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Contribution of the Hall term in small-scale magnetohydrodynamic dynamos
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A detailed study of small-scale Hall magnetohydrodynamic dynamos has been per-
formed both analytically and numerically. Assuming the magnetic field and the current to
be separate fields, the contribution of the Hall term has been decomposed into two parts and
their individual contributions have been studied separately. Calculating the scale-separated
transfer rates described in Dar et al. [Physica D 157, 207 (2001)], it is found that the
small-scale current fields are the primary contributors in sustaining large-scale magnetic
fields. Furthermore, the nature of the scale-to-scale fluxes are found to be globally intact
with the ion inertial scale.
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I. INTRODUCTION

A turbulent flow is characterized by its prevalent nonlinearity over viscous properties [1]. For the
Navier-Stokes equations, this nonlinearity is represented by the velocity advection term (u · ∇)u,
where u is the fluid velocity [2,3]. For a magnetohydrodynamic (MHD) fluid, the nonlinearity in the
momentum equation is represented by both (u · ∇)u and the Lorentz force term J × B, where B is
the magnetic field and J = μ−1

0 (∇ × B) is the current density [4,5]. In the case of ordinary MHD
turbulence, the induction equation takes the form

∂B
∂t

= ∇ × (u × B) + η∇2B, (1)

where the first term on the right-hand side represents the nonlinear contribution and the second term
represents the diffusion, η being the magnetic diffusivity. Similar to hydrodynamic turbulence, in
MHD we also observe cascade of total energy (kinetic + magnetic), which is an inviscid invariant of
the system. It is important to note that, in the ordinary MHD model, ions and electrons move with the
same velocity (the fluid velocity) [5,6]. However, this does not remain valid for length scales close
or smaller to the ion inertial length di. For those length scales, it is important to include the effect
of finite difference between the ion and electron velocities [7]. This effect is incorporated in the
induction equation by adding a nonlinear term −∇ × (J × B)/ne, often called the Hall term, where
n and e are the number density of the electrons or ions and the electronic charge, respectively, and
the corresponding model is known as Hall MHD (HMHD). In terms of b (= B/

√
μ0ρ, with ρ being

the mass density of the MHD fluid), the magnetic field normalized to a velocity and j = ∇ × b, the
induction equation simply gives the evolution of b and the corresponding Hall term can be written as
−di∇ × (j × b). Despite having different ion and electron velocities, HMHD is a monofluid model
and cannot capture all the essential aspects of sub-ion-scale plasma dynamics including the kinetic
effects. However, HMHD turbulence is often found quite useful to probe into the sub-ion-scale
turbulence in the space and astrophysical plasmas [8,9].
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Several aspects of HMHD turbulence (both incompressible and compressible) have been ex-
plored analytically, numerically, and also using in situ spacecraft data during the last two decades.
Besides systematic studies covering the basic features like energy cascade, power-spectrum, uni-
versal scaling, dissipative anomaly, etc. [10–15], some interesting studies have also been made
exploring the importance of HMHD turbulence in the heating of the solar wind and other space
plasmas [16–19]. A dynamo mechanism is essential to explain long-lasting magnetic fields in
astrophysical plasmas [20–22]. Whereas a sustained large-scale magnetic field can be explained in
terms of mean-field MHD and HMHD, a turbulent dynamo mechanism is often useful to explain the
development and energization of magnetic field fluctuations of length scales inferior to the external
forcing scale (small-scale dynamo) [23–28]. Unlike ordinary MHD, where the dynamo action can be
explained in terms of the advection and deformation of the magnetic field tubes in the bulk fluid, the
dynamo action in HMHD can be explained using the generalized velocity-vorticity formulation pro-
posed in Ref. [29]. The induction equation in ideal HMHD can be written as ∂t b = ∇ × (ue × b) =
−(ue · ∇)b + (b · ∇)ue, where ue = u − dij is the electron fluid velocity. HMHD dynamos can thus
be thought to be caused by the motion and the deformation (stretching) of magnetic tubes in electron
fluid. Equivalently, combining the vorticity and the induction equation, for generalized vorticity
� (= b + diω), one obtains ∂t� = ∇ × (u × �) = −(u · ∇)� + (� · ∇)u, where ω = ∇ × u. As
a result, HMHD dynamos can also be regarded as the advection and deformation of generalized
vorticity tubes in the ion fluid (as the ion velocity ui is approximately equal to the bulk velocity
u). The role of Hall effect in small-scale dynamos has been studied using numerical simulations
both for helical and nonhelical forcings [26,30]. Using a resolution of 2563, both studies reported
a backscatter (to larger scales) of magnetic energy due to the Hall term. The flux rates due to
the Hall term were found to be approximately 10–15 times weaker than the MHD flux rates.
The Hall contribution was calculated from the entire −di∇ × (j × b) term and the corresponding
flux rates were simply interpreted as transfers between b fields of different Fourier modes using
j = ∇ × b. However, recent studies showed that a clear phenomenological picture can be obtained
if we decompose the ∇ × (u × b) term in ordinary MHD as −(u · ∇)b and (b · ∇)u [31,32]. For
the sake of uniformity with MHD nonlinearities and to get further physical insights, it is thus
reasonable to decompose the Hall contribution in the induction equation in a similar way. Such a
decomposition results in two contributions −dib · (b · ∇)j and dib · (j · ∇)b in the magnetic energy
evolution equation (b · ∂t b) representing j-to-b and b-to-b transfer, respectively.

