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Unstable growth of bubbles from a constriction
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Bubbles and droplets are ubiquitous in many areas of engineering, including microflu-
idics where they can serve as microreactors for screening of chemical reactions. They
are often formed out of a constriction (a microfluidic channel or a cylindrical tube) by
blowing a given volume of gas into a liquid phase. It is obviously crucial to be able to
control their size, which is not always easy due to the coupling between the volume of
the bubble and the gas pressure induced by the Laplace law. In this paper, we examine
the size and formation dynamics of soap bubbles blown from a cylindrical tube, which is
the paradigm geometry for bubble and droplet formation. To do so, one end of the tube
is closed by a soap film, while the other end is connected to a large reservoir of variable
volume filled with gas. To inflate the bubble, we reduce the volume of the reservoir, which
mimics air inflation through the lung diaphragm or the flow-rate-driven bubble formation
in microfluidics geometry such as flow-focusing. As the volume of the reservoir decreases,
the soap film curves and takes the form of a spherical cap with a smaller and smaller radius
of curvature, which leads to the increase of the gas pressure in the reservoir, according
to Laplace’s law. This quasistatic process continues until a critical pressure is reached for
which the bubble is quasihemispherical. Beyond this pressure, the film undergoes a rapid
topological transformation and swells very rapidly (in less than 100 ms) until it reaches its
final volume. We describe this instability in particular by showing that this unstable regime
appears when a dimensionless number, which depends on the volume of the reservoir, the
radius of the tube, surface tension, and external pressure, reaches a critical value. Using a
quasistatic model that we solve analytically, we predict the bubble growth dynamics and
the amplitude of the unstable height increase for any reservoir volume and constriction
size.

DOI: 10.1103/PhysRevFluids.8.053602

I. INTRODUCTION

Among the successes of microfluidics is the possibility of forming large assemblies of drops
or bubbles almost identical at high throughput (of the order of 100 Hz) [1–3]. These entities,
dispersed in a continuous liquid phase and used as microreactors containing active ingredients at a
concentration changing from drop to drop, allows analysis and screening of chemical reactions with
unprecedented throughput [4–7]. Bubbles and drops are also found in other fields of engineering
where they are generally dispersed in a continuous liquid phase, themselves then being qualified as
the dispersed phase (fire-fighting foam or sparkling drinks [8]). There are many methods to make
monodisperse bubbles or drops such as shearing crude emulsion to split it into tiny droplets [9,10]
or blowing on an interface [11–13]. One commonly used in microfluidics and called flow-focusing
consists in forming bubbles (or drops) by deforming an air-liquid interface placed at the end of a
tube (of square, rectangular, or circular section) from a reservoir whose pressure increases [1]. In
the dripping regime, three distinct steps can be identified: (1) a phase of quasistatic deformation of
the interface fixed to the end of the tube which, by bending, changes from a flat geometry to that
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of a quasihemispherical cap with a radius equal to that of the tube; (2) a rapid growth (generally in
less than 100 milliseconds) of this hemisphere until reaching a final almost spherical shape of radius
much greater than that of the tube; (3) finally, pinch-off regime with detachment of the bubble from
the constriction [14,15]. Depending on the geometry of the system used, gravity or viscous friction
forces produce the work necessary to stretch the neck separating the spherical bubble to the point of
spontaneous rupture driven by capillary forces [16,17]. When nothing comes to disturb the bubble,
it remains attached to the end of the constriction or the tube, as illustrated by several paintings
representing children having blown bubbles, the most known being those of J. S. Chardin or E.
Manet [18].

