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We derive from particle-level dynamics a constitutive model describing the rheology
of two-dimensional dense soft suspensions below the jamming transition, in a regime
where hydrodynamic interactions between particles are screened. Based on a statistical
description of particle dynamics, we obtain through a set of physically plausible approxi-
mations a nonlinear tensorial evolution equation for the deviatoric part of the stress tensor,
involving the strain rate and vorticity tensors. This tensorial evolution equation involves
singular terms usually not taken into account in phenomenological constitutive models,
which most often assume a regular expansion in terms of the stress tensor. All coefficients
appearing in the equation have known expressions in terms of the microscopic parameters
of the model. The predictions of this microscopically grounded constitutive model have
several qualitative features that are specific to the rheology of soft suspensions measured in
experiments or simulations. The model shows a typical behavior of polymeric viscoelastic
materials, such as normal stress differences quadratic in the shear rate γ̇ , as well as typical
behaviors of suspensions of stiff particles, such as a particle pressure linear in γ̇ and a
zero-shear viscosity diverging at the jamming transition. The model also predicts a sharper
shear thinning than other viscoelastic models at small shear rates, in qualitative agreement
with experimental observations. Furthermore the shear thinning follows a critical scaling
close to the jamming transition.
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I. INTRODUCTION

Materials made up of soft elastic particles suspended in a fluid form a broad subset of complex
fluids. They include, among other things, emulsions, suspensions of microgels, liposomes, or
vesicles [1]. In an industrial context, they are commonly processed in food or cosmetic industries,
but also find applications in, e.g., drug delivery [2] or energy storage [3]. The rheology of these
systems is thus of key importance to many industrial processes. It is also of fundamental interest,
being a natural extension of the case of suspensions of hard particles, which can be seen as a limiting
case of soft particle suspensions [4].

When the particles are large enough (typically for sizes larger than a micrometer), or under flow
when the deformation rate is large enough, these suspensions can be considered athermal, that is,
one can neglect the Brownian motion occurring at the particle scale. The phase diagram of soft
athermal systems is well known. The key control parameter is the volume fraction of the particle
phase, φ. Below the so-called jamming volume fraction φJ, the suspension is a viscoelastic fluid,
while above φJ, it turns to a yield stress fluid; that is, below a (φ-dependent) yield value of the stress,
the suspension is an elastic solid, and above it it flows plastically [5]. The value of φJ depends
on geometrical aspects like particle shape [4] or the nature of constraints to motion created by
interactions, such as friction or adhesion [6]. Crucially, however, it does not depend on the softness
of the particles per se, insofar as softness is not affecting friction or adhesion [7].
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In the fluid phase below jamming, the viscosity η of a soft suspension is a function of the volume
fraction and the applied shear rate γ̇ . It is shear thinning [8–11] and is reasonably well captured
by Cross or Carreau-Yasuda-like laws interpolating the viscosity as a function of flow strength
between low-stress and high-stress limiting values [12–15]. This shear thinning is also captured by
numerical simulations [16–22]. Interestingly, at small γ̇ the observed shear thinning is quite steep,
with an amplitude η(γ̇ ) − η(0) scaling as γ̇ [17,18,23–25] (in this article we consider a definition
of γ̇ such that γ̇ � 0), or even γ̇ y with y < 1 [14,15,22,26], when usual viscoelastic models of the
upper-convected Maxwell family (e.g., the Oldroyd model, Giesekus model, and Phan-Thien-Tanner
model [27]) all predict η(γ̇ ) − η(0) ∼ γ̇ 2.

In a simple picture, shear thinning is a consequence of the fact that when the applied shear rate
increases, stresses lead to increasing particle deformation, so that particles can better accommodate
the applied flow. This can be interpreted in terms of an effective volume fraction φeff � φ decreasing
with increasing applied stress, such that the viscosity is well approximated as ηHard(φeff ), where
ηHard(φ) is the viscosity for a suspension of hard spheres at volume fraction φ [21,28,29]. Beyond
this simple qualitative picture, however, there is to the best of our knowledge currently no theory
aiming at capturing the essential features of shear thinning for athermal suspensions of soft particles.

