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Effect of surface tension gradients on coalescence dynamics
of two unequal-sized drops
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The coalescence dynamics of two unequal-sized drops made of miscible but distinct
liquids has been numerically simulated using the coupled level set and volume of fluid
method. Effect of the surface tension ratio of two liquid drops, the Ohnesorge number
and the diameter ratio of two parent drops on three different pinch-off regimes, namely,
first-stage, second-stage, and no pinch-off, are explored. The result shows that the coales-
cence process of two miscible liquid drops exhibits a nonmonotonic behavior of partial
coalescence from appearance to disappearance and then reappearance with decreasing
surface tension ratio. The strong lifting force of the intense Marangoni flow causes the
reappearance of partial coalescence at higher surface tension difference between two drops.
When the Ohnesorge number increases, high viscous forces restrict the propagation of
Marangoni flow and do not favor the pinch-off, even in the presence of a significant
surface tension difference. The generation of secondary drops at a considerable surface
tension difference is also prevented for small parent drop size ratio. A regime map for the
distinct coalescence outcomes is presented for different surface tension ratios. The critical
surface tension ratio necessary for partial coalescence to occur grows monotonically as
the Ohnesorge number increases. In our simulation, the minimum value of critical surface
tension ratio needed for partial coalescence to take place is 0.94 at small values of the
Ohnesorge number and the Bond number.

DOI: 10.1103/PhysRevFluids.8.053604

I. INTRODUCTION

The coalescence of a drop on a flat liquid interface or between two drops has been seen in a
wide range of natural and industrial systems [1–3], including raindrop/cloud formation [4], spray
atomization [5], emulsion coarsening [6], and microfluidic devices [7]. When a drop makes contact
with an interface, a significant portion of surface energy is released, which is then transferred to
the kinetic energy, causing significant oscillation of the interface [8]. There could be two very
different outcomes: complete coalescence, in which the drop merges completely with the bulk
liquid, or partial coalescence, in which only a portion of the drop liquid merges with the bulk
liquid, leaving a secondary drop. The generated secondary drop may repeat the partial coalescence
process numerous times, resulting in an interesting self-similar coalescence cascade [9,10]. The
first complete experimental work on the coalescence process was done by Charles and Mason
[11] almost half a century ago, and since then, researchers have been working to gain a deeper
understanding of this phenomenon. The introduction of high-speed cameras and strong numerical
tools in recent years has also provided a new opportunity to analyze the process in greater depth [9].
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When the surrounding fluid separating the drop and the interface starts to drain out, the coa-
lescence process begins [10]. The drainage of fluid from the drop forms a thin film between the
drop and the interface [12,13]. As the thickness of thin film reduces, van der Waals force comes into
play, triggering coalescence by generating a hole that expands rapidly due to capillarity [14]. Several
researchers have done extensive research on the expansion of a hole [15–17]. They concluded that
the interface dynamics are completely governed by the balance of viscous and capillary forces and
found that the Ohnesorge number (Oh = μ/

√
ρDσ ), i.e., defined as the ratio of viscous to capillary

forces, is the best parameter to control this phenomenon. Here D represents the drop diameter, ρ and
μ represent the density and viscosity of drop liquid, respectively, and σ is the surface tension. Based
on the range of Oh, three different coalescence regimes have been observed: (a) viscous-capillary
regime (Oh > 1), where interface dynamics is governed by viscous forces; (b) inertiocapillary
regime (Oh � 1), where surface tension forces dominate the interface dynamics and the flow in this
regime behaves as a nearly inviscid one; and (c) for intermediate Ohnesorge number, an intermediate
regime connecting the viscous-capillary and inertiocapillary regimes [18].

For intermediate range of Oh, Thoroddsen and Takehara [9] examined the partial coalescence
process and observed the well-known coalescence cascade, in which secondary drops are generated
up to six successful consecutive coalescence steps before totally merged into the bulk liquid. For
low viscosity liquids, Chen et al. [19] experimentally observed the partial coalescence process for
a certain range of drop diameters. They further classified this range into three subregimes—the
inertiocapillary, the viscous, and the gravitational regime—and found that the partial coalescence
happens mainly in the inertiocapillary regime. Blanchette and Bigioni [10] explained the mechanism
of secondary drop generation through their experimental and numerical works. They suggested that
the secondary drop pinch-off process is completely governed by the convergence of the capillary
waves at the apex of drop rather than the previously known Rayleigh plateau instability. Gilet et al.
[20] reported that the phenomenon of partial coalescence depend mainly on the Bond number,
the Ohnesorge numbers, and the relative density difference of two liquids. They found that the
Bond number and Ohnesorge number should be below a critical value for the occurrence of partial
coalescence and also reported the value of critical Oh to be 0.026 ± 0.003 for low Bond numbers.

The numerical work of Ray et al. [21] also revealed that the transition between partial and
complete coalescence is mainly determined by the competition between horizontal (i.e., capillary
pull which assists in the neck pinch-off) and vertical (i.e., inertioviscous which assists in the
complete coalescence) rate of momentum. The pinch-off mechanism between two different-sized
drops has been studied by Zhang et al. [22]. They described that the critical diameter ratio of two
drops above which a secondary drop formed can be as small as 1.55 and the critical ratio increases
as the Ohnesorge number increases. A new type of pinch-off known as a second-stage pinch-off
also reported by several authors [22–24] in which a secondary drop is generated only in the second
step of coalescence cascade following the failure of the neck being pinched off in the first step of
coalescence cascade.

Most previous studies have focused on the case where both the drop and interface are made of
the same fluid, whereas only a few studies have been reported for the drop and interface made of
different fluids. Because the transfer of surface energy to kinetic energy is so crucial in the coales-
cence, differences in surface tension between the drop and the interface caused by temperature or
composition difference could be highly significant. Kavehpour [25] has published a detailed review
work on the coalescence process, concluding that further research is needed to fully comprehend
the influence of externally applied shear stresses such as viscous, electrical or Marangoni on the
coalescence process during drop-interface or drop-drop coalescence. Blanchette et al. [26] explored
the effect of mismatch surface tension between the drop and the liquid reservoir on the coalescence
process using numerical and experimental work under zero and low Bond number conditions,
respectively. They observed that partial coalescence is favored when the reservoir’s surface tension,
σ2, is higher than the droplet’s surface tension, σ1, whereas total coalescence is favored when the
reservoir’s surface tension is lower. When σ2/σ1 < 0.42, the partial coalescence reappears and a
new exciting phenomenon of an additional secondary drop ejection from the top of the merged
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drop happens, mainly because of Marangoni stresses. Furthermore, they were unable to numerically
replicate the drop ejection process which was later reproduced by Sun et al. [8] in their numerical
study performed at zero Bond number. They also found the two different types of partial coalescence
at low surface tension ratio: (i) peak ejection at low Ohnesorge number and (ii) bottom pinch-off at
higher Ohnesorge number.

Blanchette [27] studied the mixing behavior of stationary as well as flowing droplets caused by
either surface tension gradients or geometry effects, and concluded that the former is more important
than the latter in terms of increasing mixing efficiency. The effect of varying surface tension caused
by temperature difference have been explored by Saifi and Tripathi [28]. They reported that the
coalescence behavior of cold drops differs significantly from that of hot ones, mainly at increasing
temperature differences. They also showed that when a drop is kept colder than its surroundings,
partial coalescence changes to total coalescence. However, the behavior of an isothermal system is
unaltered, when the drop is kept hotter than its surroundings. The gradients of surface tension can
also be generated by the use of surfactants and their effect on coalescence has been studied by several
authors [29–31]. Recently, a new regime of coalescence cascade known as damped coalescence
cascade has been discovered by Shim and Stone [32]. In this regime, the local Marangoni flow
increased the drainage of the air between the secondary drop and the interface, resulting in the
suppression of secondary drop rebound.

Along this path, we have seen that the coalescence process has been widely discussed for drop-
reservoir and drop-drop interface in situations when both the drop and the interface are made of the
same fluid. Drop-interfaces formed of dissimilar fluids have received little attention. Earlier studies
[8,26] demonstrated the nonmonotonic behavior of partial coalescence caused by surface tension
gradients for a drop coalescing on a flat liquid pool, but the same behavior has not been explored
for the coalescence of two drops. Little importance has been given, in particular, to the partial
coalescence of two drops with large surface tension difference. Furthermore, the effect of different
parameters on coalescence of miscible drops, such as diameter ratio of two drops (also known as
parent drop size ratio), viscosity and density ratio of both drops, and surface tension ratio [in both
conditions: (σ1 > σ2) and (σ1 < σ2)] is still not thoroughly addressed; σ1 and σ2 being the surface
tension of drop 1 and drop 2, respectively. Therefore, the goal of the present work is to numerically
simulate the coalescence mechanism between two unequal-sized miscible drops for focusing the
issues mentioned above. We investigated the quantitative and qualitative effects of the Ohnesorge
number and surface tension ratio on contrast pinch-off regimes. The effect of parent drop size ratio
on the coalescence of two drops with a large surface tension difference is also examined. A regime
map is presented to provide a deeper understanding of the coalescence dynamics of two liquid drops
that are miscible. The regime of second-stage pinch-off, which occurs between first-stage pinch-off
and no pinch-off and was previously described solely for drop-interfaces composed of identical
liquid, is shown for the coalescence of two miscible liquid drops.

