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Liquid film instability of an internally coated horizontal tube
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We study numerically and theoretically the gravity-driven flow of a viscous liquid
film coating the inner side of a horizontal cylindrical tube and surrounding a shear-free
dynamically inert gaseous core. The liquid-gas interface is prone to the Rayleigh-Plateau
and Rayleigh-Taylor instabilities. Here we focus on the limit of low and intermediate
Bond numbers, Bo, where the capillary and gravitational forces are comparable and the
Rayleigh-Taylor instability is known to be suppressed. We first study the evolution of the
axially invariant draining flow, initiating from a uniform film thickness until reaching a
quasistatic regime as the bubble approaches the upper tube wall. We then investigate the
flow’s linear stability within two frameworks: frozen time-frame (quasisteady) stability
analysis and transient growth analysis. We explore the effect of the surface tension (Bo)
and inertia (measured by the Ohnesorge number, Oh) on the flow and its stability. The
linear stability analysis suggests that the interface deformation at large Bo results in
the suppression of the Rayleigh-Plateau instability in the asymptotic long-time limit.
Furthermore, the transient growth analysis suggests that the initial flow evolution does
not lead to any considerable additional amplification of initial interface perturbations, a
posteriori rationalizing the quasisteady assumption. The present study yields a satisfactory
prediction of the stabilization threshold found experimentally by Duclaux et al. [J. Fluid
Mech. 556, 217 (2006)].

DOI: 10.1103/PhysRevFluids.8.053901

I. INTRODUCTION

The gravity-driven flow of a viscous liquid film coating inside a solid cylinder has received
attention by virtue of its rich dynamics and numerous applications. One major industrial application
of such a flow is in two-phase heat exchangers, like in evaporators [1] and vertical tube condensers
[2], where the dynamics of the gas plugs and capillary blockage affect the heat transfer efficiency and
pressure loss [3,4]. It is also relevant in the airways of the human lung where the coupling between
the moving wall of the airways and the liquid film coating the wall can cause airway closure [5–7].

The liquid-gas interface is prone to different instabilities due to surface tension, shear, gravity,
and inertia, which eventually lead to the emergence of various patterns [8,9]. For instance, the long
column may break apart into distinct plugs separated axially by collars, thus minimizing the surface
energy. This phenomenon is classified in a large family of hydrodynamic instabilities known as
the Rayleigh-Plateau instability [10,11]. Flow characteristics of the viscous film coating the inner
side of a tube depend also on its orientation with respect to gravity. In the case of a vertical tube,
where gravity drives an axial flow, the liquid interface is mainly destabilized by the Rayleigh-Plateau
instability [12]. Different stages of such instability have been investigated through a large number of
numerical and experimental studies. Goren [13] showed analytically that in the absence of inertia,
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the length of plugs is set by the interface radius. Frenkel et al. [14] demonstrated that despite the
growth of small disturbances, nonlinear saturation of instabilities can avoid the rupture of the liquid
film in a certain range of axial flow parameters. Using the long-wavelength approximation, Camassa
et al. [15,16] showed the existence of nontrivial axially traveling waves along the interface when the
film thickness exceeds a critical value. Moreover, these studies describe how plugs form via Hopf
bifurcation as the waves grow, and explore experimentally the absolute/convective properties of the
traveling waves. With this general picture, further studies address the effects of flow parameters on
the dynamics of the flow instability, e.g., air-driven flow [17] and multiple liquid layers [18], wall
porosity [19], Marangoni effect [20], and presence of surfactant [21].

Alternatively, in the case of liquid film coating the inner side of long horizontal or inclined
tubes, where gravity is not orthogonal to the cross section of the tube, a second instability, the
Rayleigh-Taylor instability [22,23], may arise. As a result, the heavy liquid film accelerates into
the light gaseous core in the direction of the gravitational field, thus forming suspended droplets,
moving lenses, or rivulets [24–26], extending the case of a flat overhanging thin liquid film [27].
Therefore, in the case of a horizontal tube, both Rayleigh-Plateau and Rayleigh-Taylor instabilities
may potentially coexist depending on the film thickness [28,29]. Trinh et al. [24] investigated both
experimentally and theoretically, in the absence of any axial flow, the stability of a thin viscous
film that coats the underside of a tube. Focusing on the situations where gravitational forces
dominate surface tension forces, they did not evidence any manifestation of the Rayleigh-Plateau
instability, highlighting that finite wall curvature and sufficiently high surface tension can suppress
the Rayleigh-Taylor instability as the liquid drains. Using a similar flow configuration, and also
employing the lubrication approximation, Balestra et al. [25] showed that when gravity overcomes
capillarity, the linear transient growth of the disturbances can lead to the formation of tiny spanwise
homogeneous traveling waves at the top of the interface, which may pinch or decay as they
travel downward. Balestra et al. [26], however, showed that spanwise periodic (but streamwise
homogeneous) structures called rivulets display significantly larger transient gains, rationalizing
their experimental observations.

By increasing the film thickness and/or the tube curvature, liquid drainage is enhanced and the
Rayleigh-Taylor instability is dampened, thus allowing the Rayleigh-Plateau instability to occur.
Through an experimental investigation of a wider range of film thicknesses, Duclaux et al. [30]
evidenced that when capillary forces dominate over gravity forces, the Rayleigh-Plateau instability
sets in, but when they stop to dominate, the Rayleigh-Plateau instability can be suppressed by
gravity. In this case, liquid drainage is faster than capillarity-induced interface undulations and plug
formation. Hence, gravity and surface tension play dual roles in interface destabilization. While
gravity promotes the Rayleigh-Taylor instability at the top of the interface, it opposes the formation
of hanging droplets by enhancing drainage progressively while draining down the curved substrate.
In contradistinction, surface tension promotes the Rayleigh-Plateau instability, whereas it opposes
the Rayleigh-Taylor instability.

Duclaux et al. [30] complemented their experimental measurements with a theoretical analysis
based on the lubrication theory and assuming a circular interface. This analysis correctly predicted
the scaling of the stability threshold in terms of film thickness and Bond number and qualitatively
captured the increasing trend of the instability wavelength with the initial radius of the liquid-air
interface. It did not, however, achieve a fully satisfactory quantitative agreement. In this study, we set
to investigate accurately how gravity-induced drainage suppresses the Rayleigh-Plateau instability.
Crucially, we consider the full Navier-Stokes equations and take into account the temporal evolution
of the interface. We study the linear instability in two ways: (1) with a linear stability analysis
performed at each instant taken in isolation, assuming that the base flow is “frozen” and (2) with a
transient growth analysis rigorously accounting for the temporal evolution of the base flow.

This paper is structured as follows. The methodology is presented in Sec. II. The problem
formulation and the dimensionless governing equations are presented in Sec. II A, from which
the base flow is deduced and discussed in Sec. II B. In Sec. II C the stability analysis formulation
and the linearized governing equations are elaborated. Then in Sec. II D the formulation of the
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FIG. 1. Schematic of the liquid film coating the inner side of a horizontal tube and the geometrical
parameters. The thick solid black line shows the tube wall of inner radius Rw, which is concentric with the
coordinate reference. Initially surrounded by a constant film thickness, the liquid-gas interface is a cylinder of
radius R, concentric with the tube. The dashed black line represents the perturbed liquid-gas interface of local
radius rint and axial wavelength λR. The inset shows the zoomed cross section of the initial perturbed interface.
The gravitational field acts vertically, perpendicular to the tube axis.

linear transient growth of perturbations is detailed. Corresponding numerical methods are detailed
in Sec. II E. In Sec. III the results of the stability and transient growth analyses are presented and
discussed. Section III A summarizes the effect of different dimensionless parameters on the stability
of the flow: Secs. III A 2 and III A 3 present the effect of surface tension and inertia, respectively,
and Sec. III A 4 presents the linear stability diagram. The results of the transient growth analysis
are presented in Sec. III B and finally, conclusions are drawn in Sec. IV by comparing the linear
stability and transient growth analyses.

II. GOVERNING EQUATIONS AND METHODS

A. Problem formulation

The inner side of a cylindrical tube of radius Rw is coated with a viscous liquid film. The
schematic of the flow is shown in Fig. 1. The standard Cartesian coordinates (x, y, z) are considered
with the origin located at the center of the tube cross section. In-plane coordinates are (x, y) and
the gravity acceleration, g, points in the −y direction. The liquid is Newtonian, of constant dynamic
viscosity μ, surface tension γ , and density ρ, and surrounds a core bubble of inviscid gas of density
much smaller than that of the liquid. The bubble is initially concentric with the tube, and the liquid
film thickness is constant on the wall, h0 = Rw − R, where R denotes the initial bubble radius.

