a linear interpolation of the solution). The convergence
of the numerical results with respect to the spatial discretization has been verified. Equation (A7),
enforcing the volume conservation thus depending only on time, is implemented in the “Global
Equations” component. The system is marched in time using the backward differentiation formula,
and the results are sought for 4000 discrete times uniformly distributed between 0 and 10/Ca.
A stopping condition has been added, such that the simulation stops running if min(z̄) < 1/2.
Concerning the nonlinear, fully coupled solver, the default choices of COMSOL parameters have
been found sufficient for convergence, excepted the “Jacobian update” that is set to “updated on
every iteration” and the “maximum number of iterations” that is set to 500.

III. RESULTS

A. Description of a novel breakup mechanism

In previous studies, droplet breakup was conducted in T-junctions, where the inlet and outlet
channels have the same width and where the channel height is equal to or smaller than the width
[32,34,44]. In this study, we use a nonconventional T-junction [Fig. 1(a)] with the inlet and outlet
width (wi and wo, respectively) and the height of the channel (h) fulfilling h > wi > wo. Conse-
quently, both the aspect ratio (h/wo) and the width ratio (wi/wo) are larger than unity. Upstream
of the T-junction, water-in-oil droplets are generated using a flow-focusing device with two inlets,
one introducing deionized water (dispersed phase) and the other fluorinated oil (continuous phase).
A third inlet introduces additional oil downstream of the flow-focusing unit in order to separate the
droplets and further control their speed. When a droplet passes through the T-junction and fully
enters the lateral channels, its rear interface remains pinned at the junction with a constant and
convex curvature, whereas the front interfaces advance further downstream. This is in contrast
with the central breakup mechanism which features a progressive concave curving of the rear
interface during breakup [32]. Eventually, it is the interfaces inside the lateral channels that collapse
and create two new interfaces at a symmetric distance from the junction. This type of breakup
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FIG. 2. Capillary instability responsible for lateral breakup. (a) Presentation of key droplet parameters
with a top view of a T-junction through which a droplet splits. (b) Cross-sectional view in the outlet channel
[indicated by black arrowheads in (a)] showing three different gutter radius. These three conditions can hold
for the same droplet passing the junction at different times. When Rg > R∗

g , the necking starts. (c) Colormap
representing β in a diagram representing the aspect ratio h/wo as a function of the width ratio wi/wo. Blue
region corresponds to β < 1, i.e., geometries that does not allow the occurrence of lateral breakup; green
regions correspond to β > 1, i.e., geometries prone to exhibit lateral breakup. Each marker corresponds to one
of the geometries experimentally tested (see Table I). A black symbol corresponds to an absence of lateral
breakup observed, and a red marker corresponds to a presence of a lateral breakup.

creates three daughter droplets rather than two (which is observed during the classical breakup at
T-junction). This breakup is referred to as lateral breakup, in comparison to the classical central
breakup described in the literature. Two examples of droplets undergoing a lateral breakup are
presented in Fig. 1(b). The collapse is very rapid but can be captured by a high speed camera (inset).

The interface appears to break suddenly during the time the rear cap remains pinned at the
junction. It suggests that the necking process, which is usually more gradual, is likely acting
off-plane before the final pinch-off happens.

B. Geometric conditions required for the lateral breakup

We first detail the geometry of the T-junction which enables the lateral breakup phenomenon.
Using a quasistatic assumption, we consider that the Young-Laplace equation controls the pressure
drop across the interface of the droplet: pd − p = γ κ , where pd is the pressure in the drop, p is the
pressure in the surrounding fluid at the interface [Fig. 2(a)], γ is the interfacial tension, and κ is the
local mean curvature of the interface. When the droplet passes through a T-junction whose outlet
channels have smaller dimension than the inlet channel (wo < wi ), the curvature at the front of the
droplet κo increases compared to the curvature at the rear κi, thereby creating a pressure gradient
along the droplet interface. We assume that the dominant pressure variations occur in the gutters
present in the corners of the cross section and consider that the pressure in the droplet pd can be
roughly considered as constant in space and time [44,50]. It implies that in the fluid surrounding
the droplet, the pressure gradually decreases from the rear cap in the inlet channel (pi = pd − γ κi )
to the front cap in the outlet channels (po = pd − γ κo), by continuity. This pressure gradient is
accompanied by an adaptation of the radius of the gutter Rg, such that p = pd − γ /Rg. Along the
droplet, Rg thus varies from 1/κi in the rear of the droplet to 1/κo in the front. In the quasistatic
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TABLE I. Tested geometries and the corresponding breakup outcome.

Geometry wi (µm) wo (µm) h (µm) h/wo wi/wo ki β L(0)/wi Ca range LB

A 30 14 62 4.2 2.1 0.09 1.5 2.8–10 0.005–0.30 Yes
B 30 14 37 2.6 2.1 0.11 1.2 2.8–5.9 0.006–0.077 Yes
C 30 14 5 0.4 2.1 0.45 0.3 1.2–9.5 0.006–0.107 No
D 60 14 37 2.6 4.3 0.08 1.7 1.0–4.8 0.004–0.183 Yes
E 45 14 37 2.6 3.2 0.09 1.5 1.4–2.1 0.014–0.138 Yes
F 30 30 80 2.8 1 0.09 0.8 — 0.006–0.160 No
G 100 12 37 3.1 8.3 0.07 2.4 0.9–3.1 0.035–0.73 Yes
H 30 12 85 7.1 2.5 0.09 1.9 1.6–8.5 0.02–0.04 Yes

condition, the value of κi and κo is constant and only dependent on the channel geometry [51]:

κi,o =
1 + wi,o

h +
√[(

1 − wi,o

h

)2 + π
wi,o

h

]
wi,o

. (1)

where i and o respectively account for inlet and outlet. However, due to the confinement and the
nonwetting condition, Rg cannot exceed a threshold value given by half of the smallest dimension
of the cross section [27]. In our case wo < h, which gives a critical value R∗

g in the outlet channel:
R∗

g = wo/2. Consequently, if the relatively large pressure imposed in the gutter by the proximity of
the rear cap imposes a radius of curvature Rg larger than R∗

g in the outlet channels, then an instability
is triggered [Fig. 2(b)]. In order to fulfill the continuity of pressure along the channel, the interface
has to curve concavely in the y direction, which marks the initiation of a necking process. A “pocket”
thus gradually inflates at the upper and bottom part of the channel between the droplet and the (x, y)
walls, where the continuous phase accumulates. The droplet thereby thins down (necking process)
until reaching a quasicylindrical shape, when surface tension induces a final and sudden breakup.
Such a necking process is off-plane until the last moment of rupture, which is in consistence with
the experimental observation. The lateral breakup most often occurs simultaneously in both outlet
channels.

Note that the necking criterion Rg > R∗
g = wo/2 is analogous to the one-ruling-step emulsifica-

tion [25] or snap-off [52] processes. The geometric criterion for a T-junction to allow a passing
droplet meet the necking condition of Rg > R∗

g can be expressed as 1/κi > R∗
g. Defining the

confinement parameter β as β = 2/(κiwo), the lateral breakup will thus be prone to happen when
β > 1, i.e., when:

β = 2
wi/wo

1 + wi
h +

√[(
1 − wi

h

)2 + π wi
h

] > 1. (2)

We rearrange Eq. (2) and map in Fig. 2(c) the β value of a geometry as a function of its width ratio
wi/wo and aspect ratio h/wo, where the green to yellow region represents the geometrical conditions
of β > 1 that should allow the corresponding T-junctions to produce lateral breakup. To test this
criterion, we select eight T-junction geometries with different combinations of h/wo and wi/wo

on which droplet breakup experiments are conducted with varying Ca and initial droplet length
L(0) (normalized by inlet channel width wi ), see Table I. The outcomes of those experiments are
represented as black (no lateral breakup) or red (with lateral breakup) markers in Fig. 2(c). No lateral
breakup was observed for the two geometries with β < 1, while geometries that have β > 1 always
showed lateral breakup for a given range of Ca and L(0). It confirms that Eq. (2) is a good predictor
for lateral breakup phenomenon on a T-junction. Note that a higher β value is always associated
with a larger aspect ratio and/or a larger width ratio, shown in the contour map as markers that are
further away from the diagonal. It suggests that the capillary instability leading to the lateral breakup
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is driven by both of the two ratios. Indeed, the high aspect ratio (h > wo, h > wi ) ensures that the
confinement level on a droplet is dictated by the channel width (the smaller dimension). Then, the
large width ratio (wi > wo) actually imposes the difference of confinement on the same droplet
crossing the junction. Both conditions together create the necessary capillary pressure imbalance
that eventually drives the lateral breakup.

C. Modelling the dynamics of the lateral breakup for lower Ca

Next, we derive a theoretical model to describe the dynamics of the lateral breakup, occurring in
two steps. First, the droplet progresses through the channel until the necking criterion is met: This
is the onset of the necking. Second, the necking-induced pocket of the continuous phase, fed via the
gutters, inflates and thins down the droplet until the final pinch-off. The first step consists in finding
the condition where a minimal value of 1/R∗

g = 2/wo is met within the outlet channel. At an initial
configuration, a droplet of dimensionless speed Ca = μV/γ and an initial length L(0) (not shown)
passes the junction, creating gutters of length Li and Lo in the inlet and outlet channel. We assume a
homogeneous pressure pd inside the droplet and decide to ignore potential surface-tension gradients
induced by the elongation of surfactant-laden interfaces [53,54]. We obtain a hydraulic resistance
per unit length:

rh(s, t ) = Cμ

(1 − π/4)Rg(s, t )4
, (3)

where μ is the viscosity of the fluid, C is a geometric constant with C = 93.93 [52], and Rg(s, t ) is
the radius of the gutter along the droplet internal coordinate s. Note that s is oriented along x in the
inlet channel and along y in the right outlet channel. At the rear and front caps we have Rg(0, t ) = Fi

and Rg(L(t ), t ) = Fo, where Fi,o = κ−1
i,o is the inverse of the total curvatures of the caps defined

in Eq. (1). The quantity L(t ) = Li(t ) + Lo(t ) designates the total length of the droplet (excluding
caps) along s the internal abscissa. The difference between Fi and Fo induces a flow rate q(t ) of the
continuous phase, allocated in gutters in the inlet channel and in 2 × 2 gutters in the outlet channels.
Experimentally, we observed a reduction of droplet rear cap speed after the front cap enters the
outlet channel [Fig. 3(a)], which confirms the presence of this total bypass flux q(t ). Combining
the Young-Laplace equation for the pressure balance at the interface p(s, t ) = pd − γ /Rg(s, t ) and
the Poiseuille equation expressing the pressure gradient within the continuous phase ∂ p/∂s =
−rhq/4, one obtains an equation controlling the shape of the gutters:

∂Rg

∂s
(s, t ) = −q(t )

4γ

Cμ

(1 − π/4)

