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The study of the transitions among different regimes in thermal convection has been an
issue of paramount importance in fluid mechanics. While the bifurcations at low Rayleigh
number, when the flow is laminar or moderately chaotic, have been fully understood for
a long time, transitions at higher Rayleigh number are much more difficult to be clearly
identified. Here, through a numerical study of the two-dimensional Rayleigh-Bénard
convection covering four decades in Rayleigh number for two different Prandtl numbers,
we find a clear-cut transition by considering the fluctuations of the heat flux through a
horizontal plane, rather than its mean value. More specifically, we have found that this
sharp transition is displayed by a jump of the ratio of the root-mean-square fluctuations
of the heat flux to its mean value and occurs at Ra/Pr ≈ 109. Above the transition, this
ratio is found to be constant in all regions of the flow, while taking different values in the
bulk and at the boundaries. Below the transition instead, different behaviors are observed
at the boundaries and in the bulk: at the boundaries, this ratio decreases with respect
to the Rayleigh number whereas it is found to be constant in the bulk for all values of
the Rayleigh number. Through this numerical evidence and an analytical reasoning we
confirm what was already observed in experiments; that is, the decrease of the ratio of
root-mean-square fluctuations of the heat flux to its mean value, observed at the boundaries
below the transition, can be understood in terms of the law of large numbers.

DOI: 10.1103/PhysRevFluids.8.053501

I. INTRODUCTION

Thermal convection is related to flows generated by the buoyancy force that results from temper-
ature gradients within a fluid [1]. They are widely observed in the atmosphere, in the Earth mantle,
or in its outer liquid core as well as in the core of many planets and stars. Thermal convection also
plays an important role in many industrial processes. A quantity of primary interest is the heat flux
transported by a convective flow, for instance if one has to evaluate how is evacuated the heat gen-
erated in the inner core of a star or the cooling efficiency of a flow in some industrial process [2,3].

This problem still involves open questions, even in one of the simplest configurations of a
convective flow, the so-called Rayleigh-Bénard convection [2,4–7]. It consists of studying the
problem for a horizontal layer of fluid of height H heated from below and therefore submitted
to a temperature difference �T . In the Oberbeck-Boussinesq approximation [8,9] the problem
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involves two dimensionless parameters: the Rayleigh number, Ra = gβH3�T/νκ , where g is
the acceleration of gravity, β is the volumetric thermal expansion coefficient, ν is the kinematic
viscosity, and κ is the thermal diffusivity; and the Prandtl number, Pr = ν/κ . If the layer has a finite
horizontal extent L, one has also to take into account the aspect ratio � = L/H . In dimensionless
form, the heat flux is described by the Nusselt number, Nu, which is the ratio of the convective heat
flux to the one that would exist in the absence of convection for the same �T . If one discards the
aspect ratio, dimensional analysis implies that Nu = f (Ra, Pr). The determination of the function f
is out of reach of any analytical calculation except in the vicinity of the convection threshold [10].
Further above the convection threshold, experimental measurements of the heat flux have been fitted
by laws of the form Nu ∝ RaαPrγ with α = 1/5, 1/4, 2/7, 1/3, 1/2 to quote some of them. Simple
laminar flow models, dimensional analysis, or ad hoc arguments have been used to try to justify
them as reviewed in [11–13].

The validity of most of these laws is of course limited to a finite range of Ra and Pr. Some of
them have been recovered later and the crossover between neighboring regimes has been calculated
by considering kinetic and thermal dissipation and determining whether the bulk or the boundary
layer contribution is the dominant one [14]. However, the main problem that has been considered
more than half a century ago is whether f could become a power law in the limit of strongly
developed convection, Ra → ∞. This would mean that there exists only one relevant dimensionless
parameter in that limit. A first proposal has been made by Malkus [15,16] using the assumption
that turbulent convection maximizes the heat flux and expanding the motion in a sum of linear
modes truncated such that the highest mode is neutral. He thus found α = 1/3. This also can
be recovered assuming that the thermal boundary layers are at marginal stability with respect to
convection. More generally, this scaling law is obtained if the heat flux is determined locally by
the structure of the thermal boundary layer such that the height H of the layer can be discarded
[17]. A different answer is based on the belief in turbulence theory which assumes that macroscopic
transport properties do not depend any more on microscopic transport coefficients when turbulence
is fully developed. Discarding ν and κ gives α = γ = 1/2 [11,13,14]. While a heuristic rationale
to systemize the data has been proposed, the arguments leading to both scaling laws are equally
convincing or questionable. Experimental results do not provide a clear picture [18–20] and there
is some debate on data analysis [21,22]. Generally speaking, to sharply capture transitions in such
kind of turbulent flows is difficult, notably at high Rayleigh numbers. Beside possible experimental
issues, the transitions are usually related to a change of scaling in the relation between Nu and Ra,
and yet the scaling exponents are often nearby and the change in slope should be observed over
many decades to be convincing.

On the other hand, the importance of fluctuations on the mean heat transfer has been emphasized
long ago [23]. Most notably, they have been considered in relation to the small-scale properties of
turbulent convection [5]. Fluctuations in the form of thermal plumes have been taken into account
in a dimensional argument to find α = 2/7 [24,25]. They have been also considered [26] to revisit
earlier predictions [14]. A few other works have looked at the global probability density function
(PDF) of different observables [27–30] in relation to nonequilibrium statistical mechanics. Finally, a
series of works have taken into account fluctuations in the determination of the structure of boundary
layers [31–33]. Although in those works the authors took into account the existence of fluctuations
in order to determine how they could affect the mean heat flux, they did not study the characteristics
of the fluctuations of the heat flux and their possible scaling laws. Therefore, despite the general
relevance of fluctuations, almost no work has considered heat-flux fluctuations in a systematic way
with regard to the scaling laws.