The bubble interface can be parametrized without loss of generality in cylindrical coordinates
(r, θ, z) as rint(t, θ, z) using the tube center as the origin. It will be shown in Sec. III A that it remains
radially representable at later times for all studied cases in the present study. The dimensionless
state vector q = (u, p,Rint )T defines the flow at time t , where u(t, x, y, z) = (ux, uy, uz )T denotes
the three-dimensional velocity field, p(t, x, y, z) denotes the pressure, and Rint = rint/R denotes
the dimensionless interface radius. The state vector and the governing equations are rendered
dimensionless by the intrinsic velocity scale associated with a viscous film of thickness h0 falling
under its weight, inspired from Duclaux et al. [30]. However, we choose differently the length, time,
and pressure scales as follows:

L = R, U = ρgh2
0

μ
= ρgR2

μ
(β − 1)2,

P = γ

R
, T = L

U = μ

ρgR
(β − 1)−2, (1)
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where β = Rw/R denotes the dimensionless tube radius. As a result, the dimensionless value of
the initial film thickness can be expressed as δ = h0/R = β − 1. The flow is governed by the
incompressible Navier-Stokes equations, which in dimensionless form read

∇ · u = 0, (2)(
Bo

Oh

)2

δ4(∂t + u · ∇)u = ∇ · τ − Bo ey, (3)

where ∂ j denotes the partial derivative with respect to quantity j, and the stress tensor τ reads

τ = − pI + Bo δ2(∇u + ∇uT ). (4)

The two other dimensionless numbers which appear in the governing equations are the Ohnesorge
number, Oh = μ/

√
ργ R, and the Bond number, Bo = ρgR2/γ . While Oh compares the viscous

forces to the inertial and surface tension forces, Bo compares the gravitational and surface tension
forces.

The no-slip boundary condition, u = 0, is applied at the tube wall, r = β. At the shear-free
liquid-gas interface, the dimensionless kinematic and dynamic boundary conditions are

∂tRint + (u · ∇)Rint = u · er at r = Rint, (5)

τ · n = κn at r = Rint, (6)

respectively, where er denotes the unit radial vector, n = ∇(r − Rint )/‖∇(r − Rint )‖ denotes the
interface unit normal vector pointing from the gas to the liquid, ‖ · ‖ denotes the Euclidean norm,
and κ = ∇ · n denotes the interface mean curvature.

B. Base flow

The base flow q0(t, x, y) is the two-dimensional time-dependent solution of the Navier-Stokes
equations (2)–(6) initiated from rest at t = 0, with pressure p0(t = 0) = −1 − Bo y, which consists
of a constant contribution from the interface Laplace pressure and a linear hydrostatic term. To
begin, before even presenting the numerical tools in Sec. II E, we build up the intuition about the
flow by presenting an illustrative example of the base flow evolution in Fig. 2 for a case where
surface tension dominates gravity, Bo = 0.05, and a thick initial film, δ/β = 0.3, considering the
quasi-inertialess limit when Oh → ∞. The liquid drains around the core bubble under gravity, and
consequently, the bubble moves upwards under the buoyancy effect. The dynamics of the base flow,
presented in Figs. 2(b) and 2(c), can be characterized by quantifying the liquid film thickness and the
vertical velocity at the north pole of the bubble (N , hereafter referred to as the north pole), where the
strongest gravitational effects are expected [24]. In the quasi-inertialess limit, Oh → ∞, drainage
begins with an immediate upward drift of the bubble [denoted as t = 0+ in Fig. 2(a)]. Drainage and
hence the rising velocity of the bubble decrease with time, as the bubble approaches the top side of
the tube.

C. Linear stability analysis

Since the base flow presented in Sec. II B is time-dependent, in order to perform the linear
stability analysis, we look at the frozen frames of the unperturbed flow, from which we investigate
the evolution of small perturbations applied to each time frame t0, sequentially. Here we assume
that the perturbations evolve much faster than the base flow itself, such that within their evolution,
the base flow can be approximated as quasisteady, an assumption to be verified a posteriori in
Sec. III A 4. To this aim, the state vector q = (u, p,Rint )T is decomposed into the sum of the frozen
base flow solution q0, and the infinitesimal time-dependent perturbation q1 = (u1, p1, η1)T , written
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FIG. 2. Base flow evolution: (a) Snapshots of the flow field: color map shows the velocity magnitude,
arrows show the liquid velocity field, and the point N marks the north pole of the bubble, θ = π/2; (b) temporal
variation of the relative liquid film thickness at N ; (c) film thickness variation as a function of the vertical
velocity at N . Oh → ∞, Bo = 0.05, δ/β = 0.3.

as

q = q0|t0 + εq1 + O(ε2), ε � 1, (7)

where the amplitude ε is assumed to be small. The ansatz of the perturbation q1 with the longitudinal
wave number k (associated with the wavelength λ = 2π/k) reads

q1 = q̃(x, y) exp(σ t + ikz) + c.c., (8)

where c.c. denotes the complex conjugate. Any other function in terms of the state vector can be
decomposed in the same fashion, e.g., τ = τ 0 + ετ 1, n = n0 + εn1 and κ = κ0 + εκ1. For further

details about the formulation of n1 and κ1, see Appendix C. In the asymptotic limit of large
times, a normal eigenmode perturbation with complex eigenvalue σ = σr + iσi, is considered as
unstable if σr > 0, i.e., if σ lies in the unstable complex half-plane. An unstable eigenmode grows
exponentially in time with the growth rate σr (unless otherwise noted, the indices r and i denote
the real and imaginary parts of a complex number, respectively). By casting the perturbed state (7)
into the governing Eqs. (2) and (3), and keeping the first-order terms, the linearized equations are
obtained as

∇ · u1 = 0, (9)(
Bo

Oh

)2

δ4[∂t u1 + (u0 · ∇)u1 + (u1 · ∇)u0] = ∇ · τ 1. (10)
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The no-slip condition implies ũ = 0 on the solid wall. The interface conditions (5) and (6), applied
on the perturbed liquid interface, can be projected radially onto the base interface and ultimately
linearized, a process called flattening [see (A1) in Appendix A]. The linearized kinematic condition
can be expressed as

σ η̃ +
(

−∂ru0
r + ∂ru0

θ ∂θR0
int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2
)

η̃ + u0
θ

R0
int

∂θ η̃︸ ︷︷ ︸
−G0η̃

+ ∂θR0
int

R0
int

ũθ = ũr at r = R0
int, (11)

where (u0
r , u0

θ )T and (ũr, ũθ )T denote the velocity vectors of the base state and perturbations,
respectively, represented in the cylindrical coordinates. Introducing an eigenstate vector of the form
(8) into (9) and (10), combined with (11), leads to a generalized eigenvalue problem for σ and q̃:

Lq̃ + c.c. = σBq̃ + c.c., (12)

where the linear operators L and B are defined as

L =

⎡
⎢⎢⎣
(

Bo
Oh

)2
δ4F0 + Boδ2J −∇̃ 0

∇̃· 0 0(
er − ∂θR0

int

R0
int

eθ

)
· 0 G0

⎤
⎥⎥⎦,

B =
⎡
⎣
(

Bo
Oh

)2
δ4I 0 0

0 0 0
0 0 1

⎤
⎦, (13)

where F0ũ = −((u0 · ∇̃ )ũ + (ũ · ∇ )u0), Jũ = ∇̃ · (∇̃ũ + (∇̃ũ)T ), (er, eθ , ez ) denote the vectors of
unit directions in the cylindrical coordinates (r, θ, z) used for parameterizing the interface, and the
gradient operators and the velocity gradient tensors in the Cartesian coordinates read

∇ = (∂x, ∂y, ∂z )T , ∇u0 =

⎡
⎢⎣∂xu0

x ∂yu0
x 0

∂xu0
y ∂yu0

y 0

0 0 0

⎤
⎥⎦, (14)

∇̃ = (∂x, ∂y, ik)T , ∇̃ũ =

⎡
⎢⎣∂xũx ∂yũx ikũx

∂xũy ∂yũy ikũy

∂xũz ∂yũz ikũz

⎤
⎥⎦. (15)

The interface dynamic condition (6), once linearized, can be expressed as

τ 0 · ñ + η̃ ∂rτ
0 · n0 + τ̃ · n0 = κ0ñ + κ̃n0 at r = R0

int. (16)

For further details on the derivation of the interface conditions and their implementation, see
Appendixes A and B, respectively.

