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Curvature and shape relaxation in surface-viscous domains

Joseph M. Barakat and Todd M. Squires *

Department of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, USA

(Received 6 January 2023; accepted 14 April 2023; published 10 May 2023)

The mechanics of curved, heterogeneous, surfactant-laden surfaces and interfaces are
important to a variety of engineering and biological applications. To date, most models
of rheologically complex interfaces have focused on homogeneous systems of planar or
fixed curvature. In this paper, we investigate a simple, dynamical model of a two-phase
surface fluid on a curved interface: a condensed, surface-viscous domain embedded within
a surface-inviscid, spherical interface of time-varying radius of curvature. Our aim is to
understand how changes in surface curvature generate two-dimensional Stokes flows inside
the domain, thereby resisting curvature deformation and distorting the domain shape.
We model the surface stress within the domain using the classical Boussinesq-Scriven
constitutive equation, simplified for a near-spherical cap undergoing a small-amplitude
curvature deformation. We then analyze the frequency-dependent dynamics of the surface
stress and curvature within the domain when the pressure difference across the surface
is sinusoidally oscillated. We find that the curvature relaxes diffusively, and thus define
a Peclet number (Pe) relating the rate of diffusion to the oscillation frequency. At small
enough Pe, the surface deforms quasistatically, whereas at high Pe the curvature varies
sharply within a thin boundary layer adjacent to the domain border. Consequently, the
curvature of the domain appears discontinuous from the rest of the surface under rapid
oscillation. We then examine the linear stability of the domain shape to small, nonaxisym-
metric perturbations when the surface is steadily compressed (i.e., the pressure difference
across it is increased). While the line tension at the domain border tends to maintain circular
symmetry, surface-viscous stresses generated by surface compression tend to destabilize
the perimeter. A shape instability arises above a critical surface capillary number (Ca) that
relates surface-viscous stresses to line tension. Moreover, we show that the mechanism of
instability is distinct from that of the famous Saffman-Taylor fingering instability. Various
extensions of our model are discussed, including materials with finite dilatational surface
viscosity, linear and nonlinear (visco)elasticity, and large-amplitude deformations.

DOI: 10.1103/PhysRevFluids.8.054001

I. INTRODUCTION

The dynamics of curved, heterogeneous, surfactant-laden surfaces and interfaces are important
to applications ranging from lung surfactants [1–5] to ultrasound contrast agents [6–10], as well as
the basic science of biomembranes [11–13]. Surface heterogeneities naturally emerge as a result
of two-dimensional (2D) phase separation, often taking the form of condensed domains embedded
in a disordered, continuum fluid [14–16]. The structure, rheology, and dynamics of interfaces with
domain heterogeneities have been the subject of investigation for several decades [17–22]. However,
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the influence of surface curvature, which is highly relevant to applications, is still in the nascent stage
of research.

Surface curvature can couple to surface heterogeneity in a number of ways. When the curvature
of a surface is suddenly changed, material heterogeneities may deform at a rate different from the
rest of the surface due to their dissimilar mechanical properties. Such nonhomogeneous curvature
deformations have been observed, for instance, in ultrasonication of lipid-coated microbubbles [9].
Additionally, changes in curvature can lead to surface flows that influence the domain structure and
morphology. Examples include the domain-shape instabilities and fingering patterns in Langmuir
monolayers of insoluble surfactants [23].

Understanding each of these processes requires a model for the mechanical response of a curved,
heterogeneous interface with discontinuous material properties. The simplest mechanical model, the
so-called Boussinesq-Scriven constitutive equation [24–26], is applicable to insoluble surfactants
compressed to high enough density that they behave as 2D viscous fluids. Most theoretical stud-
ies employing the Boussinesq-Scriven model have focused on homogeneous interfaces or planar
interfaces of zero curvature [27–30]. However, phase-coexisting surfactant films often exhibit a
large mismatch in surface viscosity [21] between the domain (viscous) and the continuum (inviscid)
surface phases that is obscured in a homogeneous model. Although recent theoretical work [31–33]
has considered the influence of surface curvature on 2D viscous flows, accounting for heterogeneous
surface properties remains a challenging and nonlinear problem [34,35].

In this paper, we consider the simplest model for a 2D heterogeneous interface undergoing
a uniform curvature deformation: a circular, surface-incompressible domain with surface shear
viscosity ηs embedded within a spherical interface, of radius R, that is otherwise compressible
and surface inviscid. The curvature of the interface is changed by varying the capillary pressure
p across it, and the resulting surface flows in the domain depend upon the rate of compression (or
expansion). This simple model aims to elucidate two basic questions: (i) Under what conditions will
the curvature of the surface-viscous and surface-inviscid phases relax at different rates, and what
parameters govern this relaxation process? (ii) Is the circularly symmetric domain shape linearly
stable to surface-viscous flows and, if not, what is the criterion for shape instability?

To simplify the problem of modeling 2D viscous flows within a finite domain of dynamically
varying curvature, we consider small-amplitude or quasistatic deformations wherein nonlinear
couplings between curvature and flow-induced surface stresses may be neglected. We also neglect
couplings to bulk fluid flows so the problem is entirely 2D. Thus, our model of 2D fluid domains is
somewhat analogous to models of three-dimensional (3D) droplets in Stokes flows, albeit with im-
portant differences arising from the curvature of the (non-Euclidean) manifold. The aforementioned
simplifications enable analytical progress in modeling the relaxation dynamics of domain curvature
and shape in response to a time-dependent pressure forcing, which would otherwise require a purely
numerical treatment. As we will show, our semianalytical model will reveal useful timescales for
these relaxation processes that encode a competition between thermodynamic (i.e., equilibrium) and
hydrodynamic (nonequilibrium) driving forces.

The remainder of this paper is organized as follows. In Sec. II, we present the relevant
continuum-mechanical theory for describing the linear dynamics of a 2D surface-viscous domain
on a spherical interface of evolving curvature. We then apply this theory in Sec. III to describe
(Sec. III A) axisymmetric deformations as a function of the rate of compression, and (Sec. III B)
nonaxisymmetric shape instabilities under slow compression rates. A discussion of our results and
possible extensions of our model is given in Sec. IV. Concluding remarks are given in Sec. V.

II. THEORY

Figure 1 sketches the geometry of a surface-viscous domain embedded in a spherical, surface-
inviscid surface. In the forthcoming theoretical development, it will be useful to think of the domain
as the 2D analog of a 3D droplet. When placed under a static capillary pressure p0, the domain is
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FIG. 1. Schematic of a surface-viscous, 2D domain on a surface-inviscid, spherical surface. (a) At equi-
librium, the domain adopts a static cap angle α0 and radius of curvature R0 according to Eqs. (1) and
(2). (b) When the surface is dynamically compressed, surface-viscous stresses can induce an axisymmetric
curvature deformation (left) or a nonaxisymmetric shape instability (right).

shaped into a spherical cap with radius of curvature R0 according to the Young-Laplace law,

2γ0

R0
= p0, (1)

where γ0 is the static surface tension inside the domain [see Fig. 1(a)]. The tension outside the
domain, denoted by γe, is in general not equal to γ0. Any line tension λ at the domain edge results in
a mismatch in equilibrium tension (and curvature) between the surface-viscous and surface-inviscid
phases. For small line tensions λ � γ0R0, a balance of stresses at the edge of the cap yields the
auxiliary constraint,

γ0 = γe − λ

R0 tan α0
, (2)

where α0 is the static cap angle that reflects the characteristic size of the domain. Equation (2)
expresses the mismatch in surface tension that compensates for a small, but non-negligible, line
tension at the border of the domain. It is the 2D analog of the Young-Laplace law [Eq. (1)], which
relates the capillary pressure across a surface to the surface tension. Taken together, Eqs. (1) and (2)
completely specify the equilibrium statics of the domain.

Varying the pressure p(t ) as a function of time t results in a dynamic surface tension γ (θ, φ, t )
and radius R(θ, φ, t ) that depend upon the colatitude θ and azimuth φ of the unperturbed spherical
cap [Fig. 1(b)]. If the pressurization is sufficiently weak (i.e., p is close to p0), then the curvature of
the perturbed surface is governed by the linear differential equation,

2γ

R0
− γ0

(
∇2

s R + 2R

R2
0

)
= p − p0, (3)
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where ∇s ≡ (êθ /R0)(∂/∂θ ) + (êφ/R0 sin θ )(∂/∂φ) is the surface gradient on the unperturbed
sphere and ∇2

s ≡ ∇s · ∇s is the associated surface Laplacian [36]. In addition to perturbing the
shape, the pressure forcing also produces an incompressible surface Stokes flow vs = vθ êθ + vφ êφ .
Conservation of mass on a dilating spherical surface requires that

∇s · vs + 2

R0

∂R

∂t
= 0. (4)

This surface flow generates an anisotropic surface stress tensor σs that is work conjugate to the sur-
face velocity-gradient tensor ∇svs. We model the domain as a 2D incompressible, surface-viscous
fluid with surface shear viscosity ηs, whose the surface stresses are given by the Boussinesq-Scriven
constitutive law [24–26],

σs = γ δs + ηs[(∇svs) · δs + δs · (∇svs)� − (∇s · vs)δs], (5)

where δs ≡ êθ êθ + êφ êφ is the unit tensor on the sphere. Momentum conservation then requires that

δs · (∇s · σs) = ∇sγ + ηsδs ·
(

∇2
s vs + 2vs

R2
0

)
= 0, (6)

which is the 2D analog of the Stokes equation of motion. The first two terms on the right-hand side
of Eq. (6) bear obvious resemblance to the hydrodynamic pressure gradient and viscous momentum
flux in 3D Stokes flow. The last term reflects the extra momentum flux due to the finite Gaussian
curvature of the surface, 1/R2

0 [31].
In Eqs. (3) and (6), it is tacitly assumed that the only stress exerted by the 3D bulk phase

onto the 2D surface-viscous domain is a dynamic pressure p(t ). In doing so, we have neglected
hydrodynamic stresses associated with bulk fluid flow, which are proportional to a bulk shear
viscosity η (or, more generally, a bulk viscoelasticity). The relative importance of surface stresses
and bulk stresses is captured by the Boussinesq number, Bq = ηs/ηL, where L is a length scale
over which the flow decays in the third dimension [37]. (For spherical surfaces of high cur-
vature, this length scale is given by the sphere radius R0 due to screening of the bulk fluid
flow [13,31,38].) We assume that Eq. (6) is approximately valid so long as Bq � 1. Addition-
ally, it should be noted that the surface tension γ appearing in Eqs. (5) and (6) is a Lagrange
field that ensures satisfaction of the surface incompressibility condition [Eq. (4)], and thus plays
a similar role to the pressure in 3D viscous flows. For surface incompressibility to hold, the
area-compression modulus Es of the surface-viscous phase must be large compared to the char-
acteristic surface-viscous stress ηsV/R0α0, where V is the velocity of the inter-phase boundary.
In terms of a dimensionless Marangoni number, Ma = EsR0α0/ηsV , this condition requires that
Ma � 1 [28,39,40].