It should be emphasized that in the limit of an infinite aspect ratio, it has been usually assumed
that the heat flux does not fluctuate in time. The very definition of the Nusselt number indeed
assumes that the spatially averaged temperature on any horizontal plane of infinite extent is constant.
It is not clear that this is a correct assumption for the realistic case of finite, even though large,
aspect ratio. This relies on the fact that no coherent large scale flow would exist for large enough
aspect ratio, which does not seem to be true. It has been indeed found that the total heat flux at
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the horizontal boundaries displays fairly large fluctuations [34]. For Rayleigh numbers in the range
107 < Ra < 109, experimental evidence indicates that the root mean square (rms) of the heat-flux
fluctuations is proportional to �T , which corresponds to a ratio of the rms of fluctuations to the
mean heat flux that decreases like Ra−δ with δ ≈ α. This scaling law can be understood using the
law of large numbers for the fluctuations of the thermal boundary layer. Moreover, many convection
experiments are operated by applying a constant heat flux to the bottom plate instead of maintaining
its temperature constant. Fluctuations of the total heat flux therefore generate fluctuations of the
bottom plate temperature. It has been observed that these fluctuations strongly increase above
Ra ≈ 1012 [35], and this increase has been related to a boundary layer transition.

The purpose of the present paper is to analyze the behavior of heat-flux fluctuations at varying
Rayleigh and Prandtl number. We want to understand whether the fluctuations can be a key
observable to capture the physics of the turbulent convection, and notably possible bifurcations
of the system. Furthermore, we want to verify if the predictions made in previous experiments [34]
can be confirmed and are robust.

To achieve our goal, we have performed resolved direct numerical simulation (DNS) of
two-dimensional (2D) Rayleigh-Bénard turbulence over a large span of Rayleigh numbers and
considering two Prandtl fluids, namely, Pr = 0.71 (air) and Pr = 7 (water). While real-world appli-
cations are three-dimensional (3D), numerical simulations in three dimensions are computationally
exorbitant [36,37], forbidding large parametric studies. In addition, theoretical analysis is based on
2D boundary layer models [12,14,24,32], or assumptions that apply to 3D as well to 2D flows.
Moreover, even considering Rayleigh numbers not too high, to have results well converged in
statistics of higher order than the first moment is practically impossible. Moreover, while 2D
Rayleigh-Bénard simulations are different from 3D ones with regard to integral observables at small
Pr [38], they reproduce most 3D features [39], and can have an interest per se [40]. In particular,
it has been shown that 2D and 3D simulations of Rayleigh-Bénard convection are very similar at
Prandtl numbers larger than 1. For Prandtl numbers of order 1 or less, differences can be more
important, and integral quantities and flow states in two dimensions have a stronger dependence on
the aspect ratio � than in three dimensions. Yet, while differences are significant at low Rayleigh
numbers Ra � 106 and at small aspect ratio � ≈ 0.5, results in two dimensions are again in good
agreement at higher Ra with � ≈ 1 [39].

In the last years, the 2D configuration has been therefore widely used for parametric analysis in a
variety of configurations, to get new insights and test theories [29,41–44]. In the present paper,
we shall compare our 2D numerical results with the experimental observations obtained in the
same range of parameters to further verify to which extent our findings may be applied to the 3D
case. On the other hand, the numerical simulations will permit us to access a range of Rayleigh
numbers which were not investigated in the experiments as far as the fluctuations of the heat flux
are concerned.

DNS has the advantage of avoiding artifacts due to experimental issues, thus constituting actually
idealized experiments. Another advantage is that they permit us to access to all kinds of details of
the flow field, most of which are unavailable in experiments. For instance, it was only possible to
measure fluctuations at the boundaries in the experiments [34], whereas we also can have data in
the bulk using numerical simulations. The level of detail provided by DNS is then helpful to get
physical insights on complex phenomena, and specifically on the transitions.

This paper is organized as follows: In the next section, we briefly present the model and provide
the characteristics of the numerical simulations. Section III is focused on the results. First, in
Sec. III A, we give some information about the global dynamics. This part is mainly meant to show
that the present results are consistent with previous studies of Rayleigh-Bénard convection, and
most notably in two dimensions, while the focus of the paper is on the fluctuations. Since the case
at Pr = 7 has been much less analyzed, this section allows us to recall the main differences with the
case at Pr ≈ 1.

In Sec. III B, we present the first results about the statistics of the heat flux. We discuss the
standard relation between the mean Nusselt number 〈Nu〉 and the Rayleigh number, which still
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FIG. 1. Figure of the square cell used in this paper. x and y denote respectively the horizontal coordinate
and the vertical coordinate. The origin is placed at the center of the cell. The domain is therefore given by
x ∈ [−1/2 : 1/2], y ∈ [−1/2 : 1/2]. θ is the dimensionless temperature and u is the dimensionless velocity.
Constant temperatures are imposed on top and bottom boundaries, and adiabatic conditions are imposed on
lateral boundaries. No-slip boundary conditions are used.

displays a scaling consistent with previous studies and does not show a clear transition between
different scaling laws. Then, we present the PDF of the fluctuating Nusselt number at the walls and
at the midplane, which displays a mild dependence with the Rayleigh number. An important piece of
information given by these statistics is that the PDFs in the present paper are in good agreement with
the only experiments available. That corroborates the fact that present two-dimensional simulations
can be relevant for three-dimensional flows.