Soft suspensions also show nontrivial normal stresses [16–18,23,24,30]. In the small shear rate
limit, normal stress differences scale as γ̇ 2 [16,17] in a typical viscoelastic fluid fashion (although
sometimes scaling in γ̇ is observed [25,31]). They are found to be of opposite signs, N1 > 0 and
N2 < 0, with N1 > |N2|. However, taken individually each normal stress scales as γ̇ [24,30], just
like for a suspension of hard particles [32].

Existing constitutive models of soft dense suspensions are struggling to capture the observed phe-
nomenology. Constitutive models have been developed in the dilute regime, based on single-particle
dynamics [33–35], or the semidilute regime, based on particle-pair dynamics [36,37], but these are
limited to low volume fractions as they are predicting the stress to order φ or φ2, respectively.
Palierne theory has been applied to denser systems but is limited to small oscillatory deformations,
a case for which we can see the soft suspension as a composite material, with a static and isotropic
microstructure [38,39]. Doi-Ohta theory for mixtures of immiscible fluids [40] predicts no shear
thinning and normal stress differences linear in γ̇ at small γ̇ [41]. Only the generalized Oldroyd
model with stress- and rate-dependent coefficients by Martin et al. [42] is accurately capturing the
observed rheology, but this requires one to promote the coefficients to arbitrary functions of an
invariant (the double contraction of the stress and strain-rate tensors), which are then tabulated from
observations.

Here we introduce a microscopic theory of shear thinning in suspensions of soft particles.
It is based on an approach we recently introduced for deriving constitutive equations for dense
soft particle systems [43,44]. In these works we obtained a constitutive equation for a minimal
model of soft jammed suspensions [45]. A key step to this approach is the use of a closure of the
microstructure, via the pair correlation function, as a function of the stress tensor of the suspension.
In [43,44] this closure was tailored to the jammed phase. Here we revisit this closure in the case of
the flowing regime, below jamming. We then obtain a nonlinear viscoelastic evolution equation for
the deviatoric part of the stress tensor, which coefficients are explicitly related to suspension
properties. This constitutive model exhibits shear thinning and predicts that the particle pressure
and the shear thinning amplitude are both linear in the absolute value of the deformation rate at
leading order, while normal stress differences are quadratic in the deformation rate.

II. SOFT SUSPENSION MODEL

We adopt as our microscopic model of a two-dimensional soft suspension the Durian model
[45,46] that consists of N soft disks of radius a, with overdamped and athermal dynamics. Particles
interact only via radial repulsion forces, and gravity is not taken into account. Particles experience a
viscous drag resulting from the fluid they are implicitly immersed in. The back action of the particles
on the fluid is neglected. The Durian model is thus adapted to dense suspensions of soft objects we
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aim at describing in this work. Qualitatively, it should prove a reasonable minimal model when the
stress is dominated by contacts between objects in suspension, as opposed, e.g., to elastic stresses
from particles deformed by the suspending fluid or viscous stresses from hydrodynamic interactions
[34,37,38]. In three-dimensional suspensions of frictionless hard spheres, contact stresses are
dominant when the volume fraction is larger than roughly 80 % of the jamming volume fraction φJ

[47,48]. In the absence of a similar characterization for emulsions, foams, or microgels (or even a
characterization for two-dimensional suspensions), we will consider 0.8φJ � φ < φJ as an estimate
for the domain of validity of our model regarding the volume fraction.