D. Transient growth analysis

In contrast to the linear stability analysis, the transient growth analysis tolerates any kind of
temporal dependency for both the base flow and the perturbation and does not rely on a separation
of timescales between their respective evolutions. Moreover, it accounts for the so-called nonmodal
mechanisms arising from the nonnormality (noncommutativity with the adjoint) of the linear
operator L. Owing to these mechanisms, small-amplitude initial perturbations may experience
a large transient amplification due to an intricate cooperation between a possibly large number
of eigenmodes; therefore, reducing the dynamics to the leading (least stable or most unstable)
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eigenmode might be irrelevant at finite time. Although nonnormality is often inherited from the
linearization of the advective term, the operator L expressed in (13) can be nonnormal even in the
quasi-inertialess limit Oh → ∞, due to the presence of the interface.

The ansatz (8) is generalized as

q1 = q̄(t, x, y) exp(ikz) + c.c., (17)

where an exponential temporal behavior is not enforced. The temporal evolution of q̄(t, x, y) is an
extension of (12)

Lq̄ + c.c. = B∂t q̄ + c.c.. (18)

We recall that L is time-dependent and parameterized by k. We are interested in the initial pertur-
bation of the interface q̄(0, x, y) = [0, 0, η̄(0)]T that is the most amplified by (18) after a temporal
horizon t = T .

A given initial condition might project on the optimal one and can be amplified strongly enough
to lead to a nonlinear regime. We follow the methodology proposed in Del Guercio et al. [31] and
take advantage of the fact that the base flow interface is axisymmetric at t = 0 (see Fig. 2) to expand
η̄(0) as a finite series of Fourier modes in θ as

η̄(0) =
N∑

m=−N

αmeimθ = a0 +
N∑

m=1

[am cos(mθ ) + bm sin(mθ )] (19)

with

α−m = α�
m,

where the superscript � denotes the complex conjugate, a0 = α0, and for m � 1

am = αm + α�
m, and bm = i(αm − α�

m).

Note that am, bm (m = 0, 1, 2, . . .) and η̄(0) are real-valued. Although a general perturbation
includes an arbitrary interface displacement as well as arbitrary velocity and pressure fields, we
restrict the analysis to initial interface perturbations without velocity perturbations at t = 0, in order
to keep the analysis tractable, i.e., to use the Fourier decomposition (19). Such perturbations results
in velocity and pressure perturbations for t > 0. The associated first-order interfacial energy density
per unit axial length is proportional to

e0 = k

2π

∫ 2π

0

∫ 2π/k

0
[η̄(0)eikz + c.c.]2dz dθ = 2πaT a, (20)

where R0
int(0) = 1 was implied, and where we defined

a = [aN , aN−1, . . . , a1,
√

2a0, bN , bN−1, . . . , b1]. (21)

Let us define η̄m(t ) as the evolution at time t of each term η̄m(0) = eimθ of the initial condition (19).
Due to the linearity of the evolution equation (18), the interface shape at t = T reads simply

η̄(T ) =
N∑

m=−N

αmη̄m(T ). (22)

The corresponding interfacial energy density per unit axial length is proportional to

e(T ) = k

2π

∫ 2π

0

∫ 2π/k

0
|η̄(T )eikz + c.c.|2dzR0

int(T ) dθ. (23)

We further show in Appendix D that e(T ) = 2aT E(T )a where E(T ) is a real-valued, symmetric,
strictly positive definite matrix of size (2N + 1) × (2N + 1). In this manner, the (optimal) transient
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1

FIG. 3. The numerical domain used for computing the base flow and the linear stability analysis. �xy

denotes the liquid bulk. The boundaries of the numerical domain are denoted by ∂�xy = ∂�w ∪ ∂�int : ∂�w

represents the interior wall of the tube with the radius of β, and ∂�int represents the gas-liquid interface. The
cross section of the interface is initially a circle of unit radius, concentric with the tube (sketched with the
dashed line).

gain G(T ) defined as

G(T ) = max
a

e(T )

e0
= π−1 aT E(T )a

aT a
(24)

is simply the largest eigenvalue of E(T ) divided by π , and the associated eigenvector provides
directly the Fourier mode coefficients of the optimal initial condition.

E. Numerical method

The base flow calculation, linear stability, and transient growth analyses are performed nu-
merically employing the finite element package COMSOL MultiphysicsTM. A triangular mesh is
generated on the two-dimensional domain shown in Fig. 3. In the following sections, the area
increment in the bulk cross section is denoted by dA�xy . On the boundary j, the increment of the
surface area is denoted by dA� j , and the increment of arc length is denoted by ds. The grid size is
controlled by the vertex densities on the boundaries ∂�w and ∂�int. The variational formulations
of the base flow equations (2)–(6), linear stability equations (12), and linearized Navier-Stokes
equations (18) are discretized spatially using quadratic (P2) Lagrange elements for u0, ũ, ū, η̃, and
η̄ as well as the base flow interface geometry and linear (P1) Lagrange elements for p0, p̃, and p̄.
While the interface conditions are applied in the built-in modules of COMSOL MultiphysicsTM, the
linearized condition (16) is applied by means of the Lagrange multipliers of quadratic (P2) order.
The employed discretization yields approximately 500 000 degrees of freedom for the base flow,
linear stability, and transient growth analyses.

The time-dependent base flow is computed using the laminar two-phase flow module coupled
with the moving mesh module. The numerical time step is set by the Backward differentiation
formula with maximum differentiation order of 2. The solver is initialized by the Backward Euler
consistent initialization with an initial step fraction of 10−9. At each time step, Newton’s method
is used to solve the nonlinear equations, where the relative tolerance for convergence is set to
10−6. Following the computed base flow, and after extracting the geometric characteristics of
the base interface at each time step, the generalized eigenvalue problem (12) is solved using the
shift-invert Arnoldi method (for more details on the development of the variational formulation,
the implementation of the linear stability eigenvalue problem and their corresponding boundary
conditions see Appendix B).
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The computation time associated with obtaining the base flow for a given set of parameters,
followed by the stability analysis for ∼20 values of k, is of the order of a few hours on a single Intel
core at 3.6 GHz. For the transient growth analysis, the computation of the propagator matrices with
−5 � m � 5 over 10 values of k takes a few days; the calculation of the optimal transient gain for
the same k values and ∼12 values of the temporal horizon T takes approximately one hour. Both
the base flow and stability analysis model are validated with the analytical solutions available in the
literature for the flow of liquid coating the inside of a vertical tube (for more details about the series
of validation tests see Appendix E).

III. RESULTS

A. Linear stability analysis

In this section, we present the linear stability characteristics associated with the drainage of a
liquid film coating the inside of a horizontal circular tube. The results of the frozen base flow linear
stability analysis in terms of different parameters are presented hereafter. First, an overview of the
stability characteristics of the flow is presented in Sec. III A 1. Then the influence of Bo and Oh
is demonstrated in Secs. III A 2 and III A 3, and the stability diagram is presented in Sec. III A 4.
Additional comments on the effect of Bo and on the most unstable wave number are given in
Secs. III A 5 and III A 6. The validity of the frozen base flow assumption is discussed in Sec. III A 7.

1. Stability of draining film at different instants of its evolution

Figures 4(a) and 4(b) show the three least stable modes of the base flow presented in Fig. 2 at
the initial time, t = 0+, and Fig. 4(c) presents the corresponding dispersion curves (growth rate
σr as a function of the axial wave number k). The characteristics of these modes are as follows.
Mode 1 features symmetry with respect to the vertical midplane, strong interface modulation at the
bottom of the bubble, and weak interface modulation at the top of the bubble. Modes 2 and 3, on
the other hand, exhibit helical interface perturbations along the axial direction, such that each x-y
cross section of the interface is displaced periodically along the axis in the x direction (orthogonal
to the gravity field) by mode 2 and in the y direction (parallel to the gravity field) by mode 3.
Only one unstable mode (mode 1) is detected, whose dispersion curves at later time instants are
shown in Fig. 4(d). The fact that this mode is unstable at k = 0 reflects the unsteady nature of the
draining flow shown in Fig. 2. As drainage decays and flow approaches a quasistationary state at
large times, σr (k = 0) → 0. It is also reminiscent of the instability properties of a purely viscous
liquid thread in the absence of inertia (see Eggers and Villermaux [8]), and it will be shown in
Sec. III A 3 that including inertia results in σr (k = 0) = 0. This mode resembles the structure of the
unstable interface observed in the experiments of Duclaux et al. [30]. The maximal growth rate of
the unstable mode initially decreases before increasing and eventually saturating to a value inferior
to the initial one [see the green line in Fig. 4(d)], as the flow evolves further. The corresponding
wave number decreases monotonously. This mode remains nonoscillatory, i.e., σi = 0, for all times
and all sets of parameters in this study.

