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In this paper, we present direct numerical simulations of viscoelastic fluid flow in a
cavity with an ion conduction-driven mechanism. The flow patterns, oscillation amplitudes,
force competition mode, and power-law spectral scaling accompanying oscillatory flow are
examined. The dimensionless parameter β (elucidating the electric-field-enhanced disso-
ciation) together with conduction number C0 determines the limiting operating regimes
(ohmic and saturation). The results demonstrate that asymmetric unsteady flow patterns
are observed in perfectly symmetric geometry. Different transition sequences are dis-
cussed under two operating regimes, by velocity oscillation and power-law decay. The
commensurability magnitudes of the elastic stress and Coulomb forces significantly alter
the convective mode, leading to discrepancies in the electroelastic instability paths. The
kinetic and elastic energies of the associated driving parameters are quantified, and the
flow patterns are divided into five subregions. The dynamic behavior above is related to
the strong electroconvective flow within the heterogeneous charge layers.
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I. INTRODUCTION

The electrohydrodynamic (EHD) phenomenon, as a multidisciplinary area dealing with the
interaction of electric fields and flow fields, has involved many applications, such as multiphase
flow [1], flow distribution control [2] (active or passive), heat transfer enhancement [3], spacecraft
equipment [4], electronics [5], and robotics [6].

To better reveal the mechanism of the flow motion in dielectric liquids, it is necessary to discuss
the origin of the free charges in the flow. Injection, induction, and conduction are the main means
of generating a net volumetric charge in dielectric liquids [7]. Charge injection occurs primarily
at the electrode-liquid interface, where a neutral electron acceptor molecule can participate in
electrochemical reactions to lose electrons. Generally, sharpened electrodes are connected to either
the positive or negative terminal of the power supply. Unlike electrical injection, the induction
mechanism does not require a charged carrier or additional particles. The discontinuities or gradients
in electric conductivity may be the result of an interface between two fluids or a temperature
gradient [6,8]. The ion conduction here represents a mechanism in which charged carriers are
produced by the dissociation of molecules due to special ionizing admixtures [8–10]. Compared
with the former two mechanisms, the ion conduction mechanism has the advantage of not requiring
conductivity discontinuities and not deteriorating the fluid properties. When an external electric
field is applied, due to the enhanced rate of dissociation over recombination (Onsager-Wien effect),
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the free carriers are adjacent to the electrodes, forming heterocharge layers [called dissociation
layers (DSLs)] [11–14]. As a flow phenomenon driven by electrostatic force, the main difference
between EHD conduction and electrokinetics (EK) is attributed to the nature of the fluid medium
and the generation mechanism of charge carriers. The former mainly occurs in dielectric liquids
characterized by low conductivity and permittivity with a dynamic equilibrium between free ions
and ionic pairs; however, free ions are naturally present in EK, typically in electrolyte salt solutions.
Let us explore the basic scenario of water splitting to show the difference between the two. Many
studies [15–19] have reported that, in the study of electroconvective flow (ECF) on an ion-selective
membrane surface, water splitting or charge dissociation in membranes will produce more new
current carriers, leading to an overlimiting current (OLC). However, in low-conductivity dielectric
liquids, water is regarded as a special ionizing admixture (uncontrolled chemical impurity), thus
forming some unique ionic cluster structures. Similar admixtures [8] include acetone, butyl alcohol,
iodine J2, oxygen O2, quinones, sulfur dioxide, and mineral salts. The change in operating regime
characteristics is due to the dissolution rate of impurities (or some extra-added specific salts) being
much higher than the recombination rate under a specific field strength.

As a promising flow control and heat transfer technique, the fundamental physics of the EHD
conduction phenomenon have been rigorously investigated by various researchers over the past few
decades. EHD conduction flow on single cylindrical electrodes [20,21], coplanar electrodes [22],
three cylinders [23], and two-dimensional planar electrodes [24] has been studied extensively. Feng
and Seyed-Yagoobi [25] predicted the characteristic thickness of DSLs, describing the nondimen-
sional field profile and charge density near the electrode. An asymptotic analysis is performed for
EHD flow [26], indicating that the EHD flow is dominated by in vitro charge-induced flow at large
geometric scales and high concentrations. Recently, Vázquez et al. [27] developed a mathematical
model that can be applied to all sizes (up to micropumps) and discussed in detail the two limiting
operating states of EHD conduction pumping: ohmic and saturation. Multiple studies indicate that
large electric fields (>106 V/m) are required for EHD conduction, but this does not limit its wide
application, offering practical possibilities for engineering, such as enhanced natural convection
[28], solar collectors [29], microscale pumps [30], and coolant control in satellite structural panels
[31] with flexible structures [32]. Admittedly, most effective numerical and experimental studies
have been performed to investigate pressure generation and heat transfer efficiency in in-out systems
[9,10,20–26]. However, a literature review shows that a pure conduction-induced ECF in closed
cavities is not available, which is very suitable for studying physical mechanisms and ion transport
as well as flow instability [8,24,27].

Many EHD conduction phenomena consider it in terms of Newtonian fluids. However, fluid
properties that could serve innovative physical scenarios and engineering applications have not
been addressed. Silicone oils, polymer additive solutions, DNA solutions, greases, and coatings
exhibit dual characteristics of viscosity and elasticity and are time dependent, called viscoelastic
fluids [33]. Additional studies have been performed on microscale electro-osmotic flows (EOFs)
with viscoelastic fluids [34–36]. The viscoelasticity formed by surfactants can effectively reduce the
frictional drag at high Reynolds numbers [37]. The effects of vertical alternating currents, electric
fields, and heat transfer on creeping flow [38] are investigated in dielectric Oldroyd-B fluids. The
transition sequences of the thermal instability of a viscoelastic fluid saturated in a porous square
cavity were reported [39]. Notably, breakthroughs have been made in studying EHDs with non-
Newtonian properties in recent years. The formation of Taylor cone jets in EHD printing [40] has
demonstrated the influence of elastic and viscous parameters on the generation of high-resolution
patterns. The onset of electroelastic instability [41] in dilute and semidilute polyacrylamide solu-
tions to asymmetric flow over time was observed by visualizing dye patterns. The viscoelasticity
also decreases the OLC [34] from convection by up to 40% in the earlier transition from steady
to unsteady ECF. The nonlinear behavior of Taylor-Melcher leaky dielectric liquid charged jets
has been investigated numerically in one dimension (1D) by the Oldroyd-B model [42]. Recently,
our team has also shown the nonlinear behavior of the Oldroyd-B viscoelastic dielectric fluid in
EHD unipolar injection, discovering different transition sequences [43,44]. Through a preliminary
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literature survey, recent studies on EHD conduction have focused on structural optimization,
electrochemical theory, and Newtonian fluid properties [45,46], while complex nonlinear behavior
involved has not been discussed.

References [37–44,47] have identified shear thinning, electroelastic instability, transition, and an
increase in OLCs induced by viscoelastic fluids. The extension of EHD-related research on complex
fluid properties in this paper is motivated by the following aspects. First, the blooming development
of aerospace, microelectronics, and medical treatment puts forward requirements for enhanced
mixing, microchannel cooling, and mass transfer techniques. The effect of elasticity can cause rapid
chaos in the flow field even in a laminar state [33,34,37,41]. Therefore, EHD conduction studies on
complex fluid properties may induce flow phenomena and provide ideas for mass, momentum, and
heat transport techniques. There are few studies on the EHD conduction mechanism of viscoelastic
fluids due to the complexity of the physical model and coupling implementation. Second, in many
engineering applications (pipeline transportation, soft robot, etc.), there are defects of large friction
impedance and insufficient driving force [8,9]. EHD technology can provide enough power and
is very suitable for the improvement of low Reynolds number flow or inefficient pumping. The
relevant Newtonian experiments are too numerous [1,3,4,6,8–11] to mention. In contrast, there has
been a lack of studies of the effect of viscoelasticity on electroelastic instability. Furthermore, the
physical mechanisms, transition sequence, and flow distribution of viscoelastic dielectric fluids are
important innovations in Earth and space involving energy transformation, electrochemistry, and
biomechanical processes. Consequently, it is necessary to research the complex fluid properties of
the EHD conduction mechanism.