The paper is organized as follows: in Sec. II, the numerical model and solution methodology
are described in details. Section III presents the quantitative and qualitative comparison of the
current simulation results with the experimental and theoretical results of previous studies from
open literature. In Sec. IV, the influence of surface tension ratio, viscous forces, and parent drop
size ratio on the coalescence behavior of two miscible liquid drops are presented and discussed.
Finally, Sec. V summarizes the main points of results.

II. PHYSICAL DOMAIN AND SOLUTION METHODOLOGY

We have numerically examined the coalescence mechanism of two unequal-sized drops made
of miscible but different fluids (as shown in Fig. 1). In a physical domain, the smaller drop of
liquid-1 (i.e., upper drop) is positioned vertically just above the larger drop of liquid-2 (i.e., lower
drop), with a small gap of 0.005Du between them, where Du is the upper drop diameter. It is worth
mentioning that a small gap between two drops is required to prevent the formation of tangential
stresses at the beginning of coalescence (τ = 0). The lower drop and the surrounding air is initially

053604-3



SWATI SINGH AND ARUN K. SAHA

FIG. 1. Physical domain used for simulation showing coalescence of two unequal-sized miscible drops.

at rest, i.e., zero velocity, while the upper drop is set to a small nondimensional downward initial
velocity of 0.001 just to trigger the coalescence process. The simulation is performed in a two-
dimensional, axisymmetric cylindrical domain (r, z) using a coupled level set and volume of fluid
method (CLSVOF). Here, r and z represent the radial and vertical directions, respectively, with
r = 0 being the axis of symmetry. The computational domain has a width and height of 3Du×6Du.

To highlight the effect of surface tension gradients on the cascade of partial coalescence, we
have used water/ethanol or a water-ethanol mixture both for lower and upper drops. The main
reason for choosing the above liquids is to minimize the effect of density and viscosity variations.
The properties of both liquid-1 and liquid-2 are given elsewhere [26,33]. By varying the physical
properties, the surface tension ratio, σr = (σ2/σ1) is varied between 0.3 and 1.6. It is to be noted
that the cases with (σr < 0.3) can not be realized by using these two fluids as the minimum σr that
can be obtained using water and ethanol drops is 0.3 only. Furthermore, when σr < 1, the upper
drop and the lower drop are made of water and water-ethanol mixture, respectively, whereas the
upper and lower drop is formed of ethanol and water-ethanol mixture, respectively, for σr > 1. The
Ohnesorge number (Oh = μ1/

√
ρ1σ1Du) is varied in the range of 0.002 to 0.011, where ρ1 and μ1

are the density and viscosity, respectively, of the upper drop liquid. In the present study, the effect
of gravity (g) is not considered and the coalescence is initiated where both drops are spherical.
Therefore, the Bond number (Bo = ρ1gDu

2/σ1) is set to Bo = 0. This condition also ensures that
the coalescence mechanism in the present work is mainly governed by the surface tension variations.
Furthermore, it is important to note that although the effect of uneven surface forces and viscous
forces on coalescence process are studied primarily for the condition where the parent drop size
ratio (Dr = Dl/Du) is 2.1 (i.e., the ratio of diameter of the lower drop is almost twice that of the
upper drop), the parent drop size ratio (Dr) is also varied between 1 and 3 to analyze the effect
of large surface tension difference between two drops (i.e., σr = 0.3). The detailed mathematical
formulation used to perform simulation is described in the next section.

A. Governing equations

The system of coalescence process is characterized by mainly seven dimensionless parameters:
the Bond number, Bo = ρ1gD2

u/σ1; the Ohnesorge number, Oh = μ1/
√

ρ1σ1Du; the Schmidt num-
ber, Sc = ν1/k; the surface tension ratio of lower drop to upper drop liquid, σr = (σ2/σ1); the
parent drop size ratio of lower drop to upper drop, Dr = Dl/Du; the density ratio of liquid to gas,
ρ∗ = ρl/ρg; and the viscosity ratio of liquid to gas, μ∗ = μl/μg, where subscript l denotes either 1
or 2. ν1 denotes the kinematic viscosity of upper drop liquid and k is the compositional diffusivity.
In the present work, the typical values of ρ∗ and μ∗ are the order of O(103) and O(102), respectively,
for a liquid-gas systems. Hence, the inertia and viscous effects from the surrounding air are assumed
to be negligible. The governing equations are nondimensionalized by the upper drop diameter, Du,
as a length scale and τ = √

ρ1D3
u/σ1, as a timescale. The density, viscosity, and surface tension are
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scaled using density, ρ1, viscosity, μ1, and surface tension, σ1, of the upper drop liquid. Pressure
is scaled using capillary pressure as σ1/Du. Assuming all fluids are incompressible and Newtonian,
the nondimensional continuity and momentum equation for our system are given as

∇ · V = 0 (1)

and

ρ∗
[
∂V
∂τ

+ ∇ · (VV)

]
= −∇p + Oh{∇ · μ∗[∇V + (∇V)T ]} + ρ∗Bo + Fσ , (2)

where V is the velocity field vector with radial (u) and vertical (v) components in the r and z
directions, and p is the pressure. It is to be noted that the Bond number is set to zero in the present
simulation. The forcing term Fσ is a surface δ function which is nonzero only on the interface and
defined as [34]

Fσ = δ(s)∇ · [(I − n̂T n̂)σ ∗] = δ(s)(∇sσ
∗ + κ n̂σ ∗) (3)

Here κ is mean curvature of the interface, n̂ is unit normal vector, δ(s) is the Dirac δ function and
∇s is a surface gradient operator defined on the interface. The tangential component of surface
tension gradients is represented by the first term on the right-hand side of Eq. (3), whereas the
normal component of surface tension force is represented by the second term. The first term is called
Marangoni stresses. The use of potential forms for interfacial forcing terms reduces the numerical
difficulties of dealing with interfacial forces.

A volume fraction function, F is used to distinguished the different fluid regions (liquid and gas)
in a computational domain (see Fig. 1). The value of F is defined as 1 for liquid cells, 0 for gas
cells and 0 < F < 1 at the interface cell of gas and liquid. To achieve a smooth interface, a level set
function φ has been used in terms of the signed distance function [35].

The movement of interface is tracked using the advection equations of F and φ as
∂F

∂τ
+ ∇ · (FV) = F (∇ · V), (4)

∂φ

∂τ
+ ∇ · (φV) = φ(∇ · V). (5)

One more tracking function, F1, is introduced into the flow for tracking the interface motion of
between the lower and upper drop. The value of F1 is 1 for upper drop liquid and 0 for lower drop
liquid as shown in Fig. 1. For surrounding gas, the value of F1 is 0. The interface between lower and
upper drop is tracked using an advection-diffusion equation of F1 as given by Blanchette et al. [26]:

∂F1

∂τ
+ V · (∇F1) =

(
Oh

Sc

)
∇ · (k∗∇F1), (6)

where (k∗ = k/k1). We assume that the compositional diffusivity, k, is independent of F1 to keep the
number of computational parameters to a manageable level while only showing the effect of surface
tension variations.

The Schmidt number, Sc, relates the importance of momentum transport to composition trans-
port. For a liquid of density, viscosity and diffusion coefficient of the order of ρl ∼ O(103) kg/m3,
μl ∼ O(10−3) Pa s, and k ∼ O(10−9) m2/s, the value of Sc is set to a typical value of 1000 for
water-ethanol liquid system [36].

The fluid properties (density, viscosity, and surface tension) are interpolated as

ρ∗ = 1

ρ1
{ρg(1 − F ) + F [ρ1F1 + ρ2(1 − F1)]}, (7)

μ∗ = 1

μ1
{μg(1 − F ) + F [μ1F1 + μ2(1 − F1)]}, (8)

σ ∗ = σrF1 + (1 − F1). (9)
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B. Boundary conditions

The boundary conditions used to perform the numerical simulations are as follows:
At r = 0, a symmetry boundary condition has been imposed for velocity. This means that the

normal component of velocity and tangential stress are set to be zero:

u = 0 and
∂v

∂r
= 0. (10)

A no-slip impermeable wall boundary condition is applied on the bottom boundary:

u = 0 and v = 0. (11)

The side walls are assumed to be placed sufficiently far from the drop interface so that they have no
effect on dynamics of coalescence process. Therefore, the same boundary condition as the symmetry
axis is defined for the right boundary surface.

The top confining surface is treated as an open boundary, hence zero Neumann condition has
been imposed there:

∂u

∂z
= 0 and

∂v

∂z
= 0. (12)

Zero Neumann boundary condition has been imposed for pressure at all surfaces except at the top
confining surface where pressure is defined as the atmospheric pressure (patm).