2. Effect of the Bond (Bo) number

In this section, the influence of Bo on the base flow and its stability is illustrated. Figures 5(a)
and 5(b) show for several Bo values the characteristics of the north pole evolution until t = t f

when the relative thickness at the north pole, H0
N/δ, diminishes below 10% for an initial thick film

δ/β = 0.3. The pole thickness evolution is strongly affected by varying Bo. A double exponential
decay with two distinct timescales shows a satisfactory agreement for a wide range of Bo values.
These timescales are presented in Table I. Despite its agreement during the finite, early time window,
this fitting lacks accuracy at large time, more pronounced for Bo = 0.65 in Fig. 5(a). We did not
look for an analytical expression of the time evolution of the pole thickness, although algebraic
approximations exist in the thin-film limit and in the absence of surface tension [25,32]. Increasing
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FIG. 4. Linear stability analysis of the base flow presented in Fig. 2. (a) Three least stable eigenmodes
for t = 0+, k = 0.55; color map presents the axial eigenvelocity, black arrows show the in-plane eigenvelocity
field, and black dashed line shows the superposition of the eigeninterface (with arbitrary amplitude) onto the
base interface; (b) three-dimensional rendering of the same perturbed interfaces; (c) the dispersion curve of the
same three modes at t = 0+; (d) temporal variation of the dispersion curve of the unstable mode (mode 1). The
green line marks the large time limit. Oh → ∞, δ/β = 0.3, Bo = 0.05.

Bo results in an exponential increase of t f [see inset in Fig. 5(a)]. Figure 5(b) presents for the same
flows the bubble interface at t = t f . This figure evidences the horizontal bubble widening as it rises
towards the upper wall. Low surface tension or large gravitational effects, i.e., high Bo, results in
more deviation of the interface cross section from its initial circular shape. Note that as Bo increases,
the location where the gap between the interface and the tube is thinnest moves from the north pole
to the sides.

TABLE I. Fitting parameters associated with the relative pole thickness H0
N/δ = a1 exp(−t/T1) +

a2 exp(−t/T2) for different values of Bo presented in Fig. 5(a).

Bo a1 T1 a2 T2

0.05 0.986 5.07 0.014 51.5
0.25 0.831 4.75 0.178 52.9
0.35 0.788 4.74 0.217 58.0
0.65 0.731 5.07 0.261 103
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FIG. 5. Influence of Bo on the base flow and its long-time linear stability for Oh → ∞, δ/β = 0.3, Bo =
{0.05, 0.25, 0.35, 0.65}. (a) Evolution of the relative thickness at the north pole; dashed line presents the
exponential fit H0

N/δ = a1 exp(−t/T1) + a2 exp(−t/T2), and the values of {a1, a2, T1, T2} are given in Table I;
inset shows the variation of t f as a function of Bo. (b) Bubble interface at t = t f when the relative thickness at
the north pole reaches 10%; dashed line shows the tube wall. (c) Dispersion curve of the unstable eigenmode,
mode 1, for Bo = {0.05, 0.25, 0.65}.

The influence of Bo on the dispersion curve of mode 1 is presented in Fig. 5(d). The evolution of
the dispersion curves for small Bo values (here Bo = {0.05, 0.25}) is similar to that demonstrated
in Sec. III A 1. Increasing Bo reduces the maximal growth rate of the unstable mode and the range
of unstable wave numbers, k. Further increasing Bo results in the suppression of the instability after
a finite time (see Bo = 0.65). In this investigation, no other unstable or marginally stable mode was
detected while varying Bo.

3. Effect of the Ohnesorge (Oh) number

In the present study, all of the aforementioned results were limited to the quasi-inertialess regime,
where (Bo/Oh)2δ4 → 0. One can interpret (Bo/Oh)2δ4 = Re δ2 where the Reynolds number, Re,
is defined upon the same length scale and drainage velocity scale given in (1). In this section we
study the base flow and its stability in presence of inertia by decreasing Oh while keeping the rest
of the flow parameters identical to those presented in Secs. II B and III A 1. Figures 6(a) and 6(b)
depict the influence of inertia on the base flow evolution from the initial time t = 0+ to a terminal
time t = t f identical to that presented in Sec. III A 2. Compared to the quasi-inertialess drainage, the
inertial bubble accelerates and decelerates with some delay. Eventually, the relative film thickness
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FIG. 6. Influence of Oh. (a) Evolution of the relative thickness at the north pole; (b) the relative film thick-
ness variation as a function of the velocity at the north pole; (c) interface at t = t f when the relative thickness at
the north pole reaches 10%, dashed line shows the tube wall; (d) dispersion curve at t = 0+; (e) dispersion curve
at t = t f . Bo = 0.05, δ/β = 0.3, Oh = {0.01, 0.05, 0.25, ∞} [corresponding to 0 � (Bo/Oh)2δ4 � O(1)].

at the north pole and its velocity converge to that of the quasi-inertialess flow. The delays in the
bubble acceleration and deceleration increase by decreasing Oh. However, the bubble interfaces in
all cases are identical at the terminal time [Fig. 6(c)].

Figures 6(d) and 6(e) present the effect of Oh on the dispersion curve of the unstable mode at
t = 0+ and t = t f , respectively. Including inertia (finite Oh) affects the initial dispersion relation
of the unstable mode in two ways. The first effect is associated with k = 0, where the immediate
bubble drift in the inertialess flow was seen to induce a nonzero growth rate. The addition of inertia,
no matter how small, yields a zero growth rate, a regularization by inertia also observed for the
Rayleigh-Plateau instability of a liquid thread (see Eggers and Villermaux [8]). The second effect
is linked to the shape of the dispersion curve, which is similar to that of the classical thin-film
Rayleigh-Plateau instability in the vicinity of a wall and in the absence of gravity, as obtained by a
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FIG. 7. Linear stability stability diagram (a) in δ vs Bo plane; the blue and red bullets are obtained from the
present numerical stability analysis. Three base interfaces at t = t f are shown for δ/β = 0.3 (corresponding to
δ = 0.43) and Bo = {0.05, 0.25, 0.65}. (b) The same diagram shown in δ vs Bo/(1 − Bo)2 plane. The green
dashed line shows the analytical stability margin predicted by Duclaux et al. [30], and the black squares
and the dashed line show their transition experimental data and their best linear fit, δ = 0.26Bo/(1 − Bo)2,
respectively; the crosses show their experimental data; and the continuous black line shows the best linear fit
to the present linear analysis: δ = 0.14Bo/(1 − Bo)2.

lubrication analysis σr ∝ k2 − k4 [9,15], for Oh > 0.25. In the limit of small Oh, inertia diminishes
the growth rate of the perturbations without altering the instability cutoff compared to the inertialess
limit.

4. Asymptotic linear stability diagram

The {δ, Bo} space is investigated to follow the transition of the interface from unstable to stable.
Figure 7(a) presents the stability diagram based on the dispersion curve of the most unstable mode
obtained from the linear stability analysis at large time t = t f (it is verified that evaluation of the
stability at t = {0.75t f , 7t f } does not alter the obtained marginal curve). For each δ, increasing Bo
results in interface stabilization. Figure 7(b) presents the same linear stability phase diagram in the
δ vs Bo/(1 − Bo)2 plane. Such an abscissa is suggested by Duclaux et al. [30] who proposed an
analytical dispersion relation using the lubrication theory and assuming a circular base interface.
Note that their definition of Bo is different from ours, and the abscissa is adapted to the present
study. Even though their analysis suggests the stability threshold as δ = 12Bo/(1 − Bo)2, their ex-
periments suggest δ = 0.26Bo/(1 − Bo)2 for the stability transition. The present numerical stability
analysis suggests the best fit to the separatrix as δ = 0.14Bo/(1 − Bo)2. Therefore, our stability
analysis yields a significant improvement, although a discrepancy remains. Note that the definition
by Duclaux et al. [30] of the transition regime is not the appearance of growing perturbations but
rather that of a visible top/bottom asymmetry. It is therefore reassuring to observe their transition
points (black squares) fall in the unstable region predicted by our stability analysis [see Fig. 7(b)].
However, for a few points, the linear analysis predicts instability while the experiments report a
stable interface, resulting in a small relative error in δ.

5. Why does increasing Bond number stabilize the flow?

To shed light on the reasons for the present improvement in the prediction of the stability
threshold, we recall from Sec. II B that the present study exhibits for a high Bo a remarkable
deformation of the rising bubble [also shown in Fig. 7(a)]. The interface deformation is disregarded
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in the analysis of Duclaux et al. [30]. Yet their analysis predicts the suppression of the instability. To
elucidate the stabilizing role of the Bond number, we take benefit of the linear instability formalism
to decouple artificially the effect of Bo into (i) its capacity to deform the base state as a result of
drainage and capillary forces and (ii) its explicit role in the perturbation equations (12) and (13).
As detailed below, we will therefore distinguish the “perturbation Bond number” Bop and the “base
Bond number ” Bob.