In this paper, using 3D direct numerical simulation of 2563 spatial resolution, we present a
systematic study comparing the individual contribution of the aforementioned subparts of the
Hall term in the small-scale dynamo action. For the sake of computational convenience, here we
have calculated the fluxes using mode-to-mode (M2M) transfers [31,33]. Such a methodology is
particularly useful in the study of dynamos as it helps in classifying different types of energy
transfers depending on the length scales (or equivalently the wave vectors). To recognize the Hall
contribution unambiguously, we have employed a ∇4 hyperviscosity. Similar to the previous studies,
a clear signature of backscatter of magnetic energy due to the Hall term is also observed. Of all
possible contributions, the transfer from small-scale j fields to large scale [34] b fields is found to
be the most efficient one. Furthermore, the maximum of the total transfer rate to large-scale b fields
shifts towards larger scales as we go on increasing di.

The rest of the paper is organized as follows: In Sec. II, we describe the basic equations of
incompressible HMHD and expressions for spectral fluxes using M2M formalism. Section III A
contains the description of the code and details of the numerical simulations. In Secs. III B and
III C, we present different contributions to magnetic energy transfer to large-scale b fields and their
variation with di, respectively. Finally, in Sec. IV, we discuss our findings and conclude.
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II. MODE-TO-MODE ENERGY TRANSFERS AND SPECTRAL FLUXES

We start with the incompressible Hall MHD equations [5]

∂t u − ν∇2u = −(u · ∇)u + (b · ∇)b − ∇
(

p + b2

2

)
+ f, (2)

∂t b − η∇2b = −(u · ∇)b + (b · ∇)u + di(j · ∇)b − di(b · ∇)j, (3)

∇ · u = 0, ∇ · b = 0, (4)

where p is the kinetic pressure (normalized by the constant fluid density ρ), f is the external force
per unit mass, ν and η denote the kinematic viscosity and the magnetic diffusivity, respectively. As
mentioned in the Introduction, the last two terms on the right-hand side of Eq. (3) correspond to the
Hall effect. The total energy E ( = ∫

(u2 + b2)/2 dτ ) is an inviscid invariant of both incompressible
MHD and HMHD [23,24,35].