To obtain the most-peaked bubble-size distribution, the time of the pinch-off regime (3), which is
intrinsically variable as a result of hydrodynamic instability, must be much shorter than the time of
growth regimes (1) and (2). Thus, the pinching dynamics of fluid necks have been studied with great
care, revealing the importance of convection [14,19], swirl [20], confinement [21], and presence of
surfactants or not [22]. On the contrary, the dynamics of phases (1) and (2) have been much less
explored, the implicit hypothesis being that the duration of this phase is controlled by the flow
rate of the dispersed phase and the volume of the bubble at the threshold of breakup. However,
what sets this flow rate is not always obvious. For pressure-driven flow of the dispersed phase,
nonlinear variations of the gas flow rate, induced by hydrodynamic feedback in the outlet channel,
have been reported in several studies [23–25]. For flow-rate-driven flow, this difficulty should not
exist, yet we reveal in this work that the compliance of the system—which arises here from the gas
compressibility—induces a mechanical coupling between the deformation of the interface at the
constriction and the pressure in the gas reservoir. This coupling can induce large fluctuations in the
flow rate that lead to unstable bubble formation modes. We therefore study the first steps of bubble
growth at an imposed flow rate in a geometry reminiscent of the one used by children when they
blow a bubble from a tube. By comparing experimental results with an analytical model, we predict
the final bubble volume. In particular, we show that the initial volume of the reservoir comprising
the gas—usually not considered—is a key parameter of this process.

II. EXPERIMENT

The soap film is made of a mixture of Sodium Dodecyl Sulfate (SDS) at a concentration of
24 mmol/L, which is 3 times larger than the CMC, 20% of glycerine and deionized water. The
solution is used at least 3 days after it has been made to ensure that the hydrolysis of SDS into
dodecanol is achieved [26]. The liquid/air surface tension, γ , is measured prior to any experiment
using the pendant drop technique [27] and we systematically found γ = 23 ± 2 mN/m. The soap
film is deposed at the extremity of a tube of external radius, a, ranging between 0.3 and 0.83 mm.
The other extremity of the tube is connected to a reservoir composed of two syringes of volumes
V1 and V2 (see Fig. 1). The total volume of the reservoir V —which includes V1, V2, Vd the dead
volume of the valve and the tube and � the volume comprised between the film and the outlet of
the tube—varies between 1 and 50 mL. A first syringe, connected to a syringe pump (KdScientific),
is used to reduce the volume of the reservoir at a flow rate −dV1/dt = Q, with Q equal to 1 or
2 μL/s. A second syringe serves to change the initial total volume of the reservoir V (t = 0) = V0.
The deformation of the soap film is monitored by a camera Marlin from Allied Vision.

At t = 0, the syringe pump and the camera are triggered simultaneously (the error associated
with this manual triggering is estimated at less than one second). The reduction of the volume of the
reservoir increases the pressure and bends the soap film. The liquid film is much softer than the rest
of the elements containing the compressed gas (syringe tube and connectors), then we assume that
only the film is deformable. To avoid premature rupture of the soap film, a transparent plastic box is
placed around the bubble to limit its evaporation. This allows an easy observation of stable bubbles
for several minutes. We made sure that this plastic box is not completely airtight so that the external
pressure around the bubble is the atmospheric pressure.
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FIG. 1. Experimental setup: the bubble of radius of curvature R and height h is connected to a large
reservoir of volume V constituted by the volume of the two syringes, V1 and V2, the dead volume of the
connectors Vd and the volume of the spherical cap, �, of the bubble. The volume V1 is decreased at a flow rate
Q thanks to a syringe pump.

III. EXPERIMENTAL RESULTS

In our experiments, we have observed that two clearly different regimes of bubble inflation exist,
a quasistatic one and a second that is highly dynamic. Those two regimes are illustrated in Figs. 2(a)
and 2(b). In both cases V0 is identical while a is 2.8 times bigger in Fig. 2(b) than in Fig. 2(a). The
bubble in Fig. 2(b), swelled from a large tube, continuously inflates step by step while the swelling
of the bubble in Fig. 2(a) is unstable and takes place in less than 5 ms. To go further, we report in
Fig. 3 the evolution of h, the height of the bubble, defined in Fig. 1, as a function of time, t , at the
same flow rate and radius but for different V0. As we can see, we can make a distinction between the
two regimes, a first for V0 < 10 ml where the growth of the bubble is continuous and a second for
V0 � 10 ml, where the swelling is unstable. In this second regime, the curves are S-shaped with a
near-vertical zone meaning that the height of the bubble, h, changes from one to several millimeters
in less than 5 ms.