(1) First, we isolate the effect of the perturbation Bond Bop on the stability properties by fixing
the base state according to two extreme values of the base Bond number Bob. In other words, we
artificially prevent the Bond number from deforming the base state but let it act on the perturbations.
We consider the two limits of low (Bob = 0.01) and high (Bob = 0.65) base Bond numbers for
δ/β = 0.3. The former is unstable and the latter stable according to our linear analysis (Fig. 7),
and the stabilization threshold is Bo ≈ 0.575. Fixing the bubble interface to that obtained at t f , the
effect of Bop is investigated by varying it over a wide range. Remember that the base flow at t f

is quasistagnant. The variation of the maximal growth rate, σ max
r , is presented in Fig. 8(a) along

with its corresponding prediction from the dispersion relation of Duclaux et al. [30] (green) and
the “matching” value obtained when Bob = Bop (black squares). The results show that the growth
rate for the bubble with a circular cross section (Bob = 0.01, blue circles) diminishes with Bop.
However, the interface does not stabilize (the growth rate does not cross zero) even for a rather
large perturbation Bond number, Bop = 102. In contrast, the deformed interface of Bob = 0.65 (red
crosses) stabilizes as Bop exceeds a threshold (red pentagram) inferior to that of the “matching” case
Bob = Bop (black pentagram), and far larger than that of Duclaux et al. [30] (green pentagram).
Moreover, for small Bob where the bubble interface is almost circular, the isolated growth rate
(blue circle) is close to the “matching” value (black square). We observe that the present linear
analysis does not agree with the growth rate predicted by Duclaux et al. [30] even in the low
Bo limit, where the interface is circular. It is seen that the base bubble deformation state plays a
significant role: a more deformed bubble (larger Bob) is less unstable so that a lower Bop number
is needed to eventually stabilize the flow than when Bop = Bob. Remember that, in contrast, a
quasicylindrical bubble (smaller Bob) is found more unstable than the “matching” case Bop = Bob

and is actually never stabilized. This demonstrates the essential role of the perturbation Bond
number Bop.

(2) Next, we artificially fix the perturbation Bond number Bop to the same extreme values
(Bop = 0.01 and Bop = 0.65) and let the base Bond number Bob influence the base state. Not
surprisingly, a larger perturbation Bond number (Bop = 0.65, red crosses) is more stabilizing than
the “matching” case (black squares), while a smaller perturbation Bond number (Bop = 0.01, blue
circles) is more destabilizing. The associated critical Bob numbers (blue and red pentagrams) bracket
the “matching” critical Bond number (black pentagram). This demonstrates the role of the Bond
number on the base state and, in turn, on the stability properties.

To conclude, decoupling the effects of Bo on the base flow and perturbations suggests that its
influence on the base state (as revealed by the bubble deformation at t f ) is essential to stabilize the
flow. Without base state deformation, the instability would persist at large Bond numbers.

This remark contrasts with what Duclaux et al. [30] concluded, namely, that the whole flow
would become stable as soon as any region would become stable (in this case the north pole).
The mismatch between their analytical threshold and experiments (as well as our analysis) could
therefore be possibly explained by the circular bubble cross section assumption in their derivation
of the linear stability characteristics.

Another source of discrepancy may be related to their dispersion relation, where the growth rate
is nonuniform in θ , whereas in principle the normal mode assumption forbids any dependency of
the growth rate on the spatial coordinates.

053901-14



LIQUID FILM INSTABILITY OF AN INTERNALLY …

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

Duclaux et  al. (2006)

Duclaux et  al. (2006)

FIG. 8. Decoupled effects of Bo on the linear stability of the flow at different scales for δ/β = 0.3.
(a) The maximal growth rate obtained by isolating Bo for the base flow (Bob = {0.01, 0.65}) and varying
it for perturbations (Bop); (b) the maximal growth rate obtained by varying Bo for the base flow (Bob) and
isolating it for the unstable perturbations (Bop = {0.01, 0.65}). The varying base interfaces are shown. In both
panels, thin dashed lines show the tube wall and thin solid lines show the base interfaces, the thick solid lines
represent a stable regime, and pentagrams mark the stabilization thresholds; the green presents the analytical
prediction by Duclaux et al. [30].

6. Most linearly unstable wave number

The most linearly amplified wave number, associated with the maximal growth rate of the
unstable mode 1 is shown in Fig. 9 for a wide range of parameters. Increasing Bo decreases the
optimal wavelength and kmax → 0 on the stability boundary. While Duclaux et al. [30] propose
the fit k2

max = 0.5 − 1.25Bo, the present linear analysis evidences a similar trend but with different
fitting parameters that depend on the initial film thickness. These fitting parameters are presented in
Fig. 9(b). Note that considering the universal relation of Duclaux et al. [30], one expects a unique
stabilization threshold of Bo = 0.4 for all film thickness values in contrast to their phase diagram.

7. Validity of the frozen frame assumption

We should recall from Sec. II C that the key assumption behind the frozen frame approach for the
linear stability analysis is that the perturbations evolve much faster than the base flow [33]. To assess

053901-15



SHAHAB EGHBALI et al.

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

3.5

c1

c0

/ = 0.01
/ = 0.03

/ = 0.07
/ = 0.1

/ = 0.15

/ = 0.23
/ = 0.3

/ = 0.375

Duclaux et al. (2006)

FIG. 9. Maximal wave number (kmax) obtained from the linear stability analysis. (a) k2
max vs Bo for different

initial film thickness values; the black dashed lines show the linear fit to the present numerical data, k2
max =

c0(δ) − c1(δ)Bo, and the green dashed line shows the prediction by Duclaux et al. [30]. (b) The prefactors
obtained from the fit shown in panel (a).

the validity of this assumption, one should compare the timescales of the base flow and perturbations
at different times. The normal mode (8) suggests the intrinsic timescale for the most linearly unstable
perturbation’s evolution as 1/ max(σr ) which is presented with symbols in Fig. 10. For the base
flow, however, displaying a universal timescale may not be trivial. One choice is the characteristic
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FIG. 10. Frozen frame analysis validity check for the unstable modes associated with δ/β = 0.3 (corre-
sponding to δ = 0.43), and Bo = {0.05, 0.25, 0.55}. Dashed lines represent instantaneous timescale of the base
flow, (H0/∂t H 0)N , and symbols represent evolution timescale of perturbations, 1/ max(σr ). Colors indicate the
corresponding Bond numbers.
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FIG. 11. The parameters δ/β = 0.3 and Bo = 0.65 have been selected. (a) Isocontours of the transient
gain G defined in (24) in the k-T plane with the temporal horizon T ∈ [0, t f ] (only the region where G � 1 is
shown). (b) Along the thin dashed lines in (a), comparison of the transient gain (full line) with its approximation
using the dispersion curve only (dotted line), for k = 0.2 and k = 0.5 (maximum gain highlighted by a circle
and a diamond, respectively).

timescale associated with the pole thickness presented in Table I. After the initial bubble drift,
the base flow decelerates mainly with two distinct timescales: a fast timescale T1 ∼ 5 and a slow
timescale T2 ∼ 50. However, we recall that the double exponent behavior suggests a suitable fit
merely at early and intermediate times. As t → ∞, when a thin film is left at the pole, its motion
is known to follow an algebraic trend [25,32]. Alternatively, the instantaneous timescale of the pole
motion, (H0/∂t H0)N , illustrates the base flow’s timescale more accurately (shown by dashed lines).
For small and intermediate Bond numbers (Bo = {0.05, 0.25} in Fig. 10), the base flow evolution is
always slower than unstable perturbations. Initially, their timescales are comparable, and at larger
times the base flow evolves considerably slower than perturbations. Increasing the Bond number
up to the vicinity of the instability threshold (Bo ∼ 0.575) results in a faster initial evolution of
the base flow as opposed to the perturbations (Bo = 0.55 in Fig. 10). However, at large times, the
instantaneous timescale of the flow ultimately dominates over that of the perturbations. Therefore,
at large times, when the drainage has decayed, the unstable perturbation grows faster than the base
flow. Thus, the frozen frame assumption is valid only for large times and loses its rigor in the early
stages. We recall that the criterion to distinguish between stable and unstable modes in Fig. 7 is the
growth rate of the modes at large times, sufficient for the frozen frame assumption to hold. However,
it is crucial to properly take into account the base flow evolution at early times and to account for
possible nonmodal mechanisms. For this reason, we carry out a transient growth analysis whose
results are presented and discussed in the next section.

B. Transient growth analysis

We present in what follows the results of the transient growth analysis, conducted mainly in the
stable part of the parameter space in Fig. 7. Indeed, a flow can be linearly (asymptotically) stable but
transiently amplify an initial perturbation so significantly that it is destabilized through a subcritical
transition.