For volume fraction function (F and F1) and level set function φ, zero Neumann boundary
condition has been applied on all boundary surfaces.

C. Solution algorithm

A CLSVOF method-based in-house developed code is used to performed the numerical sim-
ulations. A fixed collocated grid is adopted to compute velocity, pressure, volume fraction, and
level set function. The governing equations are discretized using a finite volume methodology. A
second-order central difference scheme is used to approximate the convective terms and diffusive
terms of Eqs. (2) and (6). The convective term of level set equation is discretized using second-order
central difference scheme. Implicit method has been implemented for time advancement. With
known values of volume fraction function (F n and F n

1 ), the fluid properties are calculated from
Eqs. (7)–(9). A two-step predictor-corrector method is employed to obtain the velocity and pressure
field at the new time step, τ n+1. For reconstruction and advection of interface, the advection
equations, Eqs. (4) and (5) are solved using a coupled second-order conservative operator splitting
method [37–41]. The detailed documentation of algorithm can be found elsewhere [42,43]. A
feasible time-step is calculated on the basis of the stability criterion [21,38] for all simulation cases
and fixed as 
τ = 10−4.

D. Energy analysis

In the present study, we evaluated the energy budget for the coalescence of two miscible liquid
drops. The total energy (TE) of the system should be constant throughout the coalescence process,
and equal to the sum of the initial kinetic energy [(Eke)init] and the initial surface energy [(Ese)init],
according to the energy conservation law. In each time level, the total energy must also be equal
the sum of the kinetic, surface, and total dissipation energy. The energy balance can be expressed
mathematically as

T E = (Eke + Ese)init = Eke(τ ) + Ese(τ ) + Ede(τ ) (13)

At each time step throughout the coalescence process, the nondimensional kinetic energy, surface
energy, and total dissipation energy are calculated as follows:

Eke = 1

2

Ncells∑
i, j=1

ρ∗(u2
i, j + v2

i, j

)
Vcell, (14)
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Ese =
∑

σ ∗As, (15)

Ede =
∫ τ

0

⎛
⎝ Ncells∑

i, j=1

(VDR)Vcell

⎞
⎠dτ, (16)

where Vcell and Ncells represent the volume and number of computational cell, ui, j and vi, j define the
velocity components in r and z direction and As denotes the surface area.

The nondimensional local viscous dissipation rate, VDR is computed as follows:

VDR = μ∗(Oh)

[
2

(
∂u

∂r

)2

+ 2

(
∂v

∂z

)2

+ 2

(
u2

r2

)
+

(
∂u

∂z
+ ∂v

∂r

)2
]
. (17)

III. CODE VALIDATION

The in-house code used in the present work is significantly validated earlier [42,43] for numerous
problems related to drop impact on thin films and coalescence of two identical liquid drops.
However, in the present work, we have further validated our code by successfully reproducing
the experimental results of Blanchette and Bigioni [10] and Anilkumar et al. [2]. For quantitative
comparison, the experimental results of Thoroddsen et al. [44], and the theoretical model of
Koldeweij et al. [45] have been adopted. It should be noted that a 3D representation of the present
axisymmetric simulation results is shown in Fig. 2 for better visualization and understanding of the
physics of the problem.

A. Qualitative study

Figure 2(a) shows the temporal evolution of partial coalescence of an ethanol drop impacting
on an ethanol liquid pool. The dimensionless parameters used in the simulation are as follows:
Oh = 0.008, Bo = 0.4, and σr = 1.0. It is found that the interface evolution from drop deformation,
neck development to secondary drop pinch-off are in good agreement with the experimental results
of Blanchette and Bigioni [10]. The coalescence sequence of two highly viscous silicon oil drops in
the presence of water is depicted in Fig. 2(b). The simulation parameter used for this condition are
as follows: Dr = 1.75, Oh = 0.203, ρ1/ρg = 0.96, μ1/μg = 99, and σr = 1.0. The present results
indicate a very good agreement with experimental results of Anilkumar et al. [2] as the two drop
do not show any merging. The smaller drop simply lodged on the large drop forming a dome shape
due to high viscous effect.

B. Quantitative study

In Fig. 3(a), the temporal evolution of local neck radius, Rneck for the coalescence of two water
drops is compared with the experimental results of Thoroddsen et al. [44] both qualitatively and
quantitatively. The condition of the simulation are: Dr = 1.07, Oh = 0.0035, Bo = 0.15, σr = 1.0.
The hollow circles belong to Thoroddsen et al. [44] experimental data and solid line represent
the actual numerical simulation data. The solid circle describes the evolution of neck shape at six
different time steps. Our numerical results match very well with experimentally observed values of
local neck radius, Rneck . Also, the interface dynamics obtained in the present simulation (shown by
cyan color) are in good agreement with experimental results of Thoroddsen et al. [44].

To further validate the code in correctly capturing the Marangoni flow, another quantitative
comparison has been done with the theoretical model of Koldeweij et al. [45] given for spreading
length of lower surface tension fluid in the higher surface tension fluid during drop coalescence
as shown in Fig. 3(b). The condition of the simulation are: Dr = 2.1, σr = 1.53, and two different
Ohnesorge numbers, i.e., Oh = 0.0035 and 0.007. We extracted the spreading length [L(t )] [see
Fig. 3(b)] at different time steps and followed Koldeweij et al. [45] to normalize the L(t ) and time,
t . L(t ) is normalized by L(t )∗ ∼ L(t )/[μ2

1/(ρ1
σ )] and t is normalized by t∗ ∼ t/[μ3
1/(ρ1
σ 2)]. It
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FIG. 2. Qualitative validation of present numerical results (bottom row) with experimental results of
(a) Blanchette and Bigioni [10] (top row) for partial coalescence of an ethanol drop with an ethanol liquid
pool for Oh = 0.008, Bo = 0.4 and σr = 1.0, and (b) Anilkumar et al. [2] (top row) showing the coalescence
of two different-sized drops of diameter ratio, Dr = 1.75. The other relevant parameters are Oh = 0.203,
ρl/ρg = 0.96, μl/μg = 99, and σr = 1.0.

can be observed that our simulation successfully reproduces the theoretical scaling law of Koldeweij
et al. [45] [L(t )∗ ∼ t∗3/4].

C. Grid independence study

The grid independence test has been done for three different grid sizes: 362×724, 542×1084
and 814×1628 for the coalescence of two unequal drop sizes. The simulation is performed under
following conditions: Dr = 2.1, σr = 1.53, and Oh = 0.0035. Comparison of interface shape
profile at τ = 0.32 and formation of third secondary drop at τ = 1.24 are presented in Fig 4.
Table I compares the size of the first, second, and third secondary drop, i.e., (rd )1, (rd )2, and
(rd )3, respectively, generated during coalescence of two drops resulting in first-stage pinch-off at
different grid sizes. It is found that the first and second secondary drop formation is captured by
all three grid sizes, however, only the intermediate, 542×1084, and the finest grid, 814×1628, are
capable of capturing the third secondary drop generation as depicted in Fig. 4(b) and Table I. Also,
the difference in interface profiles is found to be almost negligible between the intermediate and
the finest grid sizes (see Fig. 4). The drop tip formation and third secondary drop pinch-off are
captured very well in the case of the intermediate and finest grids. Table I shows that the difference
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FIG. 3. Quantitative validation of present numerical results with (a) experimental results of Thoroddsen
et al. [44] for temporal evolution of local neck radius, Rneck under following simulation parameters: Dr = 1.07,
Oh = 0.0035, Bo = 0.15, σr = 1.0, and (b) theoretical model of Koldeweij et al. [45] for spreading length of
the lower surface tension liquid into the higher surface tension liquid for Dr = 2.1 and σr = 1.53.

in (rd )1 values is almost negligible for three different grid sizes. The percentage difference in (rd )2

value between coarser grid, 362×724, and intermediate grid, 542×1084, is around 7.3%, while the
difference reduces significantly to 0.9% between the intermediate and the finest grid, 814×1628.
The percentage difference in (rd )3 values between the intermediate grid, 542×1084, and the finest
grid, 814×1628, is 1.07. In our simulation, we have taken the grid size of 542×1084 as this grid
size provides the grid independent results.

D. Domain independence study

The computational domain (3Du×6Du) has taken to be sufficiently large so that the side confining
surfaces are positioned sufficiently far from the drop interfaces and the boundary conditions have no
effect on the dynamics of coalescence process. The domain independence test has been performed
using two different domain sizes: 3Du×6Du and 4.5Du×9Du. The integral parameters obtained

FIG. 4. Comparison of (a) drop tip deformation, and (b) third secondary drop generation for different grid
sizes plotted at time step, τ = 0.32 and τ = 1.24, respectively. The other parameters are Dr = 2.1, σr = 1.53,
and Oh = 0.0035.
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TABLE I. Secondary drop size ratio in case of first-stage pinch-off for different grid resolution having
Dr = 2.1. The values of other parameters are σr = 1.53 and Oh = 0.0035. Here D1, D2, and D3 are the diameter
of the first, second, and third secondary drops, respectively.