As the pressure oscillates, the shape of the 2D domain is allowed to deform. Hence, the preceding
equations must be solved subject to free-boundary conditions at the edge of the domain [i.e., at
θ = α(φ, t )]. These boundary conditions are similar to those used to specify the shape of 3D
droplets deforming in Stokes flows [41]. First, mechanical equilibrium requires that the surface
stresses balance at the edge [42]. Letting r(φ, t ) = R0êr |θ=α(φ,t ) define the radial position along the
boundary, this condition reads

n̂ · σs = γen̂ + λ

(
∂ t̂
∂s

− t̂ × êθ

R0

)
at θ = α(φ, t ), (7)

where ds = |∂r/∂φ| dφ is the differential arc length, t̂ = ∂r/∂s is the unit tangent, and n̂ = t̂ × êr

is the unit normal. Equation (7) is the dynamic version of the static stress condition, Eq. (2). The
components of Eq. (7) parallel to n̂ and t̂ are the 2D analogs of the familiar normal and shear stress
boundary conditions for 3D droplets. The transverse component, parallel to êr , has no analog in 3D.
This latter condition ensures that the shape of the surface is continuous and smooth in crossing the
boundary between the surface-viscous and surface-inviscid phases. Smoothness is required because
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the surface stresses, modeled by Eq. (5), do not contain a transverse component (unlike curved shells
of finite thickness, which exhibit transverse shear stresses due to their bending stiffness).

In addition to the surface stress balance, the velocity of the boundary must evolve with the local
flow field according to the kinematic condition,

∂α

∂t
= vs · ∇s(θ − α) at θ = α(φ, t ), (8)

subject to the constraint that the total surface area inside the domain remains conserved. The latter
constraint is obtained by integrating the continuity equation [Eq. (4)] over the surface of the domain.

Taken together, Eqs. (3)–(8) now form a closed system that may be directly integrated to calculate
the domain shape, curvature, surface velocities, and surface stresses. The time evolution of these
dynamic variables depends upon the geometric properties (R0, α0) and material properties (ηs, γ0,
λ) of the surface-viscous domain. In particular, it may be shown (see Appendix A) using Eqs. (3),
(4), and (6) that the surface tension and curvature obey the surface diffusion equations,(

∂

∂t
− D∇2

s

)
γ = R0 ṗ

2
, (9)

(
∂

∂t
− D∇2

s

)(
∇2

s R + 2R

R2
0

)
= 0, (10)

where ṗ ≡ d p/dt and

D = γ0R2
0

4ηs
(11)

is a diffusion coefficient. Although Eqs. (9) and (10) appear to independently govern the evolution
of γ and ∇2

s R + 2R/R2
0, respectively, the two are, in fact, coupled through the boundary conditions,

Eqs. (7) and (8).
Equations (9) and (10) reveal a timescale,

τD ≡ (R0α0)2

D
= 4ηsα

2
0

γ0
, (12)

for surface stress and curvature to diffuse a distance R0α0 across a spherical surface. The boundary
equations [Eqs. (7) and (8)] similarly govern the time evolution of the dynamic cap angle, with a
characteristic boundary velocity,

V = λ

ηs
, (13)

determined by balancing surface-viscous and line-tension forces. This gives a second timescale,

τV ≡ R0α0

V
= ηsR0α0

λ
, (14)

over which boundary distortions can relax. Thus, even before pursuing a detailed solution of
the aforementioned equations, Eqs. (12) and (14) provide a great deal of physical insight into
the relevant relaxation processes and their associated time scales. Quantitative estimates of these
timescales for a prototypical surfactant system are delayed until Sec. IV but, for most physical
systems of relevance, τD � τV . The comparison of these timescales to the characteristic rate of
deformation determines which forces (surface viscosity, surface tension, or line tension) dominate
the dynamics.

Unfortunately, pursuing a detailed solution for an arbitrary domain shape is complicated by the
free-boundary conditions [Eqs. (7) and (8)], which are highly nonlinear. To simplify the analysis,
we will first consider a reference base shape with axial symmetry so the flow problem may be
solved as a function of the colatitude on the sphere (Sec. III A). Subsequently, the linear stability
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FIG. 2. Axisymmetric dilatation of a surface-incompressible, spherical cap induces surface shear. (a) Com-
pression of the surface induces an axisymmetric surface flow vθ (θ ) that accelerates along the colatitude θ . (b) A
planar projection reveals that material elements are stretched by the flow.

of this base shape against small, nonaxisymmetric distortions will be tested (Sec. III B). The latter
analysis will reveal a critical deformation rate above which the symmetric domain shape becomes
unstable.

III. RESULTS

A. Axisymmetric deformations

As a first approximation, we assume that the domain maintains circular symmetry with a dynamic
cap angle α(t ) that is constant along the azimuth φ [see Fig. 1(b), left]. Thus, the surface velocity
vθ , surface tension γ , and radius R must be determined as a function of the colatitude θ and time
t . Even in the axisymmetric case, the surface flow that results from changing the capillary pressure
across the surface can induce surface shear stress. Figure 2 clarifies this effect. When a spherical
surface is compressed, its metric changes and induces a flow vθ that varies along θ to preserve
surface incompressibility [see Eq. (4)]. The shear rates (1/R0)(∂vθ /∂θ ) and (vθ /R0) cot θ associated
with this flow stretch material elements along the colatitude on the sphere without changing their
surface area. These, in turn, produce anisotropic surface stresses proportional to the surface shear
viscosity ηs.

Our objective is to understand how these flows produced by compression or expansion of the
surface affect the evolution of surface stress and curvature in the surface-viscous domain, focusing
only on circularly symmetric domains for the time being. To probe the temporal dynamics, we
assume a sinusoidal pressure perturbation,

p(t ) = p0 + δpeiωt , (15)

where p0 is the static pressure [given by Eq. (1)], ω is the angular frequency, and δp is the
amplitude of the pressure perturbation. Hence, the time evolution of the system is determined by
a competition between the probing frequency ω and the relaxation time scales τD and τV given,
respectively, by Eqs. (12) and (14). For the sake of simplicity, we shall focus on the regime
where τD � τV and, in so doing, neglect the role of line tension in our analysis of axisymmetric
deformations. This simplification is justified provided that λ � γ0R0, as was assumed in Eqs. (2)
and (7).

With line tension neglected, the only relevant timescale in the problem is the diffusive timescale
τD. The ratio of the probing frequency ω to the rate of diffusion R2

0/D defines a Peclet number,

Pe ≡ ωR2
0

D
= 4ωηs

γ0
, (16)

in which the dependence on the surface-shear viscosity ηs and static surface tension γ0 clearly
emerges. We have avoided calling the dimensionless quantity in Eq. (16) the capillary number,
and this choice of nomenclature merits some justification. In 3D Stokes flows within and around
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deforming droplets, the capillary number reflects the ratio of viscous stresses, which tend to distort
a droplet’s shape, to surface tension, which penalizes shape deformation. The natural 2D analog
would, therefore, be the ratio of surface-viscous stresses to line tension, the latter of which we have
neglected here. By contrast, Eq. (16) expresses the competition between surface-viscous stresses
and surface tension in distorting the curvature of a 2D domain, which has no analog in 3D. The
choice of naming this quantity the Peclet number is motivated by the observation that the curvature
relaxes diffusively. In Sec. III B, we shall revisit the role of the line tension in the low-frequency
limit (Pe → 0) wherein the slow timescale τV can no longer be ignored. In this regime, a surface
capillary number [denoted by Ca, see Eq. (38)] naturally emerges.