Under these simplifying assumptions, the fluid can be characterized by an affine velocity
field u(r). The fluid velocity gradient is assumed uniform, u(r) = ∇u · r [we use the convention
(∇u)i j = ∂ui/∂r j to define the gradient of the vector field u], and we define the strain-rate tensor
E = (∇u + ∇uT)/2, the vorticity tensor � = (∇u − ∇uT)/2, and the shear rate γ̇ = √

2E : E
(with the double contraction of two tensors A and B defined as A : B = ∑

i j Ai jBi j). The particle
density ρ = N/V , where V is the volume (actually an area in two dimensions) is also assumed to be
uniform. The position of particle μ is denoted as rμ, and its velocity is denoted as ṙμ. To lighten no-
tations, it is convenient to write uμ = u(rμ) the velocity field of the fluid at the position rμ occupied
by particle μ. The viscous drag exerted by the fluid on particle μ is then equal to −λf (ṙμ − uμ),
where λf is the viscous friction coefficient. The pairwise repulsive contact force exerted by particle
ν on particle μ is given by f (rμν ) = f (rμν )rμν/rμν , with rμν = rν − rμ, rμν = |rμν |. The case of
a repulsive force corresponds to f (r) � 0. We keep the contact force generic at this stage, only
assuming that f (rμν ) = 0 for rμν > 2a by definition of the contact. Yet later to perform explicit
calculations we will assume repulsive harmonic disks, that is, f (r) = f0(r/a − 2) for r < 2a and
f (r) = 0 for r > 2a.

Calling more generically f0 a typical contact force, we work with dimensionless variables, using
an elastic unit system with a unit force f0, a unit time τ0 = λfa/(2 f0) (corresponding to the elastic
relaxation time), and a unit length a. In terms of dimensionless variables (indicated here with a hat),
the equation of motion of particle μ reads

−2(ˆ̇rμ − ûμ) +
∑

ν( �=μ)

f̂ (r̂μν ) = 0. (1)

In the elastic unit system we picked, the dimensionless shear rate ˆ̇γ is nothing but the Weissenberg
number (or the capillary number if the elastic force is of interfacial origin). In consequence, the limit
ˆ̇γ → 0 is the hard-sphere limit of our model. In the following we drop the hat on dimensionless
variables to lighten notations.

III. STRESS TENSOR DYNAMICS

A. Exact evolution equation for the stress tensor

We wish to derive an evolution equation for �, the elastic contribution to the stress tensor of the
suspension. The elastic stress tensor � is defined in terms of the pair correlation function g(r) (i.e.,
the probability to find a particle at a position r with respect to a given particle) characterizing the
microstructure of the suspension, by the virial formula [49]

� = ρ2

2

∫
[r ⊗ f (r)]g(r) dr, (2)

where dr denotes the two-dimensional integration element. In two dimensions, the trace of the
stress tensor � is equal to −2p, where p is the pressure, so that from the expression (2) of the stress
tensor, the pressure p is given by

p = −ρ2

4

∫
r f (r)g(r) dr. (3)
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An exact, but not closed, evolution equation for � has been derived in [43,44], starting from the
evolution equation of the pair correlation function g(r). In the following, we focus on the evolution
equation for the deviatoric (i.e., traceless) part �′ = � − 1

2 Tr(�) 1 of the stress tensor, which reads

D�′

Dt
= �′ − �′ − �′ − �′ − �′ − ϒ′, (4)

where we have used the upper-convected Maxwell derivative defined as

D�′

Dt
≡ �̇

′ − � · �′ + �′ · � + 2pE, (5)

in its form suited for the traceless tensor �′ (the form would slightly differ for the time derivative of
�, which is often used in the literature). Note that this specific form of the material derivative of �′

is imposed by frame indifference as long as one considers systems with overdamped dynamics. The
tensors �′, . . . ,�′ appearing in the r.h.s. of Eq. (4) are the deviatoric parts of the following tensors:

� = ρ2

2

∫
(E : er ⊗ er )(r ⊗ r) · ∇ f g(r) dr, (6)