Grid size (rD )1 = D1/Du (rD )2 = D2/Du (rD )3 = D3/Du

362×724 0.5701 0.2532 No secondary drop
542×1084 0.5712 0.2731 0.1014
814×1628 0.5718 0.2756 0.1025

using the two domain sizes have been listed in Table II. The discrepancies in the (rd )1, (rd )2, and
(rd )3 values for the partial coalescence are found to be 0.05%, 0.7%, and 1.4% between two sets of
results, respectively. Therefore, all simulations are done using the domain size of 3Du×6Du.

IV. RESULTS AND DISCUSSION

We investigated the effects of surface tension gradients, Ohnesorge number, and parent drop size
ratio on the coalescence dynamics of two unequal-sized drops. A regime map on the Oh-σr plane
is also drawn to depict the various coalescence regimes. The influences of the surface tension ratio,
Ohnesorge number, and parent drop size ratio on the estimated kinetic, surface, and dissipation
energies during the coalescence process are discussed.

A. Effect of surface tension ratio

In Fig. 5, the secondary drop generation of liquids with uniform surface tension is compared
to liquids with uneven surface tensions. The Oh and Dr is fixed at Oh = 0.0035 and Dr = 2.1 for
all the cases, while the σr is increased by increasing the surface tension of lower drop liquid. A
3D view of 2D axisymmetric results are shown in Fig. 5 for a better visualization of coalescence
of two miscible drops. It is found that the coalescence process produces a nonmonotonic results
from partial coalescence [Figs. 5(d), 5(e) and 5(f)] to no pinch-off [Figs. 5(b) and 5(c)] and again
back to partial coalescence [Fig. 5(a)] with a reduction in σr . The partial coalescence shown in
Figs. 5(a), 5(e) and 5(f) are categorized as first-stage pinch-off because the drop deformation, neck
development, and secondary drop creation occur in the same manner as a drop coalescing into a
flat liquid pool. There is also a transition region between the first-stage pinch-off and no pinch-off,
where the second-stage pinch-off occurs [Fig. 5(d)].

The partial coalescence process is observed to be completed in two stages: in the first, the two
drops are connected by a neck that expands radially outwards causing a capillary surface wave to
propagate upward towards the drop apex, while in the second, the neck narrows radially inward with
an interface retracting downward. Finally, the pinch-off occurs around the initial point of contact.
When considering only the radial motion of the neck, which is driven by the net capillary pressure
[σ (κθ − κx )], the azimuthal curvature (κθ = 1/Rneck) is found to be much smaller than the axial
curvature (κx = 1/Raxn) in the first stage (i.e., κθ � κx) when the neck expands, but it increases
significantly in the second stage (i.e., κθ � κx), when the neck shrinks. Here κθ and κx are the

TABLE II. Secondary drop size ratio generated during the coalescence of two miscible drops, resulting
in a first-stage pinch-off with Dr = 2.1 for two different domain sizes. The values of other parameters are
σr = 1.53 and Oh = 0.0035. Here D1, D2, and D3 are the diameter of the first, second, and third secondary
drops, respectively.

Grid size (rd )1 = D1/Du (rd )2 = D2/Du (rd )3 = D3/Du

3Du×6Du 0.5712 0.2731 0.1014
4.5Du×9Du 0.5709 0.2750 0.1000
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FIG. 5. Different pinch-off regimes obtained during the coalescence of two unequal-sized drops for
Oh = 0.0035 and Dr = 2.1 at varying surface tension ratio (σr).

azimuthal and axial curvature of the neck [see Fig. 14(b) for definition of axial and azimuthal
curvature]. Due to the decreased axial curvature in the second stage, the fluid is squeezed away
from the neck by the strong radially inward capillary forces, resulting in a secondary drop pinch-off
[22]. Therefore, to achieve partial coalescence, the horizontal rate of collapse must be high enough
that vertical collapse is delayed and the neck has a shaper azimuthal curvature during its final
contraction.

As shown in Fig. 5(e), the first-stage pinch-off for σr = 1.0 occurs in a manner similar to that
described in many prior studies [10,46] such as coalescence of a drop in a liquid reservoir. The
outcome is again a first-stage pinch-off for σr = 1.3 [Fig. 5(f)], and the coalescence steps are
qualitatively similar to the σr = 1.0 case. However, in the case of σr = 1.3, the resulting secondary
drop appeared to be slightly bigger than in the case of σr = 1.0. Overall, the entire coalescence
cascade of σr = 1.3 shows very little deviation from the σr = 1 scenario. For σr < 1 situations, the
coalescence process exhibits more complex behaviors. When the σr is decreased, i.e., σr = 0.5 and
0.7 [Figs. 5(b) and 5(c)], the outcome is no pinch-off and the droplet merges fully into the bulk
liquid.
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FIG. 6. Effect of surface tension ratio (σr) on temporal evolution of (a) h∗ and (b) Rneck. The other
nondimensional parameters are Dr = 2.1 and Oh = 0.0035.

Whenever σr is not equal to 1.0, the higher surface tension liquid pushes on the droplet interface,
generating a tangential flow that partially covers the higher surface tension liquid’s surface with the
lower surface tension liquid. Therefore, when σr < 1, the lower droplet’s liquid (which has lower
surface tension) climbs up the sides of the upper droplet (which has higher surface tension), resulting
in a reduction of local surface tension at the droplet interface, which drives the radial constriction.
As a result, the vertical rate of collapse becomes dominant and begins to push the liquid downward,
resulting in no pinch-off [as observed in Figs. 5(b) and 5(c)]. Sun et al. [8] mentioned that the
timescale of capillary forces that governs the horizontal rate of collapse can be estimated using√

ρ1D3
u/σ1. Because

√
ρ1D3

u/σ1/
√

ρ1D3
u/σ2 = √

1/σr > 1, so lowering the local surface tension at
the drop interface surface from σ1 to σ2 would eventually result in a delayed horizontal collapse.

The first-stage pinch-off re-emerges as σr is reduced further, as shown in Fig. 5(a) for σr = 0.3.
In comparison to the σr = 1.0 scenario, where pinch-off happens at τ = 0.74, it is found that in this
case, the neck pinches off at a considerably longer time instant, τ = 1.34. If we compare the ratio
of pinch-off times of above-mentioned cases, then we get 1.81 which closely equal to the value of√

1/σr . This suggests that the pinch-off is caused solely by the horizontal rate of collapse, with a
partial coalescence reappearing as a result of the prolonged vertical collapse. It is also observed that
the initial coalescence stages from neck opening to capillary wave propagation to upward stretching
of drop are found to be similar to those seen in the σr = 1.0 case. However, the upward stretching
in the σr = 0.3 case is significantly more pronounced than the σr = 1.0 case mainly due to the
presence of the tangential Marangoni stresses.

It is also worth mentioning that no secondary droplet forms when σr is less than or equal to 0.95.
When σr > 0.985, the first-stage pinch-off happens. A transition region exists between the first-
stage pinch-off and no pinch-off, where the pinching neck re-expands without causing a secondary
drop in the first step and the pinch-off occurs in the second step of the coalescence cascade [Fig. 5(d)
for σr = 0.96]. The pinch-off is referred to as a second-stage pinch-off. This form of coalescence
cascade has been previously reported for droplets made of the same liquid [22,24]. However, the
second-stage pinch-off is also found to occur for droplets made of miscible liquids as shown in
Fig. 5(d). Between pinch-off and no pinch-off regime, the second-stage pinch-off is observed for
a very narrow range of σr = 0.95 to 0.985 (see Fig. 23, at Oh = 0.0035 for the above mentioned
values of σr).

The temporal evolution of the relative height of the upper drop apex (h∗) and the neck radius
(Rneck) for various σr are compared in Figs. 6(a) and 6(b) to analyze the impact of Marangoni flow
on the vertical and horizontal rate of collapse that leads to the nonmonotonic emergence of partial
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FIG. 7. Effect of surface tension ratio (σr) on temporal evolution of (a) the kinetic energy (Eke), (b) the
surface energy (Ese), and (c) the dissipation energy (Ede) for Oh = 0.0035 and Dr = 2.1.

coalescence. The simulation parameters are identical to those described in Fig. 5. As shown in
Fig. 6(a), the flow caused by the neck expansion has no effect on the h∗ during the initial stage of
coalescence (τ < 0.35). The maximum vertical stretching of the upper drop apex is observed for the
σr = 0.3 case due to increased upward movement generated by large Marangoni forces. When the
σr is increased to 0.5 or 0.7, the upward stretching motion of the droplet is suppressed even before
it merges more quickly with the bulk liquid. The reason for this is that the lower surface tension
liquid partially covers the drop interface, reducing interfacial oscillation. The droplet apex is lifted
again by the upward propagating capillary waves when the σr is increased further up to 1.3 (i.e.,
σr = 0.96, 1, and 1.3). It is also visible from figure that the value of maximum h∗ is slightly higher
for σr = 1.3 case than for σr = 1 case.