The forthcoming analysis will be carried out in the linear-response limit, for which the pressure
amplitude δp � p0. Neglecting initial transient effects, the dynamical variables eventually achieve
a periodic steady state with fundamental frequency ω,

vθ (θ, t ) = δvθ (θ )eiωt , (17)

γ (θ, t ) = γ0 + δγ (θ )eiωt , (18)

R(θ, t ) = R0 + δR(θ )eiωt , (19)

α(t ) = α0 + δαeiωt , (20)

neglecting the higher harmonics corresponding to integer multiples of ω. Rendering the linear-
response functions dimensionless as δ p̄ = δp/p0, δv̄θ = δvθ /(iωR0), δγ̄ = δγ /γ0, and δR̄ = δR/R0

and taking the finite Fourier transform of Eqs. (3)–(6) leads to a system of ordinary differential
equations,

d2δR̄

dθ2
+ cot θ

dδR̄

dθ
+ 2δR̄ − 2δγ̄ = −2δ p̄, (21)

dδv̄θ

dθ
+ δv̄θ cot θ + 2δR̄ = 0, (22)

d2δv̄θ

dθ2
+ cot θ

dδv̄θ

dθ
+ (1 − cot2 θ )δv̄θ + 4

iPe

dδγ̄

dθ
= 0, (23)

subject to symmetry conditions at the centerline,

δv̄θ = 0,
dδγ̄

dθ
= 0,

dδR̄

dθ
= 0 at θ = 0, (24)

the surface stress conditions [Eq. (7) with λ/γ0R = 0],

dδR̄

dθ
= 0,

dδv̄θ

dθ
− δv̄θ cot θ + 4

iPe
δγ̄ = 0 at θ = α0, (25)

and the kinematic condition [Eq. (8)],

δv̄θ = δα at θ = α0. (26)

The source that drives the system out of equilibrium is the pressure perturbation on the right-hand
side of Eq. (21). The Peclet number Pe, defined by Eq. (16), appears in Eqs. (23) and (25) and reflects
the strength of surface-viscous stresses relative to the static tension in the domain. Two corollaries
may be derived from the above equations via integration over the cap surface. First, multiplying the
incompressibility condition [Eq. (22)] by 2π sin θ dθ , integrating from θ = 0 to α0, and applying
the kinematic condition [Eq. (26)] yields a global condition conserving the total surface area inside
the domain: ∫ α0

0
2δR̄ sin θ dθ + δα sin α0 = 0. (27)

054001-7



JOSEPH M. BARAKAT AND TODD M. SQUIRES

This condition relates the radial displacement δR̄ to the perturbation of the cap angle δα. Second,
integrating the momentum balance equations [Eqs. (21) and (23)] over the cap surface and applying
the surface stress condition [Eq. (25)] yields a boundary condition for the radial displacement:

δR̄ = −δ p̄ at θ = α0. (28)

This condition, which is necessary to conserve forces globally, ensures that the surface is continuous
across the interphase boundary.

We have numerically solved Eqs. (21)–(28) for various values of Pe and the initial cap angle α0

using standard methods for one-dimensional boundary-value problems [43]. Below, we consider the
two limiting cases in which Pe is asymptotically small or large to gain analytical insight into the
structure of the solutions.

As the frequency tends to zero (Pe → 0), the rate of deformation is so slow that the do-
main deforms isotropically. Equation (21) is then satisfied by the trivial solution δR̄ = −δ p̄ and
δγ̄ = 0–i.e., the radius of curvature of the domain shrinks with increasing pressure while the
surface tension remains essentially unchanged. However, if the probing frequency ω is finite but
much smaller than the diffusive frequency 2π/τD [i.e., Pe � 2π/α2

0 using Eq. (12)], then surface-
viscous stresses weakly distort the curvature of the 2D domain. A small-Pe regular perturbation
analysis of Eqs. (21)–(28) furnishes the following asymptotic expansions for the linear-response
functions:

δv̄θ (θ )

δ p̄
= 2 tan

(
1

2
θ

)
+ O(Pe), (29)

δγ̄ (θ )

δ p̄
= iPe

[
ln

(
1 + cos θ

1 + cos α0

)
− 1

2
tan2

(
1

2
α0

)]
+ O(Pe2), (30)

δR̄(θ )

δ p̄
= −1 + iPe

[
ln

(
1 + cos θ

1 + cos α0

)
+ cos α0 − cos θ

1 + cos α0

]
+ O(Pe2). (31)

Thus, the dilatation of the surface metric produces an O(1) axisymmetric flow [Eq. (29)] that, in
turn, generates surface-viscous shear stresses. These stresses contribute the O(Pe) corrections to
Eqs. (30) and (31) that drive the surface tension and curvature out of equilibrium.

At much faster oscillation frequencies (Pe � 2π/α2
0), the deformation rate is too rapid for the

surface tension and curvature to relax on a commensurate timescale. Consequently, the surface-
viscous domain retains its initial curvature 1/R0 and undergoes a rigid-body translation as the
pressure oscillates (with amplitude δR̄ = −δ p̄ cos θ/ cos α0), while the tension oscillates uniformly
(with amplitude δγ̄ = δ p̄) in order to offset the Laplace pressure. However, this translating-
spherical-cap solution fails to satisfy the edge boundary conditions [Eqs. (25) and (26)], which
require that the profile of the surface-viscous domain smoothly connects to the embedding, surface-
inviscid phase on the rest of the sphere. Resolving this apparent discrepancy requires the application
of singular perturbation theory, which reveals that a rapid variation in surface curvature over an
O(Pe− 1

2 ) diffusive boundary layer (near θ = α0) is facilitated by an O(Pe
1
2 ) change in surface

tension (see Fig. 3). Analysis within the boundary layer furnishes the following large-Pe singular
perturbation expansions (derived in Appendix B):

δv̄θ (θ )

δ p̄
= sin θ

cos α0
[1 − (iPe)−

1
2 tan α0] + O(Pe−1), (32)

δγ̄ (θ )

δ p̄
= 1 − 1

2
(iPe)

1
2 tan α0 exp [(iPe)

1
2 (θ − α0)] + O(Pe− 1

2 ), (33)

δR̄(θ )

δ p̄
= − cos θ

cos α0
[1 − (iPe)−

1
2 tan α0] − (iPe)−

1
2 tan α0 exp [(iPe)

1
2 (θ − α0)] + O(Pe−1).

(34)

054001-8



CURVATURE AND SHAPE RELAXATION IN …

FIG. 3. (a) Surface shape and (b) surface tension within the surface-viscous cap at high Peclet number
(Pe = 103), cap angle α0 = π/4, and pressure amplitude δ p̄ = 30% [see Eqs. (33) and (34)]. Three different
time points are shown for (1) the unperturbed surface, (2) maximum compression, and (3) maximum expansion.
Colors in (a), (b) indicate the magnitude of the surface tension.

The agreement between these asymptotic solutions and the numerical solution of Eqs. (21)–(28)
is excellent so long as α0 < π/2. Figure 3 plots the asymptotic solutions [Eqs. (33) and (34)] for
Pe = 103 and α0 = π/4; a large amplitude δ p̄ = 30% (beyond the linear-response limit) is shown
to exaggerate the changes in curvature and tension that result from a change in pressure. The plots
reveal the exponential variation within the boundary layer in order to satisfy the surface-stress
condition at the domain edge.

The preceding analysis shows that surface-viscous stresses resist the curvature deformation that
would result from a change in pressure. When these stresses become appreciably large (i.e., at
ultrafast driving frequencies or Pe → ∞), then the initial curvature 1/R0 of the spherical cap
remains unchanged as the domain undergoes a rigid-body motion. At these frequencies, the tension
remains nearly uniform (except near the boundary layer) and oscillates synchronously with the
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FIG. 4. The constant C [defined by Eq. (35)] gauges the deviation from the equilibrium tension and exhibits
a nonmonotonic dependence on the Peclet number Pe. Main: Plots of C against Pe for various cap angles α0.
At small Pe, the domain curvature deforms isotropically with small variation in tension [∼O(Pe)]. At large Pe,
the tension varies [∼O(1)] while the curvature remains fixed. Inset: Plots collapse onto a master curve when
plotted against the ratio Pe/Pe∗ [see Eq. (36)]. The maximum change in tension occurs at Pe/Pe∗ ≈ 3. Top:
Pictures depict the change in the radius of curvature Rc and surface tension γ that result from oscillating the
pressure at various frequencies (i.e., Peclet numbers).

pressure as γ (t )/γ0 = p(t )/p0 [see Fig. 3(b)]. On the other hand, a gentle forcing (Pe → 0)
causes the curvature to freely oscillate while the tension remains essentially unchanged. Thus,
there is a tradeoff between curvature and tension as the frequency is increased. This tradeoff is
clearly represented in the normal momentum balance [Eq. (21)], which relates the surface tension
perturbation δγ to the curvature perturbation ∇2

s δR + 2δR/R2
0.

Since the curvature and tension are inextricably linked, we define the relative change in tension
at the centerline (θ = 0),

C ≡
∣∣∣∣δγ̄ (0)

δ p̄

∣∣∣∣, (35)

as a gauge for the departure from equilibrium statics. When C = 0, then the domain deforms
quasistatically with equilibrium tension γ0, whereas for C > 0 excess surface-viscous stresses
contribute to the dynamic tension. Figure 4 plots our numerical computations of C against the
Peclet number Pe for various cap angles α0. The pictures shown above the plots depict the change
in the domain curvature 1/Rc that accompanies a change in tension. As expected from our previous
arguments, C varies from 0 (when γ /γ0 = 1 and R0/Rc = p/p0) to 1 (γ /γ0 = p/p0 and R0/Rc = 1)
as Pe is increased. Interestingly, we also find that C passes through a maximum at an intermediate
value of the Peclet number (the exact value decreases with the cap angle as ∼α−2

0 ). This maximum
reflects the crossover frequency at which surface tension and viscous stresses balance within the
domain. Using our asymptotic expansions for the surface tension perturbation [Eqs. (30) and (33)],
we estimate the crossover Peclet number to be

Pe∗ = {
ln

[
sec2

(
1
2α0

)] − 1
2 tan2

(
1
2α0

)}−1
, (36)
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which varies like ∼8/α2
0 as α0 → 0. Plotting C against the ratio Pe/Pe∗ collapses all of the

numerical data onto a master curve (Fig. 4, inset), with a maximum ≈1.36 found at Pe/Pe∗ ≈ 3.
Physically, this maximum reflects a roughly 36% increase in the amplitude, above that predicted by
equilibrium statics and due entirely to extra surface-viscous stresses.

We conclude this section by briefly discussing potential nonlinear effects that are not included
in our linear-response model for the coupled evolution of curvature and tension in surface-
viscous domains. Under fast compression [see label (2) in Fig. 3], the tension at the domain
edge (θ = α0) can become very large and negative, even if the pressure amplitude is relatively
small. [Indeed, inspection of Eq. (33) reveals an O(Pe

1
2 ) contribution to the tension through the

boundary layer that can easily overwhelm the static tension.] Negative surface tensions γ < 0 are
responsible for wrinkling and buckling instabilities in viscous films [44–47] and elastic sheets
[48,49] due to nonlinear tension-curvature couplings that are neglected in the linearized Eq. (3).
Physically, a continuum surface under negative tension is unable to support a capillary pressure,
driving out-of-plane surface undulations. Resisting this driving force is the bending stiffness of
the surface [also neglected in Eq. (3)], which limits the wavelength of the undulations [48].
The possibility of out-of-plane, nonaxisymmetric shape instabilities driven by high-frequency,
surface-viscous shearing forces represents an interesting extension of our purely axisymmetric,
linearized model and merits future investigation. In the next section, we consider a different type of
nonaxisymmetric shape instability that is confined to the plane of the surface and relevant to low
frequencies.