The nonmonotonic evolution of the radius of curvature, R, of the soap film is a crucial point
to explain the distinction of regime observed in experiment. This radius is both constrained by

FIG. 2. Sequences of image showing two bubbles blown from reservoirs of identical volume V0 = 10 mL.
In a) a = 0.3 mm and in b) a = 0.83 mm. The thumbnails are separated by 5 ms except for the first ones which
show the tube before the start of soap film compression. Q = 2 μL/s in a) and Q = 1 μL/s in b) so that both
inflations take place in the same time frame.
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FIG. 3. Height of the bubble, h, as a function of time, t , for a = 0.83 mm, Q = 2 μL/s, and different V0.
For V0 = 42, 30, and 20 mL, the bubble inflation is unstable while for V0 = 1 and 10 ml, it is continuous. For
each curve, the time origin is adjusted so that the data collapses at long times. The recording of the different
curves is stopped just before the explosion of the bubbles due to the thinning of the soap film over time.

a, the radius of the tube, and the evolution of the pressure, P, which follows the Laplace’s law
P = P0 + 4γ /R, where the factor 4 arises from the presence of two liquid/air interfaces.

At first, the pressure in the reservoir is identical to the atmospheric pressure and the film is flat,
thus R → ∞. When the volume of the reservoir decreases due to the syringe pump, the pressure
increases. The soap film then bends, R decreases and Laplace-over pressure increases accordingly.
However, due to geometrical constraint, R cannot reach a value smaller than a which corresponds
to a maximal pressure P∗ = P0 + 4γ /a. At this point, any further compression of V by the syringe
pump triggers an instability because the overpressure in the reservoir can no longer be balanced
by Laplace’s law since the radius of curvature of the bubble has reached its minimum value a and
can no longer decrease. The bubble is now in a nonequilibrium state in which compressed air has
been stored in the reservoir. To regain a state of equilibrium, the bubble inflates very quickly until
Laplace’s law relating internal and external pressure of the bubble to the radius of curvature of the
interface is verified again. The characteristic time of this inflation is very short, totally independent
of the speed of the syringe pump, and depends on the amount of compressed air stored. Afterwards,
any further compression by the syringe pump is compensated by an increase in the size of the
bubble.

IV. MODEL

To understand these results, we write simple thermodynamic arguments stemming from the
conservation of n, the number of gas moles in the reservoir. This is valid if the whole system is
gas tight, hence if the rate of mole transfer dn/dt due to the permeability k of the soap film is
negligible. From Fick’s law, dn/dt = −kA�C, where k is the soap film permeability, A ≈ 4πR2

the area of the bubble and �C the difference of gas concentration between the reservoir and the
atmosphere surrounding the bubble. Using R ∼ 1 mm, k ∼ 1 mm/s, a typical value from literature
for SDS surfactants without salts [28,29], and �C = 4γ /(RRuT0), where Ru = 8.31 J/mol/K is
the universal gas constant and T0 = 298 K and P0 = 1 atm, the ambient temperature and pressure,
we find dn/dt ∼ 2×10−10 mol/s. As the bubble typically forms in 100 s, the variation of moles
in the bubble due to the permeability of the soap film is δn ∼ 2×10−8 mol. This is very small
when compared to n0 = P0V0/(RuT0) ≈ 1.2×10−3 mol, thus we assume the system to be air tight
and consider n to be constant. Writing the conservation of n for a polytropic transformation, i.e.,
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PV k = P0V k
0 , where k is a constant (k = 1 for isothermal, k = 0 for isobaric, k = ∞ for isochoric

and k = heat capacity ratio for isentropic transformations) yields

1 =
(

1 + 4γ

P0R

)(
1 + �

V0
− Qt

V0

)k

, (1)

where � = πh/2(a2 + h2

3 ) is the volume of the spherical cap, that is expressed as a function of a,
the tube radius, and h is the height of the spherical cap (see Fig. 1). Since R > a, with a ranging
between 0.3 and 0.83 mm, 4γ

RP0
<

4γ

aP0
<< 1, we make a Taylor expansion of Eq. (1) and express the

geometrical quantities � and R as a function of h using the geometrical relation 2hR = h2 + a2. We
also introduce the dimensionless parameters x = h/a, τ = 2Qt

πa3 which are made dimensionless by
using the tube radius as the characteristic length and the time to fill a volume proportional to a3 at
Q as the characteristic time. This choice as well as that of the factor 2/π arises naturally from the
equations, so that Eq. (1) finally writes

