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We consider the flow of an inertial supercritical gravity current sustained by a constant
source at x = 0 and free drainage edge at x = xD. We analyze time-dependent flows
provided by an analytical model and shallow-water finite-difference solution and compare
them with the predictions of steady-state formulations [Ellison and Turner, J. Fluid Mech.
6, 423 (1959); Haddad et al., Phys. Rev. Fluids 7, 084802 (2022)]. Entrainment and drag
(expressed as Eu and cDu2, respectively, where u is velocity), with coefficients modeled
as some simple functions of the Richardson number Ri, play a significant role in the
first domain of propagation. The solution shows that an internal forward-moving jump
appears, separating the supercritical, significantly mixed, domain at the rear and the free
nose at xN (t ) that propagates toward xD, where t is time. The behavior of the subcritical
domain between the jump and the nose depends strongly on the entrainment-drag model,
as follows: (a) If E and cD decay to zero for Ri > Ricrit < 1, eventually the jump over-
flows xD, leaving behind a steady-state domain of supercritical flow. This contradicts the
steady-state model of Haddad et al. that postulates a stationary internal jump at xS < xD

with a critical outflow at xD. (b) If finite values E and cD prevail for Ri > 1, the internal
jump propagates to a position xJ > xS but does not overflow xD for a long time. Some
oscillations at xD appear, which may indicate a backward-moving adjustment wave, but this
is a long-time process beyond the accuracy of our shallow-water simulation. The reasons
for the discrepancy with the steady-state solutions, and the connections with the experiment
of Ellison and Turner, are discussed. A noteworthy insight is that the time-dependent stage
is important for the understanding and use of the steady-state results. The free edge may
admit a supercritical outflow, and hence the application of a critical flow condition may
lead to nonphysical results; outflow over a weir may reflect the internal jumps, and this
needs a separate investigation.

DOI: 10.1103/PhysRevFluids.8.053801

I. INTRODUCTION

Gravity current (GC) is a generic name for the flow of a layer of fluid of density ρ into an ambient
fluid of a different density ρa. Typically, the current is produced either by a fixed volume released
from a lock or by a sustaining source at the origin x = 0. Such flows occur in nature (winds, oceanic
currents, volcanic clouds), hazards (fires, collapse of fuel reservoirs), and various applications
(discharge of liquids and gases, drainage systems). The improvement of the understanding and
modeling of these flows is bound to be beneficial and therefore is under active research (Ref. [1]
and references therein).

The typical two-dimensional (2D) GC flow is defined by the longitudinal depth-averaged velocity
u(x, t ) and interface h(x, t ) (thickness measured from the boundary of propagation), where x and
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t are the downstream coordinate and time, respectively. The driving force is the reduced gravity
g′ (defined below); assuming a large Reynolds number, viscous forces are neglected. The GC
propagates at the bottom when ρ > ρa and at the top when ρ < ρa. In a Boussinesq (Bq) system
(i.e., ρ/ρa ≈ 1) the bottom and top GC are symmetric. The classical analysis of the GC assumes a
stable, smooth, impenetrable interface; in this case, entrainment and drag can be neglected for long
distances of propagation [2]. The criterion for the stability of the interface is associated with the
Richardson number, Ri = g′h/u2, which expresses the ratio of the buoyancy stabilizing (settling)
effect to the shear destabilizing (rotation) effect on a fluid particle. For a sufficiently small Ri the
interface becomes unstable, and the classical GC analysis must be extended to effects of entrainment
and drag. In view of the large range of practical source conditions, an initial small Ri must be
taken into consideration. In other words, the sustained GC starting in the unstable domain (called
supercritical) is a realistic situation. Surprisingly, however, the flow with entrainment and drag may
attain steady-state patterns.

The background idea has been provided by Ref. [3], which predicts (and confirms by a simple
experiment) that a thin layer of buoyant fluid, sustained by a source over (or below) a thick stationary
ambient fluid, will rapidly attain a steady state in the downstream direction. The study considers a
situation with strong mixing in the domain close to the source (where the global Richardson number
Ri is small) and points out that the mixing subsides after some distance x > xm (where Ri is not
small). However, the paper did not provide a solution for the flow field, and the experimental data
are presented only in a reduced form concerning the dependency of entrainment on Ri. Moreover,
in the experiments the steady state could be maintained only for a few seconds, after which it was
disturbed by an unexpected upstream wave.

A recent paper by Haddad, Vaux, Varrall, and Vauquelin [4] (hereinafter referred to as HVVV)
reconsiders this steady-state flow, using a model and large-eddy simulations. They focus attention
on a constant-influx 2D sustained top GC that propagates along a horizontal boundary, in a very
deep ambient, at high Reynolds number. The study emphasizes three points: The current is non-Bq,
steady state, and strongly influenced by mixing-entrainment because the Richardson number at the
inlet, Rii, is very small (the subscript i denotes the conditions at the inlet). HVVV focus on a light
(top) current.

Some open questions remain. The GC is essentially a time-dependent phenomenon. Fluid is
injected at x = 0 into the stationary ambient. At t = 0 the injected fluid is a short domain whose nose
xN (t ) begins to propagate with a significant speed, and after a certain time period the nose xN (t ) will
reach the free edge xD. The leap of the analysis to a steady-state flow solution over a long xD is prob-
lematic. It is not clear a priori that this solution is compatible with the time-dependent formation.
The steady-state model of HVVV contains a stationary internal jump. The question “how and when
is this created?” is relevant. An inspection reveals that this is not a unique solution of the steady-state
problem. HVVV apply at xD the condition of critical flow (Ri = 1), but a supercritical outflow is
also feasible, as shown below. The need for the clarification of these and related gaps of knowledge
motivated the present work. Here we attempt a study of the time-dependent process. As in the system
of HVVV, the given conditions are the influx (source) conditions (with subscript i) hi, ui, ρi and the
density of the ambient ρa, but we consider the propagation of a free nose xN (t ) toward xD and the
development of the flow between the inlet and the nose, until and after xN reaches xD.

The flow of a GC sustained by a constant source qi = hiui has received considerable attention
in the literature. Many recent papers are concerned with flows on a slope (e.g., Refs. [5–7]). In
this system, g′ has a downstream (along the slope) component that increases the velocity u while
the height h ≈ qi/u decreases, and hence Ri ∝ h/u2 ≈ qi/u3 decreases (see Ref. [1], Sec. 11.2.2).
Even for nonsmall initial Rii (subcritical or critical source), at some distance from the source the
interface develops instabilities, and hence entrainment and drag are essential components. For a
horizontal GC (as considered in this paper) the scenario is different, because g′ is perpendicular to
the flow, and no direct acceleration of u is expected. When the source is subcritical (or even slightly
supercritical), the subsequent flow may preserve the nonsmall Ri, in which case the classical models
(with zero entrainment and drag) are a good approximation for long distances of propagation [2,8,9].
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When the source is strongly supercritical [3,4], entrainment and drag are bound to affect the initial
propagation; however, in the horizontal GC, Ri increases with x, and a stabilization of the interface
must be taken into account.

Both inclined and horizontal GCs sustained by a constant source may develop domains of steady-
state flow. The steady-state solution is certainly important in long-time processes, such as transport
in an industrial pipe. However, we must keep in mind that the GC is a time-dependent phenomenon.
The realization of a steady state must involve some adjustment stage. In some cases, such as a fire,
the time-dependent stage may be more relevant to the user than the steady state, and the source may
be turned off before the steady state is established [10]. The present paper is concerned with the
time-dependent evolution of supercritical GCs toward a possible steady state.

