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An efficient method is reported to determine correction tensors at successive orders in
the Knudsen number (i.e., the Klinkenberg and higher corrections) to approximate the
apparent permeability tensor characterizing one-phase, creeping, Newtonian, isothermal
slip flow in homogeneous porous media. It is shown that the Klinkenberg correction
tensor can be obtained from the solution of the same ancillary (closure) problem that is
required to compute the intrinsic permeability tensor. More generally, correction tensors
up to the (2M − 1)th order are shown to be obtained from the solution of the first M
closure problems, instead of the 2M ones suggested by the upscaling procedure and
associated closure scheme. Moreover, it is demonstrated that all the correction tensors
are symmetric, the odd and even order ones being respectively positive and negative.
In particular, this indicates that the apparent permeability tensor at the first order in the
Knudsen number is symmetric positive. The model is validated by analytical solutions in
the simple cases of flow in parallel plates and bundle of parallel cylindrical tubes and by
numerical simulations performed in a model two-dimensional structure. An improvement
in the apparent permeability prediction is shown using a Padé approximant.
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I. INTRODUCTION

Gas slip flow in porous media, resulting from rarefaction effects, is encountered in a wide
variety of domains including gas storage in (or extraction from) geological reservoirs [1], chemical
engineering processes like composite material manufacturing by chemical vapor infiltration [2],
filtration and separation, and gas flow in nanoporous rocks [3], to cite only a few. The slip flow
regime, characteristic of a Knudsen number (defined as the mean free path to pore-size ratio)
approximately smaller than 0.1, can be modeled at the pore scale, by the Navier-Stokes (or
Stokes) equations and a first-order slip boundary condition at the pore walls [4]. Nevertheless, in
practice, macroscopic models are preferred in many circumstances. A widely used macroscopic
equation for momentum transport is the empirical Darcy-Klinkenberg law (see, for instance, [5]).
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A formal derivation of the macroscopic model was reported recently, showing that the momentum
equation has a Darcy structure involving an apparent permeability tensor that can be expanded under
the form of a combination of the intrinsic permeability tensor and a series of slip correction tensors at
successive orders in the Knudsen number. All the tensors of interest are obtained from the solution
of ancillary closure problems on a (periodic) unit cell representative of the process. In practice,
solution of the closure problems for the intrinsic permeability and slip correction tensors can be
computationally costly. In addition, the coupling of the successive closure problems is prone to
error propagation and uncontrollable inaccuracy while increasing the order of estimation. Moreover,
the convergence (when it exists) of the correction series is slow and alternate. A procedure that
significantly simplifies the determination of these effective coefficients and improves convergence is
therefore of utmost interest. With this purpose in mind, an expression of the jth-order slip correction
tensor is derived in this paper using Green’s formula. In addition, the power-series expansions are
reformulated to produce the simplest Padé approximant. Although the analysis is based on gas slip
flow resulting from rarefaction effects, it can be extended to situations in which slip effects are
caused by other physical mechanisms (for example by the use of effective boundary conditions for
flow over rough surfaces). The same type of approach to simplify the determination of the effective
medium coefficients may also be envisaged for other types of transport phenomena.

The presentation is organized as follows. In Sec. II, the macroscopic model and associated
closure problems are recalled. A procedure is developed in Sec. III, showing that the solution of the
first M closure problems (instead of 2M as implied so far) is only required to obtain the correction
tensors up to the (2M − 1)th order. It is also proved in this section that all the correction tensors
are symmetric and positive (respectively for the odd order) and negative (respectively for the even
order). In particular, it shows that the first-order Klinkenberg slip correction tensor can be obtained
from the solution of the same closure problem that provides the intrinsic permeability tensor and
that the apparent permeability tensor at this first order of approximation is symmetric positive. In
Sec. IV, a Padé approximant is proposed for the prediction of the apparent permeability tensor. The
overall improvements are validated in Sec. V through analytical solutions in simple configurations
and numerical simulations in a model two-dimensional (2D) periodic structure. Conclusions are
drawn in Sec. VI.