� = ρ2

2

∫
(E : er ⊗ er )[r ⊗ f (r)] g(r) dr, (7)

� = ρ2

2

∫
[ f (r) ⊗ f (r)]g(r) dr, (8)

� = ρ2

2

∫
[r ⊗ f (r)] · ∇ f Tg(r) dr, (9)

� = ρ3

2

∫∫
[ f (r′) ⊗ f (r)]g3(r, r′) dr dr′, (10)

ϒ = ρ3

2

∫∫
[r ⊗ f (r′)] · [∇ f (r)]Tg3(r, r′) dr dr′, (11)

where g3(r, r′) is the three-body correlation function (i.e., the probability to find two particles,
respectively, at positions r and r′ with respect to a given particle situated at the origin). Up to this
point, the evolution equation (4) for �′ is exact and is the same as the one considered above the
jamming density in [43,44].

However, Eq. (4) is not a closed evolution equation for the deviatoric stress tensor �′, as it
involves the pair and three-body correlation functions. To close this equation, we use the same
strategy as above the jamming density in [43,44], which consists of three successive approximation
steps. First, we approximate the three-body correlation function g3 in terms of the pair correlation
function g using the simple Kirkwood closure [50]:

g3(r, r′) = g(r) g(r′) g(r − r′). (12)

Second, we introduce using plausible physical arguments an approximate expression of the
anisotropic pair correlation function in terms of the deviatoric stress tensor �′ and of an isotropic
pair correlation function, focusing on the weakly anisotropic limit. Finally, we devise a minimal
parametrization of the isotropic pair correlation function, leaving no free parameters in the de-
scription. These two last approximation steps are described in the next section. Quite importantly,
the difference between situations above and below the jamming density mainly comes from the
parametrization of the pair correlation function, as discussed below.

B. Parametrization of the pair correlation function

We assume that for densities close enough but below the jamming density, neighboring particles
are just in contact. Under weak deformation, we further assume that the ring of first neighbors
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FIG. 1. Schematic representation of the deformation of the first-neighbor shell below the jamming density.

deforms into a second-order harmonic, in a way analogous to the assumptions made in [43,44]. To
parametrize this deformation, we introduce two scalar parameters: q the amplitude of the defor-
mation and ϕ the orientation of the extensional axis of the microstructure. Using polar coordinates
(r, θ ) and choosing ϕ as the origin of the angles (i.e., θ = 0; see Fig. 1), we parametrize the ring of
first neighbors by

r0(θ ) = 2(1 + q cos 2θ ). (13)

As in the case of suspensions above the jamming density [43,44], we assume that the pair correlation
function is deformed homothetically to the ring of first neighbors with respect to g0, its isotropic
pair correlation in the absence of deformation:

g(r) = g0

(
r

1 + q cos 2θ

)
, (14)

with r = |r|. We then need to parametrize the isotropic pair correlation function g0(r). It is possible
to use the same type of schematic description for g0(r) as in [43,44],

g0(r) = A δ(r − 2) + H (r − 2), (15)

where the delta peak A δ(r − 2) schematically represents the first shell of neighbors situated at
r = 2, and the Heaviside function H (r − 2) describes the sea of neighbors situated beyond the first
shell, neglecting secondary peaks [the Heaviside function is defined as H (x) = 1 for x > 0 and
H (x) = 0 for x � 0]. As a minimal hypothesis, we assume that close to the jamming transition,
the first shell of neighbors contains approximately z = 6 particles, which leads to an amplitude
A = z/(4πρ) of the delta peak, using the fact that z is the integral of ρg0(r) over a thin circular
shell around r = 2. A key difference with the situation above jamming is that in the latter case, the
first shell of neighbors is situated at r = r∗ < 2, while below (but close to) jamming the position of
the first shell of neighbors remains fixed at r = 2.