We investigate the mechanism of EHD conduction driving for non-Newtonian dielectric fluids
described by the Oldroyd-B model with elastic effects. The transition sequence from steady-state,
inertia-dominated EHD chaos to elasticity-dominated chaos is observed in our direct numerical
simulation (DNS). The dynamic evolution, which has not been addressed in the previous literature,
is characterized by oscillation amplitude, kinetic energy and elastic energy, and power-law spectral
scaling. We then elucidate the physical mechanisms involved. The remainder of the paper is
organized as follows. In Sec. II, we describe an EHD model governing the conduction mechanism
of viscoelastic dielectric fluids, and in Sec. III, we briefly describe the benchmark validation. The
numerical results are presented and discussed in Sec. IV. Finally, in Sec. V, we summarize the
conclusions.

II. PROBLEM FORMULATION

The fluid circulation within a square cavity is investigated, as shown in Fig. 1. The system
consists of an enclosure housing with two parallel planar electrodes, and the length of the cathode is
equal to the wall. The length of the anode is set to half the width of the cavity and is placed on the left
side. The domain is filled with dielectric liquid of density ρm, relative permittivity εr , and a potential
difference �φ = φ1 − φ0 between the two electrodes. For this asymmetric electrode configuration,
with different thicknesses of the DSLs, the electric field forces drive the liquid into motion as
expected. The monitoring point M is located at (0.1d , 0.5H) coordinates, where H represents the
height of the cavity.

A. Hydrodynamic and electric equations

The incompressible hydrodynamic equations [27] are the momentum equation and the continuity
equation:

ρm

(
∂u
∂t

+ u · ∇u
)

= −∇p + 2ηs∇ · D + ∇ · τ + ρE E, (1)

∇ · u = 0, (2)
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FIG. 1. Schematic diagram of electrohydrodynamic transport between two electrode plates in a cavity. The
distance between the two electrodes is characterized as d .

where u is the fluid velocity, p is the pressure, ρE = e0(z+c+ + z−c−) is the space charge density,
and e is the elementary charge. Here, z± and c± are the valence and concentration of ionic species,
respectively. The other parameters are ηs the solvent dynamic viscosity, D = 1

2 [∇u + (∇u)T ] the
ratio of the deformation tensor, and τ the non-Newtonian polymeric stress tensor, which can be
described by different constitutive models.

The electric field and Poisson equations:

E = −∇φ, (3)

∇ · (ε∇φ) = −ρE , (4)

where φ is the voltage, E is the electric field, ε = εrε0 is the fluid permittivity, and ε0 is the vacuum
permittivity.

B. Dissociation-recombination and ion transport

The chemical dissociation-recombination of neutral species is considered within the electrolyte
bulk, considering the fixed neutral species concentration c0. The reactions of dissociation and
recombination are described [27] as

AB
dis→
rec← A+ + B−, (5)

where AB is a simple neutral electrolyte species, while A+ and B− are the positive and negative
ions into which it dissociates. The bulk of the liquid in equilibrium is electroneutral, but near a
surface, this balance is disrupted due to the presence of the interface. Consequently, near a surface,
an electric double layer (EDL) develops. However, the charge distribution in the EDL is a result of
the equilibrium between charge diffusion and ion recombination. If the applied electric field exceeds
a certain value, this equilibrium of the surface is broken. Then the Debye layers [8,27,32] are not
visible in EDLs, and DSLs develop, forming a charged layer with a thickness λH opposite to the
electrode polarity. The thickness of the DSLs can be estimated as follows:

λH ≈ εKE0

σ
, (6)
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where K is the ionic mobility, ε is the fluid permittivity, and σ is the conductivity. Here, E0 is the
order of magnitude of the component of the electric field perpendicular to the surface.

The intensity of the applied electric field does not produce ion injection in any electrodes. Under
equilibrium conditions (ceq

+ = ceq
− = ceq), a reversible reaction can be given as

kDc0 = kRceq
+ ceq

− = kR(ceq )2
, (7)

where ceq
+ and ceq

− are the concentrations of the positive and negative species in equilibrium,
respectively. Here, kD and kR represent the dissociation rate and recombination rate, respectively.

When an external electric field E is applied, the dissociation rate in the DSLs increases
significantly more than the recombination with increasing field intensity. This is the electric-field-
enhanced dissociation (Onsager-Wien) effect [20]:

kD(|E|) = k0
DF (b), (8)

where k0
D refers to the dissociation rate at thermodynamic equilibrium in the absence of an electric

field. Here, F (b) = I1(4b)/2b is the Onsager function, and b is the enhanced dissociation rate factor.
Also, I1 is the modified Bessel function of the first kind and order 1. Further, b can be calculated by
b = lB/lo, with the Bjerrum distance and the Onsager distance [8,10]:

lB = e2
0/4πεkBT, lo =

√
e0/4πε|E|. (9)

The equilibrium concentration of the ionic species in field enhancement can be found in
Refs. [21,48]. We shall assume that the two species have the same ionic mobility and diffusion
coefficients (K+ = K− = K, D+ = D− = D). In addition, the recombination constant kR = 2e0K/ε

is determined by Langevin’s approximation [8,22] to relate the liquid properties. Then the modified
Nernst-Planck equation can be written as

∂c±
∂t

+ ∇ · (uc± + z±c±KE − D∇c±) = 2e0Kc2
0

ε

[
F (b) − c+c−

c2
0

]
. (10)

The left-hand side terms represent the change rate of ion convection, migration, and dif-
fusion fluxes, while the term on the right-hand side refers to the difference in the rates of
ionic dissociation and recombination. In DSLs, the generally selected length scale is λH , and
we have D|∇c±|

z±c±K|E| ≈ D/λH

KE0
= σ0kBT

e0KεE2
0

≈ 6 × 10−3 (corresponding parameters σ0 = 2.96 × 10−8 S/m,

K = 2.81 × 10−9 m2/(sV), εr = 4.792, T = 300 K, and E0 = 106 V/m). Furthermore, in the elec-
troneutral bulk, the diffusion current can be safely ignored even at the microscale due to the relation

D|∇c±|
z±c±K|E| ≈ D/d

KE0
= kBT/e0

E0d = φT

φ0
� 1. The thermoelectric voltage φT is ∼20 mV at room temperature,

and generally, E0 is >106 V/m in EHD scenarios [27]. In addition, the assumption of neglecting
diffusion is like the result reported by Beunis et al. [49] that the effect of diffusion is very low at
high voltage (higher than thermal voltage φT ) in the geometry-limited region. This proves that ion
diffusion and Debye thickness can be safely ignored both inside the DSL and in the electroneutral
bulk [8,20].