II. MACROSCOPIC MODEL FOR ONE-PHASE SLIP FLOW IN POROUS MEDIA

A. Upscaled balance equation

Consider the slightly compressible, Newtonian, isothermal, creeping slip flow of a single fluid
(the β phase) characterized by its density, ρ, dynamic viscosity, μ, pressure, p, and velocity, v, in a
rigid and homogeneous porous medium, of characteristic length L, as the one sketched in Fig. 1(a).
For this system, let �σ and �β be the characteristic length scales respectively associated to the solid
phase (i.e., the σ phase) and fluid phase in the porous medium bulk. The flow description at the
macroscale requires defining an averaging domain V , of measure V , which is representative as long
as its characteristic size, r0, is constrained by max(�β, �σ ) � r0 � min(L). Over this averaging
domain, let 〈ψ〉 and 〈ψ〉β represent the superficial and intrinsic averages of a pore-scale quantity ψ ,
respectively defined as

〈ψ〉 = 1

V

∫
Vβ

ψ dV, 〈ψ〉β = 1

Vβ

∫
Vβ

ψ dV, (1)

where Vβ (of measure Vβ) is the portion of V occupied by the fluid phase. Note that 〈ψ〉 = ε〈ψ〉β ,
where ε = Vβ/V is the porosity of the porous medium.

Using these definitions, the macroscopic model for the flow under consideration was formally
derived in previous works by upscaling the governing equations at the pore scale [6,7]. It is
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FIG. 1. (a) Sketch of a porous medium and an averaging domain V for single-phase flow, including the
characteristic length scales associated to the macroscale (L) and microscale (�σ and �β ). (b) Example of a
periodic unit cell for a model representation of the solid skeleton as an array of inline cylinders of circular
cross section.

given by

∂〈ρ〉β
∂t

+ ∇ · (ε−1〈ρ〉β〈v〉) = 0, (2a)

〈v〉 = −Ks

μ
· ∇〈p〉β � − K̂m

μ
· ∇〈p〉β

= −K
μ

·
⎛⎝I +

m∑
j=1

(ξλ) jS j

⎞⎠ · ∇〈p〉β. (2b)

In addition, the macroscopic state equation can be written as

〈ρ〉β = F (〈p〉β ), (2c)
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where F represents the functional dependence of 〈ρ〉β on 〈p〉β in accordance with the hypothesis of
a barotropic fluid. In Eq. (2b), ξ is a parameter associated to the reflection process at the solid-fluid
interfaces, Aβσ , ξ = 2−σv

σv
, where σv is the tangential momentum accommodation coefficient (σv =

1 for a perfectly diffuse reflection). In addition, λ is the average mean-free path in the fluid at the
average pressure and temperature that depends on 1/〈ρ〉β [see Eq. (2.15) in [7]]. Moreover, Ks and
K are, respectively, the slip corrected apparent permeability and intrinsic permeability second-order
tensors, that have been shown to be symmetric and positive [see [8] (Sec. 3.3 p.12 and Appendix C)
for Ks and [9] and Sec. 3.3 in [10] for K]. Finally, (ξλ) jS j is the jth − order slip correction (second-
rank) tensor and I is the identity tensor. In addition, in Eq. (2b),

K̂m = K ·
⎛⎝I +

m∑
j=1

(ξλ) jS j

⎞⎠ (3)

is the mth-order approximation in ξKn = ξλ/�β (Kn is the Knudsen number) of Ks. This ap-
proximation is obtained from a Maclaurin series expansion in ξKn (see Sec. 4.1 in [7]) of the
closure problem yielding Ks [see Eqs. (3.7) in this reference]. This assumes ξKn < 1, consistent
with the slip condition that requires ξKn � 0.1. Conversely to Ks, that is not intrinsic and has to
be computed at any value of ξKn, K̂m only involves intrinsic quantities, and is hence fully predictive.
Note that the above macroscopic slip flow model, presented in the framework of rarefied gas flow,
can be generalized to other flow situations for which a first-order slip boundary condition may be
applied at solid-fluid interfaces at the pore scale. This is the case, for instance, when an effective
boundary condition is used to model viscous flow over rough surfaces [11,12]. Results reported
below can hence be generalized to any of these situations while considering ξλ as the slip length.