The parametrization (14) and (15) of the pair correlation function has important consequences
for the evaluation of the integrals defining the tensors �, . . . ,ϒ; see Eqs. (6) to (11). Integrals
involving g(r) over the domain C = {r, |r| < 2} boil down to integrals over a reduced angular
domain since any θ direction such that r0(θ ) > 2 does not contribute to the integral. Only the
quadrants [−3π/4,−π/4] and [π/4, 3π/4] have a nonzero contribution. This is a key difference
with polymeric models, for which all quadrants contribute to the stress.
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C. Evaluation of the stress tensor

1. Deviatoric part of the stress tensor

Using the virial definition (2) of the stress tensor � as well as the parametrization (14) of g(r),
one may write the deviatoric part �′ of the stress tensor as

�′ = ρ2

4

∫ π

−π

dθ

∫ 2

0
dr r2 f (r) g0

(
r

1 + q cos 2θ

) (
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (16)

using for calculations purposes the basis defined by the elongated and compressed axes of the
microstructure. The antisymmetry in θ of the off-diagonal coefficients of the integrand implies that
�′ is diagonal in this basis. Using Eqs. (14) and (15) as well as the symmetry of the integrand,
one can reduce the angular integration interval to [π/4, 3π/4]. Making the change of variable
r̃ = r/(1 + q cos 2θ ), we can then calculate �′, whose exact form is a quartic polynomial in q times
a diagonal traceless tensor. In what follows, we aim at deriving a minimal model and expand �′ up
to linear order in q, leading to

�′ = πAρ2q

(
1 0
0 −1

)
. (17)

If this expression seems to suggest that the principal axes of the �′ tensor do not vary in time, it
must be kept in mind that Eq. (17) is the expression of �′ in the basis such that the elongated axis
of the microstructure is the origin of the angles. In practice, this basis can itself vary with time. The
expression of �′ tells us that its principal axes are aligned with the elongated and compressed axes
of the microstructure. A similar relation between stress tensor and microstructure was found above
the jamming density [43,51].

For later convenience, we further note that from Eq. (17) the norm |�′| =
√

�′ : �′/2 of the
tensor �′ is given to first order in q by

|�′| = πAρ2q. (18)

This relation shows that the stress amplitude is directly related to the anisotropy of the microstruc-
ture.

2. Evaluation of the pressure

Although we focus on the derivation of an evolution equation for the deviatoric part �′ of the
stress tensor, we also need to evaluate the pressure p because it appears in the r.h.s. of the evolution
equation (4), as a prefactor of the tensor E. Using the weakly anisotropic parametrization (14) of the
pair correlation function in the integral (3) defining the pressure p, we can again reduce the angular
integration interval to [π/4, 3π/4], yielding

p = −ρ2

2

∫ 3π/4

π/4
dθ

∫ 2

0
dr r2 f (r) g0

(
r

1 + q cos 2θ

)
. (19)

Using the change of variable r̃ = r/(1 + q cos 2θ ), and expanding the resulting expression to first
order in q, we get

p = 4Aρ2q. (20)

Using Eq. (18), one can then reexpress the pressure p as a function of the norm |�′| of the deviatoric
stress tensor, leading to

p = 4

π
|�′|. (21)

Note that the amplitude A also disappears from the relation between p and |�′|, which includes only
fixed numerical prefactors. As explained below, Eq. (21) plays an important role in the rheological
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behavior of the model, as it implies that the pressure is proportional to the shear rate in the low
shear-rate limit.