C. Log-conformation reformulation and Oldroyd-B model

The Oldroyd-B model, considering a liquid with constant viscosity and high elasticity, is the
simplest nonlinear viscoelastic model to describe large deformations of dilute polymer solutions
[42,50] with infinite stretching of a single molecule. It has been successfully used for mechanism
analysis resulting from pure elasticity [51], electroelastic instability [41], ECF [34,35], nonlinear
behavior of a charged viscoelastic liquid jet [42], etc. The Oldroyd-B model is appropriate for
primary research on the elasticity effects in EHD conduction-driven flow from initial to steady-state
evolution. In general, τ can be written in terms of the conformation C in Eq. (1) as

τ = ηp

λ
(C − I), (11)
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where ηp denotes the polymer dynamic viscosity, and λ is the relaxation time for the polymer to
relax to the equilibrium state after experiencing some disturbance. Then the conformation transport
equation is

∂C
∂t

+ u · ∇C − (
C · ∇uT + ∇u · C

) = −1

λ
(C − I). (12)

The high Weissenberg number problem [50,51] exists widely in viscoelastic numerical simula-
tions and can be solved by the log-conformation reformulation (LCR) method. A new variable � is
introduced, defined as the matrix logarithm of the conformation tensor C:

� = log (C) = RT log (�)R, (13)

where � is a diagonal matrix, the diagonal elements of � are the eigenvalues of C, and R is an
orthogonal matrix composed of the eigenvectors of C. The evolution Eq. (12) of the conformation
tensor C can be rearranged as

∂�

∂t
+ u · ∇� − (� · � − � · �) − 2B = − 1

Wi
R(I − �−1)RT , (14)

where � is an antisymmetric matrix, and B is a symmetric traceless matrix. The conformation tensor
can be recovered from the matrix exponential of � as

C = exp (�). (15)

D. Dimensionless governing equations

The above governing equations can be made dimensionless by using the following variables:

x, y ∼ d, c± ∼ c0, E ∼ E0, φ ∼ E0d,

u ∼ KE0, t ∼ d/KE0, P ∼ ρmK2E2
0 , (16)

where d is the characteristic length of the system, and E0 is the order of magnitude of the imposed
field. The time scale is the transit ionic time [21,22].

The basic dimensionless EHD equations for viscoelastic fluids are expressed as follows:
∂c∗

±
∂t∗ + ∇ · [c∗

±(u∗ ± E∗)] − α∇2c∗
± = 2C0{F [b(|E∗|)] − c∗

+c∗
−}, (17)

∇2φ∗ = −C0(c∗
+ − c∗

−), (18)

E∗ = −∇φ∗, (19)

∂u∗

∂t∗ + u∗ · ∇u∗ = −∇p∗ + χ

ReE
∇2u∗ + 1 − χ

Wi · ReE
∇ · C + C0M2(c∗

+ − c∗
−)E∗, (20)

∇ · u∗ = 0, (21)

∂C
∂t∗ + u∗ · ∇C = C · ∇u∗ + C · (∇u∗)T − 1

Wi
· (C − I). (22)

Above, the relevant dimensionless parameters in these problems are

C0 = eceq,0d

εE0
, α = kBT

e0E0d
, ReE = ρmKE0d

η0
,

M =
√

ε/ρm

K
, Wi = λu0

d
, χ = ηs

ηs + ηp
. (23)

The conduction number C0 characterizes a ratio of two typical times, the ion transport time
tK = d/KE0, and the ohmic time t0

σ = ε/σ0, and it is a key parameter to differentiate the two
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limiting regimes in the EHD conduction phenomenon [24,27]. The diffusion number α is the ratio
of the thermal electric field (ET = kBT/e0d) to the imposed electric field (E0), implying the charge
diffusion intensity. The electric Reynolds number ReE represents the ratio between the Coulomb
force (CF) and the viscous force, which is derived using the ion velocity (u = KE0). Here, M is
the ratio of hydrodynamic mobility to ionic mobility. The Weissenberg number Wi is the ratio of
relaxation time to system characteristic time, and χ is known as the viscosity ratio between solvent
viscosity and total viscosity. Note that ReE acts as a dimensionless applied electric field and is not
a hydrodynamic Reynolds number.

Additionally, the Onsager function with the nondimensional electric field in Eq. (17) can be
written as

F (b) = I1(4b)

2b
, b(|E∗|) = O1/2|E∗|1/2

, (24)

where I1 is the modified Bessel function of the first kind and order 1, and the Onsager nondimen-
sional number O is

O = e3
0E0

16πεk2
BT 2

. (25)

Generally, the field strength E0 corresponding to O = 1 (calculated under the condition εr = 5 at
room temperature) is 9 MV/m. When O is 
 1, field-enhanced dissociation must occur. Obviously,
according to the dimensionless number C0 related to the electric field, a new dimensionless number
β [27] can be derived:

β = (C0O)1/2 = (
e3

0σ0d/32πε2Kk2
BT 2

)1/2
. (26)

In this paper, different C0 and β parameters were obtained by adjusting the electric field strength
and the characteristic size. Both C0 and β can be used to characterize the operating regime
characteristics (ohmic and saturation), while β is only related to the size d for a given conductivity,
implying the Onsager-Wien effect.

E. Numerical implementation and boundary conditions

Generally, the EDL can be safely ignored at the macroscale but not at the microscale. Recently,
Vázquez et al. [27] proposed that nonmetallic substrates cannot ignore ion diffusion. The electric
field generated by the electrodes is parallel to the upper and lower substrates, and the EDL cannot
completely disappear. A dimensionless number � = ς/E0λD = Es/E0 describes the relationship
of the Stern surface field with the external field E0, where Es is the field strength of the Stern
layer. The electric field boundary condition on the top and bottom substrates is n · ∇φ∗ = � =
Es/E0 = ς/E0λD, where ς is the zeta potential and λD is the Debye length. The parameter � has
profound implications for the ion conduction mechanism operating at the microscale, facilitating the
unification of EHD and EK studies [52]. When � � 1, i.e., Es is much smaller than E0, the external
electric field dominates the charge distribution of the substrates, and the ion conduction mechanism
is in operation. At � 
 1, the electric field within the EDL dominates the charge distribution, and
the EOF is in operation. The parameter � characterizes the transition from the EOF mechanism to
ion EHD conduction. However, the scales in this paper, ranging from millimeters to centimeters,
are large relative to the EDL thickness (microns). Therefore, the thickness of the EDL can be
safely ignored, and only the thickness of the DSL is considered representative. The top and bottom
boundaries are solved by the no-slip and zero-ionic penetration conditions [1,2,5,6,21,23,24], which
means that n · ∇c∗

+ = 0, n · ∇c∗
− = 0, u∗ = 0, n · ∇φ∗ = 0.

In addition, the boundary conditions on each boundary type for the governing Eqs. (17)–(22) are
Positive electrode: c∗

+ = 0, n · ∇c∗
− = 0, φ∗ = 1, u∗ = 0, n · ∇C = 0,

Negative electrode: c∗
− = 0, n · ∇c∗

+ = 0, φ∗ = 0, u∗ = 0, n · ∇C = 0.
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FIG. 2. Comparison of the one-dimensional analytical solution with our present numerical results.
(a) Permeable electrodes immersed in dielectric liquid. (b) Profiles of p*E* at various C0 and u∗ = 0.

The set of partial differential equations cannot be solved analytically for most problems due to
the complexity and high nonlinearity. In this paper, the numerical study is performed via the finite
volume method (FVM) in the open-source OpenFOAM® toolbox, which considers both stability
and efficiency. Furthermore, the semi-implicit method for pressure-linked equations-consistent
algorithm is utilized to couple velocity and pressure, as the fluid is assumed to be incompressible.
All time variables adopt the Euler discrete in the discrete formula, and the gradient term is arranged
as a Gaussian linear. The diffusion flux is discretized by the second-order central difference scheme.
The convection term of the charge transport equation is discretized by the total variation diminishing
scheme [43,44].

The convergent and universally bounded interpolation scheme for the treatment of advection
scheme [43] is widely used for the convection term in non-Newtonian problems for the confor-
mation transport equation. In this paper, the LCR method [37,53] is implemented in the solver to
automatically guarantee the symmetric positive definite.