In Sec. III C, we present the main result of the paper. Specifically, we show the root mean
square of the fluctuating heat flux as a function of the ratio Ra/Pr, at the walls and at the midplane.
This statistics displays a neat transition at Ra/Pr = 109. In particular, at the walls the Relative heat
flux fluctuations decreases with Ra before the transition, and displays a plateau after. We give an
analytical explanation of this behavior. We make a final discussion of the results and conclude in
Sec. IV.

II. THEORETICAL AND NUMERICAL MODEL

In this paper, we consider a 2D fluid contained in a square cell heated from below and cooled
from above where the bottom and top plates are orthogonal to the uniform gravitational field (Fig. 1).

The problem is mathematically described in the Oberbeck-Boussinesq approximation, so that the
evolution equations for the dimensionless velocity u = (ux, uy) and the dimensionless temperature
θ read as

∂ux

∂x
+ ∂uy

∂y
= 0, (1)

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −∂ p

∂x
+

√
Pr

Ra

(
∂2ux

∂x2
+ ∂2ux

∂y2

)
, (2)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= θ − ∂ p

∂y
+

√
Pr

Ra

(
∂2uy

∂x2
+ ∂2uy

∂y2

)
, (3)

∂θ

∂t
+ ux

∂θ

∂x
+ uy

∂θ

∂y
= 1√

RaPr

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
. (4)

The free fall velocity
√

β�T gH has been used to make the velocity dimensionless.
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TABLE I. Summary of the different direct numerical simulations. The uniform Cartesian mesh is composed
by N×N nodes. The size of the time interval in the statistically steady state is T . �u and �T are the relative
errors estimated by computing the Nusselt number using its definition or the kinetic and thermal dissipations,
Eq. (10).

Run no. Ra Pr N T �u �T

1 1×107 0.71 256 2000 −0.008 −0.010
2 2×107 0.71 256 1400 −0.005 −0.012
3 5×107 0.71 256 1900 −0.030 −0.034
4 1×108 0.71 256 191641 −0.020 −0.039
5 1×108 0.71 512 2300 0.045 0.005
6 1×108 0.71 1024 2000 0.058 0.010
7 2×108 0.71 512 2000 0.022 −0.005
8 5×108 0.71 1024 1210 0.021 −0.009
9 1×109 0.71 1024 3000 0.007 −0.026
10 2×109 0.71 2048 1673 −0.126 −0.019
11 5×109 0.71 2048 2000 −0.019 0.047
12 1×1010 0.71 2048 2000 −0.157 −0.030
13 1×1011 0.71 2048 1748 −0.057 −0.085
14 1×107 7 256 2500 −0.008 −0.012
15 2×107 7 256 3000 −0.003 −0.014
16 5×107 7 512 1784 0.0018 −0.0066
17 1×108 7 256 1300 −0.016 −0.048
18 1×108 7 512 2000 −0.005 −0.014
19 2×108 7 512 3000 −0.012 −0.018
20 5×108 7 1024 1286 0.003 −0.008
21 1×109 7 1024 1500 −0.007 −0.012
22 2×109 7 2048 574 0.00012 −0.0068
23 5×109 7 2048 413 0.012 −0.016
24 1×1010 7 2048 714 −0.028 −0.0005
25 2×1010 7 2048 400 −0.033 −0.026
26 1×1011 7 2048 350 0.061 −0.087

We have applied no-slip boundary conditions everywhere for the velocity, adiabatic conditions
for the temperature on the lateral boundaries, and constant temperature on the top and bottom
boundaries, as specified in Fig. 1.

Equations (1)–(4), together with the boundary conditions, have been solved for different Ra
and Pr using the open-source code BASILISK [45]. BASILISK uses finite-volume numerical schemes,
notably with the Bell-Colella-Glaz advection scheme [46], and a pressure-correction scheme for
the velocity-pressure coupling, with a global second-order precision. The code has been now
comprehensively validated in turbulent flows, and most notably in Rayleigh-Bénard convection
[40,47–49]. All simulations have been performed on a uniform Cartesian grid, and with a variable
time step that verifies the condition CFL < 0.5. The mesh size has been chosen to fulfill the standard
criteria provided to well resolve all the boundary layers [36,37]. The details of the numerical
simulations are presented in Table I.

For the purpose of this paper, the key quantity of the system is the instantaneous vertical heat
flux, whose dimensionless definition is

Nu(x, t ) =
√

RaPr θ uy − ∂θ

∂y
. (5)

This quantity represents thus an instantaneous Nusselt number, whereas the mean heat flux is
given by the Nusselt number defined as 〈Nu〉.
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As customary in Rayleigh Bénard convection, in order to assess the resolution of the numerical
method, and the statistical convergence, we have used the consistency relation for the mean heat
transfer [12,50,51]:

〈Nu〉 ≡ 1 +
√

RaPr 〈uyθ〉 = Nuε ≡ 1 +
√

RaPr 〈ε〉 = NuεT ≡
√

RaPr 〈εT 〉, (6)

where 〈·〉 indicates statistical averaging, ε is the kinetic energy dissipation rate, and εT is the
temperature-variance dissipation rate. We have computed the following spatial-averaged quantities
at each time,

Nug(t ) ≡
∫ 1/2

−1/2

∫ 1/2

−1/2
Nu(x, y, t ) dx dy, (7)

√
RaPr ε(t ) + 1 ≡ Pr

∫ 1/2

−1/2

∫ 1/2

−1/2

1

2
[∇u + (∇u)T ]2 dx dy + 1, (8)

√
RaPr εT (t ) ≡

∫ 1/2

−1/2

∫ 1/2

−1/2
(∇T )2 dx dy, (9)

and then averaged over time to get the relation (6). These relations clarify also the dimensionless
definitions of the dissipation rates ε and εT .