B. Closure problems

The second-order tensors K and S j present in the average momentum equation are obtained
from the solution of the associated intrinsic closure problems that are defined in a periodic unit cell
representative of the system, such as that sketched in Fig. 1(b). In space of dimension N (N = 2, 3),
they are given by (see Sec. 4.1 in [7]),

0th order ∇ · D0 = 0, in Vβ, (4a)

0 = ∇ · Td0 + I, in Vβ, (4b)

D0 = 0, at Aβσ , (4c)

〈d0〉β = 0, (4d)

with periodicity ψ(r + li ) = ψ(r), ψ = D0, d0, i = 1, . . . N, (4e)

〈D0〉 = K. (4f)

jth order, j = 1, . . . , m, ∇ · D j = 0, in Vβ, (5a)

0 = ∇ · Td j , in Vβ, (5b)

D j = −P · (
n · Td j−1

)
, at Aβσ , (5c)

〈d j〉β = 0, (5d)

with periodicity ψ(r + li ) = ψ(r), ψ = D j, d j, i = 1, . . . N, (5e)

〈D j〉 = K · S j . (5f)

In the above equations, li represents the periodic lattice vector in the ith direction, whereas Tdl

denotes a stresslike third-order tensor defined as

Tdl = −Idl + ∇Dl + (∇Dl )
T 1, l = 0, . . . , m. (6)
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The vector dl and second-order tensor Dl are the closure variables at the lth order. Moreover, T 1
is used for the transpose of a third-order tensor, M, that permutes the two first indices, i.e., MT 1

i jk =
Mjik , Mi jk being the i jk component of M. In Eq. (5c), P = I − nn is the local projection tensor
onto Aβσ , n being the unit normal vector at Aβσ , taken as that pointing out of Vβ in the following.
Note that the first-order slip boundary condition at Aβσ was originally expressed as D j = −P · {n ·
[∇D j−1 + (∇D j−1)T 1]} [see Eq. (4.7) in [7]]. However, P · [n · (−Id j−1)] = −(P · n)d j−1 = 0 due
to the property of the projection tensor P, leading to the boundary condition written in the compact
form of Eq. (5c).

Clearly, the determination of the jth-order slip correction tensor requires the solution of all the
closure problems up to this order. All of them have an equivalent complexity and are sequentially
coupled through the slip boundary condition at Aβσ . Since the jth order closure problem involves
spatial derivatives of D j−1, inaccuracy of the numerical simulations strongly increases with j due to
propagation of numerical errors. Therefore, any simplification of the computational procedure from
this regard is of major interest.

For a sufficiently small value of Kn, K̂1 is a reasonable approximation of Ks and the average
momentum equation can be written as

〈v〉 � − K̂1

μ
· ∇〈p〉β = −K

μ
· (I + ξλS1) · ∇〈p〉β, (7)

that is the commonly used macroscopic model for slip flow in porous media. Indeed, for conditions
in which the ideal gas law is applicable, the above equation coincides with the Klinkenberg model
[13], written in its tensorial form (see discussion in Sec. VI A in [6]). Nevertheless, in some
circumstances, K̂m with m > 1 is a much better approximation of Ks. This is highlighted in [7]
and illustrated in Sec. V B.

Progress towards important simplifications of the computation of the slip correction tensors
(ξλ) jS j is achieved by deriving an alternative expression of 〈D j〉 given in Eq. (5f) as described
below.

III. ALTERNATIVE EXPRESSION OF THE jth-ORDER SLIP CORRECTION

The procedure starts by considering the following Green’s formula, valid for any two arbitrary
vector fields a and b, and second-order solenoidal tensor fields A and B, that is given by (see the
derivation in Appendix A in [14])∫

Vβ

[AT · (∇ · Tb) − (∇ · Ta )T · B] dV =
∫

Aβ

[AT · (n · Tb) − (n · Ta )T · B] dA. (8a)

Here, Aβ denotes the surfaces enclosing Vβ that are composed of Aβσ and the entrances and exits,
Aβe, of the β phase at the unit cell edges (i.e., Aβ = Aβσ ∪ Aβe), whereas

Ta =−Ia + ∇A+∇AT 1, Tb =−Ib + ∇B+∇BT 1. (8b)