The temporal trajectories of neck radius (Rneck) for different σr in Fig. 6(b) reveals that as σr

decreases from 1.3 to 0.3, the total time for the upper drop completely merging into the lower
drop increases. The transition to no pinch-off takes place corresponding to σr = 0.96 with the
upper drop oscillating two times before being absorbed by the lower drop. The number of neck
radius oscillations reduces to one, when the value of σr is further increased (σr = 1.0) or decreased
(σr = 0.7). The dual (twice) oscillation in neck radius for σr = 0.96 indicates that the pinch-off
occurs in the second step of the coalescence cascade, resulting in the second-stage pinch-off
process. At a smaller σr values (i.e., between σr = 0.3 and σr = 0.5), however, the second stage
pinch-off becomes absent. The maximum spreading of the neck is obtained for no pinch-off cases
(σr = 0.5 and 0.7) which can be attributed to strong Marangoni forces. In comparison to σr = 1.0,
the maximum value of Rneck decreases and the pinch-off occurs earlier for σr = 1.3 case.

The temporal evolution of the kinetic energy, surface energy and dissipation energy are shown
in Figs. 7(a), 7(b) and 7(c), respectively. The energies are calculated using Eqs. (14)–(16), and are
normalized by the initial surface energy of drops with Dr = 2.1 and σr = 1.0. The initial surface
energy is chosen for normalization because, in stationary drops coalescence, the total energy of
the system at τ = 0 is primarily composed of the surface energy of two drops. Furthermore, using
the initial surface energy of σr = 1.0, a clear picture of the effect of different parameters on the
coalescence process has been presented. The temporal evolution of the kinetic energy plots reveals
that σr = 1.3 has the highest kinetic energy and σr = 0.3 has the lowest [see Fig. 7(a)]. This happens
because the initial surface energy is higher when the σr is larger. The surface energy at τ = 0 for
two drops is written as

(Ese) = πD2
uσ1 + πD2

l σ2 = πD2
uσ1

(
1 + σrD2

r

)
. (18)

It is simple to conclude from Eq. (18) that for a fixed Dr , when σr decreases, most part of the initial
surface energy reduces. As the coalescence process advances, the initial surface energy is converted
into kinetic energy, and the remaining surface energy is dissipated by viscosity [see Figs. 7(b)
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FIG. 8. Effect of surface tension ratio (σr) on (a) variation of rd , (b) τp (measured from the start of
coalescence upto the secondary drop generation), and (c) total number of coalescence stage and secondary
drops produced. The other dimensionless parameters are Dr = 2.1 and Oh = 0.0035.

and 7(c)]. The presence of Marangoni forces causes the kinetic energy to decrease with decreasing
σr . The kinetic energy for σr = 0.96 and 1 falls rapidly as the neck pinches off to produce a
secondary drop. For σr = 0.96, the kinetic energy reduces slightly at first, then rises as the neck
fails to pinch-off in the first step, and finally decreases rapidly as the neck breaks up in the second
step of the coalescence cascade. The number of oscillations in the kinetic energy curve (i.e., 2 and
3, respectively) for σr = 1.0 and 1.3 equals the number of secondary drops produced as seen in
Fig. 5. In addition, the decrease in surface energy at later time instants is higher for σr = 1.3 than
for other σr cases, resulting in an increase in dissipation energy at later time instants for σr = 1.3
[see Figs. 7(b) and 7(c)].

The influence of varying σr on the secondary drops generated during first-stage pinch-off (i.e.,
first, second, and third secondary drops), second-stage pinch-off, σr = 0.3 and pinch-off time are
summarized in Fig. 8. The simulation is performed under the same conditions as mentioned in
Fig. 5. As demonstrated in Figs. 8(a) and 8(b), a lower σr (i.e., σr < 0.35) yields larger secondary
droplets, although secondary drop formation also occurs at a longer pinch-off time (pinch-off time is
measured from the initiation of coalescence to the secondary drop generation). This happens because
Marangoni flow persists on the interface for a prolonged period of time after the initial convergence
at the droplet apex, delaying the secondary drop pinch-off. It also means that the advancing front of
the lower surface tension liquid from the lower droplet slows down as it wraps up the upper droplet,
resulting in an enhanced mixing owing to Marangoni flow.

The pinch-off phenomenon does not occur for 0.35 < σr � 0.95. It is also visible from Figs. 8(a)
and 8(b) that the secondary drop size and the pinch-off time for both first and second secondary
drops are greatly affected with the variations in σr when σr < 1.1. However, as σr is increased (i.e.,
σr > 1.1), the rd and τp for all secondary drops (first, second, and third) slightly rise and decrease,
respectively. This is mostly due to an increase in the kinetic energy of the drop [see Fig. 7(a)], which
causes a reduction in the expansion of the neck, hence increasing the volume of the secondary drops.
Moreover, at a larger value of σr , the total time between shrinking of the neck and the secondary drop
formation reduces. This helps to explain why the pinch-off time is shorter for larger σr [Fig. 8(b)].
Furthermore, the secondary drop generation in the second-stage pinch-off is also observed to occur
at a longer pinch-off time.

It is also noticed that the size of secondary drops attained for σr < 0.35, σr > 1.0 and second-
stage pinch-off are almost 1.2, 1.12, and 0.3 times that of the first secondary drop obtained at σr = 1,
respectively. When σr = 0.955, i.e., during second-stage pinch-off, the smallest secondary drop
having a size of 0.17 is generated. The size of largest secondary drop obtained for σr = 0.33 is
rd = 0.63. As illustrated in Fig. 8(c), both the number of coalescence stages and the number of
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FIG. 9. (a) Effect of surface tension ratio (σr) on the temporal evolution of the first secondary drop jumping
height, hb, (b) (hb)max versus σr , and (c) τtotal taken by the first secondary drop from pinch-off to again come
into contact with the interface versus σr . The values of other nondimensional parameters are Dr = 2.1 and
Oh = 0.0035.

secondary drops increases as the σr increases. The averaged size of the first, second, and third
secondary drops are found to be 0.57, 0.47, and 0.36, respectively, for σr > 1.1.

The role of increasing kinetic energy as the σr varies can also be seen from Fig. 9, where the
temporal evolution of the dynamics of the first secondary drop is plotted. The other nondimensional
parameters are the same as mentioned in Fig. 5. As shown in Fig. 9(a), the jumping height, hb

increases as the secondary drop moves upwards after pinching off, achieves its maximum, and then
decreases as the secondary drop comes downwards in all cases. Up to σr = 1.1, the starting position
of hb curve is same for σr = 0.985, 1.0 and 1.1 as the pinch-off time for the first secondary drop is
found to be the same for all three cases. However, once σr is increased from 1.1, the curve began
to shift to the left as the secondary drop detaches earlier, resulting in a decrease in pinch-off time,
as illustrated in Fig. 9(a). The secondary drop at the highest σr (σr = 1.5) takes longer to reach the
(hb)max due to the increased volume of the drop at the highest σr . Furthermore, the total time duration
(τtotal) taken by the first secondary drop from pinch-off to its return to the interface increasing with σr

before becoming asymptotic at higher σr [see Fig. 9(c)]. Similarly, the maximum bouncing height,
(hb)max is found to show identical variation [see Fig. 9(b)] as that of τtotal which believed to be due
to increased kinetic energy as seen in Fig. 7(a).

Aside from that, one can see from Figs. 5 and 10 how the coalescence cascade of drops having
distinctly liquids differs from the coalescence cascade of drops made of the same liquids. When σr >

1.0, the surface tension mismatch affects just the first coalescence event. Subsequent coalescence
events, however, would almost certainly occur between a drop and an interface surface with the
same local composition as the first generated secondary drop. Because the surface tension gradient
has only a little effect on the first secondary drop, previous partial coalescence descriptions [9] apply
to σr > 1.0 as well [see Fig. 10(a)]. The gradient in surface tension for σr < 1.0 cases is observed to
span across a significantly greater length scale with the lower drop liquid spreading over the upper
droplet surface [as shown by the mix color region in Fig. 10(b)], rather than being confined to the
area of the contact point where the two dissimilar fluids initially join. Also, the secondary drops in
this case appear to be a combination of both lower and upper drop liquids.

High vorticity generation from the advancing Marangoni flow causes enhanced mixing inside
the upper drop for cases with σr < 1.0 [see the vorticity field in Fig. 11(a)]. For σr > 1.0 cases,
however, vorticity formation is more confined to the vicinity of the lower drop surface, with the
strongest vorticity generation occurring around the neck region in the form of a vortex, as shown in
Fig. 11(b). In addition, this vortex no longer exists for the cases depicted in Fig. 11(a). The gradients
in surface tension also favor the detachment of the vortex ring generated during coalescence from
the upper drop liquid from the interface surface, as shown in Fig. 10(b) at τ = 1.36; hence, any
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FIG. 10. Evolution of interface shape and mixing pattern generated by surface tension mismatch for
(a) σr = 1.3 and (b) σr = 0.3. The upper drop, lower drop, and the surrounding air is shown by red, green,
and blue color, respectively. The other nondimensional parameters are Dr = 2.1 and Oh = 0.0035.

secondary drop would approach an interface with a composition similar to that of the initial interface
[see Fig. 10(b)].