Specifically, we have quantified the accuracy and consistency of our simulations by computing
the following relative errors [52]:

�u =
√

RaPr〈ε〉 − (〈Nug〉 − 1)

〈Nug〉 − 1
, �T =

√
RaPr〈εT 〉 − 〈Nug〉

〈Nug〉 . (10)

As shown in Table I, �u and �t are of a few % and in most cases less than 1%, even averaging over
just 15 convective times. All the runs are well resolved; possibly for the runs at Ra = 1011 a longer
time averaging would improve convergence.

In this paper, we are interested in the statistics of the following observables:

Nub(t ) ≡
∫ 1/2

−1/2
Nu(x,−1/2, t ) dx, (11)

Num(t ) ≡
∫ 1/2

−1/2
Nu(x, 0, t ) dx, (12)

Nut (t ) ≡
∫ 1/2

−1/2
Nu(x, 1/2, t ) dx, (13)

which are, respectively, the Nusselt number integrated over the bottom boundary, the Nusselt
number integrated over the middle line, and the Nusselt number integrated over the upper boundary.
The rms values of Nub, Num, and Nut are

σb ≡
√

〈(Nub − 〈Nub〉)2〉, σm ≡
√

〈(Num − 〈Num〉)2〉, σt ≡
√

〈(Nut − 〈Nut 〉)2〉 (14)

where 〈·〉 represents the temporal average in statistically steady state. To further assess the accuracy
of the numerical approach and notably the statistical convergence of the main observables, we have
computed the average of the three different Nusselt numbers Nub, Num, and Nut , and we have found
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TABLE II. Average and rms of the Nusselt numbers at the boundaries and middle line. Their statistical
errors are estimated supposing a decorrelation time of 2.0 convective timescale.

Run no. 〈Nub〉 〈Num〉 〈Nut 〉 σb σm σt

1 11.39 ± 0.02 11.39 ± 0.15 11.39 ± 0.02 1.39 ± 0.03 10.84 ± 0.24 1.39 ± 0.03
2 14.40 ± 0.03 14.41 ± 0.22 14.41 ± 0.03 1.84 ± 0.06 12.94 ± 0.45 1.85 ± 0.06
3 19.87 ± 0.04 19.88 ± 0.25 19.88 ± 0.03 2.45 ± 0.08 17.56 ± 0.61 2.38 ± 0.08
4 25.25 ± 0.01 25.26 ± 0.02 25.25 ± 0.01 2.17 ± 0.01 15.72 ± 0.06 2.18 ± 0.01
5 25.35 ± 0.03 25.36 ± 0.21 25.38 ± 0.03 2.14 ± 0.08 15.66 ± 0.61 2.17 ± 0.08
6 25.28 ± 0.03 25.31 ± 0.22 25.30 ± 0.03 2.17 ± 0.08 15.42 ± 0.64 2.20 ± 0.08
7 31.78 ± 0.03 31.75 ± 0.25 31.72 ± 0.03 1.96 ± 0.08 17.95 ± 0.99 1.96 ± 0.09
8 42.53 ± 0.05 42.51 ± 0.54 42.55 ± 0.05 2.67 ± 0.16 29.66 ± 2.35 2.52 ± 0.15
9 50.16 ± 0.08 50.29 ± 0.94 50.19 ± 0.08 6.65 ± 0.19 81.20 ± 3.93 6.61 ± 0.19
10 60.09 ± 0.12 60.08 ± 1.61 59.90 ± 0.12 7.71 ± 0.33 103.84 ± 6.29 7.85 ± 0.33
11 77.26 ± 0.14 77.39 ± 1.92 77.53 ± 0.14 10.15 ± 0.43 135.75 ± 7.83 10.12 ± 0.39
12 94.31 ± 0.19 94.48 ± 2.57 93.95 ± 0.17 13.11 ± 0.59 181.92 ± 10.57 11.83 ± 0.51
13 183.70 ± 0.25 182.56 ± 4.10 183.82 ± 0.24 23.22 ± 0.91 383.78 ± 18.50 22.79 ± 0.78
14 13.50 ± 0.01 13.52 ± 0.14 13.50 ± 0.01 1.16 ± 0.08 10.73 ± 0.52 1.17 ± 0.09
15 16.87 ± 0.02 16.91 ± 0.16 16.87 ± 0.02 1.45 ± 0.20 13.68 ± 0.57 1.41 ± 0.20
16 22.26 ± 0.02 22.24 ± 0.26 22.26 ± 0.02 1.64 ± 0.07 17.68 ± 0.93 1.59 ± 0.07
17 27.31 ± 0.03 27.46 ± 0.39 27.32 ± 0.03 1.92 ± 0.09 22.36 ± 1.49 1.91 ± 0.09
18 27.20 ± 0.03 27.11 ± 0.31 27.20 ± 0.03 1.92 ± 0.08 22.20 ± 1.13 1.94 ± 0.07
19 32.83 ± 0.03 32.84 ± 0.32 32.82 ± 0.03 2.22 ± 0.07 27.80 ± 1.23 2.26 ± 0.07
20 42.46 ± 0.04 42.62 ± 0.63 42.47 ± 0.04 2.51 ± 0.13 35.56 ± 2.47 2.53 ± 0.13
21 51.99 ± 0.04 51.81 ± 0.70 52.00 ± 0.04 2.68 ± 0.13 42.92 ± 2.68 2.61 ± 0.13
22 63.68 ± 0.08 63.74 ± 1.37 63.71 ± 0.08 2.86 ± 0.23 52.08 ± 5.31 2.91 ± 0.24
23 84.38 ± 0.08 85.00 ± 1.65 84.44 ± 0.08 3.73 ± 0.28 75.20 ± 7.02 3.68 ± 0.24
24 105.20 ± 0.07 105.16 ± 1.74 105.23 ± 0.07 4.40 ± 0.22 103.74 ± 7.39 4.47 ± 0.22
25 125.46 ± 0.24 125.15 ± 4.85 125.32 ± 0.24 10.59 ± 0.60 216.79 ± 20.90 10.68 ± 0.64
26 195.28 ± 0.49 194.38 ± 9.33 194.03 ± 0.49 20.46 ± 1.38 390.33 ± 41.05 20.45 ± 1.42