B. Nonaxisymmetric instability

Our analysis of axisymmetric deformations revealed the competition between surface-viscous
stresses and surface tension that determines the resistance to changes in curvature. There is an ob-
vious problem, however, with the presumption of axisymmetry, because the surface flows resulting
from a change in capillary pressure could potentially destabilize the domain perimeter. The only
force preserving the circular symmetry of the domain is the line tension λ, which was neglected
in Sec. III A. The critical compression rate above which axisymmetry is broken must, therefore,
depend in some way upon the ratio λ/(ηsR0) between the line-tension force and the surface-viscous
shearing force. In this section, we will determine this critical condition via a linear stability analysis
(for a schematic of the nonaxisymmetric problem, see Fig. 1(b), right).

The base state for our analysis, about which we wish to perturb, is the axisymmetric solution
presented in the previous section. Generally speaking, this base state oscillates periodically in time
and could be analyzed using Floquet theory [50,51]. In lieu of studying the periodic problem in
full detail, a great deal of insight may be gleaned by focusing only on a quasisteady increase in the
capillary pressure,

d p

dt
≡ ṗ = εp0, (37)

where ε > 0 is the rate of compression. (The analogous calculation under expansion is given by
ε < 0.) In this way, ε replaces the frequency ω of the previous section as the relevant rate scale.
We shall further restrict our attention to deformation rates much slower than the rate of surface
diffusion, ε � τ−1

D , so that τV (� τD) becomes the relevant relaxation timescale [see Eq. (14)].
The ratio between ε and the characteristic rate of shape relaxation V/R0 defines a surface capillary
number,

Ca ≡ εR0

V
= εηsR0

λ
, (38)

which will later be shown to determine the onset of a shape instability.
Our focus on slow, quasistatic compressions can also be regarded as the limit of vanishingly

small oscillation frequencies (i.e., Pe → 0). In this regime, surface diffusion occurs rapidly and the
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acceleration of the surface is negligible by comparison. Thus, Eqs. (29)–(31) may be applied to
determine the kinematics and stresses of the base state. Taking Pe → 0, Eq. (31) defines a steady,
uniform contraction of the surface:

dR

dt
≡ Ṙ = −εR0. (39)

This deformation, in turn, induces an axisymmetric base flow [Eq. (29)],

vθ (θ ) = 2εR0 tan
(

1
2θ

)
, (40)

and, by surface incompressibility, a nonuniform surface tension [Eq. (30)],

γ (θ ) = γ0 + 4εηs

[
ln

(
1 + cos θ

1 + cos α

)
− 1

2
tan2

(
1

2
α

)]
. (41)

Here, the parametric dependence on time through α(t ) has been suppressed for clarity. Using
Eq. (40) and the kinematic condition [Eq. (8)], the dynamic cap angle evolves according to

dα

dt
≡ α̇ = 2ε tan

(
1

2
α

)
. (42)

Given this quasisteady, axisymmetric base state, we may now analyze its stability by perturbing
the dynamic cap angle as

α → α(t ) + δα(φ, t ), (43)

while holding fixed the rate of contraction:

δṘ = 0. (44)

Thus, the evolving curvature of the surface remains unperturbed. However, the shape distortion
induces a nonaxisymmetric perturbation to the surface velocities and stresses:

vs → vθ (θ ) êθ + δvs(θ, φ, t ), (45)

γ → γ (θ ) + δγ (θ, φ, t ), (46)

where the axisymmetric base functions vθ (θ ) and γ (θ ) are given by Eqs. (40) and (41). Fluid
incompressibility ensures that the shape distortion is area preserving and, therefore, the perturbation
flow is purely solenoidal,

∇s · δvs = 0, (47)

which follows from Eqs. (4), (44), and (45). Thus, the velocity perturbation is completely described
by a surface stream function δψ (θ, φ, t ), defined by

δvs = −∇s × (δψ êr ), (48)

or, in component form,

δvθ = −csc θ

R0

∂δψ

∂φ
, δvφ = 1

R0

∂δψ

∂θ
, (49)

which automatically satisfies Eq. (47). Taking the surface curl and surface divergence of the
momentum equation [Eq. (6)] yields a set of coupled differential equations for the stream function
and surface tension perturbations:(

∂2

∂θ2
+ cot θ

∂

∂θ
+ csc2 θ

∂2

∂φ2

)(
∂2δψ

∂θ2
+ cot θ

∂δψ

∂θ
+ csc2 θ

∂2δψ

∂φ2
+ 2δψ

)
= 0, (50)

∂2δγ

∂θ2
+ cot θ

∂δγ

∂θ
+ csc2 θ

∂2δγ

∂φ2
= 0, (51)

where the last term in Eq. (50) arises from the Gaussian curvature of the spherical surface.
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A general solution of Eqs. (50) and (51) for the perturbation Stokes flow is straightforward via
separation of variables. In particular, the perturbation to the dynamic cap angle may be generally
expanded as a sum of Fourier modes,

δα(φ, t ) = δαn(t )einφ, n = ±2,±3, . . . , (52)

where the dilatational (n = 0) and translational (n = ±1) modes are omitted. In Appendix C, it is
shown that the associated Fourier components of δψ and δγ are given by

δψ (θ, φ, t )

iεR2
0

=
{

an cotn

(
1

2
θ

)
+ bn tann

(
1

2
θ

)
− cn sin2

(
1

2
θ

)
cotn

(
1

2
θ

)

− dn sin2

(
1

2
θ

)
tann

(
1

2
θ

)}
δαn(t )einφ, (53)

δγ (θ, φ, t )

εηsR0
= 1

2

{[
an + 1

2
(n − 1)cn

]
cotn

(
1

2
θ

)
−

[
bn − 1

2
(n + 1)dn

]
tann

(
1

2
θ

)}
δαn(t )einφ,

(54)

whose coefficients an, bn, cn, and dn must now be determined from the boundary conditions at θ = 0
and α(t ).

Applying boundedness conditions at the centerline gives

an = cn = 0 (55)

for all n = ±2,±3, . . . . The remaining coefficients bn and dn are determined by applying the
surface-stress condition at the edge of the domain [Eq. (7)]. Up to linear order in the perturbation
variables, the normal and shear components of the stress condition simplify to

δσθθ = −dσθθ

dθ
δα + λ

R0 sin2 α

(
δα cos2 α + ∂2δα

∂φ2

)

δσθφ = σφφ − σθθ

sin α

∂δα

∂φ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at θ = α(t ), (56)

where the line tension λ has been retained. The base stresses σθθ and σφφ are derived from Eqs. (5),
(40), and (41) as

σθθ = γ + ηs

R0

(
dvθ

dθ
− vθ cot θ

)

= γ0 + 4εηs

{
ln

(
1 + cos θ

1 + cos α

)
− 1

2

[
tan2

(
1

2
α

)
− tan2

(
1

2
θ

)]}
, (57)

σφφ = γ − ηs

R0

(
dvθ

dθ
− vθ cot θ

)

= γ0 + 4εηs

{
ln

(
1 + cos θ

1 + cos α

)
− 1

2

[
tan2

(
1

2
α

)
+ tan2

(
1

2
θ

)]}
, (58)

while the perturbation stresses δσθθ and δσθφ are related to δγ and δψ via

δσθθ = δγ − 2ηs csc θ

R2
0

(
∂2δψ

∂θ∂φ
− cot θ

∂δψ

∂φ

)
, (59)

δσθθ = ηs

R2
0

(
∂2δψ

∂θ2
− cot θ

∂δψ

∂θ
− csc2 θ

∂2δψ

∂φ2

)
. (60)
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After inserting Eqs. (57)–(60) and (52)–(54) into (56), it is only a matter of algebra to derive the
following expressions for the remaining Fourier coefficients:

bn =
[

16 sin4
(

1
2α

)
sin3 α

− 1

Ca

(
n2 − cos2 α

(n − 1) sin2 α

)]
sin2

(
1

2
α

)
cotn

(
1

2
α

)
, (61)

dn =
[

16 sin4
(

1
2α

)
sin3 α

− 1

Ca

(
(n − cos α)(n2 − cos2 α)

(n2 − 1) sin2 α

)]
cotn

(
1

2
α

)
, (62)

which depend upon the surface capillary number Ca [defined by Eq. (38)]. This completes the
specification of the perturbation flow field.

Finally, to determine whether the shape perturbation will grow or decay in time, we expand the
kinematic condition [Eq. (8)] up to linear order in the perturbation variables:

∂δα

∂t
= 1

R0

dvθ

dθ
δα + δvθ

R0
at θ = α(t ). (63)

Inserting Eqs. (40), (49), and (53) into (63) and invoking (55), (61), and (62) yields the evolution
equation for the nth Fourier mode,

dδαn

dt
≡ δα̇n = εsnδαn, (64)

where

sn = sec2

(
1

2
α

)
− n

2Ca

(
n2 − cos2 α

(n2 − 1) sin α

)
(65)

is the dimensionless growth rate. Since ε > 0 under compression, Eq. (64) admits exponential
growth of the modal perturbation δαn(t ) when sn > 0. The first term on the right-hand side of
Eq. (65) is always positive (destabilizing) and independent of the mode number. The second
term is associated with line tension and is always negative (stabilizing), restoring circular shape
symmetry. Therefore, the nth modal perturbation is expected to grow above a critical capillary
number,

Ca > Can ≡ n

4

(
n2 − cos2 α

n2 − 1

)
cot

(
1

2
α

)
, (66)

which is solely a function of the cap angle α. Equation (66) indicates that the critical condition
for all modes diverges like Can ∼ n/(2α) as α → 0, that is, small domains are stable against
nonaxisymmetric perturbations. The most dangerous mode, n = 2, is the elliptic distortion. Figure 5
plots the ratio Can/Ca2 against α for various mode numbers, indicating that higher modes become
unstable at successively larger compression rates.