In the following discussion we assume a 2D gravity current over (or under) a horizontal free-slip
solid boundary. The density of the ambient fluid is constant, ρa. Let ρ, h, and u be the density of
the current, the thickness of the current, and the depth-averaged velocity of the current, respectively.
The variables are in general functions of x and t . We define the internal reduced gravity

g′ = |ρa/ρ − 1|g (1)

and the internal Froude number
F = u/(g′h)1/2, (2)

which expresses the ratio of the local speed of the current to that of the internal gravity wave. (This
F must be distinguished from the FrN parameter associated with the jump condition at the nose.)
In general, g′ and F are functions of x and t . The flows with F = 1, F > 1, and F < 1 are called
critical, supercritical, and subcritical, respectively. Let g′

0 denote the value of g′ at the inlet x = 0.
For further reference we also define

g′
i = |ρi/ρa − 1|g. (3)

The difference between g′
0 and g′

i is negligible in Boussinesq (Bq) systems, but in non-Bq cases it
must be taken into account. Note that g′

0 and g′
i are constants in a given system, while g′ may vary

with x and t when ρ of the GC is affected by entrainment.
The structure of the paper is as follows. We start with predictions of simple models for the time-

dependent sustained GC: The classical flow without entrainment and drag is considered in Sec. II A,
and the hybrid model (HM) extension (with entrainment and drag) is developed and discussed
next. In both cases, when the influx in supercritical, quasisteady domains appear, separated by an
internal jump that propagates away from the source. The pattern of the flow changes when the nose
and then the internal jump arrive at the drainage position xD. The model with a stationary jump,
suggested by HVVV, is discussed in Sec. II B. The predictions of the HM are presented for typical
cases, including the influx conditions of the examples of HVVV. In Sec. III we introduce the more
rigorous solution (by finite difference) of the shallow-water (SW) set of equations. We show that
there is good agreement with the HM. Comparisons with the results with HVVV are performed,
and the differences are discussed. Concluding remarks are given in Sec. IV. In the Appendix a brief
derivation of the SW equations is presented.

II. ANALYTICAL MODELS

The flow of the sustained GC is amenable to simple modeling with analytical solutions. (Here,
“analytical” includes straightforward numerical tools, such as iterative solution of algebraic equa-
tions and integration of ordinary differential equations.) We start with these models because they
provide useful insights into the process under investigation.

A. Classical patterns for zero entrainment

When entrainment is negligible, ρ = ρi in the current, and hence g′ = g′
0. The classical (standard)

SW one-layer theory (see Appendix and Ref. [1]) provides a simple solution to this problem: The
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FIG. 1. Classical simple propagating GC with smooth interface.

current has constant height h and propagates with constant speed uN . We distinguish between two
cases.

1. Free propagating current. See Fig. 1. The leading edge of the current is a jump of speed uN =
FrN (ρi/ρa)1/2(g′

0hN )1/2, where FrN is the nose-jump Froude number, = √
2 according to Benjamin’s

solution. The value h = hN is obtained by flux continuity, qi = uihi = FrN (ρi/ρa)1/2g′1/2
0 h3/2. It is

convenient to define the buoyancy flux

B0 = |ρi/ρa − 1|guihi = g′
iuihi. (4)

We can express uN = Fr2/3
N B1/3

0 . This simple solution is quite robust: It is an exact solution of the
shallow-water equations for both “top” and “bottom” Bq (ρi/ρa ≈ 1) and non-Bq GCs. Moreover,
with the exception of the domains close to the inlet and nose, the flow can be considered to be in
steady state. The position of the nose is xN = uNt .

2. Drainage GC. See Fig. 3. An interesting variant of this problem is provided by the presence of
a drainage-from-the-edge (or drainage-from-the-free-end) condition at x = xD, where the horizontal
solid boundary on which the GC propagates has a sharp end. When the nose xN reaches this position,
the Benjamin-type jump becomes irrelevant and is replaced by an expansion flow. Analysis of the
characteristics of the SW equations (see Ref. [11]) shows that uN must be replaced by the critical
flow condition uD = |ρa/ρi − 1|g√hD (FD = 1). Eventually, a new long (quasisteady-state) GC
develops with uDhD = qi, and this yields uD = ([ρa/ρi )B0]1/3. The adjustment implies a change
in volume of the GC in the domain 0 � x � xD, �V = xD(hD − hN ) (approximately), and the
adjustment-time interval is estimated as |�V|/qi. For Boussinesq and bottom GCs, uD < uN [be-
cause FrN (ρi/ρa)1/2 �

√
2] and hence hD > hN , �V > 0. For top non-Bq GCs, FrN (ρi/ρa)1/2 < 1

may occur, leading to uD > uN and hD < hN , �V < 0.
Let us reconsider the inflow side. Ideally, the solution starts at x = 0, t = 0. However, various

considerations indicate that an adjustment interval is expected at the influx boundary. The thin-
layer equations are relevant only after some “current” has been developed, i.e., xN > hi. We shall
assume that the adjustment-time and length intervals are negligible on the scale of the system under
consideration. A closer inspection of the influx-adjustment region involves the characteristics of the
SW equations [8]. Here the important parameter is F . The analysis reveals that the smooth interface
of the current, assumed in the classical solution (Fig. 1), is relevant for critical and subcritical influx
conditions. For F i > 1 an internal jump appears (Figs. 2 and 3). We shall focus attention on flows
of this type, i.e., with supercritical inflow at the source, when an internal jump appears.
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FIG. 2. Classical propagating GC with internal jump.
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FIG. 3. Drainage GC with internal jump.

B. Models with entrainment

Consider Fig. 4. There is a great deal of evidence (e.g., Refs. [2,3,5]) that the interface between
the GC and the ambient fluid becomes unstable for a sufficiently small ratio of buoyancy to shear;
this ratio, squared, is referred to as the Richardson number. The precise value of this parameter de-
pends on small-scale details that are unavailable in a depth-averaged simplified flow-field solution.
An accepted approximation is the bulk (or overall) Richardson number defined by

Ri = |ρa/ρ − 1|gh

u2
= g′h

u2
= 1

F2 . (5)

There is evidence that for Ri < Ricrit of the order of 0.3 (i.e., large F) the interface is locally unstable
and supports entrainment and mixing of ambient fluid into the moving current. Therefore, when
F i � 2, the classical model must be revised. Formally, it is necessary and sufficient to incorporate
the contributions of entrainment and drag terms into the simplified equations of motion and seek
again quasisteady solutions.

The governing equations (see Appendix) for the steady-state flow in the mixed domain can be
expressed as (prime denotes x derivative)

ρ ′

ρ
= −

(
1 − ρa

ρ

)
E

h
, (6a)

u′

u
= − 1

(1 − Ri)h

[
E

(
ρa

ρ
+ 1

2
Ri

)
+ cD

]
, (6b)

h′

h
= E

h
− u′

u
, (6c)

subject to the initial conditions ρi, hi, ui at x = 0 and supplemented by some empirical formulas for
E and cD as functions of Ri = Ri(x) = |1 − ρa/ρ|gh/u2. As a prototype for the elucidation of our
models we take the relationship (see Refs. [1,2])

E = 0.075/(1 + 27Ri); cD = 0.0065 (Ri < Ricrit ), (7)

FIG. 4. Mixing steady domain followed by a propagating GC with internal jump.
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FIG. 5. Sketch of the top GC.

supplemented by E = cD = 0 for Ri > Ricrit . (Other relationships will be introduced later.) Equa-
tion (7) illustrates the main features of the entrainment and drag: E is ∼0.02 for Ri ∼ 0.1 and
decreases with Ri. cD is typically smaller than E , but due to more scatter of data it is represented
by a constant. The details of the variations of E and cD have some quantitative influence on the
flow-field results. The value of Ricrit turns out to have a more dramatic, qualitative effect on the
models.