To investigate the detailed conservation of energy, one requires the evolution equations for modal
energy densities Eu

k ( = uk · u∗
k/2) and Eb

k ( = bk · b∗
k/2). First, we calculate the Fourier transforms

of Eqs. (2) and (3) and then the corresponding complex conjugates. Finally, using straightforward
algebra, for the inertial zone, one can show

∂t E
u
k = 1

2

∫
p

∫
q

[
Suu

E (k|p, q) + Sub
E (k|p, q)

]
δ(k + p + q)dp dq, (5)

∂t E
b
k = 1

2

∫
p

∫
q

[
Sbb

E (k|p, q) + Sbu
E (k|p, q) + diS

H
E (k|p, q)

]
δ(k + p + q)dp dq, (6)

where Sxy
E (k|p, q) is the generic form of combined transfer rate of energy from yp and yq to xk and

can be mathematically expressed as

|Sxy
E (k|p, q)| = �[(p · zq)(yp · xk ) + (q · zp)(yq · xk )], (7)

where x, y, and z can be u and b, and � denotes the coefficient of the imaginary part of a complex
number. The algebraic sign becomes negative only when x and y represent the same field. Note
that the z fields neither donate nor receive any energy in the process but only act as a mediator.
SH

E (k|p, q) is the combined magnetic energy transfer rate due to the Hall term only and can be
mathematically expressed as

SH
E (k|p, q) = �[(p · bq)(jp · bk ) + (q · bp)(jq · bk ) − (p · jq)(bp · bk ) − (q · jp)(bq · bk )]. (8)

For ordinary MHD as well as HMHD, Suu
E (k|p, q) and Sbb

E (k|p, q) individually satisfy triadic
conservations whereas Sub

E (k|p, q) and Sbu
E (k|p, q) together follow a conservation in each triad.

Using Eq. (8), one can also obtain

SH
E (k|p, q) + SH

E (p|q, k) + SH
E (q|k, p) = 0, (9)

where SH
E (p|q, k) and SH

E (q|k, p) are obtained under the cyclic permutation of the wave vectors.
Thus, the detailed conservation of total energy in HMHD can be written as

∂t
(
Eu

k + Eb
k + Eu

p + Eb
p + Eu

q + Eb
q

) = 0.

According to Kraichnan, the triads constitute the fundamental unit of energy transfer in the Fourier
space [36,37]. However, some previous studies further decomposed the combined transfer rate as a
sum of two M2M transfer rates as in the following manner:

Sxy
E (k|p, q) = TE (yp

zq−→ xk ) + TE (yq
zp−→ xk ), (10)

where TE (yp
zq−→ xk ) is interpreted as the M2M transfer rate of energy from the giver field yp to

the receiver field xk with zq acting as a mediator [31–33,38]. Note that the M2M transfer rates are
always defined up to an additive arbitrary constant [32,38]. However, the calculation of flux and
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FIG. 1. Schematic diagram of various magnetic energy fluxes due to the Hall term.

shell-to-shell transfer rates are not affected by such constants which cancel out in individual triads.
As mentioned before, in this paper, the Hall term is decomposed in two parts and the combined
energy transfer rate corresponding to the kth mode is given by

SH
E (k|p, q) = �

b j
E (k|p, q) + �bb

E (k|p, q), (11)

where

�
b j
E (k|p, q) = �[(p · bq)(jp · bk ) + (q · bp)(jq · bk )] and (12)

�bb
E (k|p, q) = −�[(p · jq)(bp · bk ) + (q · jp)(bq · bk )] (13)

represent the j-to-b and b-to-b transfers, respectively. In analogy with the ordinary MHD case, here
one can immediately understand that �

b j
E and �bb

E originate from the terms −(b · ∇)j and (j · ∇)b,
respectively. From Eq. (13), one can immediately derive

�bb
E (k|p, q) + �bb

E (p|q, k) + �bb
E (q|k, p) = 0, (14)

and combining Eqs. (9) and (14) one can finally obtain

�
b j
E (k|p, q) + �

b j
E (p|q, k) + �

b j
E (q|k, p) = 0. (15)

In this paper, we are interested in the contribution of the Hall term in the dynamo action. We are
therefore only concerned with the feeding of large-scale magnetic fields and hence we numerically
calculate the fluxes 	b>

b<, 	
j<
b<, and 	

j>
b<, and their mathematical expressions are given by

	b>
b<(k0) = −di

∑
|k|�k0

∑
|p|>k0

�[(p · jq)(bp · bk )], (16)

	
j<
b<(k0) = di

∑
|k|�k0

∑
|p|�k0

�[(p · bq)(jp · bk )], (17)

	
j>
b<(k0) = di

∑
|k|�k0

∑
|p|>k0

�[(p · bq)(jp · bk )], (18)

where 	
y<
x>(k0) is the net energy transfer rate from all modes inside the sphere of radius k0 of field

y to all modes outside k0 of field x [see Fig. 1]. Finally, the total flux to the large-scale b field can
simply be calculated using

	b< = 	b>
b< + 	

j<
b< + 	

j>
b<. (19)
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FIG. 2. Absolute values of current densities for (a) di = 0.2, (b) di = 0.1, and (c) di = 0.05 at t = 45.