them indistinguishable, as shown in Table II. Since in the present paper we compare our numerical
results to previous experiments [34], we give some short information about the experimental setup,
while the details are to be found in the original paper [34]. The authors used different experimental
devices. The first setup was a cylindric cell of aspect ratio � ≡ D/d = 1 where D is the diameter
of the cell and d its height. The second setup was a cubic cell. The third setup was a cylindric
cell of aspect ratio � = 1/2. They used two fluids: water (Pr � 7) and mercury (Pr � 0.02). The
measurement of the heat flux was done over the bottom plate for the cubic cell. For the cylindrical
cells, the heat flux was measured over a region of the bottom plate which was large compared to the
boundary layer thickness.

III. RESULTS

A. Qualitative observations

To get some idea of the kind of flow displayed in the present configuration, we show in Fig. 2
some snapshots of the temperature and the velocity fields at different Ra, for the same Prandtl
number (Pr = 0.71). It is known that in two dimensions there is a coherent angular flow up to
moderately high Rayleigh numbers for moderate-Pr fluids [53,54]. In particular, at low-Ra numbers
Ra < 108, there has been observed an intermittent behavior between coherent flow reversals and
incoherent cessation periods [48], most notably at Pr ≈ 4. Even though there is a dependence
on the Prandtl number, the reversals and with them the coherent periods basically disappear for
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FIG. 2. Snapshots of the normalized temperature and vertical velocity for two simulations with Pr = 0.71.
(a) Temperature field for Ra = 1×108. (b) Temperature field for Ra = 1×1010. (c) Vertical velocity field for
Ra = 1×108. (d) Vertical velocity field for Ra = 1×1010.

Ra > 108. With our configuration at Pr = 0.71, reversals are basically absent as found earlier [54],
and yet there is a clear coherent flow at Ra = 108, as nicely shown by Fig. 2(a), where heat is
mostly transported along this smooth “wind,” as reflected by an almost bimodal velocity distribution
displayed in Fig. 2(c). At higher Ra, coherence is lost, as highlighted in Fig. 3. At Pr = 7, the flow
is much less organized and loses coherence at a much lower Rayleigh number.

We can get some more insights about the dynamics of our system by looking at the temporal
signals of the relevant quantities, namely, the time dynamics of the Nusselt numbers integrated
over the horizontal direction. These signals are displayed in Fig. 3, for the two Prandtl numbers
investigated at different Rayleigh numbers.

The inspection of the signals indicates that for Ra < 108 at Pr = 0.71, the flow is dominated
by the large scale flow which displays a clear periodic behavior. This is related to the periodic
oscillations of the vortices located in the corners, which can be seen in Fig. 2(a) and have been
analyzed in detail in previous studies [40,47].

Because of these changes in direction the fluctuations are very large. The same periodicity
is reflected by the signals recorded at the boundaries, even though the friction is able to damp
the amount of variation. As expected [54], for Pr = 7 the transition toward a fully chaotic state
happens at lower Ra and not much difference is found among flows at different Ra numbers, from a
qualitative point of view. These observations are confirmed by looking at the correlation functions
(shown in Appendix B), which indicate that the periodicity is lost at Ra ≈ 108 for Pr = 0.71, and
already for Ra < 107 at Pr = 7. A first important conclusion about our statistics is that the signals at
the top and bottom walls are statistically similar despite the different temperatures, but as physically
expected from the symmetry of the system. That allows us to consider only one of them in the
following, and actually to use the other to improve statistics. Then, we can observe as a general
feature that fluctuations are much larger in the midplane than at the bottom and top boundaries, as
quantitatively witnessed by the values of the standard deviation given in Appendix A. This evidence
is in line with the phenomenology of turbulence, as the core of the flow is basically inertial and
not affected by viscosity, whereas the effect of viscosity is dominant at the boundaries. Still, it is
interesting to remark that non-negligible fluctuations are produced also at the boundaries. Generally
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FIG. 3. Direct recordings of Nub (red), Num (magenta), and Nut (blue) for 100 eddy turnover times and
various values of Ra and Pr in the statistically steady state.

speaking, the results of this section are meant to show agreement with previous studies and to
highlight differences between low and high Prandtl number flows.

B. Statistics of the heat flux

In Fig. 4, we show the plot of the mean Nusselt number against the Rayleigh number for our
simulations. Our results can support the existence of two regimes in the range of Ra investigated
here, with differences between the two values of Pr. At Pr = 7, the laminar scaling appears to be
found in the range 5×107 � Ra � 109, and the 1/3 scaling is retrieved for 109 � Ra � 2×1010.
Points at lower Ra are possible slightly away from the laminar scaling, while the simulation at
highest Ra is slightly under the power law, which might suggest the beginning of a new scaling
or be just an effect of statistical error. Results at lower Pr can suggest instead a laminar scaling
in the range 5×108 � Ra � 1010. For lower Ra, while we have verified that the flux related to
each regime is comparable, its value is yet impacted by the periodic structure of the flow and the
heat flux is decreased. For higher Ra a transition to the 1/3 scaling may also be observed, but the
present results do not allow us to draw a neat conclusion. Results are consistent with the physical
picture provided above, with the results obtained in previous studies [39,55,56], and also with the
experimental results considered here [34]. What is important to emphasize is that it is difficult to
precisely determine the scaling law, as highlighted by the inset figure where an intermediate scaling
2/7, proposed on some physical ground [24], appears to fit the data correctly over four decades for
both Pr.