An inspection of (6a)–(6c) indicates a singularity at Ri = 1. The supercritical flow starts with a
small Ri = Rii. Then h increases with x due to entrainment, while u decreases due to entrainment
and drag; as a result, Ri increases toward the point of singularity. When Ricrit < 1 the solution
of (6a)–(6c) is regular in the process under investigation, while when Ricrit > 1 the steady-state
solution may develop a singularity in the domain of interest. Therefore the cases Ricrit < 1 and
Ricrit > 1 need different models. (The value of xD is also significant for the steady-state patterns,
but in a rather straightforward manner, and hence the effect of xD will not be discussed separately.)

1. The hybrid model

We assume that Ricrit < 1 (for definiteness, we use Ricrit = 0.25 unless stated otherwise). This
implies negligible (zero) entrainment and drag for the domain of subcritical flow where Ri > 1 and
F < 1. The appropriate model is called the “hybrid model” (HM) for reasons clarified later.

The reconsideration leads to the following modifications of the classical model.
(1) Following the influx with given ρi, hi, ui, there is a domain of significant entrainment, x � xm;

see Fig. 4 (the subscript denotes “mixing” or “mixed”). In this domain, ρi is mixed (diluted) toward
ρa, h increases, and u decreases. Consequently, Ri increases monotonically and attains Ricrit at xm.
We argue that after a time tm, the flow in x � xm reaches a steady state. The steady-state flow in the
mixed domain can be calculated by the integration (e.g., by a Runge-Kutta scheme) of Eqs. (6a)–(6c)
(prime denotes x derivative) from x = 0 to xm where Ri = Ricrit. The formulation is valid for both
bottom and top GCs of Bq and non-Bq type. Like the classical SW formulation used here, the
assumption is that the current is a thin layer and the motion of the ambient fluid is negligible. For
0 < Ri � Ricrit < 1 (as assumed here) the equations are regular, and the numerical integration is
straightforward.

For x = xm we obtain the steady values ρm, hm, um.
(2) Since at xm the interface becomes stable, the entrainment and drag in the subsequent flow are

expected to be insignificant. This implies that for x > xm the classical SW equations can be applied.
The flow will be like that in the classical solution described above (Sec. II A). The only change is in
the influx conditions: This flow starts at x = xm with ρm, hm, um; the internal reduced gravity is

g′
m = |ρa/ρm − 1|g. (8)

The task is to calculate the flow in x > xm. In general, this is a time-dependent situation. The
coincidence between Rim and 1/F2

m is now significant. Since Rim = Ricrit ≈ 0.25, the initial flow at
x = xm is supercritical (Fm ≈ 2). Consequently, the flow at x > xm is expected to contain an internal
jump at xJ (t ) (Figs. 4 and 5).
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The sector xm � x � xJ (t ) is expected to be a simple core of constant height and speed hm, um.
The speed of the jump is (see Ref. [1], Sec. 4.4)

dxJ

dt
= VJ = um − U , (9)

U2 = 1

2
g′

mh+(1 + h+/hm), (10)

where h+ is the height on the expanded side of the jump. The value of h+ is determined by the
propagation of the current on the expanded side. Here the previous cases are again relevant.

1. Free propagating GC. In this case, the x > xJ domain is approximated as a rectangle of
height hN that propagates with speed uN = FrN [(ρm/ρa)g′

mhN ]1/2. Evidently, h+ = hN . We apply
the volume-conservation balance to the domain [xm, xN ]: The rate of influx hmum must be accom-
modated by the displacement of the jumps, i.e., umhm = hmVJ + hN (uN − VJ ). Here, hm and um are
known, and Vj is given by (9) and (10) (with h+ = hN ). This yields one equation for the unknown
hN . After some algebra we obtain

FrN ·
(

ρm

ρa

)1/2

= − 1√
2

(
1 + hN

hm

)1/2(
1 − hm

hN

)
+ 1√

Rim

(
hm

hN

)1/2

, (11)

where Rim is the value of Ri at xm, taken as Ricrit .
2. Drainage at xD. For xJ (t ) � x � xD we assume that the GC is a rectangle of height hD. The

corresponding quasisteady state can be calculated by changing the uN condition above to the critical
uD = (g′

mhD)1/2, and now h+ = hD. The volume continuity yields the equation for hD as follows:

1 = − 1√
2

(
1 + hD

hm

)1/2(
1 − hm

hD

)
+ 1√

Rim

(
hm

hD

)1/2

. (12)

Equations (11) and (12) differ only in the left-hand-side term. Since in many typical cases the
left-hand side of (11) is quite close to 1, we infer that the free GC and drainage GC display similar
flow patterns and can be easily confused by a superficial observation.

The foregoing solution for the GC is called “hybrid model” because we combine a steady-state
domain with a time-dependent flow. This type of approximation has been used successfully for
axisymmetric GCs in Refs. [12,13]. The major difference here is the presence of entrainment and
drag. The solution in the steady-state domain 0 < x � xm is rigorous [integration of Eqs. (6a)–(6c)],
while the time-dependent domain uses the approximation of constant-height interfaces connected by
a jump. We do not consider the detailed formation of the domains, and we assume that the internal
jump and the front jump appear instantaneously. Evidently, the establishment of the steady-state
domain of length xm requires some time, tm, which is assumed to be small as compared with the
time of observation of the system. (The time tm can be estimated from the volume of nonambient
fluid in [0, xm], influxed at the rate uihi, or by 0.5xm/(ui + um).) In all the tested cases (see Sec. II C)
a significant VJ appears. This indicates that the drainage flow in the domain x > xm cannot be
quasisteady for a long time. The subcritical domain [xJ , xD] shrinks to zero and is eventually
replaced by the faster jet of thickness hm.

We admit that the entrainment closure (7) lacks rigor. However, the main objective of this
investigation is the modeling of the flow, not the quantitative accuracy of the predictions. In this
respect, the closure (7) is a fair representation of the available knowledge. For practical use, we
keep in mind that the entrainment function and the drag coefficient are adjustable inputs. The value
Ricrit of transition from unstable to stable interface is also uncertain; however, there are reasons
for claiming that the entrainment in a supercritical current (with Rii � 0.1) becomes insignificant
after Ri(x) attains a value of about 0.5. Consider the change in (6a): The factor (1 − ρa/ρ)
decreases, the factor 1/h decreases, and E decreases as (1 + 27 × 0.1)/(1 + 27 × 0.5) = 0.26.
The order of magnitude of the entrainment terms (a normal velocity component) is in the range
of uncertainty of the depth-averaged thin-layer approximation. For example, consider the volume
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continuity equation for E = 0.003 corresponding to Ri ≈ 0.8. In this case, the steady-state solution
actually assumes that ∂h/∂t is much smaller than 0.003u. Therefore a small perturbation of the
interface, which can be expected in a realistic GC, invalidates the steady-state balance. We note that
Ref. [3] observed that entrainment stops and turbulence subsides at a certain Ricrit . (They suggest 0.8
but report uncertainties in the measurements of the variables that determine this parameter; more
recent and accurate experiments (e.g., Ref. [5]) suggest values around 0.3. We therefore use the
theoretically supported value Ricrit = 0.25 (unless stated otherwise).)