1

Rg(s, t )2
, (4)

with a continuous change of gutter radius Rg(s, t ) along the droplet from Fi to Fo. Solving Eq. (4)
provides both q(t ) (constant in space due to flow rate conservation) and the gutter radius Rg(s, t ) at
any location (s) along the droplet:

q(t ) =
(
F 3

i − F 3
o

)
AL(t )

, and (5)

R3
g(s, t ) = F 3

i − q(t )As for 0 � s � L(t ), (6)

where A = 3Cμ/[4γ (1 − π/4)]. The total length of the droplet, L(t ), is found by imposing volume
conservation from known initial droplet length L(0) and Li(t ). Specifically, the cross-sectional area
being S(i,o)

g = hwi,o − R2
g(4 − π ), the volume conservation

∫ s=Li (t )

s=0
S(i)

g ds +
∫ s=L(t )

s=Li (t )
S(o)

g ds =
∫ s=L(0)

s=0
S(i)

g ds
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FIG. 3. (a) Relative rear cap velocity v′
r/vr once the droplet has entered the junction (see definition in the

inset) versus the droplet capillary number Ca, for geometry A. Inset shows the kymograph from which droplet
cap trajectory is measured (yellow line), whose slope before and after the vertical dotted line gives vr and
v′

r , respectively. (b) Result of step 1: Schematic plot of Eq. (6) using junction coordinate S. Each blue curve
represents the cubic power of the gutter radius along the droplet, from Fi at the rear interface in the inlet to
Fo at the front interface in the outlet. Three such gutter radius profiles are shown corresponding to three time
points, i.e., three droplet locations, as the droplet advances inside the channel. At t1: the droplet is about to
enter the junction; t2: part of the droplet passes the junction, but the gutter radius inside the outlet channel is
below R∗

g = wo/2; t3: the droplet further advances and Rg = R∗
g is met at the red square; from this stage onward,

further advancing will cause Rg > R∗
g inside the outlet channel and onset of necking, and a pocket forms and

inflates. (c) Modeling of step 2 (the pocket development for one arm of the T junction), with the eye showing
the observation perspective during the experiment. During the inflation of the lateral pocket, the droplet can
be divided into three regions with a length of Li(t ), Lp(t ), and Lo(t ). The coordinate η starts from the junction
and is parallel to the outlet channel. In the parts of length Li(t ) and Lo(t ), gutters are maintained, and the gutter
flows are represented by gray arrows.

is an implicit equation for L(t ). We then find the critical Lic, such that Rg = R∗
g = wo/2, by

progressively decreasing Li from L(0) (the droplet turns the junction at t = 0), according to

Li(t ) = L(0) − v′
r

vr
tCa,

where the empirical factor v′
r/vr is a function of Ca, is shown in Fig. 3(b). Further advancing the

droplet, Rg > wo/2 cannot be met, and the necking has to start. The corresponding critical time tc
can be obtained from Lic = L(0) − Catc. Figure 3(b) plots R3

g, changing linearly from F 3
i to F 3

o along
the droplet, for three timestamps and corresponding droplet locations during the advancing of the
droplet. It illustrates the following scenario for the onset of the necking: With the droplet advancing
in the channel, the rear cap approaches the junction and increases more and more the gutter radius
in the outlet channel, which eventually goes beyond the maximum possible value fixed by the outlet
channel geometry, thus falling out of balance. Such a process is strongly influenced by the flow rate
and droplet size, which change the slope and length of the R3

g curve. As the maximum gutter radius
along the outlet channel is always attained at the junction location (sJ ), it is always at the junction
that the necking requirement is first met. Thus, the pocket of continuous phase is expected to start
forming from the junction, which is confirmed by the experiment, as discussed below.

Now the droplet enters a second phase consisting in the development of the pocket. To model
the evolution of such process, we divide the droplet into three consecutive parts [Fig. 3(c)]: the part
in the inlet channel of length Li(t ) with gutters and the part on the spatial interval of 0 � η � Lp,
where Lp(t ) is the length of the pocket, from the junction (η = 0) to where the droplet curvature in
the direction of the flow vanishes [η = Lp(t )]. The third part corresponds to the remaining of the
droplet in the outlet channels where the gutter is resumed, of length Lo(t ). In the pocket region, we
parametrize the droplet surface by its curvature in the flow direction [i.e., the curvature in the y-z
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plane in Fig. 3(a)], defined as

k(η, t ) = − ∂

∂η

[
∂z(η, t )/∂η√

1 + (∂z(η, t )/∂η)2

]
, (7)

where z ∈ [wo/2; h/2] designates the interfacial position: z equals h/2 when no pocket is formed
and gutters are maintained, and z = wo/2 corresponds to a cylindrical droplet cross section that
represents the end point of the pocket development. The curvature in the direction perpendicular
to the flow, i.e., the curvature in the x-z plane in Fig. 3(a), is assumed constant and equals 2/wo,
such that the total curvature of the droplet in the pocket region writes k(η, t ) + 2/wo. We then
define the continuity equation for the continuous phase as ∂S/∂t = (∂q/∂η)/2, where S[z(η, t )] =
(π − 4)w2

o/4 + 2z(η, t )wo is the cross-sectional area of the discrete phase in one outlet channel,
which is fed by two quarter-sections at the top wall with a flow rate of q(η, t )/4 in each. We apply
the derivative with respect to η to the equation of the pressure balance at the interface to obtain the
flow rate

q(η, t ) = 4γ

rh,S[z(η, t )]

∂k(η, t )