To corroborate further this picture, we show in Fig. 4 the compensated plot of the mean Nusselt
number with respect to the scaling Ra0.3, for the present results and data from the literature. Some
comments are in order.
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FIG. 4. Left: Mean Nusselt number as a function of Ra. The scaling laws 〈Nu〉 ∝ Ra1/4, which corresponds
to a laminar boundary layer, and 〈Nu〉 ∝ Ra1/3, which corresponds to the Malkus scaling [15,16], are plotted in
the main graph to guide the eye. In the inset, also the scaling 〈Nu〉 ∝ Ra2/7 is plotted [24]. Right: Compensated
plot of the mean Nusselt.

(i) The present results are found to be in excellent agreement with previous results obtained in
the same conditions.

(ii) No clear transition can be found at different Prandtl numbers, except for a small aspect ratio
� = 1/2, as already stated in the related works [39,56].

In Fig. 5, we show the PDF of the reduced heat flux at the boundaries and in the midplane of the
domain, (Nub − 〈Nub〉)/σb and (Num − 〈Num〉)/σm, at different Ra numbers, for the two Prandtl
numbers Pr = 0.71 and 7. We compare the results with experiments [34], for which it was found
that the PDF at the boundaries is almost independent of Ra and the aspect ratio, and slightly skewed
with respect to a Gaussian.

For Pr = 0.71 (left column), important changes are observed when increasing the Rayleigh
number. In particular, the PDF of the reduced Nusselt number goes from a bimodal distribution
at Ra = 107 to a skewed distribution for Ra � 1011. The same behavior is visible at the walls and
in the middle of the domain, even in a more marked way. Results are consistent with the fact that in
two dimensions at low Prandtl numbers the flow is basically periodic at low Ra, while for high Pr a
disordered regime is already present at moderate Ra, as highlighted by the temporal signals in Fig. 3.
Moreover, the PDF is almost Gaussian for Ra < 109 in the midplane, while it is non-Gaussian and
skewed for higher Ra. We observe, notably, that the PDFs do not change anymore for Ra � 1010.
That might indicate a transition around a value Ra ≈ 109 ÷ 1010.

As expected, for Pr = 7 (right column), no bimodal PDF is found at all, confirming that the
transition to a disordered regime occurs for a value of Ra below the range studied here. Furthermore,
at variance with the low-Pr case, the PDF is found to be quasinormal at the boundaries, for Ra � 108.
Then, the PDF starts to be more and more skewed, suggesting a later transition between Ra ≈ 1010

and 1011. In the midplane, the PDFs are instead similar for all Ra and are all well skewed, with
only some possible differences in the negative tail in the middle of the domain, where nonetheless
statistical errors may affect the results. Thus, the PDFs in the midplane do not permit us to capture
any transition, and suggest a turbulent state in the core of the domain at all Ra.

Globally speaking, some differences are displayed by fluctuation profiles at the bottom boundary
and in the midplane, with stronger fluctuations in the bulk, as manifested by the larger tails. The
results are found to be in quite good agreement with the experiments, where such PDFs were
recorded only at the boundaries. As expected, the comparison is nicer for the numerical results
obtained for Pr = 7, although the results for Pr = 0.71 are not much different for Ra > 109.
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FIG. 5. PDFs of the reduced Nusselt numbers at the bottom boundary and at the middle plane for various
Ra and Pr. (a) Bottom boundary for Pr = 0.71. (b) Bottom boundary for Pr = 7. (c) Middle line for Pr =
0.71. (d) Middle line for Pr = 7. The experimental data are shown for Ra = 1.7×109, Pr = 7, and � = 1/2
only at the bottom walls, since they are not available elsewhere. A Gaussian curve is also plotted to help the
comparison.

C. Scaling laws for the ratio of the fluctuations to the mean value of the heat flux

In previous experiments [34], it has been observed that the root mean square of the heat flux at the
walls σb divided by the mean heat flux displays a power law on almost three decades in Rayleigh
number for 106 < Ra/Pr < 109. The proposed rationale behind this behavior is the following: if
one takes the thermal boundary layer thickness δT as the relevant correlation length along the wall,
which is the surface of measurement, then it can be considered that the average heat flux measured
over an area H2 consists of the sum of N = (H/δT )2 uncorrelated contributions. Using the law of
large numbers, the rms of the heat flux should therefore scale as ∝ √

N = H/δT . We adapt here the
same argument to two dimensions, such that the average heat flux is computed over a line of length
H so it consists of the sum of N = H/δT uncorrelated contributions. Consequently, the rms of the
heat flux should scale as ∝ √

H/δT . Using the relation between the Nusselt number and the thermal
boundary layer thickness 〈Nub〉 = H/2δT , we obtain the following scaling law:

σb

〈Nub〉 ∝
√

H/δT

H/2δT
∝ 1√〈Nub〉

. (15)

This relation is plotted in Fig. 6 for our 2D simulations as a function of Ra/Pr. Since the scaling
exponent of the average Nusselt number has been found to be between 1/4 and 1/3, we have
represented the lines ∝ Ra−1/8 and ∝ Ra−1/6 to check the validity of the argument given by Eq. (15).

Let us consider first the walls, for which we have also experimental data [see Fig. 6(a)]. For
Pr = 7 and Ra/Pr � 109 that corresponds to the experimental range, the dependence of σb/〈Nub〉 is
compatible with the scaling relation (15). Moreover, increasing Ra we find a clear transition with
this ratio reaching an almost constant value above Ra/Pr = 2×109.