Previous studies [10,20,21] have revealed that the horizontal rate of collapse controls the pinch-
off process, whereas the vertical collapse favors no pinch-off. To demonstrate this, we plotted in
Fig. 12 snapshots of the radial velocity, vertical velocity and pressure fields for different values
of σr at two distinct time steps: τ = 0.32 and τ = 0.64 for σr = 0.7, 1.0 and 1.3; and τ = 0.44
and 0.96 for σr = 0.3. The other dimensionless parameters are identical as shown in Fig. 5. Cases
σr = 0.3, 1.0, and 1.3 result in first-stage pinch-off, whereas case σr = 0.7 results in no pinch-off
(also shown in Fig. 5). Although the graphs are shown at the same time-step (τ = 0.32) for σr = 0.7,
1.0, and 1.3, the development of the coalescence process is more advanced with increasing σr with
more deformed drop tip obtained for larger σr (i.e., σr = 1.3). The height of liquid column for
σr = 1.3 is also found to increase significantly as compared to σr = 1.0 at τ = 0.64. However, due

FIG. 11. Comparison of vorticity field contours (normalized by maximum vorticity value) for four different
cases of σr : (a) left panel for σr = 0.3 and right panel for σr = 0.7, and (b) left panel for σr = 1.0 and right
panel for σr = 1.3. The other parameters are Dr = 2.1 and Oh = 0.0035.
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FIG. 12. Comparison of pressure (top row), radial velocity (middle row), and vertical velocity (bottom row)
contours for four different cases of σr at two distinct time steps: (a) τ = 0.32 for σr = 0.7, 1.0, and 1.3 and
τ = 0.44 for σr = 0.3, and (b) τ = 0.64 for σr = 0.7, 1.0, and 1.3 and τ = 0.96 for σr = 0.3. Top row: the
pressure. The simulations are preformed under following parameters: Dr = 2.1 and Oh = 0.0035.
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FIG. 13. A zoomed view of interface shape (left panel: the volume fraction, F1 and right panel: the kinetic
energy field normalized by maximum value) superimposed with streamlines showing the tangential motion
generated due to mismatched surface tension for (a) σr = 0.96, (b) σr = 1.0, and (c) σr = 1.1. The upper drop,
lower drop and the surrounding air in left panel is shown by red, green and blue color, respectively. The legend
in figure is given for the kinetic energy field. The other simulation parameters are Dr = 2.1 and Oh = 0.0035.

to the intense Marangoni stresses, the increase in liquid column height is found to be highest for
σr = 0.3 (at τ = 0.96) than for other σr . In comparison to the cases corresponding to σr = 1.0 and
1.3, the case with σr = 0.7 case exhibits a high pressure zone near the tip of the drop at τ = 0.32
that increases the downward motion of the upper drop liquid, resulting in no pinch-off. In addition,
the vertical rate of momentum is observed to be higher for the σr = 0.7 instance at τ = 0.64 when
compared to other cases.

It is important to note that the main difference between the various σr is the tangential stresses
occurring along the interface. As previously stated, the tangential flow takes place when liquids with
different surface tensions come in contact, causing the lower surface tension liquid to spread over
the higher surface tension liquid. A close-up view of the interface shown by volume fraction (F1)
contour (left panel) and the kinetic energy contour (right panel) superimposed with streamlines is
shown in Fig. 13 to compare the tangential motion of different σr at the region where the upper and
lower drop liquids meet. The lower drop and the surrounding fluid are presented in distinct colours
for better presentation (green and blue color, respectively). The direction of tangential motions are
found to be inward when σr < 1.0, however, the motions are outward in direction when σr > 1.0 as
illustrated in Fig. 13 (see also radial and vertical velocity contours from Fig. 12). Also, as seen in
Fig. 7(a), the kinetic energy increases as the σr grows. The kinetic energy contours shown in Fig. 13
exhibit similar behavior.

The second-stage pinch-off happens at the critical boundary of the first-stage pinch-off and no
pinch-off. It is observed that the principal curvatures of the neck during retraction play a key role in
the formation of secondary drops. In Fig. 14, the dynamics of second-stage pinch-off is examined.
For two different values of σr (0.98 and 1.1) that have different pinch-off scenarios, Fig. 14(a)
displays a close-up view of neck forms at the commencement of pinch-off. The other dimensionless
parameters used for the simulation are as follows: Oh = 0.005 and Dr = 2.1. In the case of σr = 1.1,
the neck is able to close at the initial contact point and pinches off to form secondary droplets.
Nevertheless, the thin neck grows again without generating a secondary drop in the case of σr =
0.98. The axial curvature (κx) is sharper in the case of σr = 0.98, as shown in the neck profiles.

The method of fitting inscribed circles is used to calculate the value of axial curvature (κx) [44].
In this method, a circle with a radius equal to the local radius of curvature in the neck region is fitted
into the interface shape as shown in Fig. 14(b). The curvatures at the onset of the first-stage and
the second-stage pinch-off are compared in Figs. 14(b) and 14(c), respectively. The curvatures are
plotted from the moment a neck formed at the base of the liquid column up to the commencement of
pinch-off. The curvatures for first-stage pinch-off are shown in the time range, τ = 0.52 to 0.80 for
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FIG. 14. (a) A close-up view of neck shape. (b) Variation of Raxn with Rneck for first-stage pinch-off with
the curvatures plotted in time range, τ = 0.52 to 0.74 and τ = 0.52 to 0.80 for σr = 1.1 and 0.98, respectively.
(c) Variation of Raxn with Rneck for second-stage pinch-off with the curvatures plotted in time range, τ = 0.84
to 0.92 for σr = 0.98, and (d) temporal variation of Rneck for σr = 0.98 and 1.1. The other relevant parameters
are Dr = 2.1 and Oh = 0.005.

σr = 0.98 curve and τ = 0.52 to 0.74 for σr = 1.1 curve. The curvatures for second-stage pinch-off
are shown in the time range, τ = 0.84 to 0.92 for σr = 0.98. For the first-stage pinch-off, the two
principal curvatures (κx and κθ ) at the onset of pinch-off are nearly identical in the case of σr = 1.1,
whereas in the case of σr = 0.98, the value of axial curvature, κx, is found to be larger than the
azimuthal curvature (κθ )

Because the axial curvature is always trying to draw the neck back while the azimuthal curvature
is trying to squeeze the neck, further neck merging and pinch-off are prevented for σr = 0.98 cases
as a result of κx > κθ . In other words, since the two principal curvatures are opposite in sign, the
capillary pressure that causes motion σ (κθ − κx ) changes sign, causing a growing neck, which leads
to the secondary drop formation in the second stage of coalescence. However, there is no evidence
of capillary driven pressure in the case of σr = 1.1. Therefore, the secondary drop pinch-off occurs
in the first step of the coalescence cascade. In the case of σr = 1.1, the equality of two principle
curvatures for smaller values of Rneck may also be seen from equation y = x, which is indicated
by dashed lines [see Fig. 14(b)]. The comparison of two main curvatures at the commencement
of second-stage pinch-off in the case of σr = 0.98 is presented in Fig. 14(c). It is evident that for
σr = 0.98, the azimuthal curvature gets substantially sharper in the second stage of coalescence,
resulting in the pinch-off of a secondary drop in the second stage.

The transition to the second-stage pinch-off can also be explained by the drainage of the upper
drop into the bulk liquid. The temporal variation of neck radius (Rneck) for two different values of σr

(0.98 and 1.1) is shown in Fig. 14(d). For σr = 1.1, the upper drop continues to drain into the bulk
liquid. This draining pulls the neck down, making it thinner and allowing the pinch-off to take place.
However, in the case of σr = 0.98, the drainage rate decreases, preventing the neck from moving
downward. As a result, the axial curvature at the neck increases, causing the neck to expand and the
second stage of the coalescence cascade to begin. The neck radius oscillates only once with time for
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FIG. 15. Distinct pinch-off regimes obtained during the coalescence of two drops for σr = 0.3 and Dr =
2.1 at varying Ohnesorge number. To better visualise the coalescence process, a 3D view of 2D axisymmetric
results is shown above.

σr = 1.1, however, for σr = 0.98, the number of oscillations grows to two due to neck expansion,
indicating that the pinch-off occurs in the second stage of coalescence.