We did some tests with different plausible choices of Ricrit . The qualitative structure of the flow
field is unchanged. We shall return to this issue in Sec. III.

The HM and the SW model discard the viscous forces. The formal justification is that the influx
Reynolds number Rei = (hiui/ν) is large, where ν is the kinematic viscosity coefficient of the
current. However, as the GC extends, the friction area increases. We therefore use the more relevant
effective Reynolds number (Ref. [1], Eq. (3.64))

Ree ≈ (hiui/ν)(hi/xN ) = Rei(hi/xN ). (13)

The validity of the present inertia-buoyancy models is limited to a propagation xN/hi that keeps the
value of Ree sufficiently large (say, 10).

Finally, we note that the foregoing analysis assumes xD > xm. If xD � xm, we integrate (6a)–(6c)
numerically from x = 0 to xD. This is the steady-state solution for the entire domain.

2. Steady-state flow in 0 � x � xD: HVVV model

The HM shows that when Ricrit < 1, the time-dependent GC evolves into a steady-state flow
over 0 < x < xD. This is a smooth solution. h, u, ρ vary with x to hm, um, ρm at xm and then remain
constant. The outflow is supercritical, with RiD = Ricrit . The internal jump at xJ (t ) has been spilled
out at time t2 when it has reached xD.

HVVV argue that a steady state with an internal jump at a fixed xS < xD is also feasible. Using
VJ = 0 combined with (9) and (10) yields

r2 + r − 2/RiS = 0, (14)

where r = h+
S /hS . The positive root [see Eq. (17)] gives acceptable values for plausible upstream

RiS < 1. However, the downstream Ri+S is always larger than 1. A classical GC (with no entrainment
and drag), of constant hD, cannot match the subcritical flow at x+

S with the critical flow at xD. The
conclusion is that a stationary jump cannot appear for Ricrit < 1.

Indeed, the model of HVVV does not impose the Ricrit < 1 restriction (formally, in the E and cD

correlations, Ricrit = ∞). This allows for a steady state with a stationary jump at xS < xD, with a
subcritical RiS < 1 (on the upstream side), and RiD = 1. We repeat briefly the arguments of HVVV.
A manipulation of (6a)–(6c) yields (again, the prime denotes x derivative)

Ri′ = Ri

1 − Ri

1

h
[(1 + 2ρa/ρ)(1 + Ri/2)E + 3cD], (15)

and roughly we can approximate (assuming nonlarge values of ρa/ρ and Ri)

Ri′ ≈ 3Ri

1 − Ri

1

h
(E + cD). (16)

The sign of Ri′ is like that of (1 − Ri). In the initial propagation, Ri increases from the given small
Rii to some larger RiS < 1. Suppose that at xS there is a stationary jump that yields the downstream
Ri+S > 1. The right-hand side of (15) changes sign, and in the domain x > xS Ri decreases. The
condition that the decrease produces Ri = 1 at xD is expected to determine the value of xS . This
scenario is supported by the following observations.
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For the stationary jump, (14) and flux continuity conditions yield

h+
S

hS
= uS

u+
S

= 1

2
β,

Ri+S
RiS

=
(

1

2
β

)3

, (17)

where β = [(1 + 8/RiS )1/2 − 1]. Substitution into (17) shows that for a subcritical RiS < 1 we
obtain a jump to the supercritical Ri+S > 1. Moreover, for a small RiS the leading term is Ri+S ≈
(8/RiS )1/2. Next, we note that for Ri > 1, (E + cD) ∼ 10−2. For x > xS the right-hand side of (16)
is small, and therefore the decay from Ri+S to 1 will need a significant distance (compared with h+

S ).
This confirms the relevance of this scenario to realistic long xD.

To summarize, the HVVV model uses Eqs. (6a)–(6c) and the same boundary conditions at x = 0
as the HM. The supercritical equations are integrated to the position xS , where a jump occurs. For the
jump the HVVV model also uses (9) and imposes VJ = 0 by (14), as done here. The major difference
is that HVVV do not impose the restriction of entrainment and drag to Ri < Ricrit < 1. They argue
that the empirical correlations [such as (7)] for E and cD apply also for nonsmall Ri, including
subcritical domains with Ri > 1. In this case the flow after the stationary jump is not constrained
to a constant height hS = hD. Using (17), the steady-state equations (6a)–(6c) are integrated from
x+

S to the tentative position xT where Ri = 1 (practically, slightly larger). Imposing xT = xD, the
position xS is obtained by iterations. Although mathematically correct, we think that this solution
lacks convincing physical justification.

The first objection is that it is not clear by which process, and in how much time, this steady
state is attained. Second, the need of using the entrainment and drag correlations for large Ri may
be a mathematical artifact rather than a physical effect. As explained above, there are good reasons
for dismissing the entrainment terms in subcritical flow domains. Furthermore, there is no reason
for not accepting the forward propagation of the internal jump during the initial flow of the GC.
Therefore the existence of a steady-state flow with a stationary jump at a relatively short distance
from the source depends on the existence of a mechanism that arrests, and pushes back, the moving
jump. HVVV did not discuss such a mechanism. Finally, the stationary-jump steady-state scenario
seems incompatible with the experimental observation of Ref. [3] that the steady state is actually of
short duration.

C. Examples of HM results

We illustrate the prediction of the HM model for several cases. The presentation uses both
dimensional and dimensionless variables, as specified in the captions of the tables of results. Several
plausible scalings are available. In our investigation, the most convenient scaling (suggested by the
SW formulation of the next section) uses hi for length, U = (g′

ihi )1/2 for speed, and hi/U for time.

1. Top GC

Here we illustrate the predictions of the HM for top GCs; see Fig. 5. To be specific, our
examples correspond to the system of two light gases, with the same input properties and geometry
as considered by HVVV. In all the examples the density of the ambient is ρa = 1.2 kg/m3, and
xD ≈ 8 m. The combinations of the other input parameters are labeled as cases 1–4 and correspond
to the same “cases” in the paper of HVVV. The GCs represented by these cases differ in ui, hi, ρi

(dimensional) and thus cover the range Rii ∈ [0.003, 0.11] (i.e., F i ∈ [3, 18], strongly supercritical)
and ρa/ρi ∈ [1.2, 1.6] (non-Bq). (The values of Rei in the simulations of HVVV for these cases
were larger than 2 × 104, and hence the viscous effect is negligible in the propagation xN/hi < 100
considered here.)

The results of the HM for these GCs (cases) are presented in Tables I–III. The three tables cover
the same examples (cases 1–4) in different forms: dimensional, scaled using hi, (g′

ihi )1/2 for lengths
and speed, and scaled using hi, ui.
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TABLE I. Examples for top GC and HM results. Variables are in mks units; ρa = 1.2. Ricrit = 0.25.

Case ui hi ρi Rii xm ρm um hm Free-nose VJ uN hN Drainage VJ uD hD

1 8.00 0.10 1.00 0.003 20.63 1.13 1.77 1.32 0.62 1.44 1.85 0.39 1.17 2.32
2 4.20 0.20 0.60 0.111 1.86 0.66 3.11 0.30 0.74 2.13 0.51 0.69 2.06 0.53
3 5.00 0.50 0.75 0.118 4.87 0.79 3.81 0.73 1.06 2.78 1.17 0.84 2.53 1.28
4 10.00 0.50 0.75 0.029 19.12 0.89 4.61 1.59 1.39 3.49 2.44 1.01 3.07 2.79

Note that VJ appears twice in the tables, first for the stage of propagation with a free nose and
then for the stage of drainage.