∂η
, (8)

where rh,S[z(η, t )] designates the hydrodynamic resistance per unit length of a quarter-section,
which reduces to Eq. (3) for z = h/2. Injecting both the expression for S[z(η, t )] and Eq. (8) in
the continuity equation leads to

∂z(η, t )

∂t
= γ

wo

∂

∂η

{
1

rh,S[z(η, t )]

∂k(η, t )

∂η

}
, (9)

such that Eq. (7) and Eq. (9) constitute a system of two coupled equations for the two unknowns
z(η, t ) and k(η, t ). It is subject to two boundary conditions for z: z(0, t ) = z(Lp(t ), t ) = h/2, as well
as two for k : k(0, t ) = κJ − 2/wo, and k(Lp(t ), t ) = 0, where κJ is the curvature of the inlet gutter
at the junction, found by matching with the inlet gutter regime (see Appendix). As mentioned,
the necking condition has already been met, thus k(0, t ) � 0, resulting in the opening of the
pocket; however, k(η, t ) must increase with η until recovering k(Lp(t ), t ) = 0, as the hydrodynamic
resistance induces a pressure drop of the continuous phase [see Eq. (8)]. We used a finite-element
method to calculate the dynamics of the necking process numerically, i.e., z(η, t ) and k(η, t ). The
boundary conditions, numerical discretization and nondimensionalization used for this purpose are
detailed in the Appendix and numerical methods section. The result of the simulation resolves the
pocket evolution process, which can be represented by the change of pocket length Lp(t ) and depth
z(η, t ). We modeled the event presented in Fig 2(b) (blue) and compared the theoretical predictions
with experimental observations in Fig. 4. In Fig. 4(a) we show the dynamics of a droplet advancing
in the inlet channel by means of a kymograph (increasing time in the y axis), where the color is
correlated to the light intensity received by the camera, which gives a hint on the droplet topography
during the process. In Fig. 4(b) the left panel is the kymograph of the same droplet during the same
event but only shows the front caps advancing in the outlet channel; the right panel displays with
the same spatial and temporal scales the corresponding dynamics as predicted by the model. In the
model, the shades of gray and the isocontours stand for the normalized interface position z(η, t )/h.
The distance between the symmetry axis and the solid black line is the predicted length of the
droplet in the outlet channel. At z(η, t ) = wo/2, a locally cylindrical cross section is reached which
is considered as the trigger of a fast breakup controlled by surface tension. We thus consider this
moment as the theoretical breakup time point. The parameters of Ca, L(0), and v,

r/vr for simulation
are extracted from the experiment in comparison.

The linear increase of the droplet length is well captured by the model. However, the pocket
inflation rate is overestimated by the model, in particular after the rear cap of the drop arrives
at the junction and undergoes changes of curvature. The model suggests the following scenario
for the lateral breakup: After the rear of the droplet reaches the corner (and the volume of the
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FIG. 4. Temporal evolution of the part of the droplet (a) in the inlet channel and (b) in the outlet channels.
For (b) the experimental kymograph (on the left) is compared with the model predictions (on the right). Four
horizontal dashed lines are drawn at successive time points where (i) the front of the droplet reaches the entry
point of the lateral channels, (ii) the rear of the droplet reaches the same point, (iii) the breakup of the droplet
is predicted by the model, and (iv) the droplet breakup is observed experimentally. At the time when the rear
of the droplet reaches the corner, a bright field image of the droplet in the channel is shown at the bottom of
(a) and (b) oriented accordingly, where the gray dashed arrows indicate the advancing direction of the droplet
caps (red) with time. The scale of these images corresponds exactly to the spatial scale of the kymographs.
The proportionality sign (∝) in the indications of the slopes implies a change of units, necessary to obtain a
nondimensional slope. The geometry is wo/h = 14/37, wi/h = 30/37 (geometry B), the initial droplet length
L(0)/wi = 2.8, and the capillary number Ca = 0.01.

rear cap reaches a stationary regime), a gutter flow of flow rate Cawih enters the pocket, which
is thus inflating while decreasing its resistance; as the pocket is less and less resistive, it is more
and more favorable for the flow to accumulate inside instead of bypassing through the outlet gutter
(comparatively much more resistive). This process self-amplifies, the consequence of which the
pocket localizes and deepens very fast after the rear of the droplet has reached the corner [see
the dense contour line, i.e., the fast hollowing after the “rear cap reaches the corner” time point
in Fig. 4(b)]. However, the experimental data suggest that the dynamics of pocket inflation are
overestimated by the model. The black arrow in the experimental kymograph [Fig. 4(b), left panel]
highlights the onset of a downstream propagation of what we believe to be the location of the
pocket interface. Indeed, from that time the pocket is sufficiently deep to be observable on the
kymograph, but as we mentioned the pocket is thought to exist even earlier. The fast propagation
of the pocket interface, faster than the increase rate of the droplet length, seems to indicate that the
pocket spreads along the entire length of the droplet in the outlet channel. Thereby, unlike in the
model, the incoming flow rate is not subject to a fast accumulation in a localized low-resistance
region, and thus the breakup occurs later and further downstream. This fact might also imply a
dependency on the initial length of the droplet. A possible reason for the relative inaccuracy of the
model is the large value of the experimental capillary number Ca. In fact, the domain of validity of
the model is restricted to low Ca for two main reasons. First, increasing values of Ca may lead to
a cross-section occupancy of both liquids which is not accounted for in our gutter model. This was
first computed analytically in Ref. [55] in the asymptotic limit of small Ca, where the lubrication
film around the droplet, say, δ, was shown to increase as δ ∼ Ca2/3; therefore, the values of the
rear and front caps curvatures κi,o needs to be computed on h − 2δ and wi/o − 2δ in (1), thus
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FIG. 5. Breakup moment of six breakup events with increasing Ca. The Ca value from top to bottom is
0.016, 0.025, 0.056, 0.088, 0.129, and 0.177. The breakup location in the right outlet channel is shown with
black arrowheads. The scale bar represents 30 µm.