Taking a ≡ d0, A ≡ D0, b ≡ d j , and B ≡ D j in this formula, making use of Eqs. (4b) and (5b),
together with the boundary condition given in Eq. (4c), as well as periodicity, and dividing the result
by V , leads to ( j = 1, . . . , m)

〈D j〉 = − 1

V

∫
Aβσ

(
n · Td0

)T · D j dA. (9)

Note that in this expression, the area integral reduces to Aβσ as that over Aβe cancels out due to
periodicity of the closure variables. The boundary condition given in Eq. (5c) can now be taken into
account to rewrite this last relationship as

〈D j〉 = 1

V

∫
Aβσ

(
n · Td0

)T · P · (
n · Td j−1

)
dA, (10)
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where Tdl (l = 0, . . . j − 1) is defined in Eq. (6).
If one is only interested in the first-order (Klinkenberg) correction, the procedure stops at the

level of Eq. (10), which, for j = 1, gives

〈D1〉 = 1

V

∫
Aβσ

(
n · Td0

)T · P · (
n · Td0

)
dA. (11)

For j � 2, the procedure is continued by first substituting the transpose of the slip boundary
condition given in Eq. (5c) (taking j = 1 in this equation) into Eq. (10). Since P is a symmetric
tensor, this yields

〈D j〉 = − 1

V

∫
Aβσ

DT
1 · (

n · Td j−1

)
dA. (12)

Second, let Green’s formula given in Eq. (8a) be considered again with a ≡ d1, A ≡ D1, b ≡ d j−1,
and B ≡ D j−1. Since Td1 and Td j−1 are both solenoidal, and taking into account periodicity, this
leads to ∫

Aβσ

DT
1 · (

n · Td j−1

)
dA =

∫
Aβσ

(
n · Td1

)T · D j−1 dA, (13)

which, once substituted back into Eq. (12), gives

〈D j〉 = − 1

V

∫
Aβσ

(
n · Td1

)T · D j−1 dA. (14)

Comparison of Eqs. (9) and (14) indicates that the first and second terms under the area integral in
the latter have been respectively increased and decreased by one order. Consequently, the above two
steps can be repeated recurrently until reaching the following expressions ( j � 1):

〈D j〉 = − 1

V

∫
Aβσ

(
n · Td j/2

)T · D j/2 dA, = 1

V

∫
Aβσ

(
n · Td j/2

)T · P · (
n · Td j/2−1

)
dA, j even,

(15a)

and

〈D j〉 = 1

V

∫
Aβσ

(
n · Td( j−1)/2

)T · P · (
n · Td( j−1)/2

)
dA, j odd. (15b)

Note that Eq. (15b) is indeed valid for j = 1 as it coincides with Eq. (11) in that case.
The above expressions show that the slip correction tensors up to the order 2M − 1 (and,

therefore, K̂2M−1) are obtained from the solution of the first M closure problems, instead of requiring
the first 2M ones as expected from the statement of the closure scheme given by Eqs. (4) and (5).
This represents a considerable simplification since, in this way, the computational requirement is
divided by 2, and error propagation is limited. It is worth adding that, although 〈D j〉 is still related
to the spatial derivatives of D j/2 ( j even) or D( j−1)/2 ( j odd), this coupling is contained in an integral
operator, which may smooth the numerical errors. Further properties of the correction tensors can
now be derived on the basis of Eq. (15).

A. Properties of the slip correction tensors

For odd values of j, 〈D j〉 is clearly symmetric. This readily follows from its expression given in
Eq. (15b) and the fact that P is a symmetric tensor. Moreover, let ω be an arbitrary nonzero constant
vector and M = n · Td( j−1)/2 . Taking into account the fact that P = P · P, one can write

ω · 〈D j〉 · ω = 1

V

∫
Aβσ

ω · MT · P · M · ω dA
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= 1

V

∫
Aβσ

[(M · ω) · P] · [P · (M · ω)] dA

= 1

V

∫
Aβσ

[(M · ω) · P]2 dA. (16)

This proves that 〈D j〉 is positive in that case.
For even values of j, Eq. (15a) can be rewritten as 〈D j〉 = − 1