For the tested top GCs the HM works well and predicts physically acceptable flow patterns in
accord with Fig. 5. The length xm and height hm of the mixed region increase when Rii decreases
(the flow is more supercritical). The change in density in the mixing domain is reflected by � =
(ρm − ρi )/(ρa − ρi ). For Rii ≈ 0.1 the values of � are quite small, 0.1. In the extreme supercritical
case, case 1, with a very small Rii = 0.003, the mixing region is long and thick (xm = 206, hm = 13
scaled with hi) but � = 0.66 only. In all cases, the internal jump propagates with a significant speed
VJ , and this contradicts the expectation that a steady-state pattern with a stationary jump at xS < xm

appears during the adjustment stages covered by the HM.
We also scaled the speeds with UB = B1/3

0 based on the influx buoyancy flux. The interesting
conclusion is that in all tested cases, uN/UB ≈ 1.3 and uD/UB ≈ 1.2, while the internal jump
propagates with VJ/UB ≈ 0.4.

2. Bottom GC

The top GCs considered above are concerned with gases and may be difficult for laboratory ex-
perimental validation. Some more convenient systems are the bottom GCs of saltwater in freshwater,
illustrated next. See Fig. 4.

We give examples of four systems (cases), specified in mks units; see Table IV. The cases are
labeled as cases 10–13. In all cases, ρi = 1050 and ρa = 1000 (water). (For definiteness, let xD =
2 m.) In cases 10–12, hi = 0.01 and ui = 1.0, 0.5, 0.2, and we obtain Rii = 0.0048–0.12 (i.e., F i ∈
[2.9, 14]). In case 13, hi = 0.02, ui = 0.5, and Rii = 0.039 (F i = 5.2).

The HM yields the results listed in Table IV (dimensional) and Table V (scaled as specified in
the caption).

The HM predictions are physically acceptable. The qualitative behaviors of the top and bottom
GCs are similar. Again, the internal jump displays a significant speed VJ , and there is no indication
of a fixed jump scenario.

III. SW MODEL

The shallow-water (SW) equations express the balances of volume, momentum, and mass of the
influxed component, taking into account the entrainment over the interface. A full time-dependent

TABLE II. Examples for top GC and HM results for the same systems (cases) as in Table I, in dimensionless
form. Lengths are scaled with hi, and speed is scaled with U = √

g′
ihi (given in the last column in m/s).

� = (ρm − ρi )/(ρa − ρi ).

Case ui
ρa
ρi

Rii xm
ρm
ρi

um hm Free-nose VJ uN hN Drainage VJ uD hD � U

1 19.8 1.20 0.003 206 1.13 4.38 13.2 1.54 3.56 18.5 0.97 2.90 23.16 0.66 0.40
2 4.24 2.00 0.111 9.3 1.10 3.14 1.49 0.75 2.15 2.55 0.69 2.08 2.63 0.10 0.99
3 3.69 1.60 0.118 9.7 1.06 2.81 1.46 0.78 2.05 2.33 0.62 1.87 2.56 0.10 1.36
4 7.37 1.60 0.029 38.2 1.19 3.40 3.18 1.02 2.58 4.87 0.75 2.26 5.58 0.32 1.36
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TABLE III. Examples for top GC and HM results for the same systems (cases) as in Table I, in dimension-
less form. Lengths are scaled with hi, and speed is scaled with ui. � = (ρm − ρi )/(ρa − ρi ).

Case ρa
ρi

Rii xm
ρm
ρi

um hm Free-nose VJ uN hN Drainage VJ uD hD �

1 1.2 0.003 206 1.13 0.22 13.2 0.08 0.18 18.46 0.05 0.15 23.16 0.66
2 2.0 0.111 9 1.10 0.74 1.5 0.18 0.51 2.55 0.16 0.49 2.63 0.10
3 1.6 0.118 10 1.06 0.76 1.5 0.21 0.56 2.33 0.17 0.51 2.56 0.10
4 1.6 0.029 38 1.19 0.46 3.2 0.14 0.35 4.87 0.10 0.31 5.58 0.32

process is considered. The equations, in dimensional form, are presented in the Appendix. Here we
use dimensionless variables, scaling as follows: length with hi, velocity with U = √

g′
ihi, and time

with hi/U . For the density we use

ρ/ρa = 1 + sα, s = ρi/ρa − 1. (18)

s is a given constant, positive for the bottom GC and negative for the top GC; |s| < 1 in general and
|s| 	 1 in a Bq system. Note that g′

i = |s|g.
Let q = uh and ϕ = αh. We assume q � 0 (confirmed by inspection of the results). The SW

dimensionless system for h, q, ϕ is
∂h

∂t
+ ∂q

∂x
= E

q

h
, (19a)

∂q

∂t
+ ∂ (q2/h)

∂x
+ 1

2

1

(1 + sϕ/h)

∂ (ϕh)

∂x
= −(q/h)2

[
cD − sϕ/h

1 + sϕ/h
E

]
, (19b)

∂ϕ

∂t
+ ∂ (ϕq/h)

∂x
= 0. (19c)

The boundary conditions are as follows: At x = 0, h = 1, ϕ = 1, and u = ui is given. During
propagation, at x = xN < xD, we use Benjamin’s jump condition

uN = dxN/dt = FrN
√

ϕ (20)

with FrN = √
2. (After xN attains xD, we can change to the critical edge condition u = [h/(1 +

sϕ/h)]1/2 at the fixed xD.)
For initial conditions at t = 0, we postulate h = 1, u = ui for 0 < x < 1, and xN = 1. Theoreti-

cally, the flow starts with a zero GC, but this is inconsistent with the SW equations developed for an
existing current. Our start at t = 0 is after some plausible quick adjustment. The uncertainty of the
initial adjustment region is unimportant because the focus of our solution is long GC (xN > 10).

The system is closed by a correlation for E and cD as functions of Ri. Substituting the scaling,
(18), and definitions of q, ϕ into (5), the changing Ri(x, t ) is expressed as

Ri = ϕh2

(1 + sϕ/h)q2
. (21)

TABLE IV. Examples for bottom GC and HM results. Variables are in mks units; ρa = 1000, Ricrit = 0.25.

Case ui hi ρi Rii xm ρm um hm Free-nose VJ uN hN Drainage VJ uD hD

10 1.00 0.010 1050 0.005 1.70 1.02 0.27 0.105 0.098 0.223 0.142 0.059 0.178 0.184
11 0.50 0.010 1050 0.019 0.66 1.03 0.21 0.044 0.078 0.177 0.059 0.047 0.141 0.077
12 0.20 0.010 1050 0.117 0.13 1.04 0.16 0.015 0.058 0.130 0.020 0.034 0.103 0.026
13 0.50 0.020 1050 0.037 0.80 1.03 0.27 0.057 0.099 0.223 0.077 0.059 0.177 0.100
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TABLE V. Examples for bottom GC and HM results for the same systems (cases) as in Table IV,
dimensionless form. Lengths are scaled with hi, and speed is scaled with U = √

g′
ihi (given in the last column

in m/s). � = (ρm − ρi )/(ρi − ρa).