D. Closed evolution equation on the deviatoric stress tensor

We are now in a position to evaluate the tensorial integral terms �, �, �, �, �, and ϒ

defined in Eqs. (6) to (11), due to the weakly anisotropic parametrization (14) of g(r) and the
schematic parametrization (15) of g0(r). Calculations are made for the specific force f (r) = r − 2,
corresponding to repulsive harmonic disks. Keeping calculations at lowest order, all integrals are
evaluated by performing an expansion to order q in the weakly anisotropic limit (q 
 1). Details of
the derivations can be found in the Appendix. The calculation is actually easy for the tensor �, for
which we find the exact result �′ = �′. For the other tensorial integrals, we obtain after expansion
to order q:

�′ = πAρ2E− 4(2A − 1)

3πA

(
2|�′| E+ �′ : E

|�′| �′
)
, (22)

�′ = − 2

3π

(
2|�′| E + �′ : E

|�′| �′
)
, (23)

ϒ′ = −Bρ

9π
�′ (24)

with

B = 47A − 9A2 + A(A + 3)π
√

3 (25)

[we recall that A = 3/(2πρ)]. The tensorial integrals �′ and �′ have a leading contribution at order
q2 only and can thus be neglected at order q. It follows that a closed evolution equation can be
written for the deviatoric part �′ of the stress tensor,

D�′

Dt
= (κ − λ|�′|)E − ξ

�′ : E
|�′| �′ − β�′. (26)

Note that the pressure p that appears in the definition (5) of the upper-convected Maxwell derivative
may be expressed as a function of |�′| due to Eq. (21). The coefficients appearing in Eq. (26) are
explicitly given in terms of microscopic parameters as

κ = πAρ2, (27)

λ = 4(3A − 2)

3πA
, (28)

β = 1 − Bρ

9π
≡ β0

φ
(φJ − φ), (29)

ξ = 2(3A − 2)

3πA
, (30)

with φ = πρ the packing fraction (we recall that ρ is nondimensionalized using the particle radius
a as unit length) and where we have defined

φJ = 3(9 − π
√

3)

2(47 + 3π
√

3 − 6π2)
≈ 1.30, β0 = 47 + 3π

√
3

6π2
− 1 ≈ 0.0693, (31)

where φJ is to be interpreted as the jamming packing fraction. Indeed, in the absence of applied
strain, E = 0, the stress tensor should relax to zero, as we are dealing with a dense suspension below
the jamming density. One should thus have β > 0, as the coefficient β governs the linear stability
of the state � = 0. The coefficient β is a decreasing function of the density ρ, or equivalently of
the packing fraction φ, and it vanishes for a packing fraction φJ ≈ 1.30, which we thus identify as
the jamming volume fraction. Its value is slightly larger than the one obtained in the case above
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jamming in [43,44], and approximately 50% larger than the correct packing jamming fraction in
two dimensions, due to the approximations made. (Note that φ > 1 is possible in the Durian model
as particles can overlap and in this sense are “compressible.”)

On the other hand, we have neglected in the derivation the effect of the hydrodynamic interactions
between particles, which is justified only in the dense regime. The regime of validity of our
derivation is thus limited to packing fractions φ close to, but below, φJ. It is also interesting to note
that the ρ dependence of the coefficient β as given in Eq. (29) comes from three-body correlations
(through the tensorial integral ϒ′), while the other coefficients κ , λ, and ξ result only from pair
correlations, through the interplay of pairwise repulsion with the applied flow.

Our constitutive equation (26) is akin to the upper-convected Maxwell (UCM) equation [52],
where the upper convective derivative of the stress tensor (or, in our case, the traceless part of this
derivative) is expressed as a function of the stress tensor itself and of the strain rate tensor. The r.h.s.
of (26) contains three advection terms (the ones involving κ , λ and ξ ), which accounts for the stress
change induced by the relative displacement of pairs of particles in contact if this displacement
was purely affine (that is, the displacement that we would observe if there was no contact force).
Among these terms, the first one, with prefactor κ , is always present in such constitutive model.
The two other ones (involving λ and ξ ), linear in q, are, however, specific to our approach and stem
from the one-sidedness of contact forces. These terms would be absent in a system where elastic
interactions can resist both compression and elongation. Finally, the last term of (26), −β�′ is more
usual and describes the stress relaxation due to the interparticle repulsion that tends to separate pairs
of particles in contact and thus decrease the contact forces. In our case β �= 1, though, because the
separation is resisted by other surrounding particles, which is taken into account by the three-body
correlation function g3 and its approximation via the Kirkwood closure. When φ is large enough,
this steric effect dominates, contact opening is prevented, and jamming occurs, which in Eq. (26) is
signaled by β � 0.