V

∫
Aβσ

(n · M)T · D j/2 dA, with,

this time, M = ∇D j/2 + (∇D j/2)T 1. Denoting by the superscripts T 2 and T 3 the transposes,
respectively defined by MT 2

i jk = Mik j and MT 3
i jk = Mk ji, noticing that (n · M)T = n · MT 2, and by

application of the divergence theorem, it follows that

〈D j〉 = −〈∇ · (MT 2 · D j/2)〉 = −〈∇ · MT 2 · D j/2〉 − 〈∇DT 3
j/2 : M

〉
, (17)

where : is the double dot product defined in the nested convention sense. However, ∇ · MT 2 =
(∇ · M)T = (∇d j/2)T , where the last part of this equality is deduced from Eq. (5b). Employing the
same procedure as that developed in [9] [see Eq. (8) and associated comment therein], it follows
that 〈∇ · MT 2 · D j/2〉 = 0. Therefore,

〈D j〉 = −〈∇DT 3
j/2 : M

〉 = − 1
2 〈MT 3 : M〉. (18)

Making use of Einstein’s notation, the kl component of 〈D j〉 is 〈Dj〉kl = −〈MT 3
knpMpnl〉/2 =

−〈MpnkMpnl〉/2, which shows that 〈D j〉 is a symmetric tensor. Finally, for any constant nonzero
vector ω, ω · (MT 3 : M) · ω = ωkMT 3

knpMpnlωl = ωkMpnkMpnlωl = (Mpnkωk )2 is a positive quantity,
which finally proves that 〈D j〉 is negative when j is even.

These results show that the slip correction tensors K̂ j form an alternate series.

B. First-order (Klinkenberg) slip flow model

The conclusions reached from the above developments shall now be emphasized in the case of
the commonly used first-order (Klinkenberg) slip flow model [see Eq. (7)]. Indeed, Eq. (15b) (with
j = 1) proves that the zeroth-order closure problem [Eq. (4)] is the only one to be solved in that case
to determine both K and K · S1 = 〈D1〉. This represents a considerable improvement, dividing by 2
the computational procedure implied from upscaling, which suggests to solve both the zeroth-order
[Eq. (4)] and first-order [Eq. (5) with j = 1] closure problems to obtain the two effective coefficients
[7,15]. Moreover, since 〈D1〉 is symmetric and positive, then so is the apparent permeability tensor
K̂1 = K + ξλ〈D1〉, completing the analysis reported in [8] (Sec. 3.3 p.12 and Appendix C).

IV. PADÉ APPROXIMANT

The above sign analysis suggests a poor convergence of K̂m towards Ks as m increases, as was
confirmed by numerical simulations (see Fig. 10 in [7]). A better prediction of Ks for a finite value
of m shall be proposed with a Padé approximant, K̃(n,n) (n � 1) given by [16]

K̃(n,n) =
(

n∑
i=0

(ξλ)iGi

)
·
(

n∑
l=0

(ξλ)lFl

)−1

, (19)

where Fl , l = 0, . . . n, and Gi, i = 0, . . . n, are two series of second-order tensors to be identified
from K̂2n. The above form is chosen so as to reproduce the expected constant behavior (when the
pore-scale flow is not rectilinear) of Ks in ξλ in the asymptotic mathematical limit ξλ → +∞.
In fact, under this perfect slip condition, it is required that the sliplike boundary condition in the
closure problem defining Ks [see Eq. (3.7c) in [7]] adopts a zero shearlike form. The closure
problem statement with this boundary condition yields the asymptotic value of Ks in this limit,
except when flow is one dimensional, as in the cases explored in Sec. V A for which Ks keeps a
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linear dependence in the perfect slip limit. Therefore, the form of the Padé approximant proposed
in Eq. (19) conveniently reproduces the asymptotic constant behavior.