For Pr = 0.71, we also find a decrease of the relative fluctuations with increasing Rayleigh
number up to Ra/Pr � 109 followed by a regime where σb/〈Nub〉 reaches a constant value �0.13.

053501-11



LABARRE, FAUVE, AND CHIBBARO

106 107 108 109 1010 1011

Ra/Pr

0.02

0.05

0.1

0.2

0.5

σ
b
/

N
u

b

(a)

∝ Ra−1/8

∝ Ra−1/6

0.13

106 107 108 109 1010 1011

Ra/Pr

0.4

0.6

1.0

2.0

3.0

σ
m

/
N

u
m

(b)

2.0

Pr = 0.71

Pr = 7

FIG. 6. Relative rms fluctuations (rms fluctuations divided by the mean value) of the Nusselt number
Eqs. (14). (a) At the boundaries. (b) In the midplane.

However, no neat scaling law is observed for Ra/Pr � 109 because of the transition from a nearly
periodic flow to a chaotic flow that occurs within that range.

Let us analyze the behavior of the heat-flux rms fluctuations in the midplane, shown in Fig. 6(b).
Remarkably, a transition is also observed, basically at the same Ra/Pr for both Pr as encountered
at the boundaries. However, the power law predicted at low Ra at the boundaries is not found,
and instead the relative fluctuations of the heat flux take constant values both below and above the
transition, and independently of Pr. At the transition, the relative fluctuations increase abruptly by
more than a factor 2. Moreover, the amplitude of σm is more than one order of magnitude higher
than the one at the boundaries.

We understand the presence of a plateau following a reasoning similar to that used to rationalize
the dissipation anomaly of ε [57]. In the core of the flow, the boundary layer does not play any role
so that the correlation length should be of the order of the integral length, which turns out to be of
the order of Lint ≈ 0.2H in the core of the flow with little dependence on Ra, at least for Ra � 109

[27]. Moreover, it has been ingeniously observed [58] that the scaling of dissipation rate at the walls
depends on the viscous boundary scale when it is stable; yet, if the boundary layer is destabilized,
a turbulent transition is induced and the dissipation rate reaches a plateau also at the walls, though
with a smaller prefactor than in the bulk. Here, the scenario appears similar. At the boundaries, a

θ

(a) (b) (c) (d)

uy
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−1/4

0

1/4
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FIG. 7. Temperature θ and vertical velocity uy snapshots in statistically steady state for various Ra and Pr.
(a) Ra = 5×108 and Pr = 0.71. (b) Ra = 2×109 and Pr = 0.71. (c) Ra = 5×109 and Pr = 7. (d) Ra = 2×1010

and Pr = 7. We observe the turbulent transition of the kinetic boundary layer around Ra/Pr � 109 for both
Pr = 0.71 and 7.
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stable viscous boundary layer induces the power-law scaling (15), whereas a plateau is found when
the boundary layer becomes unstable. The prefactor is about one order of magnitude less than the
corresponding one computed in the midplane. The same transition seems to induce also an increase
of the fluctuations, measured by a large prefactor, in the midplane. About this behavior, we can only
guess that it is related to the presence of strongly intermittent plumes.

We display in Fig. 7 the temperature and velocity fields in the vicinity of the transition. Turbulent
spots in the velocity field appear only after the transition around Ra/Pr ≈ 109. Moreover, at high
Prandtl number the temperature field does not display significant differences, whereas at Pr = 0.71
the temperature also shows larger fluctuations after the transition. As highlighted by Fig. 7, the
global dynamics of the flow changes through the transition, with an increase of the intermittent
behavior and hence the probability of strong events. This is why the transition is experienced for the
same value of the Rayleigh number also at the midplane, although the dynamics there is basically
inviscid and the boundary layer has no direct influence. Indeed, the increase of the constant through
the transition indicates a sudden increase of the fluctuations.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have performed a statistical analysis of the fluctuations of the time-dependent
heat flux integrated over the horizontal direction, at the bottom and top boundaries and in the
midplane, in turbulent Rayleigh-Bénard convection. The heat flux is indeed averaged over a small
spatial region, and constitutes a random variable. This idea to look at such fluctuations was
pioneered in a previous experimental study [34], and we have complemented it through extensive
direct numerical simulations in a 2D geometry. In fact, statistics of heat-flux fluctuations have been
rarely considered previously.

The simplicity of the 2D configuration with respect to the 3D one has permitted us to obtain
results over four decades in Rayleigh number for two Prandtl number flows, and to assure a
good statistical convergence both for the PDFs and the second moments, which is key for the
kind of statistical analysis carried out here. Moreover, numerical simulations have allowed us to
access new information, notably about the fluctuations in the bulk. The comparison of the PDFs
given by the experiments with those obtained here numerically on a larger range of Rayleigh
numbers has shown that while some quantitative differences are found between 2D and 3D re-
sults, the qualitative behavior is similar especially for the cases with the same fluid properties.
The only significant difference is at low Rayleigh numbers, Ra � 108, where the 2D dynamics
is dominated by quasiperiodic patterns and a bimodal PDF is displayed that is not observed
in three dimensions. The quite good agreement of the PDFs between the 2D and the 3D data
shows that the results obtained in two dimensions should be relevant also for the 3D realistic
case.

The main finding of the present paper is to point out that the scaling of the root mean square of
the heat flux with respect to the ratio Ra/Pr displays an abrupt transition at Ra/Pr ≈ 109. This has
been observed for two different Prandtl numbers and both at the bottom and top boundaries and in
the bulk of the flow. In particular, at the boundaries the transition is between a regime where σ/〈Nu〉
decreases with Ra, toward one where this ratio is constant.