III. BENCHMARK VALIDATION

The mathematical model has been obtained in Sec. II. Then the first example is the infinitely long
parallel plate structure immersed in dielectric fluid [12], as shown in Fig. 2. The nondimensional
governing equations are as follows:

d (c∗
+E∗ + c∗

+u∗)/dx∗ = 2C0(1 − c∗
+c∗

−), (27)

d (c∗
−E∗ + c∗

−u∗)/dx∗ = 2C0(1 − c∗
+c∗

−), (28)

dE∗/dx∗ = C0(c∗
+ − c∗

−), and E∗ = −dφ∗/dx∗. (29)

The performance of our adopted methodology is satisfactory, with the numerical solution in
Fig. 2(b) agreeing well with the analytical solution. In addition, we established the EHD flow around
a single wire electrode bounded by a pair of flat-plate electrodes to validate the coupling of ion
transport and flow in our previous study [48]. The electrodes are applied with a DC voltage of 1.0 kV,
and the central wire electrode is grounded, which is carried out with the experimentally determined
zero-field conductivity σ0 = 2.96 × 10−8 S/m and related concentration c0 = 5.4 × 10−5 mol/m3.
Reference [48] shows a fitted agreement between the velocity trends and the experimental results
[21]. The deviation near the symmetry boundary does not exceed 5%. The codes have also been
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FIG. 3. (a) Sketch of the viscoelastic flow between two infinite parallel plates [54]. (b) The cross-sectional
velocity at x = 35 for Re = 0, Wi = 0.99, and χ = 0.01.

validated by lid-driven cavity flow [48] of viscoelastic liquids. Thus, all these results suggest that
our codes can accurately simulate the problem considered in this paper.

For the viscoelastic fluid module, the flow between two infinite parallel plates [54] is simulated
as a benchmark in Fig. 3. The results of the FVM fit well with the literature draft test in Fig. 3(b).
The above results demonstrate the ability of the codes to simulate Oldroyd-B viscoelastic fluid
flow and the excellent implementation of the LCR method. Although no experimental or numerical
simulations relating to EHD conduction in viscoelastic fluids have been reported, the authenticity
and reliability of our DNS is guaranteed by multiple validation benchmarks. Finer meshes are
constructed near the electrodes to capture the thin DSLs in Fig. 1. Computation domain meshes
have a minimum element size of 10 nm and a maximum growth rate of 1.3. The mesh convergence
tests show that accurate numerical results can be obtained when the number of mesh elements is
40 000, 60 000, or even 12 000. The appropriate unit (60 000) was used in this paper to ensure fast
convergence.

IV. RESULTS AND DISCUSSION

Most experimental and numerical studies have focused on elastic instabilities in pressure-driven
systems. In contrast, little attention has been given to destabilization mechanisms in EHD systems.
Therefore, the EHD conduction flow in a viscoelastic dielectric liquid is solved by DNS, investigat-
ing the transition sequences and dynamic properties. Moreover, we implement the polymer elasticity
for Newtonian fluid Wi = 0, weak elasticity Wi = 0.1, moderate elasticity Wi = 0.5, high elasticity
number Wi = 2, and even higher. If the polymer polyisobutylene is added into it, the viscosity ratio
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FIG. 4. Net charge density distribution at different β values, the influence of voltage, with a fixed level of
conductivity σ0 = 0.5 × 10−8 (S/m).

is kept at χ = 0.8. The working fluid, refrigerant R-123 [24,55], is used to characterize fluid prop-
erties for low-conductivity dielectric fluids with experimentally determined zero-field conductivity
σ0 = 0.5 × 10−8 S/m, and the other physical parameters are εr = 4.792, temperature T = 300 K,
Newtonian viscosity ηs = 4.087 × 10−4 pa s, and ρm = 1452 kg/m3. In addition, we obtain the
ionic mobility K = 3.899 × 10−8 m2/(sV) and the diffusion rate D = 1.0078 × 10−9 m2/s.

Below, we begin with the base characteristics of the EHD conduction phenomenon under dif-
ferent Onsager-Wien effects (β) and conduction numbers (C0). Second, the electroelastic instability
is investigated in detail, including the net charge density distribution, instantaneous velocity evo-
lution, fluctuation amplitude, Fourier spectrum, and power spectral density (PSD). Third, a global
assessment of the elastic and kinetic energies of the flow field and force competition mechanisms is
presented. Finally, the transition sequences to chaos are given over a wide range of parameters.

A. Field-enhanced dissociation effects for β

Having discussed the effect of the conduction number in our previous study [48], we now turn
to the combined effect of the coupling number C0 and the parameter β with the field-enhanced
dissociation effects. According to β = [e3

0σ0d/32πε2Kk2
BT 2]1/2, the conductivity is fixed at σ0 =

0.5 × 10−8 (S/m) in the discussion of this section, and the obtained β can range from 0.085 to 1.36
by regulating the difference sizes d , as shown in Fig. 4. In addition, adjustable voltages range from
0.5 to 10 kV to obtain different C0 values.
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TABLE I. Typical selected cases for electroelastic instability with relevant physical properties and impor-
tant parameters.

Conductivity Voltage d
Cases (S/m) (kV) (mm) ReE C0 β Operating regime

1 0.5 × 10−8 1 0.5 110 0.375 0.085 Saturation
2 0.5 × 10−8 0.5 0.5 50 0.754 0.085 Saturation
3 0.5 × 10−8 1 2 110 6.05 0.582 Ohmic
4 0.5 × 10−8 0.5 2 50 12.07 0.582 Ohmic
5 0.5 × 10−8 1 8 110 96.56 1.36 Ohmic
6 0.5 × 10−8 0.5 8 50 193 1.36 Ohmic

Figure 4 shows the combined effect of the conduction number C0 and the parameter β. For a
small value of β (β = 0.085) in Fig. 4, the system operates under the saturation regime in all cases,
regardless of the high or low magnitude of the voltage. As β increases (at β = 0.582), the system
may shift in the ohmic and saturation regimes as the voltage changes. Upon further increasing
the value of β, the system gradually shifts to a pure ohmic operating regime. When β increases
significantly to > 1 (β = 1.36), the system continuously remains in the ohmic regime. As shown
in Fig. 4, different voltages determine the field strength and C0. In addition, it is worth mentioning
that the system can always operate in the ohmic regime without saturation [27] by adjusting the β

parameters.
For β = 0.582, the ohmic regime gradually disappears and is replaced by a saturation regime,

while the C0 value can range from C0 > 1 to C0 < 1 as the voltage increases from 0.5 to 10.0 kV.
Several reports [27,48] have noted that C0 = 1 is the critical value for the transition of EHD
conduction from the saturation to the ohmic regime. No electroneutral bulk is observed in the
β = 0.085 case. The increase in field strength corresponds to the decrease in C0, which indicates that
the thickness of the DSLs tends to increase and overlap. However, the dissociation of electrolytes
is enhanced, and more ions are expected since the Onsager effect is considered in our results. As
β increases further to β = 0.680, it can be expected that the system is maintained in the ohmic
regime with more dissociated ions due to the Onsager-Wien effect, where the structures of DSLs and
electroneutral bulk may appear. Moreover, for β > 1, the system operates in the ohmic regime even
at very high voltages (�φ = 10.0 kV), where field-enhanced dissociation occurs more strongly.
The insets in Fig. 4(d) show the contour maps of the CF [ρE E = e(c+ − c−)φ/d] for �φ = 0.5
and 10 kV. The CF gradually decreases along with the electrode plates at both ends toward the
centerline, and the CF acts inside the finer DSLs at low voltages. As the voltage increases, the
area of influence of the CF increases significantly, and the driving force is enhanced. An additional
discussion of C0 in cavity flow, including net charge density properties as well as vortex distribution,
is presented in the Appendix.

The discussion of β parameters in this section dominates the different size and conduction
operating regimes, which set the stage for the flow pattern and instability analysis that follows.
Therefore, we select several typical settings to research the electroelastic instability in Table I with
relevant physical properties and important parameters.

B. Electroelastic instability

This section numerically implements the different electric field-enhanced dissociation numbers
β with continuous conduction numbers C0 (from C0 = 0.377 to 12.07) for viscoelastic fluids. By
precisely tuning the Wi parameters, we will analyze the rich structural changes in the flow field and
the complex nonlinear dynamics during the transition from steady state to periodic oscillations and
finally to chaotic states.
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FIG. 5. The net charge density and velocity distribution patterns. (a) Net charge density, (b) x-component
velocity, (c) velocity amplitude, and (d) net charge density cloud (top), streamline (bottom). Four cases were
selected, including case 1: β = 0.085, C0 = 0.377; case 2: β = 0.085, C0 = 0.754; case 3: β = 0.582, C0 =
6.05; and case 4: β = 0.582, C0 = 12.07.