B. Effect of Ohnesorge number

To illustrate the influence of Oh on partial coalescence at a large surface tension difference,
we showed four different coalescence scenarios corresponding to increasing Oh in Fig. 15. The
other nondimensional parameters are set to σr = 0.3 and Dr = 2.1. A constant surface tension ratio
(σr = 0.3) means that for all Oh, the upper drop is made of water and lower drop is made of ethanol.
This also implies that the Ohnesorge number (defined as Oh = μ1/

√
ρ1σ1Du) is only varied by

changing the upper drop diameter, Du keeping other parameters constant. When the Oh falls below
a particular value, partial coalescence occurs [Fig. 15(a)]; however, as Oh rises over that value,
the upper droplet is entirely merged within the bulk liquid, as shown for Figs. 15(b)–15(d). At
a lower Oh (Oh = 0.003), when a neck forms between two liquid drop interface with different
surface tensions, it expands rapidly and generates a strong Marangoni flow that propagates quickly
up to the upper drop apex. The liquid from the upper drop starts to drain into the lower drop. The
Marangoni flow that reaches the apex of the drop sets a strong converging flow that pulls the drop
vertically upward and causes it to deform into a columnar structure. Due to the downward capillary
pressure gradient, the apex of the upper drop gathers during vertical stretching, deforming into a bulb
shape, while the ligament underneath is elongated vertically. As the bulb expands, Rayleigh-Plateau
instability causes the neck to break up, resulting in the secondary droplet. When the Oh is increased
to Oh = 0.005, the Marangoni flow becomes less intense, resulting in a reduction in both drop
deformation and lifting motion. The viscous force dampens the Marangoni flow as the Oh grows.
It is also observed that the Marangoni flow becomes substantially weaker at a larger Oh and hence,
the lifting motion of the upper drop is barely visible (Oh = 0.01). As a result, rather than being
prolonged as in Fig. 15(a), the vertical rate of collapse accelerates, and the neck widens before it
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FIG. 16. Effect of Ohnesorge number on temporal evolution of (a) h∗ and (b) Rneck. The other nondimen-
sional parameters are set to σr = 0.3 and Dr = 2.1.

can develop a large capillary force in the inward direction to assist pinch-off. It is also visible from
the figure that the vortex ring pattern that arises at Oh = 0.003, no longer exists as the Oh increases,
and a bulge type pattern appears at a higher Oh such as Oh = 0.01.

Figure 16 reports the impact of increased Oh on the temporal evolution of the relative upper drop
apex height (h∗) and the neck radius (Rneck). The other dimensionless parameters remain the same
as that of Fig. 15. During the initial stage of coalescence (τ < 0.45), the increased Oh has no effect
on the droplet apex height (h∗). However, after τ > 0.45, the vertical stretching of the upper drop
is suppressed as the Oh is increased. This is mostly owing to large viscous forces, which result in
significant damping of Marangoni stresses as Oh values increase. It is clearly visible in Fig. 14(a)
that the maximum value of h∗ is significantly lowered at high Oh and the drop collapses rapidly into
the lower drop. Furthermore, large Oh causes more neck area spreading, resulting in the highest
value of neck radius at Oh = 0.01, as shown in Fig. 16(b).

The temporal variation of the neck radius (Rneck) also reveals the transition from first-stage pinch-
off to no pinch-off. The neck radius oscillates only once with time and subsequently decreases
to zero in the first-stage pinch-off (Oh = 0.003). However, when Oh is increased beyond Oh =
0.003, the transition to no pinch-off happens for Oh = 0.005 and 0.007 cases, where the upper drop
oscillates twice before being fully absorbed into the lower drop. When the value of Oh is increased
further (Oh = 0.01), the number of oscillations is reduced to one again. At a high Oh, the contact
period of the upper drop with the lower drop surface also rises, resulting in a minor shift of curves
to the right. It is also clearly seen from the figure that as the Oh increases from 0.005 to 0.01, the
total time required for the upper drop to entirely engulfed in the bulk liquid decreases significantly.

The trends in Fig. 16(a) are reflected in Fig. 17 that shows the temporal dynamics of the different
energies. The energies are calculated and normalized in the same manner as described earlier in
the discussion of Fig. 7. The behavior of kinetic energy is almost identical at all Oh, with an
initial increase followed by a decrease. However, with increasing Oh, the kinetic energy reduces, as
obvious from Fig. 17(a). In addition, for high Oh, the oscillations in the combined drop shape cause
a slight increase in kinetic energy at later time instants (τ > 0.9) when the two drops are combined
into single drop. The primary reason for the decrease in kinetic energy with increasing Oh is that the
development of the neck is delayed due to the high viscous forces. Even before the necking begins,
a considerable percentage of the kinetic energy is wasted, and the pinch-off is hindered due to a lack
of energy. The contact area between the two liquid droplets continues to expand until the upper drop
is immersed in the lower drop. As a result, no pinch-off phenomenon is visible. This explains why
the kinetic energy decreases when Oh increases. Since the total energy of the system at initial time
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FIG. 17. Effect of Ohnesorge number on temporal evolution of (a) the kinetic energy (Eke), (b) the surface
energy (Ese), and (c) the dissipation energy (Ede) for σr = 0.3 and Dr = 2.1.

step is composed primarily of the surface energy of two drops, the initial surface energy is the same
for all Oh cases with a constant σr (σr = 0.3). As time progresses, the surface energy is converted
into kinetic energy and then eventually dissipated by the effects of viscosity. When two drops begin
to coalesce, the surface energy initially increases until τ < 0.5 and then declines as Oh grow [see
Fig. 17(b)]. One may also observe an increase in dissipation energy when the Oh reduces, as shown
in Fig. 17(c). This is because the dissipation energy is only dependent on the Ohnesorge number
and velocity components [see Eqs. (16) and (17)]. Nevertheless, as shown in Fig. 17(a), the kinetic
energy for lower Oh is considerably greater than that for higher Oh. This indicates that velocity
components have a substantial effect on the various energies. Therefore, the dissipation energy is
slightly higher at lower Oh. Furthermore, the difference in dissipation energy between various Oh
is found to be significantly less than the difference in kinetic energy, owing to the effect of Oh [see
Eq. (17)].

The dependence of rd and τp on the Oh for contrast pinch-off scenarios over a wide range of
σr (0.3 � σr � 1.6) is plotted in Figs. 18(a) and 18(b). The value of Dr is set to 2.1. The graph
shows that there is a considerable amount of variation in the size of secondary droplets and the
pinch-off time for both first and second-stage pinch-off. For a particular Oh, the size of secondary

FIG. 18. (a) Effect of Ohnesorge number on secondary drop size ratio (rd ) showing different pinch-off
regimes and (b) pinch-off time (τp) versus Oh for varying σr . The diameter ratio of two drops is fixed as
Dr = 2.1.
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FIG. 19. Effect of Ohnesorge number on total number of coalescence stages and generated secondary drops
for three different conditions over a wide range of surface tension ratio (σr): (a) σr = 0.3, (b) second-stage
pinch-off, and (c) first-stage pinch-off for a fixed Dr = 2.1.

drop (rd ) increases with an increase in σr [see arrow in Fig. 18(a)], both for first and the second-stage
pinch-off, as we have also seen in Fig. 8(a). However, the average value at each stage for the first-
and second-stage pinch-off appears to be nearly invariant in terms of Oh. Previous studies [22,23]
suggest that the second-stage pinch-off occurs predictably at the first-stage pinch-off-to-no pinch-off
boundary. In addition, it is anticipated that only large droplets will produce pinch-off in the second
stage or pinch-off in the first stage, as extremely small droplets do not cause pinch-off in the second
stage due to the large Oh.

According to earlier studies [22,23,47], the critical range of Oh for the second-stage pinch-off to
occur is between 0.004 and 0.01. Furthermore, Chen et al. [19] reported that the partial coalescence
primarily occurs in the inertial-capillary regime range (0.004 � Oh � 0.01 and 0.01 � Bo � 0.1).
It is clearly shown in the figure that the second-stage pinch-off regime in the current simulation only
occurs at the value of Oh < 0.01 (within the inertial-capillary regime). The size of secondary drops
for σr = 0.3 is found to be slightly reduced with an increase in the Oh owing to high viscous forces.

With an increase in the Oh, the pinch-off time increases by a small amount for σr = 0.3.
For a given Oh, the pinch-off time for the first-stage as well as second-stage pinch-off reduces
continuously as the σr rises, similar to Fig. 8(b) [see arrow in Fig. 18(b)]. However, with variation
in the Oh values, the average value of pinch-off time for the creation of secondary drops is found
to be almost constant and independent of Oh for both the first-stage and the second-stage pinch-off.
Zhang et al. [22] determines the overall time length for second-stage pinch-off as a function of the
time required for first-stage pinch-off:

(τp)s = (τp) f
[
1 + (rd )1.5

f

]
, (19)

where τp f and τps indicate the total pinch-off time for the first-stage and second-stage pinch-off,
respectively. (rd ) f represents the secondary drop size ratio for the first-stage pinch-off. Using the
range of (rd ) f = (0.47–0.58) and (τp) f = (0.66–0.78), the theoretical value of (τp)s from Eq. (19)
ranges between (0.87–1.12), which is nearly identical to the range of (τp)s = (0.95–1.0) obtained
from our numerical data.