modifying all ensuing geometrical quantities. In Ref. [56], this modification was shown to have
a significant impact on the value of the droplet volume (which incorporates the caps and the gutter
curvatures) from Ca ≈ 10−3 (see their Fig. 7). The work of De Lozar et al. [57,58] experimentally
and numerically (respectively) generalize the description of the flow above the asymptotic limit
of small Ca. For the aspect ratios of the inlet and outlet channels considered in the present paper,
Fig. 3 in Ref. [57] also suggests the cross-section occupancy of the continuous phase to significantly
increase after Ca ≈ 10−3, at least for a discrete phase of zero viscosity as considered in Ref. [57].
The second reason for the model to lose accuracy for large Ca is the increasing contribution of the
viscous dissipation. For a given geometry, the associated pressure drop has been shown to increase
linearly with the droplet capillary number [23,59,60] and thus needs to be accounted for when Ca is
large, which was not done in the model. For all these reasons, we estimate the model to be a priori
valid up to Ca ≈ 10−3. Experimentally, we observed an evolution of lateral breakup behavior from
low to high Ca condition. For lower Ca, a pocket forming process starts and stops before the rear
interface reaches the junction. The corresponding breakup distance from the junction decreases with
increasing Ca (Fig. 5). For higher Ca, the breakup location is stabilized, and a decreasing rear cap
curvature is observed as Ca increases (Fig. 5). We next discuss the latter case concerning higher Ca.

D. A central breakup recovered at higher Ca

At higher Ca, when a critical value Ca∗ is exceeded, the conventional central breakup is
recovered, even for geometries enabling lateral breakup. Figure 6(a) shows three breakup events
with the same droplet size. Central breakup is observed at higher values of Ca, while both lateral
and central breakups can occur simultaneously near the critical value Ca∗. In Fig. 6(b) we show
light intensity kymographs of two breakup events with the same droplet size but different breakup
regimes. The existence of the lateral pocket can be detected by a faint intensity change, caused
by the light scattering at the openings. First, it confirms that the necking starts from the junction
as predicted by our model [Fig. 3(c)]. Second, it is remarkable that the pocket formation occurs
regardless of the final breakup outcome. This observation, together with the coexistence of lateral
and central breakups near the critical Ca∗ indicates that the two processes are simultaneous. It gives
a hint on the breakup transition mechanism, attributed to the faster completion of central breakup
that aborts the lateral breakup process.

In Fig. 6(c), we plot the regime map near the transition zone for Cao versus L̄o. Here Cao =
Ca(wi/wo)/2 is the outlet channel capillary number, and L̄o = L(0)(wi/wo)/wo/2 is the initial
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FIG. 6. (a) Time sequences of example breakup events for the same droplet length under three flow
conditions. The breakup regime shifts from lateral to central breakup from low to high Ca. The scale bar
represents 30 µm. (b) Kymograph of light intensity along the central part of the outlet channel (white dashed
line) for two droplets of the same size but with different regimes; The gray value is turned into colors in the
colormap. At time zero, both droplets enter the junction, the trajectory of the front interface forms a straight
line. After the rear interface arrives at the junction (inset), the change of intensity due to the light scattering from
the interface of the pocket is captured (white arrowheads), which always starts from the junction as predicted.
At the end of each process, new interface(s) is formed at the locations indicated by the black arrows. (c) The
breakup transition regime map of Cao versus L̄o for geometry A [Fig. 2(c)], where Cao = Ca(wi/wo)/2 and
L̄o = L(0)(wi/wo)/wo/2. Blue and red circles represent lateral and central breakups, respectively. The area of
each circle is proportional to the characteristic breakup time, defined from when droplet rear interface reaches
the junction to the final breakup moment. The black curve represents the function Cao = bL̄−1

o , where b = 1.9
in this case (geometry A). Inset: dp, the pinch off lateral distance from the junction center (in µm) versus the
product of CaoL̄o. (d) Logarithmic representation of the breakup transition regime map for Cao vs. L̄o for four
geometries (A, B, D, and E) with different β values, represented by four colors. The filled and hollow markers
represent lateral (LB) and central breakups (CB), respectively. Dashed lines of slope −1 are represented to
guide the eyes.

droplet length translated into outlet channel (divided by 2 for only one branch) normalized by
the outlet width. We compare the characteristic breakup time for both regimes, defined as the
duration from the rear cap reaching the corner until the breakup and represented in Fig. 6(c) as
the surface area of the round markers. Interestingly, the characteristic time decreases approximately
with increasing Ca for both regimes. But at each transition point the central breakup always has a
shorter characteristic time than the adjacent lateral breakup.

Concerning length dependency, longer droplets need a lower critical Ca∗
o for a central breakup

to occur. We found that the regime transition can be well adjusted by the inverse power law
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FIG. 7. Different daughter droplet composition from each droplet breakup event, with geometry B. From
top to bottom: increasing the number of daughter droplets (by decreasing the capillary number Ca). From left
to right: increasing the daughter droplet size and/or size ratio [by increasing the droplet length L(0)]. The scale
bar represents 100 µm.