III. NUMERICAL RESULTS

A. Methodology

Here we perform a three-dimensional direct numerical simulation of Eqs. (2)–(4) for di = 0.05,
0.1, and 0.2. The simulations are performed using a parallel pseudospectral code based on the
parallelization scheme by Mortensen and Langtangen [39]. The box length is taken to be 2π and
periodic boundary conditions have been assumed in all three spatial directions. To remove the alias-
ing error, the 2/3-dealising rule has been used so the maximum available wave number kmax ≈ 85
[40]. The equations are evolved using a fourth-order Runge-Kutta (RK4) method with a fixed time
step dt ( = 5 × 10−4). The flow is forced with a nonhelical (∇ × f ⊥ f ) Taylor-Green (TG) forcing
f = (sin(k0x)cos(k0y)cos(k0z),−cos(k0x)sin(k0y)cos(k0z), 0) with k0 = 2. For the sake of finding
a clear Hall contribution, here we implement fourth-order hyperdissipative operators for dissipation.
Following a general prescription of dynamo simulation, initially a pure hydrodynamic run (with
hyperviscosity) was made to reach a turbulent steady state. After that, a random seed magnetic field
was introduced at small scales (k > 10) such that the initial ratio of magnetic to kinetic energy was
∼10−3. Finally, the full HMHD equations were solved until the magnetic energy reaches saturation.
Note that the magnetic Prandtl number (Pm) for our simulations is kept at unity.

In Fig. 2, we display snapshots of absolute values of current densities for three different ion
inertial lengths. As one can expect, the current density contours tend to flatten out with increasing
di [from right to left in Fig. 2] due to dissipative effects. The left panel of Fig. 3 shows the time

FIG. 3. Left panel: Total kinetic energy (blue dashed curve) and total magnetic energy (red solid curve)
versus time. Right panel: Power spectra for magnetic energy for various times (dashed curves). The black solid
curve corresponds to power spectra for kinetic energy at t = 45. The ion inertial length di is taken to be 0.05,
which corresponds to kHall = 20 (denoted by the vertical dashed line).
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FIG. 4. Total MHD versus Hall flux rates for di = 0.05 at t = 45.

evolution of kinetic and magnetic energies whereas the right panel shows their spectral distributions.
After an initial transient period, the magnetic energy grows exponentially. In this regime, the
magnetic fields are approximately frozen in the bulk flow and hence the corresponding dynamo
can be characterized as a kinematic-MHD dynamo. As time progresses, the electron flow starts
to get decoupled from the bulk and another regime of kinematic-HMHD dynamos is reached
where the magnetic field lines are effectively frozen in the electron fluid. Finally, the magnetic
field saturates where it becomes strong enough to affect the motion of the flow, thus leading to
a nonkinematic HMHD dynamo. From the spectral distribution, it is easy to verify that large-scale
(k < 10) magnetic fields grow with time. However, the large-scale magnetic field grows much faster
than small-scale magnetic fields, which effectively saturates near t = 20. Both of these observations
are consistent with previous results on dynamo simulations in HMHD [26,30].

B. Spectral fluxes

To get an estimate between the MHD and Hall transfers, we first plot the total flux rates. For our
calculations, we have chosen the following radii: 2.00, 4.00, 8.00, 9.19, 10.56, 12.12, 13.93, 16.00,
18.40, 21.11, 24.25, 27.86, 32.00, 36.75, 42.22, 48.50, 55.71, 64.00, and 128.00. Such a logarithmic
choice of radii is adopted to populate the inertial range where a power law scaling is expected to
hold [41].