Case ui
ρa
ρi

Rii xm
ρm
ρi

um hm Free-nose VJ uN hN Drainage VJ uD hD � U

10 14.2 0.95 0.005 171 0.97 3.82 10.5 1.4 3.18 14. 0.84 2.5 18. 0.64 0.070
11 7.14 0.95 0.019 66 0.98 3.03 4.4 1.1 2.53 5.9 0.67 2.0 7.7 0.46 0.070
12 2.86 0.95 0.117 13 0.99 2.22 1.5 0.82 1.86 2.0 0.49 1.5 2.6 0.13 0.070
13 5.05 0.95 0.037 40 0.98 2.69 2.8 1.0 2.25 3.8 0.59 1.8 5.0 0.34 0.099

We use (7) unless stated otherwise. It is emphasized that the Ri = 1 singularity detected in the
steady-state formulation (6a)–(6c) does not appear in the time-dependent flow, and hence the same
SW model can be applied for any value of Ricrit . The Bq SW equations are recovered by setting
s = 0 in (19b) and (21) [however, in (18) a small finite s is necessary for physical relevance].

The equations were solved by a finite-difference Lax-Wendroff method, with typically 500 grid
points over the x domain and time step restricted by the Courant-Friedrichs-Lewy (CFL) condition
(tests on different grids confirmed the reliability). The scheme has documented deficiencies of small
spurious oscillations and dissipation [14] whose damping prevents sharp presentation of jumps, but
the major behavior of the variables is well reproduced. Since the present investigation is focused
on major effects [motion of the interface, formation and propagation of the internal jump, and
change of regime (sub- vs supercritical)], the small numerical dissipation effects of the scheme are
acceptable.

SW results and comparisons

Note that for E and cD we use correlation (7) with Ricrit = 0.25 unless stated otherwise.
We solved in detail case 2 of the top GC considered in Table I: In dimensional form mks units,

hi = 0.2, ui = 4.2, ρi = 0.6, and ρa = 1.2. We obtain g′
i = 4.9, and the scaling speed is U = 0.99.

This is a clear-cut non-Bq case, with s = −0.50. The development of the flow with time is shown
in Figs. 6 and 7. Overall, the flow field is consistent with the predictions of the hybrid model. It is
evident that a strong jump in h and u appears from the beginning. The jump is moving all the time.
In the first stage, the height and length of the mixed region increase. In the second stage, the mixed
region attains a fixed height hm at xm.

The effect of drainage is illustrated by the differences between Fig. 6 and Fig. 7. In Fig. 6 the
GC propagates on an unbounded boundary. In Fig. 7 there is a free drainage edge at xD = 30.
The drainage begins at t = 13.3 when xN of the free nose reaches the position xD. Comparing the
figures, we observe that the flow of the current in the domain x < 30 is very little influenced by
the drainage condition. However, at t = 35 the internal jump is at xJ = 27.6, very close to the
drainage point. The subsequent propagation of the jump is beyond the resolution of the thin-layer
approximation. The jump is no longer needed, because after a short time interval the supercritical
domain of the GC (u = 3.2) reaches the position xD = 30 and can drain as a free jet. In other
words, the internal jump is spilled out from the system at t ≈ 36. The subsequent flow of the GC
in the domain 0 < x < xD = 30 is expected to be a steady state without an internal jump. This is
consistent with the prediction of the hybrid model.

Quantitatively, there is good agreement between the predictions of the HM and SW solution
concerning the shape and velocities in the various domains. The SW and HM values of hm, ρm, uN ,
hN , and VJ agree within about 2%. The disagreements can be attributed to the simplifications of
the HM (constant height of the expanded domain) and numerical errors (dissipation) of the finite-
difference solution (the jumps are not sharp). From the physical point of view, it is evident that
the SW solution and the HM cover the same phenomenon. (However, a pointwise comparison of
the time-dependent flow is problematic, because the HM begins with an established steady-state
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FIG. 6. SW results for case 2 at t = 5, 15, 25 with a free nose (no drainage). Top GC, h is measured
downwards.

domain of length xm.) The major conclusion for the system with Ricrit = 0.25 is that the internal
jump propagates with constant speed and leaves behind a domain of steady-state structure with
constant hm, ρm and supercritical speed um. This is a jetlike motion. We do not see any mechanism

FIG. 7. SW results for case 2 at t = 5, 15, 25, 35 with a drainage at xD = 30, Ricrit = 0.25. Top GC, h is
measured downwards.
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FIG. 8. SW results for case 2 at t = 5, 15, 25, 35 with a drainage at xD = 30, Ricrit = 0.80. Top GC, h is
measured downwards.

that can stop the propagation of the jump and shrink back the jet. The scenario of a fixed internal
jump, as considered by HVVV, does not apply to this system.

For the clarification of the effect of Ricrit on the flow, we changed the value Ricrit = 0.25 used in
Fig. 7 to Ricrit = 0.8 in Fig. 8. This is the end-of-entrainment value reported in Ref. [3]. The drastic
increase in Ricrit (by a factor of 3.2) causes a moderate quantitative change in the profiles of h and
u (Figs. 7 and 8). The mixed domain (upward inclined h) becomes longer and higher, and speed u
is more reduced. The value of maximum ρ/ρa (not shown) increases from 0.54 to 0.57 (the value
at the source is 0.50). The qualitative structure is unchanged: The forward-moving internal jump is
present, and the supercritical flow moves toward the drainage point. Again, we do not observe any
tendency for arresting this jump and pushing it back to a fixed position as suggested by HVVV.

In a more drastic test, we changed Ricrit = 100. Practically, this means that the effects of
entrainment and drag are present all the time because in all our tests the values of Ri were below 3.
In this framework we used three correlations: (i) Eq. (7), (ii) the formula of Ref. [15],

E = 5.5 × 10−3

a + √
a2 + 0.15

, a = 3.6Ri − 1; cD = 0.0065 (Ri � 100), (22)

and (iii) a modification of the formula of Ref. [15], which has been used in the model of HVVV,
namely,

E = 5.5 × 10−3

b + √
b2 + 0.15

, b = 3.6

(
ρ

ρa

)
Ri − 1; cD = 0.0065 (Ri � 100). (23)

The SW results obtained with (22) are denoted as SWc. Note that cD is the same in all correlations.
The theoretical justification for the modification of (22) into (23) is not clear; the reason seems to
be the empirical agreement with the simulations of HVVV. For a Bq system the difference between
(22) and (23) is insignificant, but for a non-Bq top GC the latter formula predicts larger entrainment
during the entire process.

Figure 9 shows a comparison of HVVV steady-state results with the present SW time-dependent
solution (without drainage) at t = t1 = 18 (the time when the free nose reaches the position xD =
40). There is some agreement concerning the behavior of the density ρ in the current: an increase
over a relatively short xm and then a quite constant value over a long distance. Since ρa/ρi = 2,
the mixing turns out to be small in all the shown results. The largest mixing is in the large-eddy
simulated flow field. In the other variables (h, u, Ri) there are significant disagreements between the
present and the HVVV predictions. The SW solution predicts a moving jump that leaves behind a
fairly thin layer of high supercritical speed.
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FIG. 9. Comparisons of HVVV steady-state simulation (red) and model (blue) case 2 with SW free nose at
t = 18 for the following: SWa, correlation (7) with Ricrit = 0.25; SWb, correlation (7) with Ricrit = 100; and
SWc, correlation (22). Top GC, h is measured downwards.