The mechanism of the instability can be understood by examining only the crucial coupling term
in the kinematic condition, Eq. (63):

∂δα

∂t
≈ 1

R0

dvθ

dθ
δα at θ = α(t ), (67)

which neglects the stabilizing term. Substituting the axisymmetric base flow from Eq. (40) into
(67) yields the growth rate (1/R0)(dvθ /dθ ) = ε sec2( 1

2α), corresponding to the first term on the
right-hand side of Eq. (65). Thus, the instability is driven by the azimuthal perturbation δα coupling
to the base velocity gradient dvθ /dθ , which is positive under compression. A sketch of this
mechanism is depicted in Fig. 6. This argument also explains why expansion of an axisymmetric
cap is unconditionally stable to nonaxisymmetric perturbations: under expansion, the base flow vθ

reverses sign and so the velocity decays along the colatitude of the spherical cap. In this case, all
modal perturbations decay with time rather than grow.
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FIG. 5. Plots of the critical capillary number Can of the nth Fourier mode (relative to that of the most
dangerous mode, Ca2) against the unperturbed cap angle α for various mode numbers n = 2, 3, . . . , 6.

A useful point of contrast to the instability presented here is the famous Saffman-Taylor fingering
instability of an inviscid fluid penetrating a viscous medium [52–56]. In the radial version of this
instability [54], a circularly symmetric base flow decays radially outward from a point source
injecting fluid at a constant volumetric flow rate. The velocity gradient associated with this base
flow, therefore, has the opposite stability characteristics compared to the analogous dvθ /dθ term in
the kinematic condition [see Eq. (63) or (67)]. This distinction can be clearly seen in Fig. 6, which
depicts a radially accelerating flow of a surface-viscous domain penetrating a surface-inviscid phase.
Thus, the mechanism of the Saffman-Taylor instability is entirely different. Its origin can be traced
to the radial pressure gradient associated with the base flow, whose analog is the −dσθθ/dθ term
in the stress condition [Eq. (56)]. This radial pressure gradient couples to an angular, wavelike
perturbation of the fluid front to induce a perturbation flow that further amplifies the waves. Surface
tension (i.e., the Laplace pressure) acts in opposition to this pressure gradient to maintain circular
symmetry. By contrast, the perturbation velocity δvθ that appears in Eq. (63) is solely driven by the
line tension λ and, therefore, is purely stabilizing.

FIG. 6. Mechanism of nonaxisymmetric domain shape instability. (a) Compression of a surface-
incompressible, spherical cap induces an axisymmetric base flow vθ (θ ) that increases in speed along the
colatitude θ . Consequently, a sinusoidal shape perturbation along the azimuth φ amplifies at the crests at a
faster rate compared to the troughs. (b) Planar projection of the shape instability.
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IV. DISCUSSION

In this paper, we have analyzed the dynamics of a surface-viscous domain of characteristic size
R0α0 on a spherical surface subject to a time-varying pressure perturbation. Our objective was to
elucidate the processes by which surface-viscous stresses resist curvature deformation and break
domain shape symmetry in curved, heterogeneous surface films, such as those found in surfactant-
coated bubbles. From our theory, we identified two important time scales. The first timescale
τD ≡ (R0α0)2/D = 4ηsα

2
0/γ0 [Eq. (12)] characterizes the rate at which stress and curvature can

relax diffusively across across a surface-viscous domain, and reflects the competition between
surface-viscous stresses and surface tension. The second timescale τV ≡ R0α0/V = ηsR0α0/λ

[Eq. (14)] weighs surface-viscous stresses against line tension and relates to the critical defor-
mation rate at which the domain perimeter is unstable to small perturbations. Rendering each
timescale dimensionless by either of the two rate scales, ω or ε, gives the dimensionless groups
ωτD = Pe α2

0 and ετV = Ca α0, which depend, respectively, on the Peclet number [Eq. (16)] and
surface capillary number [Eq. (38)]. The quadratic and linear scalings with the static cap angle α0

reflect the dependence on the domain surface area and perimeter, respectively, in the two relaxation
processes.

Significantly, these predictions allow us to make some order-of-magnitude estimates for the
curvature and shape dynamics of surface-viscous domains in surfactant monolayers. We can take
dipalmitoylphosphatidylcholine (DPPC) in condensed-expanded phase coexistence as a prototypical
system, since DPPC is the primary lipid component in lung surfactant [2,3] and ultrasound contrast
agents [4,10]. Various viscometric measurements of DPPC report surface shear viscosities as large
as ηs ≈ 100 μN(s/m) in a fully condensed monolayer (about 400 000 times the viscosity of a water
layer of comparable thickness), which we take to be a reasonable value for the domain phase.
The surface tension of DPPC in the coexistence region is consistently around γ0 ≈ 60 mN/m.
By contrast, measurements of the line tension can vary [57–62] but are usually around λ ≈ 1 pN.
Domain-size distributions in the coexistence region are usually quite polydisperse [63,64], but for
the sake of concreteness we will assume a typical size on the order of R0α0 ≈ 5 µm. Finally, we
take R0 ≈ 40 µm as a characteristic radius of curvature for lung alveoli and ultrasound contrast
agents.

Using these numbers, we estimate τD ≈ 0.1 ms as the characteristic timescale for the sur-
face tension and curvature to relax by diffusion. This is a rapid relaxation process and reflects
the dominance of the Laplace pressure (i.e., the static surface tension) over the surface shear
viscosity in curved surface films—a comparison that is entirely masked in planar surfaces! In
ultrasound contrast applications, acoustic driving frequencies around 1 MHz would easily outpace
this relaxation process (i.e., the Peclet number Pe � Pe∗), producing highly anisotropic, oscillating
bubbles with inhomogeneous surface curvature similar to observations by Dollet and coworkers
[9]. By comparison, the timescale for domain shape relaxation is quite slow, τV ≈ 0.5 ks, due
to the small line tension λ between the chemically similar (but structurally distinct) surface
phases of DPPC. Noncircular domain shapes could, therefore, be realized with modest driving
frequencies; e.g., 1 Hz is a typical breathing frequency for human lungs [corresponding to a
capillary number Ca � Can up to n = O(1000)]. This outcome further justifies our original insight
to focus on only the slowest frequencies when analyzing the linear stability of circular domain
shapes.

In addition to making quantitative predictions of relaxation processes in curved surface films,
our theory also provides useful insight into the micro-scale physics underlying these processes.
For instance, our analysis of axisymmetric curvature deformations of a surface-viscous domain
revealed the large increase in stress across a thin boundary layer near the domain border when
oscillated at high frequency [Fig. 3 and Eqs. (32)–(34)]. Moreover, we found that the amplitude
of these deformations is maximized at an intermediate Peclet number ≈3 Pe∗ that is solely a
function of the equilibrium cap angle α0 [Fig. 4 and Eq. (36)]. When analyzing nonaxisym-
metric perturbations to the domain shape, we revealed a linear instability whereby the surface
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flow induced by compressing the domain surface (i.e., increasing its curvature) amplifies the
perturbations (Fig. 6). The opposite (stabilizing) effect occurs when the surface is expanded rather
than compressed. Important distinctions from the classical Saffman-Taylor instability—that is, the
fingering of an inviscid fluid being injected into a viscous medium—were discussed at the end of
Sec. III B.

Although the results presented in this paper were entirely theoretical, various experimental
avenues exist for testing our predictions. The state-of-the-art apparatus for measuring the dynamic
surface behavior of DPPC and other surfactants on spherical fluid interfaces of diameters less
than 1 mm is the microbubble tensiometer [65–75]. In this measurement technique, a bubble
surface coated with surfactant is oscillated by sinusoidally modulating the capillary pressure
(typical frequencies less than 1 Hz) while simultaneously monitoring the surface shape via optical
microscopy. If the condensed (domain) and expanded (continuum) phases of the surfactant are
optically distinguishable (e.g., by binding a fluorescent tag to a trace component that preferentially
segregates to the expanded phase), then such a technique could be used to investigate the stability
of surface domains by confocal sectioning of the bubble surface. The key prediction to test is
the instability criterion Ca > Can [see Eq. (66)], which requires at a minimum estimates for the
line tension λ and surface shear viscosity ηs of the domains. This strategy is limited, of course, by
the scanning rate of the confocal microscope as well as the challenges associated with optically
tracking a moving interface with varying curvature.

As the microbubble tensiometer is practically limited to slow frequencies (less than 1 Hz), it is
inadequate for studying the high-frequency dynamics that generate anisotropic bubble curvatures.
Ultrasound driving frequencies (∼1 MHz) are better suited to this task, supplemented by a method to
visualize the domain surface microstructure under static conditions. Here, the criterion (to be tested)
for nonspherical surface oscillations is Pe � Pe∗ [see Eq. (36)], which depends upon the static
surface tension γ0 and surface shear viscosity ηs of the domain phase. Additionally, a frequency
sweep of the shape response could reveal interesting non-monotonic behavior such as that reported
in Fig. 4. Similar techniques have been used to analyze inertially driven, nonspherical bubble
oscillations [9].