Figure 4 shows the total transfer rates for magnetic energy, calculated using the M2M formalism
described before. The Hall term contains a higher order derivative as compared to MHD nonlinear
terms and is of the same order as ordinary dissipation terms (∼∇2). Therefore, the hyperviscous
operators (∼∇4) are simply used to exclusively capture the Hall contribution free from ordinary
viscous effects. Note that the total Hall flux obtained in our current paper is approximately increased
by two times than those obtained in the previous studies where ordinary viscosities were used
[26,30]. However, comparing the Hall fluxes in aforementioned papers and the current paper (see
Fig. 4), one can immediately see that the hyperviscosity does not alter the global nature of the Hall
flux. As mentioned before, a clear backscatter of magnetic energy due to the Hall effect is observed
for wave numbers smaller than kHall (≈ 20). To further probe the aforesaid backscatter, we compute
scale-classified fluxes using Eqs. (16)–(18).

Figure 5 shows the flux rates corresponding to all possible channels responsible for the feeding
of the large-scale magnetic field for three different times t = 10, 20, and 45. Such choices of time
steps have been made to elucidate the role of Hall effect at the kinematic-MHD dynamo regime, Hall
saturated nonlinear dynamos, and, finally, at the stage of magnetic energy saturation, respectively.
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FIG. 5. Various scale-to-scale fluxes important for dynamos at different times. FS = forcing scale, HS =
Hall scale.

Figure 5(a) shows the variation of 	
j>
b< with k. A positive flux rate directly represents the net transfer

of magnetic energy from the small-scale j field to large-scale b field (dynamo action) and vice versa.
At t = 10, the flux rate is slightly positive beyond the Hall scale (kHall). As time progresses, the
transfer rate becomes larger. Interestingly, the flux rate is not sign definite and, in fact, it changes
signs for length scales superior to the Hall scale. At t = 20, the flux changes signs around k = 40
whereas for t = 45 the sign change occurs around k = 30. Hence, with time, the transition wave
number is found to shift towards the Hall scale (k = 20). For t = 45, where the magnetic energy
saturates (see Fig. 3), the maximum of the positive flux rate peaks around the Hall scale. Figure 5(b)
shows the variation of 	b>

b< with wave numbers. A positive flux rate therefore signifies a net transfer
of magnetic energy from small- to large-scale b field. Similar to 	

j>
b<, at t = 10, the transfer rate is

found to be slightly positive beyond the Hall scale. At t = 20, the flux rate increases and becomes
negative beyond k = 40. Note that a negative flux rate in this case signifies a transfer towards the
small-scale b field, i.e., a direct cascade. For t = 45, the positive peak of the flux rate is found
to shift further towards smaller wave numbers while the change of sign occurs around Hall scale
(k = 20). Figure 5(c) shows the variation of 	

j<
b< with k. It denotes the transfer of magnetic energy

from the large-scale j field to large-scale b field. At t = 10, in contrast to the previous cases, the
flux rate is found to be slightly negative beyond the Hall scale. A negative flux rate signifies that
the large-scale magnetic field loses energy instead of gaining. Thus, in the kinematic regime, the
large-scale current fields remove energy from the large-scale magnetic fields rather than feeding
them. As time progresses, both positive and negative flux rates increase. At t = 20, it changes signs
from negative to positive around k = 45 whereas at t = 45 the sign change takes place around
k = 30. In addition, the peak of negative flux rate is also found to move towards the Hall scale. Of
all the aforementioned transfer rates, clearly 	

j>
b< is the largest. It signifies that the small-scale j

fields are the primary contributor in sustaining large-scale b fields. Similarly, 	b>
b< also contributes

in dynamo action through the transfer of magnetic energy from small-scale b fields to large-scale
b fields. However, 	

j<
b< does not directly seem to enhance the large-scale magnetic fields, rather it

facilitates the growth of small-scale magnetic fields. The sum of all aforesaid transfers is the net
transfer rate of magnetic energy to large scales. Therefore, a positive value denotes that a dynamo
action can be maintained through the scale-to-scale transfer from various scales. Figure 5(d) shows
the variation of total flux rate 	

j>
b< + 	b>

b< + 	
j<
b< with k. Interestingly, it shows similar behavior to
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FIG. 6. (a) 	
j>
b< and (b) 	

j>
b< + 	b>

b< + 	
j<
b< versus di at t = 45.

that of 	
j>
b<. This is expected since out of all three individual fluxes, 	

j>
b< is the most dominating

one.