As shown in Fig. 5, we give the net charge density characteristics, x component, and amplitude
velocity operating in the saturation and ohmic regimes. Figure 5(d), top, shows the net charge
density contour plot, and Fig. 5(d), bottom, shows the streamline plot. From left to right, the
sequences corresponding to the conduction numbers of C0 = 0.377, 0.754, 6.05, and 12.07, i.e.,
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FIG. 6. Evolution of maximum velocity with time. (a) β = 0.085, C0 = 0.377; (b) β = 0.085, C0 = 0.754;
(c) β = 0.582, C0 = 6.05; and (d) β = 0.582, C0 = 12.07.

the change from the remarkable saturation regime to the ohmic regime, are shown in order. The
significant electroneutral bulk indicates the classic ohmic operating regime in Fig. 5(a), and the
DSL thickness becomes thicker as C0 decreases. When decreasing to C0 < 1, the transition to the
saturation state is demonstrated as the overlapping feature of DSLs. The above operating regime
features can be found in several studies [2,5,12,27], which are unified with the results in Fig. 5 and
the Appendix. Figures 5(b) and 5(c) also demonstrate the different velocity distribution features
under the two regimes, forming the centrosymmetric four- and six-vortex structures in Fig. 5(d),
respectively. Similar vortices are also observed in the numerical solution based on the lattice
Boltzmann method [24].

Figure 6 shows the evolution of the maximum velocity with time for different polymer elastici-
ties. Overall, the velocity reaches a maximum at the end of acceleration and then gradually decreases
and progresses to a steady state, as shown in Figs. 6(a) and 6(b). The higher the elasticity of the
polymer, the longer the evolution time to the steady state, which is consistent with some relevant
findings for microchannel flow of viscoelastic fluids [51,56]. In the range of parameters studied
in the strong saturation regime (C0 = 0.377), no electroelastic instability occurs with a constant
velocity at steady state. In contrast, the effect of elasticity on the maximum velocity of the flow field
is significant in Figs. 6(c) and 6(d), as the flow field characteristics in the weak saturation or ohmic
regimes are established. To draw a conclusion, an increase in Wi numbers leads to an increase
in Umax when operating in the saturation regime. At C0 = 0.754, the Umax increase at Wi � 2 is
the result of the energy release into the flow field by the compression of polymer molecules. At
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FIG. 7. Root mean square (RMS) of the velocity fluctuation at monitoring point M. (a) β = 0.085, C0 =
0.377; (b) β = 0.085, C0 = 0.754; (c) β = 0.582, C0 = 6.05; and (d) β = 0.582, C0 = 12.07.

higher Wi numbers, however, Umax decreases, but the pulsation frequency intensifies. This may be
due to the increase in elastic elements in the flow field and the energy conversion effect, where
more kinetic energy is converted to elastic energy to be stored by the polymer molecule (like a
bead-spring structure) units [48]. Under the ohmic regime in Figs. 6(c) and 6(d), a different profile
from that of the saturation regime is shown. As the polymer elasticity increases, Umax shows a
tendency to increase and then decrease. This may be a result of the occasional burst element of
elasticity and symmetry breaking [51,57] of the flow field. At smaller Wi numbers, the polymer
molecules are mostly compressed in the steady state, releasing energy into the flow field. However,
at large Wi numbers, the molecular stretching effect is dramatic, and the polymer molecules absorb
more kinetic energy from the main flow, resulting in a decrease in Umax.

The fluctuated velocity represents the time-dependent discrepancy from the time-averaged value,
represented by the root mean square (RMS) [48]. There are no instability fluctuations in the range
(from Wi = 0 to 5) of C0 = 0.377, i.e., the CF dominates the flow behavior for a field strength
of O (107 V/m) in the strong saturation regime, as shown in Fig. 7(a). As the system enters a
weak saturation regime (C0 = 0.754), the RMS fluctuations are evident at Wi = 2. The Wi number
changes the flow pattern characteristics in the RMS of the inset in Fig. 7(b), which manifests as
vortex expansion near the positive plate and vortex compression near the negative plate. This can
be explained by the fact that, as the Wi number increases, the stresses are concentrated near the four
corners of the computational domain, forcing the flow field into compression near the four corners.
In addition, Fig. 8 shows the results of the statistical averaging of the first normal stress difference
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FIG. 8. The first normal stress difference under different Wi values, taking the value along y = 0.5. The
inset shows the cloud maps for N1, Wi = 0.5 (left), Wi = 5 (right).

(N1 = τyy − τxx) along the central line of the positive and negative plates. Several studies have
shown that N1 is crucial in the flow transition and distribution in viscoelastic fluid flow [33,48]. The
amplitude of N1 appears to show a shift toward the vicinity of the positive plate as the Wi number
increases. In contrast, the influence of the elastic force (EF) is mainly reflected in the stretching and
distortion of the vortex near the negative plate due to having a lower ion-driven flow rate relative to
the positive plate. In the insets of the N1 contour in Fig. 8, the region of stretch-shear stress gradually
deforms as Wi increases, moving toward the center near the positive plate and squeezing toward
the negative plate and the walls. The above results provide further evidence that the instability of
the viscoelastic fluid originates at the four corners of the DSLs and that the high shear strain rate
inside the DSL plays a key role. Therefore, in Fig. 7(c), the velocity RMS increases first, then
decreases, and then increases with increasing Wi number. We attribute the second RMS increase to
the release of elastic energy of polymer molecules in the flow field dominated by elastic instability.
Elastic-dominated instability flow will cause a typical symmetry-breaking phenomenon [57], such
as the vortex diagram shown in Fig. 9. Moreover, after our arguments, the above results are equipped
with time-dependent asymmetric flow and are not like the steady asymmetric flow in pressure-driven
systems [33,58,59]. Figure 7(d) shows the RMS in the high conduction number C0 = 12.07. At
Wi = 0.5, the vortex still shows clear symmetry with a weak oscillatory state. When the Wi number
increases further (Wi = 4), symmetry is completely lost, and the flow field enters elastic instability.
Overall, we attribute the characteristics of velocity fluctuation at low Wi numbers to the fact that
the effect of elastic stress is much lower than that of CF, and inertia-dominated EC fluctuations
(no symmetry breaking) develop. The characteristics of velocity fluctuation in the case of high
Wi > 2 are attributed to elastic instability, accompanied by symmetry breaking. The above results
are identified and analyzed by the power spectrum next. In addition, the contribution analysis below
of the convection term, CF, and elastic stress also shows that the above results are mainly caused by
the competitive mechanism of the CF and elastic stress in the momentum equation.

One way to observe the flow state is to calculate the PSD of the time series. Then the exponent
of the power-law decay P ∝ f −n with frequency f is measured after the chaotic flow is developed.
Generally, 600–1200 time steps are selected in some postprocessing processes, and the results under
the whole time series are compared. We have also computed the power spectra without part of the
time series, and the results are similar. It is known from Fig. 7(a) that the system is ultimately
steady state for several Wi conditions. Therefore, the corresponding frequency spectral features in
the strong saturation regime C0 = 0.377 are not given here.
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FIG. 9. The asymmetric oscillatory flow characteristics for Wi = 2. Similar flow patterns and vortex
distributions are shown in t1 and t6.