The transient gain for δ/β = 0.3 and Bo = 0.65 is shown in Fig. 11(a) as a function of the wave
number k and the temporal horizon T . Longer waves are subject to larger maximum transient gain
but require more time before reaching it. The maximum attainable transient gain over all considered
k and T is Gmax = 2.64, reached for the lowest considered k. This maximum gain value is of order
unity, such that, for the considered parameters at least, a small-amplitude initial perturbation is not
expected to be sufficiently amplified by the flow to trigger nonlinearities.
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FIG. 12. (a) Transient gains for δ = 0.43 (corresponding to δ/β = 0.3), and Bo = 0.05 (significantly
unstable), Bo = 0.55 (slightly unstable), Bo = 0.575 (stable), and Bo = 0.65 (stable). Bullet (resp. diamond)
markers highlight the largest gain for linearly stable (resp. unstable) parameters. Inset: Zoom highlighting
the largest gains for Bo = 0.575 and Bo = 0.65. The wave number k leading to the largest growth has
been selected for all curves. (b) Phase diagram obtained from the transient growth analysis. Colors stand for
Gmax = maxk,T G with k ∈ [0.1, 0.9] and T ∈ [0, t f ]. The thin dotted line corresponds to δ/β = 0.3. The blue
(resp. red) dashed-dotted line links the last unstable (resp. first stable) points for a given δ and by increasing
Bo.

The extent to which the transient growth is driven by nonmodal mechanisms and may or may
not be estimated directly from dispersion curves is investigated in Fig. 11(b), where the transient
gains are compared with the integrated growth rate exp[

∫ T
0 2σr (k, t ) dt] for k = 0.2 and k = 0.5

(thin dashed lines). We recall that the growth rate σr (k, t ) for δ/β = 0.3 and Bo = 0.65 is shown
in Fig. 5(c). For k = 0.5 in Fig. 11(b), the curves are qualitatively similar but present some
small quantitative discrepancies: the maximum transient gain reaches a slightly larger value at a
larger temporal horizon, T = 5 against T = 2.5. Thus, between these two times, the energy of the
perturbation can grow although the frozen base flow is linearly stable. For k = 0.2 the transient
gain is also systematically larger; however, the two curves present little differences, implying this
transient gain to be driven mostly by modal mechanisms.

In Fig. 12(a) the gain for δ/β = 0.3 and Bo = 0.65 is compared to those of three additional Bond
numbers, Bo = 0.575, Bo = 0.55, and Bo = 0.05, which correspond to a stable and a slightly and a
strongly unstable flow, respectively. The wave number associated with the largest gain was selected.
For Bo = 0.05, the maximum growth rate remains large [see Fig. 5(c)], and the gain quickly aligns
on the fast exponential growth; specifically, the slope of the line marked with the black diamond is
two times the maximum growth rate. For Bo = 0.55, the maximum growth rate rapidly converges
towards very small values but does not become negative; thus the gain also grows exponentially
for large times. Overall, results shown in Fig. 12(a) suggest that large gains can be attained only
through instability.

To assess the generality of this conclusion, we report Gmax
.= maxk,T G for k ∈ [0.1, 0.9] and

T ∈ [0, t f ] in Fig. 12(b), in the same {δ, Bo} parameter space as in Fig. 7. The considered points
were voluntarily chosen in the stable regime and the closest to the separatrix [i.e., the first red dot
for a given δ in Fig. 7(b)]. For all the considered parameters, Gmax does not exceed the small value
of Gmax = 3.8. In this sense, the linear stability analysis seems to provide a sufficiently complete
description of this flow, since linear stability seems to imply small transient gains; conversely, linear
instability seems to be a necessary and sufficient condition for large gains. Moreover, as we saw for
δ/β = 0.3 and Bo = 0.65, and we have checked these conclusions to be true for all the other points
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in Fig. 12(b), Gmax is reasonably well characterized using solely the information about the growth
rate. In conclusion, nonmodal mechanisms are believed to have little influence on the flow, at least
for the parameters considered in this paper.

IV. SUMMARY AND CONCLUSION

In this work we have studied the draining flow of a viscous liquid film coating the inner wall of
a horizontal tube. First, the temporal evolution of the axially invariant base flow with an initially
stagnant film of uniform thickness was computed numerically. In the absence of inertia, the base
flow exhibits an instantaneous upward drift of the core bubble, followed by an exponential decay of
the flow for a finite time window as the interface approaches the tube upper wall.

Next, the stability of the evolving base flow was investigated by means of a linear stability
analysis under the frozen frame assumption. It was verified that this assumption holds at large
times. One unstable mode was observed which features the characteristics of the Rayleigh-Plateau
mode: axial interface undulations, horizontal symmetry, and vertical asymmetry evidencing stronger
modulation at the bottom. These features match the interface shape observed in the experiments of
Duclaux et al. [30]. The maximal growth rate of this mode decreases as the bubble approaches the
tube upper wall.

A parametric study was then conducted in the space of dimensionless parameters {Bo, Oh, β}.
This study suggests that increasing Bo, equivalent to weakening surface tension in comparison with
gravity, results in a horizontally wider bubble interface that rises more slowly than quasicylindrical
bubbles observed at small Bond numbers. The bubble slowdown coincides with the displacement
of the location of minimum film thickness from the north pole to the sides. With increasing Bo,
the deformed interface becomes less unstable, and the Rayleigh-Plateau instability is suppressed
above a critical Bo value. We also demonstrated that inertial forces, achieved at finite Oh, affect the
flow mainly at the onset of the drainage such that the bubble drifts upward more smoothly, and the
drainage is delayed. However, inertia does not alter the shape of the interface, nor its linear stability
regime, and has a minor influence on the maximal growth rate at large times.

Finally, a stability diagram was sketched by investigating the linear stability of the deformed
interface in the limit of large times for various {Bo, β}, confirming the stabilizing effect of larger
Bond numbers and thinner films. By relaxing assumptions of past studies (e.g., circular base
interface), the present linear study showed an interesting improvement on existing theoretical results
for the transition between stable and unstable interfaces. A slight discrepancy with the experimental
data of Duclaux et al. [30] remains, resulting in a few stable experimental conditions predicted
to be unstable by our linear stability analysis. Comparing the experimental protocol of Duclaux
et al. [30] with the assumptions of the present study suggests some possibilities for the observed
slight mismatch. First, the most unstable wave number diminishes with Bo, which results in the
promotion of very long wavelengths. Capturing wavelengths longer than the finite length of the
experimental apparatus is not possible, which may result in the stabilization of perturbations that
would be unstable in an infinitely long tube. Additionally, in the experiments, the gaseous core
is pushed into a wet tube by a syringe pump; any residual axial velocity, left-right asymmetry,
or axial variations in the deposited film thickness [34] may all have some influence on the stability.
Finally, we note that linear analysis cannot capture the influence of nonlinearities on the final pattern.
Nonlinearities may quickly saturate the growth of the linear modes to a very small amplitude [35]
which may make it difficult to observe the instability experimentally.

Last, a transient growth analysis was conducted so as to relax the frozen base flow assumption.
It conclusively demonstrated the small importance of nonmodal mechanisms, both because the
transient gains were systematically of order unity in the linearly stable region of the parameter space,
and because they were rather well predicted from the growth rate of the leading eigenvalue. This
justifies the relevance of the linear stability analysis for this flow when compared with experimental
data.
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The present study, based on the full Navier-Stokes equations and capable of handling complex
interface geometries, paves the way for a wealth of future investigations. For instance, it would
be of interest to investigate the effect of inclining the tube: as gravity becomes nonorthogonal
to the tube axis, one can expect a competition between transverse drainage and longitudinal
advection [36], possibly resulting in a transition from absolute to convective instability. Another
exciting perspective is that of a film coating the outside of an inclined tube: in addition to
the aforementioned competition, this configuration offers the possibility of rich nonlinear dy-
namics such as pinch-off. Finally we recall that the present study has focused on the regime
of small and intermediate Bond numbers, where the Rayleigh-Taylor instability is suppressed
[24,25]. A natural extension of our work should explore larger Bond numbers. We conjecture
the existence of an interval of stable Bond numbers, with smaller Bo unstable to the Rayleigh-
Plateau instability (like in the present study) and larger Bo unstable to the Rayleigh-Taylor
instability [24,25,37].
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APPENDIX A: DERIVATION OF THE INTERFACE BOUNDARY CONDITIONS

In this Appendix the derivation of the interface boundary conditions for the perturbed flow is
elaborated. These conditions should be imposed on the perturbed interface, i.e., on r = R0

int + εη1,
while η1 is already a part of the problem unknowns. By using the Taylor expansion, that is,
projecting radially on the base interface, i.e., on r = R0

int(θ, t ), any flow quantity at the perturbed
interface can be readily approximated. This projection is referred to as flattening and for an arbitrary
function f (r, θ, z, t ) can be expressed as

f |(r=R0
int+εη1,θ,z,t ) = f |(r=R0

int,θ,z,t ) + εη1 ∂r f |(r=R0
int,θ,z,t ) + O(ε2). (A1)

By substituting the decomposed state vector of (7), into the interface conditions (5) and (6),
then using the ansatz of (8), and applying the aforementioned flattening, we can formulate these
conditions as a set of equivalent constraints on the boundary of the base interface. The linearized
form of the kinematic condition (5) is

∂t
(
R0

int + εη1
)+ (u0 + εu1) · ∇(R0

int + εη1
) = (u0 + εu1)·er at r = R0

int + εη1, (A2)

where the gradient vector in the cylindrical coordinates can be expressed as ∇ = (∂r, 1/r∂θ , ∂z )T .
Applying (A1) to (A2) and using the ansatz of (8) readily results in (11).