For various pinch-off scenarios, Fig. 19 shows the effect of Oh on the total number of secondary
drops produced and the total number of coalescence stages that occur during the whole coalescence
cascade. The other parameters are the same as shown in Fig. 18. For σr = 0.3 and the second-stage
pinch-off regime, the number of secondary drops and coalescence stages appears to be constant and
is independent of Oh as visible from Figs. 19(a) and 19(b). For a given Oh, the total number of
secondary drops and coalescence stages increases with increasing σr in case of first-stage pinch-off
as seen in Fig. 19(c). However, as the Oh rises, the number of secondary drops reduces from 4 to 3
and the number of coalescence stages decreases from 3 to 1. This is due to the high viscous forces,
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FIG. 20. Distinct pinch-off regimes obtained during the coalescence of two unequal-sized drops for
Oh = 0.0035 and σr = 0.3 at varying parent drop size ratio (Dr). For a better understanding of the coalescence
process, a 3D view of 2D axisymmetric results is displayed above.

which enable the upper drop liquid to drain more quickly as it comes into contact with the lower
drop, reducing the number of secondary drops created as well as the number of coalescence stages.

C. Effect of parent drop size ratio

For a large surface tension difference (σr = 0.3), Fig. 20 analyzes the coalescence phenomenon
at varying Dr . The Oh is fixed at 0.0035. According to previous studies [48,49], the coalescence of
two equal-sized drops always results in no pinch-off and the pinch-off occurs only when the size
ratio is greater than one. The minimum Dr over which a secondary drop pinches off, according to
Zhang et al. [22] experimental observations, is around 1.55. Blanchette and Bigioni [49] suggested
this value to be 1.6 based on the numerical simulations. As shown in Fig. 20, even in the presence
of strong Marangoni forces, no pinch-off occurs at a lower Dr , Dr = 1.4. For large Dr , such as 2.1
and 2.8, a first-stage pinch-off occurs. The reason for this behavior is that although the Marangoni
flow causes sufficient stretching and lifting motion to the upper drop at a smaller Dr , the lower drop
is also deformed and stretched in the same way as the upper drop due to convergence of capillary
waves at the apex of the lower drop. It is also observed in previous studies (Deka et al. [24]) that
during the coalescence of two drops, the capillary pull convergence on the lower drop apex limits
the neck inward movement and prevents the secondary drop pinch-off.

Figure 20 also shows that the deformation and stretching in the lower drop surface reduces,
when the Dr increases. This occurs because of the fact that the capillary waves must cover a
longer distance to reach the bottom surface of the lower drop in the case of bigger lower drops.
Furthermore, as the propagation of the capillary wave is continuously attenuated by the viscous
forces, the intensity of the capillary waves reduces, resulting in a decreased downward capillary
force. Consequently, at large Dr , the neck closes before the capillary waves hit the bottom of the
lower drop surface, resulting in the neck pinch-off. Blanchette and Bigioni [49] also indicated that
during the coalescence of two drops, the surface tension of the lower drop causes an extra downward
force of magnitude, σ2/Rl (Rl being the lower drop radius), which tries to draw the upper drop
towards its center. This downward force works in the same way as the gravitational force, increasing
the amount of drainage from the upper drop. In addition, Fig. 20 demonstrates that the vortex ring
pattern appears when the Dr is significant, but it is absent when the Dr is lower.
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FIG. 21. Effect of parent drop size ratio on temporal evolution of (a) h∗ and (b) Rneck. The other nondimen-
sional parameters are fixed to σr = 0.3 and Oh = 0.0035.

To further demonstrate the effect of Marangoni flow on the Dr , Fig. 21 illustrates the temporal
evolution of upper drop apex height (h∗) and neck radius (Rneck). The simulation conditions are
identical to those given in Fig. 20. In comparison to the other Dr cases, the overall apex height of
upper drop at lower Dr (Dr = 1.4) is observed to be smaller owing to the capillary wave convergence
at lower drop apex, as discussed in Fig. 20. Increasing the Dr from 2.1 to 2.8 has little effect on the
vertical elongation as shown in Fig. 21(a). The variation of neck radius in Fig. 21(b) shows that for
Dr = 2.1 or 2.8, the neck radius decreases rapidly after reaching a maximum due to an increase in
the inward movement of the pinching neck, resulting in the creation of secondary drops. However,
for Dr = 1.4, the neck radius grows slightly after reaching maximum as a result of the reopening
of the neck caused by an insufficient inward horizontal momentum rate. Therefore, when the drop
diameter ratio is small (Dr = 1.4), the neck expands more than in other situations. In addition, the
highest value of neck radius (Rneck) is found to be nearly same in all three cases.

The effect of Dr on the temporal evolution of different energies is reported in Fig. 22. It is
important to note that in all three cases, the energies are calculated using Eqs. (14)–(16), and are
normalized by the initial surface energy for drops of Dr = 2.1 with no surface tension gradients. The
figure shows that for a fixed Oh and σr , the larger the Dr , the higher the surface energy and kinetic
energy. However, for large Dr values, the kinetic energy increases until the neck pinches off, then

FIG. 22. Effect of parent drop size ratio (Dr) on temporal evolution of (a) the kinetic energy (Eke), (b) the
surface energy (Ese), and (c) the dissipation energy (Ede) for Oh = 0.0035 and σr = 0.3.
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FIG. 23. Different pinch-off regimes identified during coalescence of two miscible drops in Oh-σr plane
for Dr = 2.1.

reduces quickly due to the separation of secondary drops [see Figs. 22(a) and 22(b)]. Additionally, at
the initiation of pinch-off (τ = 0.6–0.8), the kinetic energy for Dr = 1.4 is observed to be reduced,
while the dissipation energy increases as compared to Dr = 2.1 and 2.8, indicating the insufficient
kinetic energy for the generation of secondary drop in case of Dr = 1.4 [see Fig. 22(c)].

D. Regime map

Finally, a regime map on the Oh-σr plane is drawn in Fig. 23 for size ratio, Dr = 2.1, to highlight
the distinct outcomes achieved during the coalescence of two unequal-sized droplets with different
σr . The coalescence of two miscible drops gives three different outcomes: no pinch-off, first-stage
pinch-off, and second-stage pinch-off. The nonmonotonic behavior of the coalescence process is
clearly visible in Fig. 23, which shows partial coalescence emergence at σr > 0.9 for Oh < 0.01,
disappearance at 0.4 < σr < 0.94 for all Oh, and reappearance at lower σr for Oh < 0.005. The
second-stage pinch-off happens for all Oh values except when Oh = 0.01 between the first-stage
pinch-off and no pinch-off regimes. At a higher value of Oh (

√
Oh = 0.1), there is no pinch-off

regime regardless of the σr . As capillary wave propagation is suppressed by the high viscous forces
at large Oh, the value of critical σr , above which a secondary drop pinches off, is observed to
monotonically increase with an increase in Oh. Blanchette et al. [26] reported that the smallest value
of σr beyond which no pinch-off regime occurs is 0.93 at lower strength of viscous and gravity force
for the case of a drop coalescing into a flat liquid pool. In the current study, the smallest value of
critical σr below which no secondary drops are formed is 0.94 for Oh = 0.0023 and Bo = 0.0.

V. CONCLUSIONS

In the present study, the pinch-off dynamics of two unequal-sized drops made of dissimilar but
miscible liquids is explored using the CLSVOF method. The critical behavior of the unbalanced
surface tension forces and viscous forces on the partial coalescence process has been addressed.
The significance of parent drop size ratio on the re-emergence of partial coalescence in the presence
of a high surface tension differential between two drops is discussed. The main points drawn in the
current study based on the current numerical work are explained below:

(i) Depending on the σr , the presence of surface tension gradients along the interface between
two unequal-sized drops results in a nonmonotonic behavior of partial coalescence consisting
of emergence, disappearance, and re-emergence. During the coalescence process, there are three
distinct pinch-off regimes: first-stage, second-stage, and no pinch-off.

(ii) When σr > 1.0, the tangential motion generated by the difference in surface tension has a
little influence on the coalescence process. The conditions under which the upper drops with higher
surface tension encounter partial coalescence, however, are considerably constrained when σr < 1.0
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due to the intrusive movement of the lower drop fluid. The converging surface flow that occurs for
σr < 1.0 facilitates the detachment of the vortex ring produced during two drops coalescence from
the interface surface.

(iii) Over a wide range of σr , the size of secondary drops and the pinch-off time for both first-
and second-stage pinch-off are found to be nearly independent of the Oh. Large viscous forces
inhibited the propagation of tangential motions and favored total coalescence even at a high surface
tension difference between two drops (σr = 0.3). A transition regime develops between partial and
total coalescence at σr = 0.3 with an increase in the Oh. Furthermore, the secondary drop pinch-off
at a large surface tension differential is also prevented for smaller Dr .

(iv) After a large number of simulations, a regime map for the distinct coalescence outcomes on
the Oh-σr plane is presented. The critical σr increases monotonically with increasing Oh due to the
suppression of capillary waves by significant viscous forces at higher Oh values. In our simulation,
the minimum value of σr required for partial coalescence to occur is 0.94 at low values of the
Ohnesorge and Bond numbers (Oh = 0.0023 and Bo = 0.0).
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