τ = x

(
1 + x2

3

)
+ Bx

x2 + 1
, (2)

with B = 16γV0

πka4P0
comparing the Laplace pressure γ /a to the atmospheric pressure P0 and the initial

volume of the reservoir V0 to a3. In Fig. 4, the numerical solution of Eq. (2) is plotted for different
values of B. Two types of bubble growth are observed: for small values of B, x increases as τ

increases and the bubble formation is monotonic and proceeds continuously accordingly with the
observations of Figs. 2 and 3, which revealed continuous bubble formation for large values of a and
small values of V0. For larger values of B (typically B � 38 on Fig. 4), the curves corresponding to
the numerical solution of Eq. (2) are S-shaped with nonmonotonic variation of τ as a function of x,
which is not physical since τ - the dimensionless time - should always increases. Thus, when dτ/dx
is negative, there is no physical solution to the equation, and the dimensionless height suddenly
jumps from one value to another. In the following, we call x1 the maximum value of x before the
jump and x2 the minimum value of x after the jump. The numerical solutions is also compared
with the experimental data of Fig. 3. For the latter, the data are made dimensionless using the
experimental parameters as described before and B is calculated assuming an isothermal (k = 1 and
B = Bi) or an adiabatic transformation (k = Cp/Cv = 1.4 and B = Ba). Here, we recall that there
is an experimental uncertainty on the initial time. It is therefore not the temporal position of the
jump but rather its amplitude that must be considered. We observe that the agreement between the
experimental data and the model is slightly better for the isothermal transformation than for the
adiabatic one since the amplitude of the experimental jump is better described by the theoretical
curves with the value of B equal to Bi rather than Ba.

We now determine x1 and x2 as follows. We first calculate x1, the dimensionless height at the
onset of the formation of an unstable bubble, for which dτ

dx |x=x1 = 0. Hence, x1 is a solution of

B−1(1 + x2)3 − x2 + 1 = 0. (3)

Using X = 1 + x2, Eq. (3) can be reduced to a polynomial of degree 3:

B−1X 3 − X + 2 = 0. (4)

We seek for solutions larger than one using the Cardan method [30]. For B � 27, there is no real
solution larger than one for Eq. (4), hence dτ

dx > 0 and the formation of the bubble is continuous.
For B � 27, two real solutions exist, but only one, X1, is larger than one, increases with B, and is

physically consistent when B → ∞:

X1 = 2

√
B

3
cos

[
1

3
arccos

(
−3

√
3

B

)
+ 4π

3

]
. (5)
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FIG. 4. Top: Dimensionless height x as a function of dimensionless time τ in lin/lin scale. The lines
correspond to theoretical data for different values of B calculated using Eq. (2). Two regimes are observed:
for B � 27, x is defined unequivocally as a function of τ and the slope dx/dτ always reaches a finite value,
whereas for B > 27, x is multivalued and the slope dx/dτ reaches an infinite value. The dashed-dotted curve
corresponds to B = 27. The points correspond to experimental data of Fig. 3 which have been made dimension-
less (V0 = 10 and 42 ml). For each experimental curve, the equivalent B is calculated assuming an isothermal
expansion Bi or an adiabatic expansion Ba, hence taking k = 1 or k = 1.4. Bottom left: dimensionless height x
as a function of dimensionless time τ in log/log scale for various B. Bottom right: dimensionless height x as a
function of τ/B for various B.

Thus, the instability is triggered, as soon as x > x1, where x1 = √
X1 − 1, with X1 given by

Eq. (5).
To determine x2, the dimensionless height of the bubble after the unstable swelling, we assume

that the swelling is instantaneous and write τ (x1) = τ (x2) using Eq. (2). This leads to a fourth-order
polynomial equation in x2:

x4
2 + x1x3

2 + (
x2

1 + 4
)
x2

2 + x1

(
1 − 3B

x2
1 + 1

)
x2 + 3 + x2

1 + 3B

x2 + 1
= 0. (6)

Since x1 is also a solution of Eq. (6) we factorize by (x2 − x1) to reduce the polynomial of degree
4 to a polynomial of degree 3:

x3
2 + 2x1x2

2 + (
4 + 3x1

2)x2 −
(

3B

x1
(
1 + x1

2
) + 3

x1
+ x1

)
= 0. (7)
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FIG. 5. Analytical solutions x1 of Eq. (5) and x2 of Eq. (7) as a function of B. The two curves meet for
B = 27 at x1 = x2 = √