Ca∗
o ∼ bL̄−1

o . This leads to a critical constant (CaoL̄o)∗ that solely governs the lateral/central breakup
transition. In the inset of Fig. 6(c), the separation of the two regimes by (CaoLo)∗ ≈ 1.9 is shown.
Remarkably, an inverse power law also characterizes the nonbreakup/central breakup transition
in conventional T-junctions for long droplets, as shown by Haringa et al. [44]. However, the
prefactor 1.9 obtained in our geometry is much higher (by orders of magnitude) than the values
obtained in conventional T-junctions, as reported by Haringa et al. [44] (see the Appendix for more
detailed comparisons). This huge difference in prefactors sheds light on the main difference between
conventional T-junctions and the novel geometries presented in our studies: the hydrodynamic
resistance of the gutters. In our novel T-junctions geometries, the continuous flow of the carrier
fluid arriving at the junction may follow three different paths: (a) bypassing the entire droplet
through gutters, (b) flowing into the lateral pockets and increase their volume, or (c) pushing the
rear cap and contributing to central breakup. However, in conventional T-junctions, there is no
lateral pocket to inflate. Furthermore, gutters are much narrower and resistive, precisely due to the
absence of lateral pockets [44]. These major differences explain why central breakup is more prone
to happen in conventional T-junctions, thereby explaining the much smaller prefactors reported in
the literature compared to the ones obtained in our nonconventional T-junctions. In Fig. 6(d), the
result for four different geometries are presented (geometries A, B, D, and E in the table). For all
the tested geometries, Ca∗

o is proportional to the inverse of L̄o, similarly to the above observation
but with prefactors varying among the geometries. Remarkably, geometries with more prominent
lateral breakup (higher value of β ) require a higher Ca∗

o to recover central breakup.
In a nutshell, the droplet breakup fate in these novel T-junctions should be determined by the

temporal dynamics of both breakup processes and is dominated by the faster one. Our analysis
could not quantitatively capture the competition between those two ongoing processes. In particular,
the incessant structural changes of the gutters and the lateral pockets question the relevance of a
derivation considering droplets at equilibrium, which constrats with what is possible in conventional
T-junctions. In terms of application, note that by merely shifting flow condition, the droplet size
and/or composition can be changed on-fly (Fig. 7), which opens interesting perspectives for the
field of droplet microfluidics [61].

IV. CONCLUSION AND OUTLOOK

In summary, we reported on a novel lateral droplet breakup occurring in microfluidic T-junctions
which leads to the formation of three daughter droplets. We experimentally evidenced that this new
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regime arises from an unbalanced capillary pressure at the droplet interface induced by the strong
gradient of confinement across the junction (provided that h > wi > wo). A geometrical design
rule was proposed accordingly to enable the lateral breakup regime. We also developed a model
depicting the development of the lateral pockets responsible for the ultimate lateral breakup for low
capillary number Ca. Furthermore, we showed that a unique central breakup is recovered at higher
Ca, a mechanism also observed in conventional T-junctions. We showed that the critical capillary
number Ca∗ marking this transition from lateral to central breakup is compatible with an inverse
dependency on the droplet length. The presence of the lateral pockets and their inflation explains
that the values of Ca∗ are orders of magnitude higher than the prediction in the presence of highly
resistive gutters, a strong difference with what is observed in conventional T-junctions where no
lateral pocket is present [44]. Accounting for a thickening of the gutter at higher Ca, as observed by
Lozar et al. [57], was not sufficient to explain the high values of Ca∗ reported (not shown).

The analysis of Leshanski et al. [42] in square cross-section T-junctions considered the inflation
and opening of a central pocket in order to interpret the transition from drop splitting to inter-
mittent blockage regime. The authors showed, by comparison with 2D interface-resolving direct
numerical simulations and three-dimensional experiments with square cross sections, that the subtle
combination of volume flux conservation and a Tanner-like law for the progression of the leading
edge of the pocket are sufficient to precisely model this phenomenon. The Tanner-like law models
the action of the lubrication forces in the dynamical meniscus region bridging the pocket region
to the thin film region. Such excellent agreement was obtained neglecting gutter flows. However,
given the pronounced three-dimensional nature of the T-junction geometries used in our study and
the capillary number range investigated, which reinforces the importance of gutter flows, we have
not been capable to braid a lumped description of the dynamic meniscus region connecting the
lateral pockets to the flat film region, the gutter flows, and the pocket inflation rate. Furthermore,
the simultaneous inflation of the two lateral pockets and of the central pocket renders volume
conservation assumptions difficult to use efficiently, as opposed to T-junctions with square cross
sections [42,44] where a unique central pockets grows. A thorough theoretical determination of Ca∗

remains to be achieved and is a challenge for future studies due to the constant changes of shape
underwent by the gutters and the lateral pockets during the penetration of the droplet in the junction.

A remarkable feature of the T-junction geometry we explored is that both hydrodynamic-
stress-driven and surface-tension-driven mechanisms are enabled simultaneously, which allows new
microfluidics functionalities. On one hand, active control over the flow condition can change droplet
composition and sizes without changing geometries. On the other hand, without active control, the
mere change of the content or property of the droplet can alter the competition of the two breakup
regimes thus shifting the breakup results for passive applications as shown in a recent study [61]
where the presence or absence of particle in a drop could trigger one breakup mode or the other.
Altogether, we expect that our study will provide new versatile tools to the community to manipulate
and control the volume of droplets.
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APPENDIX A: MATHEMATICAL MODELING OF THE INFLATION
OF THE LATERAL POCKETS AT LOW CA

Here after, we fully characterize the inlet and outlet gutters regime of the droplet [shown in
Fig. 3(a)], as they couple with Eqs. (7) and (9) for the pocket dynamic trough the boundary
conditions and the conservation of the droplet volume. We then show that they constitute all together
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a closed system that is made nondimensional and, after some mathematical rearrangements, can be
directly integrated in time.