Consider the SWc solution, which uses the original [15] entrainment and drag correlations. At
t1 = 18 the SW free jump is at xJ (t1) = 12.5, while the steady-state model of HVVV predicts xS =
7. If such a steady state exists, a complex readjustment motion must occur, during which the jump
is pushed back a significant distance. To check this hypothesis, we applied in the SW solution the
critical condition uD = √

(g′h)D after the nose reaches xD. The time-dependent solution is presented
in Fig. 10. The profiles for t = 25 and 35 do not show a tendency of a backward-moving jump.
However, the profiles show some oscillations that propagate from xD upstream. Our interpretation is
as follows. There are two possible scenarios. First, the oscillations generated at xD prevail for a long
time and preclude the reduction to a steady-state flow. Second, these oscillations will develop into a
coherent forcing that will push back the jump to the theoretical steady-state xS and reshape the flow
in the subcritical domain. [Note that Eqs. (9) and (10) admit a negative VJ for a sufficiently large
h+/hm. Since the height h(x, t ) in the subcritical domain xJ (t ) < x < xD may increase after t1, a
backward internal jump is physically possible.] The reliable discrimination between these scenarios
is beyond the resolution of our code. In any case, the adjustment process is expected to require a
very long time, because the reflection effect is propagated by the backward-moving characteristics
whose speed (dimensional) is u − (g′h)1/2 = u(1 − √

Ri), in the domain where Ri is close to 1. The
presence of entrainment and drag complicates the analysis of these characteristics and precludes a
simple analytical estimate of the reflection effect. A tentative (with low accuracy) SW solution with
the present code, not shown in the figures, suggests that in case SWc the jump will be arrested at
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FIG. 10. SW results for free nose followed by critical uD at xD = 40, correlation (22). Top GC, h is
measured downwards.

t ≈ 95 at xJ = 24.5. Then it moves back slowly, with oscillations, such that xJ ≈ 23 at t = 200.
A more reliable long-time solution must be left for future investigation with more accurate codes.
We also note that the time of reflection and adjustment to a tentative steady state is expected to
increase with xD. In the present examples, xD = 40, but solutions for larger values of xD (a practical
possibility) will need results for even longer times than considered here.

Next, we performed the SW calculations using the modified correlation (23). The comparison
with the simulation and model of HVVV is shown in Fig. 11. The propagation of the nose xN (t )
is little affected by the change in the entrainment correlation; the nose reaches the edge slightly
after t1 ≈ 18, and then a free drainage flow develops. The internal jump propagates quite fast
initially, attaining xJ = 10 at t = 18. However, this propagation slows down during the drainage
stage and stops at xJ = 14 at about t = 50. Subsequently, the internal jump clearly moves back,
slowly, attaining xJ = 12 at t = 100. The profiles at t = 100 are in plausible agreement with the
steady-state results of HVVV. The conclusion is that the SW solution with correlation (23) supports
the possibility that the steady-state results of HVVV are a good approximation for the long-time
behavior. However, it is still uncertain if and when the SW solution will reach a steady state; in
Fig. 11 the jump overshoots xS , is arrested, and then moves back. It is not clear if it will attain
xS and settle there. Our code is not sufficiently accurate for a reliable prediction of the flow for
t > 100.

The initial conditions hi, ui, ρi and the value of xD are also expected to affect the realization of
a quasistationary jump at xS (provided that Ricrit > 1). A change in the initial conditions changes
Rii; see (5). Supposing a fixed xD (scaled with hi), a decrease in Rii will increase xS (scaled with
hi). (This can be inferred from the discussion in Sec. II B 2.) In this case, we expect that the arrested
jump will need a shorter time for moving back to xS , thus making the steady state a more plausible
approximation. The opposite is expected when the change in the input conditions causes an increase
in Rii. The effect of xD is more obvious: For fixed initial conditions, an increase in xD will decrease
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FIG. 11. SW results for free nose followed by critical uD at xD = 40, using correlation (23), and comparison
with HVVV. The SW jump is arrested at t = 50 (solid black line), and the dashed black line shows the profile
at t = 100. Top GC, h is measured downwards.

xS (again, see Sec. II B 2). In this case, a longer time will be necessary for all the stages of the motion:
arrival of the nose to xD, arresting the jump, and also of the backward motion when relevant. The
study of the details is left for future work.

The large-eddy simulations results of HVVV do not provide clear-cut support to the arrest of the
internal jump and backward (or oscillatory) motion. The study is focused on the long-time solution
and uses various averages of the flow field. The averages converge to some smooth quasisteady
profiles, which seem to support the existence of a steady-state flow. We note that the averaged
profiles of the large-eddy simulations do not show an internal jump; instead, they display a region
of significant (but not sharp) variation of the variables roughly from xS downstream over 5–10 units
of hi; see Figs. 9 and 11. This transition domain seems to agree with the distance of overshoot of
the free jump in the time-dependent SW solutions. HVVV suggest that the nonsharp jump may
be attributed to a local entrainment into the jump, but this does not contradict the possibility of a
time-dependent flow in the transition domain.

The study in Ref. [3] does not support the steady-state flow with a stationary-jump hypothesis.
The paper indicates that E = 0 for Ri > Ricrit = 0.8. This validates the HM solution, with no
internal jump. One may argue that E = 0 does not necessarily impose cD = 0, and this, theoretically,
leaves open the possibility that Ri will increase toward the critical 1 according to (16). On the
other hand, that study emphasizes that the flow was in (quasi)steady state only for a finite (short)
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time period, after which a reflected bore from xD upstream has been observed. This contradicts the
long-time steady-state pattern of the HVVV model.

IV. CONCLUDING REMARKS

We considered the time-dependent process of a strongly supercritical (Rii = F−2
i < 0.25) GC

sustained by a source at x = 0. An open free drainage edge is present at xD 
 hi. Thus, eventually,
a steady-state flow from x = 0 to xD is expected. Using a hybrid model (HM) and finite-difference
solution of the shallow-water (SW) equations, we demonstrated that the time-dependent flow is
essential for the understanding of the steady-state solution.

The initial adjustment of the GC is as follows. The nose xN (t ) propagates with a fairly constant
uN toward xD. An internal jump appears at xJ (t ) with speed VJ < uN . In the x < xJ domain the flow
is supercritical, with a significant quasisteady entrainment region in which ρi is mixed toward ρa, h
increases, and u decreases. In the x > xJ domain the expanded flow is subcritical, with constant or
slightly-increasing-with-x velocity u. At some time t1 the nose reaches the drainage edge, and the
readjustment of the subcritical domain occurs; this, however, does not affect much the propagation
of the internal jump for a significant time. When Ricrit < 1, the internal jump will reach the drainage
point xD at t2; this leaves behind, in 0 � x � xD, a steady-state supercritical flow with a smooth
interface (no internal jump).

When Ricrit is large, the flow for t > t1 is ambiguous. Theoretically, as shown by HVVV, a steady
state with a stationary internal jump at xS < xD is possible. The SW time-dependent calculations
show that xJ (t1) > xS (the overshoot is significant). The time-dependent process that may push back
the jump to xS is expected to be long and is beyond the accuracy of our solver. After t1 (when the
nose overflows xD), some disturbances propagate upstream from the edge xD; we detected some
oscillations, and even the tendency of arresting, and pushing back, the internal jump. It is not clear
if the long-time flow will tend to a steady state or not. The answer must be left for future work
using more sophisticated codes. In any case, our study demonstrates that the behavior of E , cD as
functions of Ri is essential in the long-time flow.