2. For B < 27, x1 and x2 are not defined as the bubble inflates continuously. For B −→ ∞,
x1 −→ 1 and x2 ∼ ( 3

2 B)1/3. The green stars correspond to experimental data assuming an isothermal expansion.

Equation (7) can also be solved analytically after a change of variable X2 = x2 + 2x1
3 and using the

Cardan method [30], which leads to

X2 = 3

√√√√1

2

(
−q +

√
D

27

)
− 3

√√√√1

2

(
q +

√
D

2

)
, (8)

with D = 27q2 + 4p3, q = 43
27 x3

1 + 63
27 x1 − 3Bx1

(1+x2
1 )

, and p = 5
3 x2

1 + 4. x1 and x2 are plotted as a
function of B in Fig. 5 and discussed in the following section.

V. RESULTS

We now discuss the outcomes of the model. In Fig. 5, we plot the simple analytical expressions of
x1 and x2 as a function of B. For B < 27, x1 and x2 are not defined and the bubble growth proceeds
continuously. For B = 27, Eqs. (5) and (8) ensure X1 = 3 and X2 = 5

3

√
2, hence x1 = x2 = √

2,
as highlighted by the black dot of coordinate (27,

√
2), which superimposes with the two curves of

Fig. 5. For B −→ ∞, several points are worth discussing. First, before the instability (x � 1), it is the
second term of equation 2 that is dominant. In this limit of small x but large B, τ ∼ Bx as revealed
by the good collapse of the data for B > 27 in log/log scale when plotting x as a function of τ/B
(see Fig. 4 bottom right). Then, above the instability (x 	 1), it is the first term of Eq. (2) that is
dominant. In this limit of large x and large B, τ ∼ x3/3 has revealed by the collapse of the data in
log/log scale when plotting x as a function of B (see Fig. 4 bottom left). Last, Eq. (3) gives x1 −→ 1
as observed in Fig. 5. Since B increases with V0 and decreases with a, this suggests that for large
V0 and/or small a, the instability is triggered as soon as h −→ a, hence when the bubble reaches a
shape akin to a hemisphere in agreement with the Laplace pressure limit set by the radius of the
tube. Then imposing x1 in Eq. (7) yields to x2 ∼ ( 3

2 B)1/3. In this asymptotic limit, which correctly
reproduces the full calculation of x2 for B � 103 as highlighted by the dashed line in Fig. 5, the
height of the bubble at the end of the instability is of the order of a( 3

2 B)1/3. In this limit of large
B, the bubble is quasispherical and its volume � right after the jump is � = π

6 h3. Therefore, our
model predicts that the bubble volume after the instability is equal to V0

4γ

aP0
, which is surprisingly

proportional to V0 the volume of compressed gas upstream of the constricted zone modulated by the
ratio of the Laplace pressure over the atmospheric pressure.
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The comparison of the theoretical values of x1 and x2 with the experimental data is not immediate
for the following reasons. First, the determination of ax1, the height of the bubble at the onset of the
instability is delicate due to the small range of variation of x1, so we do not propose experimental
data points on Fig. 5 concerning x1. Second, the data of Fig. 3 shows a very fast growth of the
bubble, but not instantaneous. Thus, to experimentally extract the height ax2 corresponding to the
end of the instability, we use the following arbitrary criterion: the bubble is in the unstable mode
as soon as dh/dt is greater than a f where f is the acquisition frequency of the camera. Despite
this arbitrary criterion, the corresponding experimental data show a remarkable agreement with
the model as illustrated in Fig. 5. The model thus confirms the importance of V0 and a for bubble
sizing and gives a direct relation between those parameters which could have direct application in
microfluidic engineering processes.