Of course, any attempts at validating or verifying the predictions presented in this paper must
also take into account the limitations of (and assumptions behind) the present theory. First, there are
several physical processes that are neglected in our theory that nevertheless play an important role in
real surfactant systems. One important example is the phase condensation or melting processes that
can occur when a surfactant monolayer is compressed or expanded, respectively. Such processes
are driven by a mismatch in chemical potential between the surface-viscous and surface-inviscid
phases when forced out of equilibrium. Several authors [76] have examined the coupled processes
of surface-incompressible fluid flow and phase transfer through Stefan- and Gibbs-Thomson-type
boundary conditions, but these are beyond the scope of the present paper. In our theory, we have
assumed that the surface-viscous domain maintains a constant surface area and, therefore, no such
mass transfer occurs between it and the surface-inviscid phase. This assumption is almost certainly
an oversimplification for typical driving frequencies, because the rate of phase transfer is usually
quite fast. We do not expect phase transfer to significantly impact the curvature deformations
predicted by our axisymmetric model, for the following reason: At high enough frequencies,
surface-viscous stresses would eventually overwhelm any stresses generated by an imbalance in
chemical potential, the latter of which are primarily dictated by the amplitude (less so the rate) of
compression or expansion. However, we do expect that phase transfer could qualitatively impact
the growth of angular, wavelike distortions of the domain perimeter, due to the inhomogeneous
mass-transfer fluxes that are established at the crests and troughs of the waves. This diffusive
mechanism is the basis for the Mullins-Sekerka fingering instabilities that have been previously
reported for surfactant domains [77–82]. By neglecting phase transfer, we have implicitly assumed
that the typical size R0α0 of the domain considered in this paper is smaller than the critical nucleus
size for diffusive fingering [83].
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Besides phase transformation processes, our model also neglects the electrostatic dipole forces
that are known to play a role in phase-coexisting surfactant systems [14,84–86]. These repulsive
forces inhibit the coarsening and coalescence of condensed domains and destabilize circularly
symmetric domain shapes. In their absence, line tension λ drives domains to coarsen (i.e., Ostwald
ripen) and remain symmetric. Thus, a competition between a 2D Laplace pressure (due to λ) and an
apparently negative, electrostatic pressure determines the equilibrium domain morphology in both
planar [84,85,87] and curved [88] surfaces. In our theory, we have assumed a line-tension-dominant
morphology whereby the static domain shape is circular and interactions with other domains in the
surface are neglected. In this regime, we do not expect electrostatic forces to qualitatively impact
the dynamics.

Other simplifications were invoked at the outset to focus only on the essential physics without
convoluting the main results. Nevertheless, these simplifications limit the applicability of our model
to a wider parameter space and, for that reason, merit some discussion. For one, the only dissipative
process that was considered is attributed to the surface-viscous stresses within the domain itself.
Bulk viscous stresses, which were mentioned briefly in the paragraphs following Eq. (6), could also
contribute to momentum dissipation if the Boussinesq number Bq is of O(1). Related to this is the
presumption of a surface-inviscid exterior phase surrounding the domain, which was motivated by
the large disparity in surface viscosities between fully condensed and expanded surfactant films
[21]. In reality, accounting for the small (but finite) exterior surface viscosity could attenuate the
relaxation dynamics predicted by our theory. However, this effect is expected to be more quantitative
than qualitative.

A more consequential modification of the present model would include a finite dilatational
viscosity κs of the surface domain phase, allowing it to compress or expand in addition to shear.
In Eq. (4), surface-area incompressibility was implicitly assumed provided that the dilatational
timescale,

τK ≡ 4κsα
2
0

γ0
, (68)

is sufficiently large. This is generally a good assumption for condensed phases of surface-adsorbed,
insoluble surfactants (e.g., DPPC), which are shearable but only weakly compressible in the mono-
layer surface. When this condition is not met, however, then the incompressibility equation [Eq. (4)]
has to be replaced by a mass-conservation equation governing the evolution of the surface mass
density ρs(θ, φ, t ),

∂ρs

∂t
+ ∇s · (ρsvs) + 2ρs

R0

∂R

∂t
= 0, (69)

and the Boussinesq-Scriven constitutive law [Eq. (5)] must be modified to include the dilatational
stresses,

σs = γ δs + ηs[(∇svs) · δs + δs · (∇svs)� − (∇s · vs)δs] + κs

(
∇s · vs + 2

R0

∂R

∂t

)
δs, (70)

along with a suitable equation of state relating ρs to the (thermodynamic) surface tension γ . Using
Eqs. (69) and (70), the tangential momentum equation [Eq. (6)] is modified to read

δs · (∇s · σs) = ∇sγ + ηsδs ·
(

∇2
s vs + 2vs

R2
0

)
− κs∇sΔ = 0, (71)

where

Δ ≡ d ln ρs

dt
= 1

ρs

(
∂ρs

∂t
+ vs · ∇sρs

)
= −∇s · vs − 2

R0

∂R

∂t
(72)

is the rate of surface dilatation. Equations (69)–(71) simplify to (4)–(6) when ρs = constant.
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We have analyzed the general problem of surface-compressible, viscous domains with surface
viscosities κs and ηs in the linear-response limit of a weak, sinusoidal pressure forcing, assuming
that the thermodynamic tension is approximately equal to the static tension (γ ≈ γ0). Here, we will
briefly summarize some key results (the details of our analysis can be found in Appendix D). We
find that mass diffuses along the surface with a modified diffusion coefficient

D = γ0R2
0

ζs
, (73)

and an effective viscosity given by

ζs = 4κsηs

κs + ηs
. (74)

The latter quantity is equivalent to the Young’s viscosity of thin, continuum sheets. We also find
that our predictions for the frequency-dependent relaxation of surface curvature and tension remain
valid if we simply redefine the Peclet number as

Pe ≡ ωR2
0

D
= ωζs

γ0
, (75)

with the Young’s viscosity ζs given by Eq. (74). Taking the incompressible limit as ωκs/γ0 → ∞
while holding ωηs/γ0 finite recovers our original definition of the Peclet number, Pe = 4ωηs/γ0

[see Eq. (16)]. In this regime, all our previous analyses of axisymmetric deformations can be applied
directly without further modification. In the opposite limit as ωκs/γ0 → 0, where resistance to areal
compression is negligible, Pe = 0 and so the curvature of the domain relaxes as though it were a
surface-inviscid, gaseous phase. In this respect, compliance to either surface dilatation (ωκs/γ0 �
1) or surface shear (ωηs/γ0 � 1) effect similar dynamics: in both regimes, the Peclet number Pe �
1. This is intuitive if we interpret Eq. (74) as the effective resistance of an equivalent circuit with
resistive elements κs and ηs arranged in parallel. Diffusion (i.e., the current) through the circuit
always takes the path of least resistance, favoring either dilatation (κs) or shear (ηs) depending
on which is the softer element. Only when both the shear and dilatational viscosities are large
compared to γ0/ω (i.e., Pe � 1) will the curvature cease to relax on O(ω−1) timescales. In most
condensed surfactant systems of interest, the surface shear viscosity ηs is expected to limit the
high-frequency dynamics and, therefore, our simplified model of surface-incompressible domains is
appropriate.

The related problem of analyzing the circular shape instability of surface-compressible domains
with finite dilatational viscosity remains open to future investigation. Without performing a de-
tailed calculation, it is straightforward to deduce that the surface flow produced by an increase
in curvature will accelerate radially outward from the domain center, irrespective of its viscous
properties. This leads us to surmise that the basic mechanism of instability will be similar to the one
discussed previously (see Fig. 6), wherein a positive velocity gradient amplifies shape perturbations
above a critical deformation rate. However, the exact instability criterion, including specification of
the mode-dependent, critical capillary number Can, requires more thorough analysis and is beyond
the scope of the present study.

Finally, our model has focused entirely on surface-viscous domains, neglecting the elastic (or
viscoelastic) behavior that is frequently observed in a variety of surfactant systems (e.g., those that
form cohesive networks and surface gels [89,90]). Extending this model to linearly viscoelastic
domains is trivial via Pipkin’s correspondence principle [91]. For instance, the purely viscous
moduli iωηs and iωκs that characterize the linear frequency dynamics can be replaced, respectively,
by the complex surface shear modulus G∗

s and dilatational modulus E∗
s . The real (elastic) and

imaginary (viscous) parts of these moduli reflect, respectively, the ability of the surface domain to
store or dissipate energy under either shear or compression. Ultimately, the amplitude of the surface
Young’s modulus Y ∗

s = 4E∗
s G∗

s /(E∗
s + G∗

s ) [the linear-viscoelastic analog of iωζs from Eq. (74)]
determines the frequency dependence of the linear response, with the Peclet number [Eq. (75)]

054001-19



JOSEPH M. BARAKAT AND TODD M. SQUIRES

redefined appropriately in terms of |Y ∗
s |. In mimicking heterogeneous, viscoelastic surfactants, a

more faithful model might also have to account for the surface moduli of the exterior, embedding
phase (in addition to those of the domain phase). This, in turn, would add four more material
functions (the real and imaginary parts of the shear and dilatational moduli) that must be specified
in the model.

Less trivial (and more interesting) differences between viscous and viscoelastic materials emerge
if we look beyond the linear-response limit to nonlinear curvature deformations. Nonlinear effects
were briefly discussed at the end of Sec. III A in the context of wrinkling and buckling instabilities
that can emerge in viscous sheets deformed at a rapid rate. In elastic materials, stresses due to
geometric nonlinearities emerge when the material is strained by an appreciable degree from its
stress-free or reference state, regardless of the rate of straining. (Small strains are still required
for material nonlinearities to be safely neglected.) Such nonlinearities are generally unimportant
for surface-viscous materials, whose stresses admit a linear dependence on the velocity gradients
[see Eq. (5)]. By contrast, the stresses in surface-elastic materials are history dependent and can
depend nonlinearly on the displacement gradients for large enough departures from the reference
surface. Our model implicitly assumes a reference spherical surface of radius R0 under a static
pressure p0, so Eq. (3) accurately captures the incremental displacement δR that results from a
small pressure perturbation δp. In this linearized regime, the differential operators in the mass and
momentum conservation equations [Eqs. (4)–(6) and their linear-viscoelastic analogs] are evaluated
on the reference sphere. For large enough pressure perturbations, deviations from this reference
surface become significant and, in the case of elastic materials, nonlinear strains cannot be neglected
in the constitutive model.

V. CONCLUSIONS

In summary, our model of a two-phase surface undergoing a time-varying curvature deformation
reveals several interesting phenomena that are absent in planar or homogeneous interfaces. Domains
with large surface shear viscosity resist changes in curvature compared to a surface-inviscid phase.
Consequently, the curvature of a two-phase surface can become heterogeneous upon sufficiently
rapid deformation. We showed that the curvature of surface-viscous domains relaxes diffusively on
a timescale set by the surface tension (or Laplace pressure). Additionally, large domains are prone
to a symmetry-breaking shape instability under (relatively slow) compression. The growth of such
instabilities is retarded by line tension.