The linearized dynamic condition (6) is

(τ 0 + ετ 1) · (n0 + εn1) = (κ0 + εκ1)(n0 + εn1) at r = R0
int + εη1. (A3)

Applying (A1) to (A3) and using the ansatz of (8) readily results in (16). In order to express interface
conditions in the Cartesian coordinates, the terms which are expressed in the cylindrical coordinates
should be transformed by employing the Jacobian transformations as

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey,

∂r = cos θ ∂x + sin θ ∂y, ∂θ = t0 · ∇s

t0 · ∇sθ
, (A4)

where t0 denotes the unit tangent vector, and ∇s = ∇ − n0(n0 · ∇) is the tangential derivative on
the base interface. Both conditions (11) and (16) include the normal vector and the curvature of the
perturbed interface whose formulation is given in Appendix C. For further details concerning the
numerical implementation of the boundary conditions, see Appendix B.
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APPENDIX B: VARIATIONAL FORMULATION OF THE LINEAR STABILITY ANALYSIS AND
IMPLEMENTATION OF BOUNDARY CONDITIONS

Implementation of the numerical scheme and development of the variational formulation associ-
ated with the governing equations presented in Sec. II are elaborated in this Appendix, recalling that
the numerical domain is shown in Fig. 3. To develop the variational form of (12), first, the normal
mode of (8) is applied to the system of Eqs. (9)–(11). Then it is internally multiplied by the vector
of the test functions ψ = [ψp, ψu, ψη], where ψu = [ψux , ψuy , ψuz ]. The resulting scalar product is
integrated on �xy, which in the linear order gives{∫∫

�xy

ψ�
p(∇̃ · ũ) dA�xy

+
∫∫

�xy

ψ�
u ·
[(

Bo

Oh

)2

δ4(σ ũ + u0 · ∇̃ũ + ũ · ∇u0) − ∇̃ · τ̃

]
dA�xy

+
∫

∂�int

ψ�
η

[
σ η̃ +

(
−∂ru0

r + ∂ru0
θ ∂θR0

int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2
)

η̃ + u0
θ

R0
int

∂θ η̃ + ∂θR0
int

R0
int

ũθ − ũr

]
ds

}

+ c.c. = 0. (B1)

It should be noted that in a complex system, the applied scalar product is Hermitian, defined
as 〈a, b〉 = a� · b where the superscript � denotes the complex conjugate. In the last line of this
system of equations, kinematic condition (11) is used to define η̃ only on ∂�int. After integrat-
ing by parts, ψ�

u · (∇̃ · τ̃ ) = ∇̃ · (τ̃ · ψ�
u ) − tr[τ̃ T · (∇̃ψu)�], and then applying Gauss’s theorem,∫∫

�xy
∇̃ · (τ̃ · ψ�

u ) dA�xy = ∫
∂�xy

(τ̃ · ψ�
u ) · n0 ds, (B1) implies{∫∫

�xy

ψ�
p(∇̃ · ũ) dA�xy

+
∫∫

�xy

ψ�
u ·
[(

Bo

Oh

)2

δ4(σ ũ + u0 · ∇̃ũ + ũ · ∇u0)

]
dA�xy

+
∫∫

�xy

tr[τ̃ T · (∇̃ψu)�] dA�xy +
∫

∂�xy

−(τ̃ · ψ�
u ) · n0 ds

+
∫

∂�int

ψ�
η

[
σ η̃ +

(
−∂ru0

r + ∂ru0
θ ∂θR0

int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2
)

η̃ + u0
θ

R0
int

∂θ η̃ + ∂θR0
int

R0
int

ũθ − ũr

]
ds

}

+ c.c. = 0. (B2)

Since τ̃ is symmetric, (τ̃ · ψ�
u ) · n0 = (τ̃ · n0) · ψ�

u . Using the dynamic condition (16) and the fact
that ψu|∂�f = 0 (because of the no-slip condition on the solid wall), the variational form of (12)
implies{∫∫

�xy

ψ�
p(∇̃ · ũ) dA�xy (B3)

+
∫∫

�xy

ψ�
u ·
[(

Bo

Oh

)2

δ4σ ũ

]
dA�xy (B4)

+
∫∫

�xy

ψ�
u ·
[(

Bo

Oh

)2

δ4(u0 · ∇̃ũ + ũ · ∇u0)

]
dA�xy (B5)
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FIG. 13. Matrix representation of the variational system (B3)–(B10), solved in COMSOL MultiphysicsTM;
blue represents the implementation of (9) and (10); white represents the implementation of the no-slip boundary
condition on the solid wall; green represents the implementation of the dynamic boundary condition (16); pink
represents the implementation of the kinematic condition (11).

+
∫∫

�xy

tr[τ̃ T · (∇̃ψu)�] dA�xy (B6)

+
∫

∂�int

[τ 0 · ñ + η̃ ∂rτ
0 · n0 − (κ0ñ + κ̃n0)] · ψ�

u ds (B7)

+
∫

∂�int

ψ�
η (σ η̃) ds (B8)

+
∫

∂�int

ψ�
η

[(
−∂ru0

r + ∂ru0
θ ∂θR0

int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2
)

η̃ + u0
θ

R0
int

∂θ η̃ + ∂θR0
int

R0
int

ũθ − ũr

]
ds

}
(B9)

+ c.c. = 0. (B10)

This variational equation can be readily implemented and solved in COMSOL MultiphysicsTM. It
is sufficient to solve the first part (in curly braces) and the c.c. is known consequently. The matrix
representation of (B3)–(B10) is shown in Fig. 13.

APPENDIX C: CHARACTERIZATION OF AN ARBITRARY INTERFACE

In this Appendix we present the geometrical characterization of an arbitrary interface parame-
terized in cylindrical coordinates. The aim is to develop the characteristics of a three-dimensional
interface, as well as the linear perturbations applied to this interface. The key properties of interest
are the normal vector and the local curvature.

1. Normal vector

We recall that the unit normal vector of a linearly perturbed interface can be decomposed as
n = n0 + εn1:

n0 =

⎛
⎜⎝n0

r

n0
θ

n0
z

⎞
⎟⎠ = A−1/2

⎛
⎜⎝ 1

− 1
R0

int
∂θR0

int

∂zR0
int

⎞
⎟⎠, (C1)

n1 =

⎛
⎜⎝n1

r

n1
θ

n1
z

⎞
⎟⎠ =

⎛
⎜⎝Brη

1 + Cr∂θη
1 + Dr∂zη

1

Bθη
1 + Cθ ∂θη

1 + Dθ ∂zη
1

Bzη
1 + Cz∂θη

1 + Dz∂zη
1

⎞
⎟⎠, (C2)
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where

A = 1 +
(

1

R0
int

∂θR0
int

)2

+ (∂zR0
int

)2
, Br = A−3/2(

R0
int

)3 (∂θR0
int

)2
,

Bθ = A−3/2

[
− 1(

R0
int

)4 (∂θR0
int

)3 + A(
R0

int

)2 ∂θR0
int

]
, Bz = − A−3/2(

R0
int

)3 (∂θR0
int

)2
∂zR0

int,

Cr = − A−3/2(
R0

int

)2 ∂θR0
int, Cθ = −A−3/2

R0
int

[
1 + (∂zR0

int

)2]
, Cz = A−3/2(

R0
int

)2 ∂θR0
int ∂zR0

int,

Dr = −A−3/2∂zR0
int, Dθ = A−3/2

R0
int

∂zR0
int ∂θR0

int, Dz = A−3/2
[(

∂zR0
int

)2 − A
]
. (C3)

For a base interface of the form r = R0
int(t, θ ) and a perturbation ansatz (8), the normal vector of

the base interface can be further simplified as

n0 =

⎛
⎜⎝n0

r

n0
θ

n0
z

⎞
⎟⎠ = A−1/2

⎛
⎜⎝ 1

− 1
R0

int
∂θR0

int

0

⎞
⎟⎠, (C4)

and simplification of the linearized perturbation of the normal vector (C2) and (C3) implies

ñ =
⎛
⎝ñr

ñθ

ñz

⎞
⎠ =

⎛
⎝Br η̃ + Cr∂θ η̃

Bθ η̃ + Cθ ∂θ η̃

ikDzη̃

⎞
⎠, (C5)

where

A = 1 +
(

1

R0
int

∂θR0
int

)2

, Br = A−3/2(
R0

int

)3 (∂θR0
int

)2
,

Bθ = A−3/2

[
− 1(

R0
int

)4 (∂θR0
int

)3 + A(
R0

int

)2 ∂θR0
int

]
, Cr = − A−3/2(

R0
int

)2 ∂θR0
int, (C6)

Cθ = −A−3/2

R0
int

, Dz = −A−1/2.