VI. DISCUSSION

The system we describe—namely, ejection of a large volume of gas when the pressure in the
microfluidic reservoir exceeds a critical value—is analogous to what could be observed when
following the volume of gas ejected from a macroscopic pressure cooker equipped with a weighted
valve. In these cookers, the charging phase where the pressure increases in the cooker is contained
by the weight of the valve, is followed by a discharging phase, where a large volume of gas is ejected
very quickly when the pressure exceeds the threshold supported by the valve. Beyond that, the gas
flow rate out of the cooker remains constant. In the problem we study, the constriction of the tube,
a, that imposes the maximum capillary pressure that the system can support is then equivalent to
the valve of the pressure cooker. Recently, Keiser et al. [31] have shown that a similar behavior can
also be observed in a dead-end microchannel containing a constriction, initially filled with water.
The instability is then driven by the pervaporation of the liquid through the channels. Yet, in their
case, the water being incompressible, it is the compliance of the elastic channels that allows the
variation of pressure of the water. As for our system, the kinetics of fluid escape depends on the
volume under tension. Magdelaine et al. [32] who studied a gaseous system very similar to the one
considered here where the volume of compressed gas ejects into water rather than into a bubble, also
highlights the importance of the volume of the pressurized reservoir. By adopting a very different
formalism from ours and introducing the pinching kinetics of the gas jet ejected into the water, they
produce a comprehensive model predicting the number of bubbles formed during the compression of
a gaseous syringe. Overall, in these two-phase systems, it is the compliance of the system, whether
it comes from the compressibility of the gas or the elasticity of the microfluidic channels, which is
at the origin of this instability as thoroughly discussed in Ref. [33] for two-phase microfluidics flow.

In view of these results, two points seem interesting to discuss.
The first point of interest concerns the formation of monodisperse bubbles in microfluidic

geometries where the interface is confined in a constriction, like flow-focusing. Experimentalists
in this field are well aware that the bubble-size distributions produced in this type of geometry
when the gas phase is flow-rate-driven are more difficult to control and less peaked (with standard
deviations higher than 20%) than when the gas is driven at controlled pressure [34]. This explains
why pressure-driven gas control is often preferred to flow-rate gas control. Our work sheds light on
this point: taking typical values a = 100 μm, V0 = 1 ml, it comes B ∼ 1000, which clearly shows
that those devices are in the unstable regime highlighted here. This suggests that the volume of the
syringe containing the gas, V0, a parameter usually not considered, must be taken into account to
set the bubbles size. Moreover, one can ask which transformation (adiabatic or isothermal) is more
relevant in microfluidics. The isothermal assumption will be more realistic if the characteristic time
of thermal diffusion α ∼ a2/κ , where κ is the heat diffusivity in air (κ ∼ 20 10−6 m2/s at ambiant
temperature and pressure) and a the diameter of the constriction, is smaller than the characteristic
time needed to form a bubble, which depends on the geometry of the microfluidic device. For the
experiment proposed here, we find α ∼ 30 ms which is a bit less than the time needed to produce
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a bubble, here of the order of 100 ms, thus suggesting a gaseous expansion closer to an isothermal
expansion than to an adiabatic one.

Second, the proposed model, in good agreement with the experiments, allows to predict the
unstable growth regime (B > 27) as well as the amplitude of this phase, set by a(x2 − x1). Since it
is based on quasistatic arguments, it does not perfectly capture the growth dynamics of the bubble
in the unstable regime. Indeed, for B > 27, we predict that the height h/a jumps from x1 to x2

instantaneously (see Fig. 4), which is neither physical nor confirmed by experiments. As can be seen
in Fig. 3, the growth is very fast but not infinite because in practice, this expansion regime is limited
by a dissipative process being either inertia of the gas, viscosity of the gas or liquid or rheology
of the interface. A detailed follow-up of the bubble growth kinetics using a high-speed camera in
the limit where it is limited by the interfacial rheology, seems a promising prospect for this work,
since it could open the way to a new characterization of the interfacial rheology of surfactants in a
nearly spherical geometry. Indeed, it has been recently shown that “capillary pressure elastometry,”
which consists in analyzing the quasistatic pressure-deformation curves for a bubble in this type of
geometry, allows to analyze the elastic properties of interfaces [35]. The simple model proposed here
should allow to extend the field of application of “capillary pressure elastometry” to the dynamic
response of interfaces.

VII. CONCLUSION

We have shown that the growth of bubbles blown in noncompliant geometries can exhibit
unstable regimes. Our experimental and theoretical study reveals the importance of the coupling
between the constriction zone on which the interface is anchored and the volume of the reservoir
in which the gas is compressed. The use of these unstable regimes to probe elongational interfacial
rheology seems to us among the most promising perspective of this work.
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