Future work could generalize our model to more exotic two-phase and multiphase mor-
phologies, as well as nonspherical curved geometries. In such generalizations, the key physical
ingredient of our model to be preserved is the varying Gaussian curvature, which (through surface-
incompressibility) induces the 2D Stokes flows that produce interesting and nontrivial dynamics.
Our study focused on spherical surfaces (with positive Gaussian curvature), but various nonspherical
surfaces including conical threads and hyperboloids (with negative Gaussian curvature) have clear
engineering applications. Finally, constitutive models with history-dependent surface rheology,
including elasticity and viscoelasticity, could qualitatively impact the dynamics of our model and
merit future investigation.
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APPENDIX A: DERIVATION OF THE SURFACE DIFFUSION EQUATIONS

Equations (9) and (10) may be derived from Eqs. (3), (4), and (6) as follows. Taking the surface
divergence of the tangential momentum equation [Eq. (6)] gives

∇2
s γ + ηs

(
∇2

s (∇s · vs) + 2

R2
0

(∇s · vs)

)
= 0. (A1)

Then, the incompressibility equation [Eq. (4)] is used to eliminate the surface dilatation rate (∇s · vs)
from Eq. (A1):

∇2
s γ − 2ηs

R0

∂

∂t

(
∇2

s R + 2R

R2
0

)
= 0. (A2)

Equation (A2) is a second relationship between the surface tension γ and the surface curvature
perturbation ∇2

s R + 2R/R2
0, the first being the normal momentum equation [Eq. (3)]. Eliminating

∇2
s R + 2R/R2

0 between Eqs. (3) and (A2) results in Eq. (9), whereas eliminating γ gives Eq. (10).

APPENDIX B: SINGULAR PERTURBATION ANALYSIS FOR LARGE PECLET NUMBER

Equations (32)–(34) may be derived by matched asymptotic expansions, assuming a boundary
layer of O(Pe− 1

2 ) thickness near the edge of the spherical cap [at θ = α0]. In the outer region
far from the boundary layer, the O(Pe−1) term in Eq. (23) may be neglected to leading order.
The velocity field is then determined by solving a homogeneous equation with symmetry at the
centerline,

δv̄o
θ = [a0 + (iPe)−

1
2 a1] sin θ + O(Pe−1), (B1)

where the superscript “o” denotes the outer solution and the constants a0, a1 associated with the first
two terms in the expansion must be determined by matching to the corresponding inner solution.
Substituting Eq. (B1) into (22) then yields the outer expansion for the cap radius,

δR̄o = −[a0 + (iPe)−
1
2 a1] cos θ + O(Pe−1), (B2)

and subsequently inserting Eq. (B2) into (21) gives the particular solution for the surface tension:

δγ̄ o = δ p̄ + O(Pe−1). (B3)

The outer expansions fail to satisfy the boundary conditions at θ = α0. This problem may be
rectified by stretching the independent variable,

Θ = (iPe)
1
2 (α0 − θ ), (B4)

and solving a boundary-layer problem over the inner region 0 � Θ < ∞. In this region, the tension
grows exponentially in order to compensate for the rapid change in curvature across the boundary
layer. This exponential growth is most easily seen by rescaling the surface tension as

δΓ̄ = (iPe)−
1
2 δγ̄ (B5)

and rescaling the surface diffusion equation [Eq. (9)] for the inner region:

d2δΓ̄

dΘ2
− δΓ̄ + (iPe)−

1
2

(
δ p̄ − cot α0

dδΓ̄

dΘ

)
= O(Pe−1). (B6)

[This expression replaces Eq. (4) to enforce local surface incompressibility.] The solution up to
O(Pe−1) is

δΓ̄ i = b0e−Θ + (iPe)−
1
2
{
δ p̄ + [

b1 + 1
4 b0(cot α0)(1 + 2Θ )

]
e−Θ

} + O(Pe−1), (B7)
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where the superscript “i” denotes the inner solution and b0, b1 are two new constants of integration.
Equation (B7) clearly reveals the exponential variation in surface tension across the boundary layer
and may be used to determine the inner expansions for δR̄ and δv̄θ . The latter obey the stretched
momentum balance equations [see Eqs. (21) and (23)],

d2δR̄

dΘ2
− (iPe)−

1
2

(
δΓ̄ + cot α0

dδR̄

dΘ

)
= O(Pe−1), (B8)

d2δv̄θ

dΘ2
− (iPe)−

1
2 cot α0

dδv̄θ

dΘ
= O(Pe−1), (B9)

subject to the surface stress boundary conditions at Θ = 0 [see Eq. (25)]:

dδR̄

dΘ
= 0,

dδv̄θ

dΘ
+ (iPe)−

1
2 δv̄θ cot α0 = O(Pe−1). (B10)

Substituting Eq. (B7) into (B8) for δΓ̄ and sequentially integrating Eqs. (B8) and (B9) with the
boundary conditions Eqs. (B10) then gives the inner expansions,

δR̄i = c0 + (iPe)−
1
2 [c1 + 2b0(Θ + e−Θ )] + O(Pe−1), (B11)

δv̄i
θ = −c0 tan α0 − (iPe)−

1
2 (c1 tan α0 − c0Θ ) + O(Pe−1), (B12)

with two new integration constants c0, c1 to be determined from matching to the outer solution.
Applying an integral force balance on the cap [see Eq. (28)] gives the final boundary condition,

δR̄i = −δ p̄ at Θ = 0, (B13)

which ensures that the surface is continuous across the interphase boundary. Using Eqs. (B11) and
(B13), this leads to the additional constraints:

c0 = −δ p̄, c1 = −2b0. (B14)

Matching between the outer and inner solutions may be performed using van Dyke’s matching
rule [92]. First, we express the outer in terms of inner expansions by Taylor-expanding Eqs. (B1)-
(B3) about θ = α0 and rewriting the expansions in terms of the inner variable [Eq. (B4)]:(

δv̄o
θ

)i = a0 sin α0 + (iPe)−
1
2 [a1 sin α0 − (a0 cos α0)Θ] + O(Pe−1), (B15)

(δγ̄ o)i = δ p̄ + O(Pe−1), (B16)

(δR̄o)i = −a0 cos α0 − (iPe)−
1
2 [a1 cos α0 + (a0 sin α0)Θ] + O(Pe−1). (B17)

Similarly, the inner in terms of outer expansions are obtained by evaluating Eqs. (B7), (B11), and
(B12) in the limit as Θ → ∞, wherein the exponential terms die off:(

δv̄i
θ

)o = −c0 tan α0 − (iPe)−
1
2 (c1 tan α0 − c0Θ ) + O(Pe−1), (B18)

(δΓ̄ i )o = (iPe)−
1
2 δ p̄ + O(Pe−1), (B19)

(δR̄i )o = c0 + (iPe)−
1
2 (c1 + 2b0Θ ) + O(Pe−1). (B20)

Applying the matching conditions, (
δv̄o

θ

)i = (δv̄i
θ )o, (B21)

(δγ̄ o)i = (iPe)
1
2 (δΓ̄ i )o, (B22)

(δR̄o)i = (δR̄i )o, (B23)

and equating terms of like order in Θ and Pe− 1
2 leads to the set of simultaneous equations,

a0 cos α0 = −c0, a1 cos α0 = −c1, a0 sin α0 = −2b0. (B24)
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Solving Eqs. (B14) and (B24) then gives

a0 = δ p̄

cos α0
, a1 = δ p̄ tan α0

cos α0
, b0 = −1

2
δ p̄ tan α0,

c0 = −δ p̄, c1 = δ p̄ tan α0,

}
, (B25)

with only the constant b1 [appearing in Eq. (B7)] left undetermined at this order. It is then
straightforward to show that insertion of Eqs. (B1)–(B3), (B7), (B11)–(B12), (B15)–(B17), and
(B25) into the composite expansions,

δv̄θ = δv̄o
θ + δv̄i

θ − (
δv̄o

θ

)i
, (B26)

δγ̄ = δγ̄ o + (iPe)
1
2 δΓ̄ i − (δγ̄ o)i, (B27)

δR̄ = δR̄o + δR̄i − (δR̄o)i, (B28)

leads directly to Eqs. (32)–(34) in the main text.

APPENDIX C: GENERAL SOLUTION FOR THE PERTURBATION FLOW ON A SPHERE

In this Appendix, we derive a general solution of Eqs. (50) and (51) that is forced by an n-fold
harmonic distortion of the domain perimeter [Eq. (52)]. First, by linearity of the surface Stokes
equations, we may express δψ and δγ in the separated form

δψ (θ, φ, t ) = δψn(θ )δαn(t )einφ, (C1)

δγ (θ, φ, t ) = δγn(θ )δαn(t )einφ, (C2)

with n = ±2,±3, . . . . Then, substituting Eqs. (C1)–(C2) into (50) and (51) yields a set of ordinary
differential equations for the amplitude functions δψn(θ ) and δγn(θ ):

L0|nL1|nδψn = 0, (C3)

L0|nδγn = 0, (C4)

where we have defined the associated Legendre operator,

Ll|n ≡ d2

dθ2
+ cot θ

d

dθ
+ l (l + 1) − n2 csc2 θ. (C5)

For the sake of simplicity, we shall focus on only the positive modes (n � 2), with the under-
standing that the negative modes for real-valued functions are obtained via complex conjugation.
The eigenfunctions f +

l|n(θ ) and f −
l|n(θ ) associated with the operator defined by Eq. (C5) satisfy the

homogeneous equation,

Ll|n f ±
l|n(θ ) = 0, (C6)

and, for n > l (assuming n is positive), are given explicitly by Hobson [93]:

f ±
l|n(θ ) = (±1)nn sinn θ

∫ ±∞

±1

Pl (x)

(x − cos θ )n+1
dx. (C7)

Of particular interest are the eigenfunctions of degrees l = 0,

f +
0|n(θ ) = cotn

(
1
2θ

)
, (C8)

f −
0|n(θ ) = tann

(
1
2θ

)
, (C9)
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and l = 1:

f +
1|n(θ ) = (cos θ − n) cotn

(
1
2θ

)
1 − n

, (C10)

f −
1|n(θ ) = (cos θ + n) tann

(
1
2θ

)
1 − n

. (C11)

Clearly, f +
0|n(θ ) and f −

0|n(θ ) are eigenfunctions of Eqs. (C3) and(C4). Two additional eigenfunctions
of Eq. (C3), denoted by g+

1|n(θ ) and g−
1|n(θ ), are obtained by the method of variation of parameters:

g±
1|n(θ ) = 1

2n

(
f −
0|n(θ )

∫ θ

f +
0|n(θ ′) f ±

1|n(θ ′) sin θ ′ dθ ′ − f +
0|n(θ )

∫ θ

f −
0|n(θ ′) f ±

1|n(θ ′) sin θ ′ dθ ′
)

.