2. Curvature

We recall that the local curvature of a linearly perturbed interface can be decomposed as κ =
κ0 + εκ1:

κ0 = 1

R0
int

(
n0

r + ∂θn0
θ

)+ ∂zn
0
z , (C7)

κ1 = − η1(
R0

int

)2 (n0
r + ∂θn0

θ

)+ 1

R0
int

(
n1

r + ∂θn1
θ

)+ ∂zn
1
z

= Eη1 + F∂θη
1 + G∂zη

1 + Dz∂
2
zzη

1 + Cθ

R0
int

∂2
θθη

1, (C8)
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where

E = 1

R0
int

(Br + ∂θBθ ) − 1(
R0

int

)2 (n0
r + ∂θn0

θ

)+ ∂zBz,

F = 1

R0
int

(Cr + ∂θCθ + Bθ + Dθ ∂z ) + ∂zCz + Cz∂z, (C9)

G = Bz + ∂zDz.

Note that the subscript r in (C1)–(C9) does not imply the real part. For a base interface of the
form r = R0

int(t, θ ) and a perturbation ansatz (8), the curvature of the base interface can be further
simplified as

κ0 = 1

R0
int

(
n0

r + ∂θn0
θ

)
, (C10)

and simplification of the linearized perturbation of the curvature (C8) and (C9) implies

κ̃ = − η̃(
R0

int

)2 (n0
r + ∂θn0

θ

)+ 1

R0
int

(ñr + ∂θ ñθ ) + ikñz

= E η̃ + F∂θ η̃ − k2Dzη̃ + Cθ

R0
int

∂2
θθ η̃, (C11)

where

E = 1

R0
int

(Br + ∂θBθ ) − 1(
R0

int

)2 (n0
r + ∂θn0

θ

)
,

F = 1

R0
int

(Cr + ∂θCθ + Bθ ).

APPENDIX D: DERIVATION OF A SIMPLIFIED EXPRESSION FOR THE ENERGY
DENSITY OF THE TRANSIENT RESPONSE

The interfacial energy density per unit axial length is proportional to

e(T ) = k

2π

∫ 2π

0

∫ 2π/k

0
|η̄(T )eikz + c.c.|2 dzR0

int(T ) dθ

= 2
∫ 2π

0
|η̄(T )|2R0

int(T ) dθ

= 2
N∑

m=−N

N∑
n=−N

α�
mαn

∫ 2π

0
η̄m(T )�η̄n(T )R0

int(T ) dθ

= 2αH A(T )α (D1)

where the strictly positive definite and Hermitian matrix A(T ) is such that

[A(T )]mn =
∫ 2π

0
η̄m(T )�η̄n(T )R0

int(T ) dθ, (D2)

for −N � m � N and −N � n � N , and where we defined

α = [α�
N , α�

N−1, . . . , α
�
1, α0, α1, . . . , αN−1, αN ]T . (D3)

The leading eigenvector of A(T ) has no particular reason to have its N first elements equal to the
complex conjugate of its last N . Thus, it cannot correspond directly to the optimal set of α, that
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FIG. 14. Numerical model validation. (a) Base flow: two snapshots of the liquid film thickness, H0 = β −
R0

int, in the right half-plane, at time t = {2β, 4β}. Solid lines present the solution from the present study, and
the dashed lines present the solution obtained by Balestra et al. [25]. Oh = 10.05, Bo = 1960.2, δ/β = 0.01.
(b) Stability analysis: dispersion curves of the two least stable modes associated with the viscous film coating
inside a vertical tube, namely, |m| = {0, 1}. The continuous lines present the analytical solution obtained from
the Stokes equations, and the circles represent the results from the present model. Oh → ∞, Bo = 1, δ = 0.1.

should satisfy this last constraint. For this reason we introduce the matrix

M−1 =
⎡
⎣ I O P

OT
√

2 OT

−iI O iP

⎤
⎦, with Ii j = δi j, Pi j = δN−i+1, j, and Oi = 0. (D4)

for 1 � i, j � N . Namely, I is the identity matrix of size N × N , P is the identity matrix mirrored
around its vertical axis (it contains ones on the diagonal from the bottom left to the top right and
zeros everywhere else) and O is a vectors of zeros of size N × 1. In this manner, we have directly
a = M−1α, such that

e(T ) = 2αH A(T )α = 2aT MH A(T )Ma = 2aT Re[MH A(T )M]a, (D5)

where we used that a and e(T ) are a real-valued. Therefore, defining E(T ) = Re[MH A(T )M] leads
to the desired result.

APPENDIX E: VALIDATION OF THE NUMERICAL MODEL

The developed numerical scheme is validated hereafter. Several measures are taken to ensure the
correspondence of the model, based on the asymptotic limits where an analytical solution may exist.

1. Base flow model

The present base flow model is validated with Balestra et al. [25] who studied a similar base
flow in the limit of thin film, δ � 1, and small surface tension, Bo � 1, by employing lubrication
equations [38]. Figure 14(a) shows that the present model gives a solution of the base flow in full
agreement with the solution of Balestra et al. [25].

053901-25



SHAHAB EGHBALI et al.

0 0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

1

M1

M2

M3

M4

5 10 15

10
5

0

0.2

0.4

0.6

0.8

1

M1 M3 M4

M2

FIG. 15. Mesh convergence proof for Oh → ∞, Bo = 0.05, δ/β = 0.3: (a) base flow, H0
N/δ vs u0

y ; (b) lin-
ear stability analysis, σ max

r vs Ndof . All of the results presented in this paper are obtained for M3.

2. Linear stability analysis model

The present linear stability model is validated with the analytical solution that Camassa et al.
[15] presented for the gravity-driven flow of a viscous film that coats the interior side of a vertical
tube (where gravity points in z direction in Fig. 1). The corresponding base flow is parallel and can
be expressed in cylindrical coordinates as

u0
z = δ−2

2

(
β2 − r2

2
+ ln

r

β

)
, p0 = −1, R0

int = 1, (E1)

For the linear stability analysis, Camassa et al. [15] employed an approximation of the Stokes
equations for long jets, referred to as the long-wavelength approximation [39] and compared the
results with the analytical solution, in terms of Bessel functions, obtained by solving the full
Stokes equations [13]. Due to the axisymmetry of the base flow, Camassa et al. [15] considered
a perturbation as in (8) with the Fourier ansatz exponent of exp[σ t + ikz + imθ ] where m de-
notes the azimuthal wave number. Both of the aforementioned equations match in the limit of
thin liquid film, β → 1, where the long-wavelength approximation gives a dispersion relation of
σ = S(k2 − k4) − ik with S = S(Bo, δ) being constant for the axisymmetric perturbation m = 0.
All of the helical perturbations, |m| > 0, are known to be linearly stable for such a flow [11].
Figure 14(b) presents the full agreement between the present linear stability model and the analytical
solution for a relatively thin film thickness δ = 0.1. It should be noted that despite the axisymmetric
nature of the validated case, this presented validation holds also for an arbitrary interface. For this
aim, the geometrical symmetry in the numerical reference frame is broken by setting the origin of
the coordinates system at an arbitrary location inside the bubble, (x, y) = (0.2, 0.7).

3. Grid independency

A convergence study for the base flow evolution and the linear stability of the unstable eigenvalue
is presented in Fig. 15, for {Oh → ∞, Bo = 0.05, δ/β = 0.3}. Mesh resolution is controlled by
setting the number of divisions on the solid wall and interface boundaries. Mesh convergence
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is already attained for the presented grids. All of the presented results in the paper are obtained
employing M3.
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