The large-eddy numerical simulation results of HVVV cover only the averaged long-time (t 

t1) behavior of the system. The simulations show global agreement with the concept of an internal
jump at a fixed position but do not really confirm the presence of the jump (the corresponding
changes are smeared over a significant distance). The mechanism that places the internal jump (or
its smeared counterpart) at the final position is not clear. We note in passing that the reproduction of
a free-edge drainage at the outflux boundary in a numerical Navier-Stokes simulation is a challenge
(see Refs. [11,16]). HVVV do not elaborate on this issue. The details of this boundary condition,
and the difference with the weir boundary condition, may turn out to be significant for the presence
or absence of a steady-state flow at large times. Again, these topics require further investigation that
must be left for future work.

In typical cases, the speed of the current during free propagation and during drainage is fairly well
reproduced by the classical results cB1/3

0 , where B0 is the buoyancy flux (unaffected by entrainment)
and c is a coefficient of magnitude 1.1–1.3.

The investigation is relevant to bottom and top GCs, in Boussinesq (Bq) and non-Bq systems.
The differences are quantitative and typically not significant. However, we note that the definition
of Ri = g′h/u2 may be ambiguous, because the reference density in g′ may be either ρ of the current
or ρa of the ambient. We use the former option but keep in mind that the values of Ricrit and the
entrainment correlations of a Bq system may need recalibration when applied to non-Bq cases.

We considered a one-layer model. Extensions to two-layer models, taking into account the
motion of the ambient along the lines of Ref. [8] are feasible, but not straightforward; see Ref. [1],
Sec. 27.1.

This study demonstrates the importance of the time-dependent behavior of the flow and the
availability of effective tools for the analysis of such flows. We argue that the studies based on
steady-state formulations are an oversimplification that should be used with care, and perhaps
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only as a supplement to a time-dependent analysis. In general, it is not clear if and when a
steady-state flow appears for given boundary conditions, and in some cases the transient stage may
be significantly different from the steady state for a long time period. Moreover, a steady-state GC
is relevant only to a constant-source supply, and this is a serious restriction in practice.

The insights gained in this paper may provide an alternative interpretation to the observations of
Ref. [3]. The GC in the experiment (Fig. 1 in that paper) displayed a steady flow for a few seconds;
then, at tw a strong upstream wave propagated from the edge xD toward the source. We speculate
that the short steady state was actually the flow before the internal jump reached the edge, i.e.,
xJ (tw ) = xD. We keep in mind that in the experiment there was a weir at xD, not a true open edge.
We speculate that tw corresponds to t2 of our models: At tw the supercritical current hit the weir.
This strong impact is bound to produce a significant reflected bore into the upstream direction.

Our analysis highlights the importance of a possible Ricrit < 1 above which entrainment and
drag are negligible. The available information is inconclusive. Most E and cD data were obtained
indirectly, using Bq GCs over inclined boundaries. For example, HVVV employ a correlation,
derived in 1996 from experiments with a Bq fluid mud over a sloping bottom, to model non-Bq
GCs of hot air below a flat ceiling; the Reynolds numbers are different, and even the definition of
the relevant Richardson number is debatable. We argue that in these circumstances, no clear-cut
conclusions concerning the horizontal supercritical GC can be stated with confidence. Careful
experiments (laboratory and computer simulations) dedicated to this problem are necessary, and
we are confident that the present study will provide useful guidelines and data for comparison for
these future works.
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APPENDIX: BASIC SW BALANCES

We use dimensional variables. For definiteness, during the formulation we consider a bottom
(“heavy”) GC. The implementation to the top (“light”) current is explained after (A10). The bottom
is at z = 0, and the gravity is in the −z direction. The interface between the current and the ambient
is z = h(x, t ), and the height-averaged velocity of the GC is u(x, t ). The ambient is stationary. The
density ρ of the current and the dimensionless dilution fraction α are functions of x and t .

The density of the current is expressed by

ρ = ρc = ρa + (ρi − ρa)α, (A1)

where α ∈ [0, 1] (α = 1 means undiluted, and α = 0 means fully diluted).
The volume continuity is given by

∂h

∂t
+ ∂uh

∂x
= E |u|. (A2)

The right-hand-side term expresses the rate of volume entrainment through the interface. This is
a normal velocity, and hence consistency with the SW assumptions imposes the restriction E 	 1
which is in general satisfied.

For mass continuity, we note that the entrainment carries fluid of density ρa, which is mixed with
the local ρ. This yields

∂ρh

∂t
+ ∂ρuh

∂x
= E |u|ρa. (A3)
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Combining with (A2) (multiplied with ρa), we obtain

∂ (ρ − ρa)h

∂t
+ ∂ (ρ − ρa)uh

∂x
= 0. (A4)

This equation shows that the density excess (i.e., the buoyancy) is conserved in the GC. The balance
(A4) can be rewritten as

∂αh

∂t
+ ∂αuh

∂x
= 0 (A5)

or

∂g′
eh

∂t
+ ∂g′

euh

∂x
= 0, (A6)

where g′
e = αg′

i is the effective reduced gravity.
For the momentum equation, we first employ the hydrostatic equation and the condition of

pressure continuity at the interface. In the stationary ambient the (reduced) pressure is a constant,
set here to 0. Let �ρ = (ρ − ρa). We obtain the pressure in the current

p = g�ρ(h − z) (0 � z � h), (A7)

and hence

∂ p

∂x
= g

[
(h − z)

∂�ρ

∂x
+ �ρ

∂h

∂x

]
(0 � z � h). (A8)

The driving pressure for the current is therefore

−
∫ h

0

∂ p

∂x
dz = −1

2
g
∂�ρh2

∂x
. (A9)

The x-momentum equation expresses the balance between the inertial, pressure gradient, and
drag over the layer of thickness h as follows:

∂ρuh

∂t
+ ∂ρu2h

∂x
= −1

2

g|�ρ|h2

∂x
− cDρ|u|u. (A10)

Note that g|�ρ| = ρag′
e. (In the bottom GC the change of �ρ to |�ρ| is trivial because ρ > ρa.)

The volume and mass balances are kinematic relationships, and hence (A2)–(A6) apply directly
to the top GC. The analysis of the dynamic effect of the buoyancy requires some care, and the
conclusion is that the change of �ρ to |�ρ| in the momentum equation (A10) and in the definitions
of the reduced gravity g′ render the present formulation valid for both bottom and top GCs.

Standard mathematical manipulation of (A1)–(A6) and (A10) yields various convenient forms of
the equations of motion. In particular, for the steady state we obtain (6a)–(6c).

The system of equations is hyperbolic and admits discontinuities (jumps). The jump conditions
can be obtained by a control volume analysis [1]. Since the jump is over a very small �x, the local
density is not influenced by the entrainment ∼E�x/h, and hence the classical results remain a good
approximation (taking care to use the local density). In particular, we have the following: (1) For
the free-nose jump we can use

uN = FrN (g′
ihN )1/2 = FrN [|1 − ρ(xN )/ρa|ghN ]1/2, (A11)

where FrN is Benjamin’s Froude formula. The non-Bq effect is incorporated in the value of g′
i. (2)

For the internal jump, we use (9) and (10).
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The reduction E = cD = 0

When entrainment and drag are negligible, the SW formulation is significantly simplified by
setting E = cD = 0 in the balance equations. In this case, ρ = ρc = ρi = const; hence g′

e = const,
and α = 1. The equation for α can be discarded. The governing equations are

∂h

∂t
+ ∂uh

∂x
= 0, (A12)

∂uh

∂t
+ ∂

∂x

[
ρu2h + 1

2
g′

ih
2

]
= 0. (A13)

These equations are evidently satisfied by a sustained flow with piecewise-constant h and u,
separated by an internal jump at xJ (t ) and ending with a free-nose jump of height hN at xN (t ),
as discussed in Sec. II A.
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