(C12)

Inserting Eqs. (C8)–(C11) into (C12) and evaluating the indefinite integrals over θ ′ gives

g+
1|n(θ ) = sin2

(
1
2θ

)
cotn

(
1
2θ

)
1 − n

, (C13)

g−
1|n(θ ) = sin2

(
1
2θ

)
tann

(
1
2θ

)
1 − n

. (C14)

In summary, a general solution for δψn is obtained from a linear combination of f +
0|n, f −

0|n, g+
1|n

and g−
1|n:

δψn(θ )

iεR2
0

=
[

an − cn sin2

(
1

2
θ

)]
cotn

(
1

2
θ

)
+

[
bn − dn sin2

(
1

2
θ

)]
tann

(
1

2
θ

)
, (C15)

where we have deliberately factored out iεR2
0 so the constants an, bn, cn, and dn are dimensionless.

Similarly, the general solution for δγn is a linear combination of f +
0|n and f −

0|n,

δγn(θ )

εηsR0
= en cotn

(
1

2
θ

)
− fn tann

(
1

2
θ

)
, (C16)

where εηsR0 has been factored and en and fn are additional constants. The unknown constants an,
bn, cn, dn, en, and fn are not linearly independent—they are coupled through the two independent
components of the momentum conservation equation [Eq. (6)]. Indeed, this equation is only satisfied
if

en = 1
2

[
an + 1

2 (n − 1)cn
]

fn = 1
2

[
bn − 1

2 (n + 1)dn
]
}

. (C17)

It is then straightforward to show that Eqs. (C1) and (C2) and (C15)–(C17) lead directly to Eqs. (53)
and (54) in the main text.

APPENDIX D: EFFECT OF FINITE DILATATIONAL VISCOSITY

The results presented in Sec. III A were derived under the assumption of surface incompress-
ibility. In this Appendix, we revisit this problem for a surface-compressible domain with a finite
surface dilatational viscosity κs. The crucial difference comes from replacing the surface momentum
and mass balance equations [Eqs. (4)–(6)] with their more general forms, Eqs. (69)–(71). This
replacement introduces the surface mass density ρs(θ, φ, t ) as an additional dependent variable, as
well as a new timescale τK [see Eq. (68)] that reflects the characteristic relaxation time for surface
dilatation. We further assume that the (thermodynamic) tension in the surface-viscous domain is
approximately equal to the static tension,

γ ≈ γ0, (D1)
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which eliminates the need for an additional equation of state relating γ and ρs. In other words, the
approximation given by Eq. (D1) neglects the Marangoni effect—the thermodynamic tendency of
surface tension to change in response to a change in the surface mass density. Since γ is taken to
be a constant, the areal stress admits a purely viscous response to the dynamic pressure oscillation
prescribed by Eq. (15).

Under conditions of axial symmetry and time-harmonic linear response, the surface mass density
can be expressed in a form similar to Eqs. (17)–(20),

ρs(θ, t ) = ρ0 + δρ(θ )eiωt , (D2)

where ρ0 is the initial density and δρ is the linear perturbation amplitude. We render the density
perturbation dimensionless as δρ̄ = δρ/ρ0 and define two Peclet numbers for surface shear and
dilatation:

Peη = 4ωηs

γ0
, Peκ = 4ωκs

γ0
. (D3)

The governing equations conserving surface mass and momentum [Eqs. (21)–(23)] are then replaced
by

d2δR̄

dθ2
+ cot θ

dδR̄

dθ
+ 2δR̄ + iPeκ

2
δρ̄ = −2δ p̄, (D4)

dδv̄θ

dθ
+ δv̄θ cot θ + 2δR̄ + δρ̄ = 0, (D5)

d2δv̄θ

dθ2
+ cot θ

dδv̄θ

dθ
+ (1 − cot2 θ )δv̄θ − Peκ

Peη

dδρ̄

dθ
= 0. (D6)

The boundary and integral conditions [Eqs. (24)–(28)] are similarly replaced by

δv̄θ = 0,
dδρ̄

dθ
= 0,

dδR̄

dθ
= 0 at θ = 0, (D7)

dδR̄

dθ
= 0,

dδv̄θ

dθ
− δv̄θ cot θ − Peκ

Peη

δρ̄ = 0 at θ = α0, (D8)

δv̄θ = δα at θ = α0, (D9)∫ α0

0
(2δR̄ + δρ̄ ) sin θ dθ + δα sin α0 = 0, (D10)

δR̄ = −δ p̄ at θ = α0. (D11)

Equations (D4)–(D11) comprise a new boundary-value problem for the response functions δv̄θ (θ ),
δR̄(θ ), and δρ̄(θ ). Taking the limit as Peκ → ∞ while keeping

δγ̄ = − iPeκ

4
δρ̄ (D12)

finite reduces these equations to the original boundary-value problem given by Eqs. (21)–(28).
Following a similar set of algebraic steps as in Appendix A, Eqs. (D4)–(D6) may be combined

to eliminate δv̄θ and δR̄ and yield a master equation for the density perturbation δρ̄:(
1

iPeκ

+ 1

iPeη

)
1

sin θ

d

dθ

(
sin θ

dδρ̄

dθ

)
−

(
1 − 2

iPeκ

)
δρ̄ = 4

iPeκ

δ p̄. (D13)

This equation has the form of a one-dimensional diffusion-reaction equation in the frequency
domain. It is analogous to the surface diffusion equation [Eq. (9)] previously derived for the surface
tension in the incompressible limit. Significantly, the first (diffusive) term on the left-hand side of
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Eq. (D13) motivates the definition of an effective Peclet number,

Pe = 1

Pe−1
κ + Pe−1

η

= 4ωκsηs

γ0(κs + ηs)
≡ ωR2

0

D
, (D14)

where

D = γ0R2
0(κs + ηs)

4κsηs
(D15)

is a new diffusion coefficient. Comparing Eqs. (D15) and (11) reveals that the viscous coefficient
4ηs in the denominator has been replaced by 4κsηs/(κs + ηs). The latter quantity is equivalent to the
Young’s viscosity of thin, continuum sheets.

In Sec. III A, solutions of the one-dimensional boundary-value problem were analyzed in various
limits of the Peclet number. In a similar way, several important limits of Eqs. (D4)–(D11) can be de-
duced in terms of Peη and Peκ . For instance, simultaneously taking Peκ � 2π/α2

0 and Peη � 2π/α2
0

recovers our previous asymptotic expansions for a weakly sheared, but incompressible, surface
domain [see Eqs. (29)–(31) with δγ̄ given by Eq. (D12)]. Another interesting limit is the one in
which resistance to surface dilatation is weak: Peκ � 2π/α2

0 and Peη = O(1). This limit admits the
following (regular) perturbation series in ascending powers of Peκ :

δv̄θ (θ )

δ p̄
= 3

2

(
(1 + cos α0) sin θ

1 + cos α0 + cos2 α0

)
+ O(Peκ ), (D16)

δρ̄(θ )

δ p̄
= 2 − 3

(
(1 + cos α0) sin θ

1 + cos α0 + cos2 α0

)
+ O(Peκ ), (D17)

δR̄(θ )

δ p̄
= −1 − iPeκ

2

(
(1 + cos α0) cos α0

1 + cos α0 + cos2 α0

)[
cos θ

cos α0
ln

(
1 + cos θ

1 + cos α0

)
+ cos α0 − cos θ

1 + cos α0

]

+ O
(
Pe2

κ

)
. (D18)

Thus, an O(1) surface dilatation induces an O(Peκ ) out-of-phase response to the surface shape.
Since the areal strain is O(1) according to Eq. (D17), the (viscous) areal stress must be of O(Peκ ).
Thus, both the small-Peκ and small-Peη limits give rise to a weakly viscous surface stress response,
as expected.

The final limit of interest is one in which both Peκ and Peη are large: Peκ � 2π/α2
0 and

Peη � 2π/α2
0 . This is a singular limit and, therefore, requires the application of matched asymptotic

expansions. If we define the surface tension perturbation δγ̄ according to Eq. (D12) and treat the
effective Peclet number of Eq. (D14) as a large parameter, Pe � 1, then the singular perturbation
analysis of Eqs. (D4)–(D11) follows exactly that of Appendix B. The resulting expansions for δv̄θ ,
δγ̄ , and δR̄ are given in the main text [Eqs. (32)–(34)].

The above results for finite surface dilatational viscosity neglect the role of surface dilatational
elasticity. In surfactant systems, dilatational elasticity generally emerges through the (thermody-
namic) Gibbs modulus Es, which characterizes the strength of Marangoni stresses. Since our model
assumes a linear response, elastic effects for both shear and dilatation can be easily incorporated by
generalizing the viscous moduli iωηs and iωκs to their complex-valued analogs, G∗

s and E∗
s , through

Pipkin’s correspondence principle [91]. In this way, all our preceding results in the linear-response
regime can be applied to surface-elastic and viscoelastic domains.
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