For the sake of conciseness, the Padé approximant is now detailed for n = 1, which is the simplest
one and that is expected to provide enough accuracy in the context of slip flow, i.e., ξKn � 0.1. The
determination of Fl , l = 0, 1, and Gi, i = 0, 1, is carried out by identifying K̃(1,1) to K̂2, yielding

(G0 + ξλG1) − K · F0 − ξλ(〈D1〉 · F0 + K · F1) − (ξλ)2(〈D2〉 · F0 + 〈D1〉 · F1) = O[(ξλ)3].
(20)

At this point, F0 is chosen as F0 = I (any other choice would simply result in a rescaling). This
leads to

G0 = K, (21a)

F1 = −〈D1〉−1 · 〈D2〉, (21b)

G1 = 〈D1〉 − K · 〈D1〉−1 · 〈D2〉 (21c)

and, therefore,

K̃(1,1) = [K + ξλ(〈D1〉 − K · 〈D1〉−1 · 〈D2〉)] · (I − ξλ〈D1〉−1 · 〈D2〉)−1. (22)

It should be noticed that this approximant only involves K, 〈D1〉, and 〈D2〉, which are available
from the solution of only the zeroth- and first-order closure problems. The performance of this
approximant is illustrated in Sec. V B.

V. VALIDATION IN SIMPLE CASES

A. Analytical solutions

To illustrate the above procedure, simple cases are now considered consisting of a set of parallel
plates distant from 2h and a bundle of parallel cylindrical tubes of radius R, for which analytical
solutions of the closure (and flow) problems are available. An orthonormal (x, y) set of Cartesian
coordinates in the parallel-plates case, and one of cylindrical coordinates in the bundle of tubes case,
with r the radial coordinate, are used, the x axis being along the symmetry axis of the unit cell in
each case. For symmetry reasons, the solution for D0xx is only required in both cases for which, in
addition, Ksxx = K̂1xx, i.e., the jth-order correction is zero for j � 2. Therefore, the macroscopic
momentum equation reduces to the x projection of Eq. (7). The results for incompressible flow are
the following.

1. Parallel plates

D0xx = (−y2 + h2)/2, yielding Kxx = εh2/2 from Eq. (4f) and 〈D1xx〉 = ε
2h [( dD0xx

dy )2
y=−h +

( dD0xx
dy )2

y=h] = εh from Eq. (15b), which exactly coincide with the result obtained from the solution
of Eq. (5) for j = 1, that is D1xx = h.

2. Bundle of tubes

D0xx = (−r2 + R2)/4, yielding Kxx = εR2/8 from Eq. (4f) and 〈D1xx〉 = ε
πR2∫ 2π

0 ( dD0xx
dr )2

r=RR dθ = εR/2 from Eq. (11). The latter is again exactly the result that follows
from the solution of Eq. (5) for j = 1, that is given by D1xx = R/2.

In both cases, the results on K̂1xx = Kxx + ξλ〈D1xx〉 reported above are in agreement with Ksxx

calculated from the average solution of the Stokes equations with a first-order slip correction at Aβσ .
These two examples serve as a validation of the procedure developed above to obtain the first-order
slip correction from the solution of the closure problem yielding the intrinsic permeability.

053401-8



DETERMINATION OF KLINKENBERG AND HIGHER-ORDER …

TABLE I. Values of D∗
jxx , j = 1, . . . 5, obtained from Eqs. (5f) and (15). The latter only requires the

solution of Eq. (5) for j up to 2.

Eq. (5f) Eq. (15) � (%)

〈D∗
1xx〉 0.2117 0.2117 8.8×10−6

〈D∗
2xx〉 −1.8446 −1.8446 3.8×10−6

〈D∗
3xx〉 18.8594 18.8594 7.8×10−6

〈D∗
4xx〉 −242.6804 −242.6787 7.1×10−4

〈D∗
5xx〉 4272.9506 4226.5686 1.085

B. Numerical results in a simple 2D structure

To further illustrate the developments detailed above, a simple 2D structure made of a square
pattern of parallel cylinders of circular cross section, as represented in Fig. 1(b) together with its unit
cell, is now considered, taking ε = 0.8. Since the structure is orthotropic, the analysis is restricted to
K∗

sxx = Ksxx/�
2, that is compared to its approximations K̂∗

mxx = K̂mxx/�
2 (m = 1, . . . 5) and the Padé

approximant K̃∗
(1,1)xx = K̃(1,1)xx/�

2; � is the unit cell size [see Fig. 1(b)]. The permeabilities were
computed from the solution of the closure problem given in Eq. (3.7) in [7] for K∗

sxx [see results
in Fig. 10(d) in this reference], those given in Eqs. (4) and (5) for K̂∗

mxx, using Eqs. (5f) and (15)
to obtain 〈D∗

jxx〉 = 〈Djxx〉/�2− j ( j = 1, . . . m) in order to compare the two procedures, and finally
Eq. (22) to compute K̃∗