In Fig. 10(a), the log-log plot of the PSD of the weak saturation regime C0 = 0.754 shows that
white noise is observed for all conditions with Wi � 1. According to an asymptotic negative power
law, the experimental study of Malraison and Atten [60] has shown that the PSD obeys an exponent
n = 7 ± 1 decay in the high frequency of the inertially dominated regime. As shown in Fig. 10(a),
we obtain n = 6.8 at the Wi = 5 condition, which is consistent with the exponential ranges found
in experiment by Malraison and Atten [60]. For the viscoelastic fluid with Wi = 4, the exponent
n = 6.1. When Wi is decreased to 3 and 2, the corresponding values are 4.2 and 4.1, respectively.
Although the different exponents found here suggest that elasticity may modify the statistical
properties of the velocity fluctuations, the deviation from the lower bound of a value obtained in
the experiment is slight. Because the value of ReE corresponding to the inertial regime is relatively
lower, the term 1−χ

Wi·ReE
∇ · C on the Navier-Stokes equation [Eq. (20)] is divided by ReE , making it a

matched role in strength compared with the Coulomb term C0M2(c∗
+ − c∗

−)E . Therefore, the decay
exponents n corresponding to various Weissenberg numbers are very different from the Newtonian
fluid. In other words, as the polymer elasticity increases in our cases, the system transitions from
steady-state flow to an inertia-dominated power-law decay of EHD instability, obeying n = 6.8.
That is, in our results, the path from steady-state transition to inertia-dominated EHD chaos is
observed in a weak saturation regime.

When the system enters the ohmic regime, the inset of Fig. 6(c) shows a fully developed steady
periodic self-excited oscillation with Newtonian fluid. The main peak f1 = 28.588 in the Fourier
spectrum shows the fundamental frequency of this self-excited periodic oscillation in Fig. 10(b),
and the rest of the secondary peaks are multiples of the harmonics of the main peak, indicating that
the flow is in a single-cycle oscillation mode. When Wi = 0.1, the flow becomes a quasiperiodic
oscillation with multiple incommensurable frequencies. At Wi = 0.5 and 0.8, the system enters
steady flow. The number of Wi continues to increase to 2, at which the Fourier spectrum of the
time series of velocity fluctuations takes the form of a continuous broadband characteristic, and the
system exhibits typical chaotic convection. However, the Fourier spectra with distinct single-peak
frequencies f1 = 50.40 and f2 = 78.2 can still be observed at Wi = 2, as shown in Fig. 10(b). This
phenomenon is because of both chaotic and periodic oscillatory features presented in the flow. The
prominent single-peak frequencies indicate that the system maintains regularity and correlation,
while the spectral broadband is the concrete manifestation of the chaotic element in the flow. At
Wi = 3, the PSD exhibits a power-law decay of n = 6.5 in the mid/high-frequency range, consistent
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FIG. 10. Power spectrum characteristics under a variety of operating regimes, with the electroelastic
instability influenced by different polymer elasticities (Wi from 0 to 5).

with the exponent of EC instability reported in Refs. [43,60]. After exceeding the critical value
Wi = 3, the exponent appears to be fixed at n = 4.8, which is slightly higher than the n = 4 reported
by Pimenta and Alves [41]. In this section, the transition from a nearly flat PSD to a power-law PSD
is accompanied by a decrease in the power-law exponents. That is, our results suggest a transition
path from periodic oscillations, quasiperiodic oscillations, steady state, EHD chaos to elastic chaos
in the ohmic regime C0 = 6.05.
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FIG. 10. (Continued.)

In addition, the log-log plot of PSD at the monitoring point is presented to verify the flow behav-
ior and instability for the remarkable ohmic regime (C0 = 12.07). A broad continuous frequency
range with power-law spectral scaling behavior can be seen in Fig. 10(c). The exponent n = 4.1
(at Wi > 1) is consistent with n = 4.0 or 3.7 reported in the literature [33]. It is also comparable
with the power-law exponential decay of n = 4 for electroelastic instabilities in EOF cross-flow
[41], demonstrating that it enters the flow behavior dominated by elastic instabilities. That is, the
results show a direct transition path from quasiperiodic oscillations to elastic instability under the
significant ohmic operating regime.
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FIG. 10. (Continued.)

C. Evaluation of elasticity effects on global characteristics

The field strength acts mainly on the ECF in the x direction due to the asymmetrical arrangement
of the parallel electrodes in the vertical direction. To have an intuitive understanding of the instability
mechanism underlying convection, elastic stress, and electric force, we use the momentum equation
in the horizontal x direction:

ρm

(
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y

)
= −∂ p

∂x
+ ηs

(
∂2ux

∂x2
+ ∂2ux

∂y2

)
+

(
∂τxx

∂x
+ ∂τyx

∂y

)
+ ρE Ex. (30)
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FIG. 11. The dynamic characteristics in the saturation and ohmic regimes. (a) The electrostatic force,
(b) convection, and (c) elastic force, with a fixed polymer elasticity Wi = 0.1.

The left-hand side ρm( ∂ux
∂t + ux

∂ux
∂x + uy

∂ux
∂y ) reflects the momentum increment per unit volume of

fluid per unit time, where ρm(ux
∂ux
∂x + uy

∂ux
∂y ) represents the acceleration caused by the inhomo-

geneity of the flow field, also known as the convective term; − ∂ p
∂x represents the pressure acting

on the volume element; ηs(
∂2ux
∂x2 + ∂2ux

∂y2 ) represents the component of the viscous force; ∂τxx
∂x + ∂τyx

∂y
represents the component of the EF in the x direction; and ρE Ex is the x component of the CF.

In the saturation regime C0 < 1 [maintaining a constant polymer elasticity Wi = 0.1 in
Fig. 11(a)], the net charge density is distributed throughout the bulk due to the overlapping DSLs,
and the convective effect is significant in DSLs, which may be more inclined to develop inertia-
leading EHD instability flow. Due to strong Coulomb driving forces, the elastic effect is suppressed
and approaches a very small value throughout the bulks in Fig. 11(c). However, when the thickness
of the DSLs (weak electric field, C0 = 12.07) in the ohmic regime in Fig. 11(a) is smaller, the CFs
are mainly concentrated inside the nonoverlapping DSLs in the ohmic regime, with a remarkable
convective effect in the DSLs. Due to the small value of the CF competing with the high elastic
stress, the bulk volume develops a high EF in the ohmic regime. Therefore, working in the ohmic
regime is more likely to develop purely elastic instability flow [48], at least in the non-DSL region
where very small CF effects are present. Under the same β parameter, the large C0 corresponds to
the amplitude of convective acceleration and elastic stress in DSLs/bulks. Therefore, the larger the
C0 value, the wider the electroneutral volume is to make viscoelastic molecules relax and release
energy with an equal β number.
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FIG. 12. Influence of polymer elasticity on the dynamic characteristics of the flow field. (a) Strong
saturation regime, β = 0.085, C0 = 0.377. (b) Weak saturation regime, β = 0.085, C0 = 0.754.

Comparing the two saturation cases in Fig. 12, both have similar trends in the distribution of
CFs, convection, and EF characteristics. Under strong saturation (C0 = 0.377), the polymer has a
negligible effect on the CF because the charge density formation mechanism is dominated by the
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TABLE II. Variation in elastic stress and CF amplitude with polymer elasticity.

Fluid C0 = 0.754, CF C0 = 0.754, EF C0 = 6.05, CF C0 = 6.05, EF

Newtonian fluids 1.682 0 2.66848 0
Wi = 0.1 1.682 8.19 × 10−6 2.66848 1.6335
Wi = 0.5 1.67982 7.10 × 10−4 2.65226 2.315
Wi = 1 1.67982 0.07466 2.65014 3.050
Wi = 2 1.66173 0.20581 2.63489 4.045
Wi = 4 1.63974 1.4043 2.64059 8.363
Wi = 5 1.63132 2.46187 2.64153 22.18

ion transport term z±c±KE. As shown in Fig. 12(a), the elastic stress is always lower than the
value of the CF in the strong saturation regime (C0 = 0.377); therefore, the ECF mode within the
system is dominated by the CF. However, as the system shifts from the strong saturation regime
(C0 = 0.377) to the weak saturation regime (C0 = 0.754), the magnitude of the elastic stress is
progressively higher than the value of the CF as the polymer elasticity rises. Thus, the convective
pattern in Fig. 12(b) is significantly altered. As the EF is not sufficient to fully suppress the effect
of the CF under these conditions, an inertia-dominated EHD instability flow pattern is promoted.