Let R(i)
g (s, t ) designate the radius of the gutter in the inlet channel [see Fig. 3(a)] whose internal

coordinate is s ∈ [0; Li(t )], purely along the x direction. Solving Eq. (4) subject to R(i)
g (0, t ) = Fi

leads to

R(i)
g (s, t )3 = F 3

i − qi(t )As, (A1)

where qi(t ) is the inlet gutter flow rate. By continuity, we can express it in terms of k(η, t ) using
Eq. (8) as

qi(t ) = 4γ

rh,S[z(0, t ) = h/2]

∂k(0, t )

∂η
, (A2)

[we recall that η = 0 designates the opening of the pocket at the junction and η = Lp(t )
its closure; see Fig. 3(a)]. The four boundary conditions for z(η, t ) and k(η, t ) write z(0, t ) =
z(Lp(t ), t ) = h/2, k(0, t ) = 1/R(i)

g (Li(t ), t ) − 2/wo, and k(Lp(t ), t ) = 0. The outlet gutter, of length
Lo(t ) [see Fig. 3(a)], has a radius R(o)

g (α, t ) whose internal coordinate is α ∈ [0; Lo(t )], purely along
the y direction. The radius R(o)

g (α, t ) is characterized by solving Eq. (4) subject to R(o)
g (0, t ) = wo/2

[since k(Lp(t ), 0) = 0]:

R(o)
g (α, t )3 =

(wo

2

)3
− qo(t )Aα, where qo(t ) = 4γ

rh,S[z(Lp(t ), t ) = h/2]

∂k(Lp(t ), t )

∂η
. (A3)

Its length Lo(t ) is easily determined by imposing R(o)
g (Lo(t ), t ) = Fo. As will become clear in a

moment, the problem is closed by imposing of conservation of the total volume of the droplet. From
now on quantities are made nondimensional by h in space and μh/γ in time,

h(s̃, η̃, α̃) = (s, η, α),
μh

γ
t̃ = t, h2S̃ = S,

h2γ

μ
q̃ = q,

1

h
k̃ = k, hz̃ = z,

μ

h4
r̃h,S = rh,S, and

γ

μ
Ca = U .

Equations (7) and (9) thus are nondimensionalized, and they are then put in the form of a classical
conservation law for z̃(η̃, t̃ ) and k̃(η̃, t̃ ):

[
1 0
0 0

]
∂

∂t

[
z
k

]
+ ∂

∂η

⎡
⎢⎢⎣

−B 1
rh,S[z]

∂k
∂η

− ∂z
∂η

[
1 +

(
∂z
∂η

)2
]−1/2

⎤
⎥⎥⎦ =

[
0
k

]
, for 0 � η � Lp(t ), (A4)

where all the tildes have been dropped and B = 1/wo is a constant (it is understood that Lp

and wo have been made nondimensional by h, etc.). System (A4) is rewritten under the change of
variable ξ = η/Lp(t ) in order to be solved over the time-independent domain 0 � ξ � 1, which is
significantly more convenient. The partial derivatives are transformed as ∂t → ∂t − (dt Lp)L−1

p ξ∂ξ

and ∂η → L−1
p ∂ξ :

[
1 0
0 0

]
∂

∂t

[
z̄

k̄

]
+ ∂

∂ξ

⎡
⎢⎢⎣

− dLp

dt
1

Lp
ξ z̄ − B

L2
p

1
rh,S[z̄]

∂ k̄
∂ξ

− 1
L2

p

∂ z̄
∂ξ

[
1 + 1

L2
p

(
∂ z̄
∂ξ

)2
]−1/2

⎤
⎥⎥⎦ =

[− dLp

dt
1

Lp
z̄

k̄

]
, (A5)

where z(η, t ) = z̄(ξ, t ) and then k(η, t ) = k̄(ξ, t ). Under this change of variables the flow rate
q(η, t ) = q̄(ξ, t ) occurring inside the pocket, and the flow rates qi(t ) and qo(t ) occurring inside
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the inlet and outlet gutters, respectively, express:

q̄(ξ, t ) = 4

rh,S[z̄(ξ, t )]Lp(t )

∂ k̄

∂ξ
(ξ, t ), qi(t ) = q̄(0, t ), and qo(t ) = q̄(1, t ).

The boundary conditions of system (A5) are rewritten:

z̄(0, t ) = 1/2, z̄(1, t ) = 1/2,

k̄(0, t ) =
{[

F 3
i − qi(t )ALi(t )

]−1/3 − 2

wo

}
, and k̄(1, t ) = 0.

(A6)

[with the nondimensional A = 3C/(4 − π )]. A third equation is necessary for the third unknown
Lp(t ), and the problem is closed by imposing the volume conservation V (t ) = V (0). Let V (i)

g (t )
designate the volume of the part of the droplet contained in the inlet channel and where a gutter
is present [i.e., for 0 � s � Li(t )]; the volume of the rear cap is in addition V (i)

cap(t ). Accordingly,
let V (o)

g (t ) be the volume of the part of the droplet contained in one of the two outlet channels and
where a gutter is present [i.e., for 0 � α � Lo(t )]; the volume of one front cap is in addition V (o)

cap .
We recall that the expression for the cross-sectional area of the discrete phase in the pocket region
is S[z(η, t )] = (π − 4)w2

o/4 + 2woz(η, t ), such that it is associated to a volume contribution in a
outlet channel of

∫ η=Lp(t )
0 S[z(η, t )]dη. Eventually,

V (t ) = 2V (o)
cap + V (i)

cap(t ) + V (i)
g (t ) + 2V (o)

g (t ) + 2
∫ η=Lp(t )

0
S[z(η, t )]dη

= 2V (o)
cap + V (i)

cap(t ) + V (i)
g (t ) + 2V (o)

g (t ) + 2Lp(t )

[
(π − 4)w2

o

4
+ 2wo

∫ ξ=1

0
z̄(ξ, t )dξ

]
=V (0).