(1,1)xx. All the closure problems were solved with a boundary-element method
using constant elements. The dimensionless boundary-element size (taking � as the reference) for
these computations is ≈3.726 × 10−4, which implies ≈15 000 elements on Aβσ ∪ Aβe, ensuring
mesh convergence. The value of the intrinsic permeability for this structure is found to be K∗

xx �
0.019 407 3. The value of �β to compute Kn = λ/�β was taken as the slit aperture of a pair of
parallel plates yielding the same intrinsic permeability (i.e., �β = √

12Kxx/ε).
To obtain 〈D∗

5xx〉 from Eq. (15b), it is only necessary to solve the first three closure problems,
i.e., Eqs. (4) and (5) for j up to 2. However, to compare the values of 〈D∗

jxx〉, the latter were also
solved up to j = 5. The results on 〈D∗

jxx〉 obtained from Eqs. (5f) and (15) are reported in Table I.
As shown by the absolute values of their relative difference, �, taking the result from Eq. (5f) as the
reference, they are in excellent agreement, as � remains smaller than 1.1%, although it increases
significantly with the order, as expected, due to errors propagation resulting from the dependence of
D j upon ∇D j−1. This further validates the efficient procedure given by Eq. (15) to obtain 〈D j〉.

The comparison between K∗
sxx and its approximations K̂∗

mxx (m = 1, . . . , 5) and K̃∗
(1,1)xx is reported

versus ξKn in Fig. 2 for ξKn � 0.1. It can be clearly seen that the convergence of K̂∗
mxx is alternate

and slow (a slight improvement is only achieved with the fifth order with respect to the third
order), whereas the Padé approximant outperforms since its prediction of K∗

sxx is within less than
0.3% of error for ξKn � 0.1. As a result of the development reported in this paper, this excellent
approximation only requires the solution of the closure problems up to the first order. This represents
a tremendous improvement as the latter would only provide K̂∗

1xx if the approach initially suggested
by the closure scheme were followed.

VI. CONCLUSIONS

An efficient method is provided in this paper to predict the apparent permeability tensor for
steady, one-phase, Newtonian, isothermal, creeping slip flow in homogeneous porous media from
the intrinsic permeability and the corrections at the successive orders in the Knudsen number. It is
shown that the solution of the first M closure problems, instead of 2M implied by the upscaling
and closure procedure, is necessary to obtain the effective coefficients for the correction at the
(2M − 1)th order. This represents a considerable improvement as it reduces the computational effort
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FIG. 2. Apparent slip corrected permeability, K∗
sxx = Ksxx/�

2, vs ξKn, its approximations K̂∗
mxx = K̂mxx/�

2

(m = 1, . . . , 5), and the Padé approximant K̃∗
(1,1)xx = K̃(1,1)xx/�

2. The results correspond to the unit cell repre-
sented in Fig. 1(b) for ε = 0.8.

by 2 and limits the numerical error propagation. In particular, the solution of the classical closure
problem to compute the intrinsic permeability tensor also provides the first-order (Klinkenberg)
correction tensor. This is of major interest as the Darcy-Klinkenberg model is of common use in
practice.

The development leading to this efficient procedure also allows demonstrating that all the
slip correction tensors are symmetric, the odd ones being positive whereas the even ones are
negative. This indicates that the apparent permeability at the first order in the Knudsen number
is symmetric and positive. Moreover, a Padé approximant is proposed to improve the performance
of the prediction of the slip corrected permeability tensor.

The efficient procedure for the correction tensors evaluation and the relevance of the Padé
approximant is validated with analytical results in simple configurations and numerical simulations
in a model 2D configuration. The derivations proposed in this paper may also be applied to slip flow
resulting from other mechanisms than the Knudsen effects envisaged here and to other transport
phenomena. These applications will be explored in future works.
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