Figure 13 illustrates the distribution of the flow dynamics in ohmic regimes. The comparison of
Figs. 13(a) and 13(b) shows that the effect of polymer elasticity on the CF is more pronounced
at high conduction number C0 simply because the CF is weakened at the same time that the
ion convective term in uc± becomes more pronounced. In general, the convective acceleration
has a similar sinusoidal character within the DSL at low polymer elasticity (Wi < 0.5), showing
an irregular pulsation distribution as the Wi number increases beyond 2. We explain the above
phenomenon in two ways. First, elastic stresses and CFs do not always act in the same direction,
and the synergistic relationship between the two ultimately determines the dominance and pattern of
convective acceleration. Second, when the value of the EF can reach or even exceed the CF by orders
of magnitude, the ECF within the system may be transformed into a pattern dominated by the EF.
Therefore, recalling the characteristics under the saturation regime, the CF is always higher than the
elastic stress due to the highly overlapping DSLs; thus, the flow pattern formed is inertia-dominated
EHD chaos. For a more visual comparison of the data in the graphs, we also present a comparison
of the maximum values of the CFs and EFs in Table II under different operating regimes. The above
results suggest that the relative magnitude of the elastic stress to the CF significantly affects the ECF
instability within the system, depending on whether it is dominated by CFs or elasticity stress.

The relationship between control parameters and stability characteristics has not yet been sys-
tematically addressed. Therefore, it is necessary to quantify the kinetic and elastic energy of the
associated driving parameters. Unlike Newtonian fluids, polymers can store energy during stretching
by the main flow and providing energy to the flow during relaxation. In other words, the finite fluid
element in a viscoelastic fluid flow contains both kinetic and elastic energy. In addition, alternately
stretching and relaxing the polymer (implying a change in the action of the polymer during flow)
can act as a trigger for elastic instability [51,56]. Correspondingly, we plot the L2−norm of the
velocity field evolving–the kinetic energy for different Wi in Fig. 14, defined as

Ek = 1

2Vt

∫
|u|2dV = 1

2Vt

N∑
k=1

|uk|2Vk = 1

2N

N∑
k=1

|uk|2, (31)

where N is the number of cells of the mesh, and Vt = NVk for a uniform mesh. As follows, Ek0

represents the time-averaged kinetic energy of the system for the Newtonian fluid. Correspondingly,
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FIG. 13. Effect of polymer elasticity on the dynamic characteristics of the flow field. (a) Ohmic regime,
β = 0.582, C0 = 6.05. (b) Ohmic regime, β = 0.582, C0 = 12.07.

the elastic energy can be written as

Ep = 1

2Vt

∫
λ

ηp
tr(τ )dV = 1

2Vt

N∑
k=1

λ

ηp
tr(τk )Vk = 1

2N

λ

ηp

N∑
k=1

tr(τk ). (32)
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FIG. 14. The effect of the Weissenberg numbers on global quantities of the system, (a) time-averaged
kinetic energy, and (b) time-averaged elastic energy of the system.

At β = 0.085, the kinetic energy in Fig. 14(a) decreases approximately linearly, and most of the
molecules are stretched, accompanied by the conversion of kinetic energy into elastic energy to be
stored. As the elastic energy rises nonlinearly, there are two cases (e.g., β = 1.360, C0 = 96.56,
and β = 0.582, C0 = 12.07) where the average kinetic energy is partially recovered at Wi = 1
and 3, respectively, probably due to partial relaxation of polymer molecules. The decay of the
kinetic energy, accompanied by a rise in the elastic energy in the saturation regime, also shows
increased RMS fluctuations in Figs. 7(a) and 7(b) for the elastic instability condition. This is
because the rise in elastic energy within the system (at high Wi numbers) leads to an increase in
the chaotic elements within the system, which exacerbates the velocity RMS fluctuations. The RMS
fluctuations of inertia-dominated EHD instability in the ohmic regime are shown to be partially
suppressed due to the competing CFs and elastic stresses at lower Wi numbers, as shown in Figs. 7(c)
and 7(d).

Correspondingly, the elastic energy shows a linear trend at β=0.085 in Fig. 14(b), satisfying the
relationship E p = tr(Wi · 1

1−χ
). In contrast, a transition from the CF to an elastic inertia-dominated

state can be observed at β = 0.582 in Fig. 10(b), with the elastic energy showing a nonlinear
increase in Fig. 14(b). This is mainly due to several factors: relatively weak driving forces, sufficient
relaxation of polymer molecules (at intermediate sizes), comparable stabilizing and destabilizing
forces, elastic bursts, etc. It is worth mentioning that the Ep curves are approximately linear in
the ohmic regime at low Wi numbers. However, as the Wi number increases, the elastic energy is
partially converted into kinetic energy, and Ep flattens out. With β = 1.360 and C0 = 96.56, the
kinetic energy decreases sharply with rapid Ep accumulation even for weak elasticity Wi < 1. This
means that a suitable polymer stress relaxation distance (in medium dimensionless sizes) and C0

value (operating in the ohmic regime) can significantly change the energy gain and loss effect in
the EHD system. In summary, the increase in size leaves sufficient relaxation time and distance for
molecular recovery, bringing forward the equilibrium state of elastic energy and kinetic energy in
the system.

D. Transition to chaotic flow

To fully elucidate the relationship between the different flow patterns and control parameters,
many numerical simulations have been carried out over a wide range of parameters (0.377 � C0 �
193, 0 � Wi � 5, and 0.085 � β � 1.36). The β parameter quantifies the effects of size limitation
and field-enhanced dissociation. Here, C0 is inversely proportional to the field strength E, reflecting
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FIG. 15. Flow pattern diagrams of the conduction electroconvective flow (ECF) of a viscoelastic dielectric
liquid, in which the black square represents steady flow, the red circle represents periodic flow, the upper
triangle represents quasiperiodic flow, the lower triangle represents elasticity-dominant chaotic flow, and the
diamond represents electrohydrodynamic (EHD)-dominant chaotic flow. Parameter range: 0.377 � C0 � 193,
0 � Wi � 5, 0.085 � β � 1.36.

the influence of Coulomb driving forces. The flow pattern of the conduction ECF of a viscoelastic
dielectric liquid can be divided into five subregions in Fig. 15. The steady flow is widespread for
small β, spanning the entire range of polymer elasticity researched. As β (or C0) increases, the
flow distribution deviates significantly further from the steady state. Periodic oscillatory flow only
occurs at a moderate size (β = 0.582) in our results due to the insufficient number of selected
cases. With increasing β (or C0), quasiperiodic and intermittent oscillatory flows can develop at
low Wi numbers with multiple incommensurable frequencies. Due to the sufficient size relaxation
distance for large β (1.36) with weak electric field contribution C0, chaotic flow patterns appear
at a lower Wi = 1, which is dominated by elastic nonlinearity. At small β (0.085), the transition
from steady state to EHD-dominated chaotic flow (in the inertially dominated regime) occurs with
increased polymer elasticity. The dashed line L1 divides the EHD-dominated flow pattern from the
elastic-dominated instability flow. As shown in Fig. 14, under the same β parameters (by adjusting
d), the time-averaged kinetic energy and elastic energy are different with different C0 (adjusting
electric field intensity). In Fig. 15, with a continuous sequence of C0 and different β parameters,
the transition sequence has different paths. This is because the β parameter changes the molecular
relaxation distance in the bulk of the system, while C0 changes the CF in the system and the thickness
of the DSLs. The above results once again emphasize the competition and promotion mechanism
of elasticity, inertia nonlinearity, and CF in the development of flow instability. Obviously, the flow
pattern transitions around C0 = 1 may be more important [48]. However, the extracted cases in our
results from saturation to the ohmic regime are not sufficient, and more detailed settings are left for
future research.