This transition was not observed in the previous experiments because the critical value
of Ra/Pr was not reached at the time. Also, no other work has analyzed such statistical
scaling.

An important point is that the standard analysis of the scaling of the mean Nusselt number with
respect to Ra could be qualitatively compatible with such a transition, but does not clearly point
it out. The transition might be related to the change of slope between the laminar scaling Nu ∼
Ra1/4 to the turbulent one Nu ∼ Ra1/3, but one observes that in the range of Ra of the present
paper, all the data are compatible with a scaling of the kind Nu ∼ Ra2/7, and therefore do not
display any transition. This is also consistent with what has been observed by previous authors
[29,55,56]. Based on a series of 2D numerical simulations very similar to those presented here [56],
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one of the conclusions was that a single scaling Nu ∼ Ra0.3 (intermediate between 2/7 and 1/3) was
compatible with the whole range, displaying no transition. A fresh look at the data might suggest
eventually a mild change of slope at about Ra/Pr ≈ 109, but data are not sufficient to claim that.

Another interesting finding is that even the PDFs of the heat flux are less informative than the
scaling of the variance. Indeed, the PDFs are compatible with a transition around Ra/Pr ≈ 109,
however the observation is based on the tails of the PDFs and is not clear cut. Interestingly, in
another study [56], the PDFs of the dissipation were displayed and a change in the tails was clearly
observed also at Ra/Pr ≈ 109. In a related work [29], the authors also remarked that the turbulent
energy production averaged over the whole cell is negative except for the highest Rayleigh number
Ra = 1010 at Pr = 5.3.

Therefore, the key result is the following: while looking at the scaling of the mean flux it is not
possible to single out a clear transition since the changes are at best of a few percent, and the scaling
of the variance of the heat flux reveals it neatly with an abrupt jump of a factor larger than 2.

The visual inspection of the velocity fields shows that turbulent spots chaotically released from
boundaries are observed only after the transition. This should not be confused with the possible
transition to the ultimate state when both kinetic and thermal boundary layers are turbulent, because
that should occur at a much higher value of Ra. This breakup of the large scale circulation has
already been observed and discussed in earlier studies [39,55] for different aspect ratios.

Another interesting result of the present paper is related to the behavior of the fluctuations below
the transition which is not the same at the boundaries and in the bulk of the flow. At the boundaries,
for Pr = 7 we observe a regime compatible with a scaling argument based on the law of the large
numbers, as previously found in experiments [34]. The normalized rms decreases also at Pr = 0.71
but with a less clear scaling, since in this case convection is expected to depend more strongly on
the global circulation which induces large scale correlations. This is consistent with the fact that we
observe higher decorrelation times at lower Pr.

Both for Pr = 0.71 and 7, the relative fluctuation of the Nusselt numbers at the boundaries and
in the midplane reaches constant values above the transition. These values are different for the
midplane and the boundaries, probably because the temperature is fixed and the velocity vanishes at
top and bottom boundaries whereas the advection term of the local heat flux strongly fluctuates in
the midplane. In the core of the flow, dominated by inertial dynamics, the relation σ ∼ 〈Nu〉 appears
to be always valid, but with a prefactor that increases through the transition due to an increase of
turbulent fluctuations.

In conclusion, the analysis of heat-flux fluctuations in an idealized case has showed that these
fluctuations are of paramount importance to understand the underlying dynamics of the flow and
most notably the presence of possible transitions between different turbulent regimes. Although not
investigated here, these results seem promising for future experiments at higher Rayleigh numbers,
notably with regard to a possible transition toward an ultimate regime.

We plan in a future experimental study to investigate the presence of this transition in three
dimensions and to analyze more in detail the mechanisms underlying it.
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APPENDIX A: NUMERICAL DETAILS

In Table II we show the mean Nusselt number computed for each case at the bottom and
top boundaries and in the midplane. The corresponding statistical error is given by the standard
deviation σi, for which we also indicate the statistical error. We can see that in all cases the mean
Nusselt numbers computed at different height are fully consistent, confirming that the dynamics is
well resolved. The statistical errors have been used as error bars in figures. In fact, errors might be
slightly larger because of possible residual correlations, notably concerning the error on σ .
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FIG. 8. Autocorrelations of the Nusselt numbers at the bottom boundary τb and in the midplane τm defined
as τα = 1/T

∫ t0+T
t0

Nuα (t0 )Nuα (t0 + t ′)dt ′, with α = b, m. (a) Ra = 107 and Pr = 0.71. (b) Ra = 2×108 and
Pr = 0.71. (c) Ra = 107 and Pr = 7, Ra = 2×108. (d) Pr = 7.

We have further verified the grid convergence of our simulations at Ra = 108 and Pr = 0.71 also
by computing 〈Nub〉, 〈Num〉, 〈Nut 〉, σb, σm, and σt for different mesh resolutions (see runs 4,5, and
6 in Tables I and II). For these simulations, the discrepancies are less than 2%.

APPENDIX B: NUSSELT CORRELATIONS

To better appreciate the transition from the quasiperiodic state to a chaotic one, we show in
Fig. 8 the auto-correlations of the signals Nub and Num, respectively, τb and τm. It is shown that
for Pr = 0.71 periodicity dominates the dynamics both at the walls and in the core of the flow at
Ra ≈ 107. The transition to a fully chaotic state is around Ra ≈ 2×108, as indicated by Fig. 8(b),
where the correlation rapidly goes to zero both at the walls and in the bulk. For the case Pr = 7, the
periodicity has been already lost at Ra = 107.
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