C. Dependence of transfer rates on Hall scale

In this section, we study the variation of aforementioned flux rates with di. We have performed
three simulations with di = 0.05, 0.1, and 0.2 with the corresponding Hall wave numbers given by
20, 10, and 5 respectively. Note that, for our simulations, the forcing wave number k f ≈ 3.4. Instead
of studying the variation of fluxes with di for different times, here we only consider their values at
magnetic energy saturation (t = 45). Figure 6(a) shows the variation of 	

j>
b< with k for different

values of di. As di is increased, the Hall wave number decreases i.e., the Hall contribution becomes
effective for lower k values. Correspondingly, the peak value of the flux rates also shift towards
smaller wave numbers with increasing di. In addition, the wave numbers where the fluxes change
signs also moves to lower values. In accordance with the findings in the previous section, 	

j>
b<

fluxes are found to be the strongest irrespective of the value of the di. The other two fluxes, although
weaker than 	

j>
b<, shows similar behavior with the change in di (not shown here). Figure 6(b) shows

the total flux rates to the large-scale b field for different Hall parameters. As expected, the total flux
rates also mimic the nature of the most dominating contribution 	

j>
b<.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have systematically investigated the spectral space energy transfer due to
the Hall effect in three-dimensional HMHD turbulence. In particular, we have studied the role
of the Hall term on the growth of a large-scale magnetic field, i.e., the dynamo effect. Extending
the previous studies, where a clear backscatter of magnetic energy was observed, here we have
further probed into the said backscatter using spectral fluxes. Unlike the previous studies, here the
Hall term has been decomposed into two parts, −di(b · ∇)j and di(j · ∇)b. The current study clearly
shows that the first term, representing the j-b interaction, contributes primarily to the dynamo action.
Further classification of the transfer rates in scale-specific subparts 	

j>
b<, 	b>

b<, and 	
j<
b< shows that

the large-scale b field is mainly fed by the small-scale j field (Fig. 5). In particular, near the Hall
scale, the maximum energy transfer takes place from small-scale j to large-scale b field, whereas
the large-scale j field extracts energy from the large-scale b field. However, the net effect mimics
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the nature of 	
j>
b< which is the strongest of the three aforesaid transfers. All the flux rates change

signs at some wave number which moves towards the Hall scale with time. This further verifies the
dual cascading nature of the Hall effect found in previous studies [26,30]. Finally, the sum all three
contributions clearly shows that the Hall term adds a non-negligible contribution to the small-scale
dynamo action. Finally, the global nature of the flux transfer does not change with the change in the
ion inertial length di.

A thorough understanding of different channels of energy transfer in HMHD is extremely useful
to quantify the contribution of the Hall term in sub-MHD scale turbulence in space plasmas, e.g.,
the solar wind, the magnetospheric plasmas, etc. Furthermore, the Hall effect can be extremely
important in explaining the generation of large-scale magnetic fields in several astrophysical bodies
through the dynamo effect. In addition, during both the kinematic and the saturated regime,
the Hall effect is known to introduce nonlocality in the scale-to-scale energy transfer process.
More specifically, it has been shown that the magnetic energy shows local forward and nonlocal
inverse cascade. The net effect of these two aforesaid processes give rise to previously mentioned
backscatter of magnetic energy for wave numbers smaller than the Hall scale [26,30]. Therefore, it
would be interesting to study how the individual parts contribute to the nonlocality. Our study can
also be extended to various other plasma systems such as compressible plasmas, electron-MHD,
extended-MHD, etc. More specifically, the nonlinear terms present in the aforementioned systems
can be decomposed in a similar manner to the Hall term and their individual contributions can be
studied in the scale-to-scale transfer process using numerical simulations and in situ observational
data.
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