(A7)

In addition, the cross-sectional area the drop in a region where a gutter (of radius Rg) is present is
S(i,o)

g = hwi,o − [R(i,o)
g ]2(4 − π ), such that

V (o)
g (t ) =

∫ α=Lo(t )

α=0
S(o)

g (α, t )dα = 1

Aqo(t )

{
hwo

[(
wo

2

)3

− F 3
o

]
− 3(4 − π )

5

[(
wo

2

)5

− F 5
o

]}
,

and we compute similarly

V (i)
g (t ) = hwiLi(t ) − 3(4 − π )

5Aqi(t )

{
F 5

i − [
F 3

i − Li(t )Aqi(t )
]5/3}

.

In order to mimic a constant-velocity progression of the droplet in the inlet channel before the
rear droplet interface reaches the junction, as observed experimentally, the length Li(t ) is chosen as
a ramp in time

Li(t ) =
{

Li(0) − v′
r

vr
· t · Ca if 0 � t � tJ

0 if t � tJ
, (A8)

which acts as a source of excitation for the system (A5) trough the boundary condition for k̄(0, t )
in (A6). At the time tJ = Li(0)/( v′

r
vr

Ca) the rear droplet interface reaches the junction, and Li(0) is

such that the necking condition as shown in Fig. 3(c) is met. The coefficient v′
r

vr
multiplying Ca arises

from the experimental data [shown in Fig. 3(b)]. The rear cap volume and curvature need also to be
treated differently depending on whether t is smaller or larger than tJ ; let Vcap[h,wi] designate the
equilibrium volume of the rear cap, whose value is taken from Musterd et al. [56] for H/W � 1,

Abd [H,W ] = HW − 4 · F [W, H]2(1 − π/4) = HW + F [W, H]2(π − 4)

054201-15



JIANDE ZHOU et al.

Lcap[H,W ] = W

2

Vcap[H,W ] =
∫ Lcap

0
Abd [H,W ]

(
1 − y2

Lcap[H,W ]2

)
dy = 2

3
Lcap[H,W ]Abd [H,W ].

Thereby the rear cap volume V cap
i (t ) is implemented as

V cap
i (t ) =

{
Vcap[h,wi] = cst if 0 � t � tJ

Vcap[h,wi]
Ci(t )
κi

if t � tJ
, (A9)

where Ci(t ) is the rear cap curvature with Ci(t � tJ ) = κi. Above t = tJ , the rear droplet interface
must undergo the incoming flow rate hwiCa and the following equation for the cap volume is
activated:

dV cap
i

dt
= qi(t ) − Ca hwi. (A10)

Injecting (A9) into (A10) leads to an evolution equation for Ci(t ) for t � tJ , and the boundary
condition for the curvature at the opening of the pocket is accordingly replaced by k(0, t ) = Ci(t ) −
2/wo for these times.

APPENDIX B: A SCALING ARGUMENT FOR ONSET OF CENTRAL BREAKUP

We here demonstrate that the presence of lateral pockets induced by the confinement gradient
dramatically changes the critical capillary number leading to central breakup, compared to con-
ventional T-junctions with no confinement gradient. In the spirit of the work of Haringa et al. in
conventional T-junctions [44], we derive an estimate of the critical capillary number for central
breakup to happen in the fictitious case where no lateral pocket is present and where the carrier fluid
has to bypass the droplet in highly resistive gutters. Note that this hypothesis is valid in conventional
T-junctions, which led to experimentally validated theoretical predictions [44]. With this hypothesis,
the inversely proportional relationship between Ca∗ and Lo/wo may be understood as follows: Once
the body of the droplet has fully entered the outlet channels, we consider a threshold situation
where the rear cap is flat for the observer, such that the rear cap curvature is assumed 1/Fi = 2/h,
although the precise value of the latter has little influence on the scaling law derived hereafter. The
threshold capillary number above which a central breakup is expected is obtained by balancing the
continuous flow rate arriving in the junction (Cawih), with the capillary flow rate in the four gutters
located in the outlet channel [4(1/Fo − 2/h)/(roLo)], the quantity ro being the hydraulic resistance
per unit length of a gutter in the outlet channel. This leads to:

wo

wi
Ca∗ ∼ 4wo

w2
i hroLo

(
1

Fo
− 2

h

)
∝

(
Lo

wo

)−1

. (B1)

In our geometry, for wo = 14/62, wi = 30/62, h = 1 and using Eq. (1) for Fo and Eq. (3) with
Rg = wo/2 for ro, we obtain 4( 1

Fo
− 2

h )/(w2
i hro) ≈ 5 × 10−5. However, this corresponds to a value

of wo/wiCa∗ approximately four orders of magnitude smaller than experimental values. This major
difference proves that it is impossible to neglect the contribution of lateral pockets, which massively
decrease the hydrodynamic resistance of the gutters in our nonconventional T-junction geometry.
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