V. CONCLUSIONS

Based on our previous study [48], we investigate the mechanism of EHD conduction driving
for non-Newtonian dielectric fluids described by the Oldroyd-B model in this paper. The effects
of different operating regimes and polymer elasticity are discussed. Viscoelasticity leads to new
instability patterns and richer dynamic behaviors in conduction ECF systems. However, these
phenomena are absent for Newtonian fluids. The remaining conclusions are as follows:

For a small value of β (= 0.085), the system operates under the saturation regime, regardless
of the high or low magnitude of the voltage. As β increases (at β = 0.582), the system may shift
from the ohmic to the saturation regime with the change in field strength. Moreover, for β > 1, the
system operates in the ohmic regime even at very high voltages (�φ = 10.0 kV), where electric-
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field-enhanced dissociation occurs more strongly. The Onsager-Wien effect acts weakly at low β

values and can be significant at high β values, maintaining a significant electroneutral bulk.
We also analyze the rich structural changes in the flow field and the complex nonlinear dynamics

during the transition from steady state to periodic oscillations and finally to chaotic states. The time
evolution of Umax shows that the polymer elasticity significantly influences the flow stability in the
ohmic regime, assessed by the RMS amplitude of oscillation. The vortexes still show clear symmetry
with weak elasticity. However, when the Wi number reaches a critical value, symmetry is completely
lost due to the occasional burst element of elasticity [51], and the flow field enters the elastic
instability domain. The transition sequences are discussed in the saturation and ohmic regimes.
The system is ultimately steady state for several Wi conditions in the strong saturation regime
C0 = 0.377. The path from steady-state transition to inertia-dominated EHD chaos is observed for
the system in a weak saturation regime C0 = 0.754. The transition path is from periodic oscillations,
quasiperiodic oscillations, steady state, EHD chaos to elastic chaos in the ohmic regime C0 = 6.05.
In the remarkable ohmic operating regime (C0 = 12.07), the exponent n = 4.1 (at Wi > 1) is
consistent with n = 4.0 or 3.7 reported in the literature [33]. It is also comparable with the
power-law exponential decay of n = 4 for electroelastic instabilities in electroosmotic cross-flow
[41], demonstrating that it enters the flow behavior dominated by elastic instabilities.

The CFs are mainly concentrated inside the nonoverlapping DSLs in the ohmic regime, with a
remarkable convective effect in DSLs. Due to the small value of the CF competing with the high
elastic stress, the bulk volume shows a high EF in the ohmic regime. Therefore, working in the
ohmic regime is more likely to develop purely elastic instability flow. The elastic stresses and CFs
do not always act in the same direction, and the synergistic relationship between the two ultimately
determines the convective pattern. When the value of the EF can reach or even exceed the CF by
orders of magnitude, the ECF within the system may be transformed into elastic chaos flow. The
CF is always higher than the elastic stress due to the highly overlapping DSLs under the saturation
regime; thus, the flow pattern formed is inertia-dominated EHD chaos. We also quantify the kinetic
and elastic energy of the associated driving parameters, and the flow patterns are mainly divided
into five subregions.

In summary, this paper is the foundation for applying EHD conduction to complex fluid systems,
such as crude oil pumping and cooling in-pipe flow. Additionally, the research reported here can
provide a reference for applications of ECF, such as enhancement of mixing and heat transfer.
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APPENDIX: IONIC AND NET CHARGE DENSITY DISTRIBUTION

Before discussing the different size effects of the EHD conduction phenomenon, it is necessary
to analyze two operating regimes in depth. Figure 16 shows the net charge density distribution
and the concentration (positive and negative ions) distribution at different reference lengths. The
conduction number C0 characterizes a ratio of two typical times, the ion transport time tK = d/KE0

and the ohmic time t0
σ = ε/σ0. The former refers to the time for an ion to drift from one electrode

to the counterelectrode, while the latter refers to the time for an ion to recombine without electric
field reinforcement:

C0 = e0c0d2

ε�φ
= σ0d2

2εK�φ
= d2/(K�φ)

ε/σ0
= τK

2τ 0
σ

. (A1)

Consider the Onsager-Wien effect [21,27] with a variation ohmic time of the form τσ = ε/σ =
τ 0
σ

√
F (b), where σ = σ0

√
F (b) and F (b) = 1 + 2β2E∗/C0. Here, σ0 represents the conductivity
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FIG. 16. Ionic distribution and net charge density distribution, (a) cation concentration, (b) anion concen-
tration, and (c) net charge density, maintaining Wi = 0 and �φ = 1 kV.

without electric-field-enhanced dissociation. In general, the conductivity of dielectric liquids ranges
from 10−11 to 10−7 S/m, and it is widely used in numerical and experimental studies. We can then
obtain the distance of movement required for the ion to undergo recombination near the electrode:

λH � KE0τ
0
σ = d

2C0
√

F (b)
= d

2CE
0

, (A2)

where F (b) = ∑∞
n=0

b2n

n!(n+1)! = ∑∞
n=0

(4OE )n

n!(n+1)! is generally >1 under the Onsager-Wien effect. The

parameter O = e3
0/(16πε0εrk2

BT 2) denotes the Onsager constant, and b = 2
√

OE functions the field
intensity E = |E|. When C0 � 1, it is τσ

0 
 τk and λH 
 d , and no electroneutral bulk indicates
DSL overlap. The formation of the saturation regime occurs because the free charge has left the
liquid before recombination occurs, so there are few net charge densities [ρE = e(c+ − c−)] in
the bulk. When C0 
 1, we have to know τσ

0 � τk and λH � d , operating in the ohmic regime,
which indicates that ions have time to recombine inside the volume. Figure 16 illustrates the ion
concentration and net charge density showing multiple conduction numbers C0 and different ranges
of β values. Different values of d determine the parameter β, ranging from <1 on the microscale to
tens of orders of magnitude on the centimeter scale. The dividing line is well represented in Fig. 16
between the DSLs and the electroneutral bulk, and the relative thickness of the DSL (λH/d) tends to
decrease as C0 increases, as seen from Eq. (A2), where CE

0 = C0
√

F (b) is inversely proportional to
C0. It is also worth noting that CE

0 = C0
√

F (b) depends heavily on C0; as d increases or C0 increases,
CE

0 can also be expected to have a significant upward trend with increasing d and decreasing
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FIG. 17. Velocity trend and the pressure difference between positive and negative electrodes, maintaining
Wi = 0 and �φ = 1 kV.

DSL thickness. Furthermore, the same potentials are shown in Fig. 16, and β (0.41 � β � 0.58)
at different reference scales d are comparable and will not be analyzed in too much detail here.

The above analysis shows two DSLs close to the electrodes and an electroneutral region within
the ohmic regime for CE

0 > 1. The net charge density and field gradient within the DSLs lead to a
limiting value of the CF (ρE E ). Due to the interaction of the fluid viscous forces with the CF, the
driving effect is expected to occur near the electrodes, acting further on the fluid and generating flow.
Figure 17 illustrates the velocity profile and pressure distribution along the centerline between the
positive and negative electrodes in the square cavity. In the insets of Fig. 17(b), the flow diagrams
are shown for d = 1 and 2. At d = 1 mm, two vortices can be seen to form symmetrically near
the positive and negative electrodes. Due to the asymmetry of the electrodes in this paper, there
is a significant difference in the size of the vortices formed near the electrodes. Furthermore, the
symmetrical interlayer vortices shown in the streamlines are formed due to the migration of positive
and negative ions to different electrodes in the electroneutral bulk. With d = 1 changing to d = 2,
the area of action of the vortex pair near the negative electrode increases, and the vortex pair near
the positive electrode decreases because of the net charge density gradient (negative side) increasing
with d . Furthermore, Fig. 17(a) shows that the relative positions of the velocity maxima and minima
on the anode side appear to be closer to the pole plate as d increases, which is consistent with the
trend of decreasing vortex pair size near the positive pole plate shown in Fig. 17(b), insets. The
pressure characteristics shown in Fig. 17(b), with a balance of viscous and electric forces, have
limiting values for the net charge density accumulated inside the DSL, resulting in a large pressure
gradient described as �p ∼ ρE · E · �x.
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