Models of the UCM type, used to describe viscoelastic fluids, are many [27,53]. They typically
involve the same tensorial terms as the r.h.s. of Eq. (26), that is, terms of the form f1(�′, E )�′ and
f2(�′, E )E (sometimes alongside other terms). The functions f1(�′, E ) and f2(�′, E ) are scalar
functions of the simultaneous invariants under orthogonal transformations of the two tensors �′ and
E, following the Hand framework [54] for frame-indifferent dynamics of a symmetric second-rank
tensor. In our case, as �′ and E are two-dimensional traceless tensors, these invariants are �′ : �′,
E : E, and �′ : E. Now, many UCM-like models assume f1 and f2 to be simple analytical functions.
Our derivation, based on an expansion in the stress anisotropy amplitude, also reveals simple
functional forms for f1 and f2, albeit rather “singular” ones, as they involve the tensorial norm
|�′| =

√
�′ : �′/2, which to our knowledge is unique to our model. The other possible invariants

appear in some UCM-like models; e.g., �′ : E appears in the Larson model [55], and E : E appears
in the White and Metzner model [56]. We discuss below the consequences of the presence of these
singular terms on the rheology of dense soft suspensions.

Intriguingly, these “singular” terms have closely related analogues in the semiphenomenological
Doi-Ohta theory for mixtures of immiscible fluids [40] (which include, but are not limited to,
emulsions). The central outcome of Doi-Ohta theory is a coupled time evolution for the so-called
interface tensor q, which is the traceless second moment tensor of the distribution of unit normals
on a droplet interface deformed by the flow, and the interface area Q. The singular terms in the
stress evolution (26) all have equivalents in Doi-Ohta theory provided we perform the substitutions
�′ ↔ q and |�′| ↔ Q. An additional term proportional to Qq present in the Doi-Ohta theory would
also appear in our constitutive model as a term in |�′|�′ by performing the weakly anisotropic
expansion up to order q2. There are, however, two crucial differences. First, in our approach these
terms are relaxation terms coming from interactions, unlike in Doi-Ohta theory where they result
from the closure of the advection of q (although phenomenological extensions of the theory include
relaxation terms induced by surface tension with a similar form [57,58]). Second, in Doi-Ohta
theory, Q has its own dynamics and is not proportional to |q|. Instead, in steady state, one has
Q2 ∝ −E : q [40].

053302-8



MICROSCOPICALLY GROUNDED CONSTITUTIVE MODEL …

FIG. 2. Flow curves in simple shear (a) and planar elongational flow (b). (a) Dimensionless viscosity ηs as
a function of dimensionless shear rate γ̇ in logarithmic scale for several volume fractions below the jamming
volume fraction φJ. In inset, scaled flow curves �φηs as a function of scaled shear rate γ̇ /�φ, evidencing
the critical scaling of the viscosity when approaching jamming. (b) Extensional viscosity ηe as a function
of extension rate ε̇. Inset: Trouton ratio ηe(ε̇)/ηs(γ̇ ) as a function of the scaled deformation rate, for ε̇ = γ̇ .
Trouton ratio takes its Newtonian value in the small rate limit, and for larger rates is predicted alternatively
sub-Newtonian and super-Newtonian.

IV. RHEOLOGICAL PROPERTIES

A. Steady-state rheology, shear thinning

We first investigate the steady-state rheology predicted by our model. We get the steady-state
solution of Eq. (26) numerically and show the obtained flow curves in Fig. 2, in two cases, simple
shear ∇u = γ̇ e1 ⊗ e2 for which the shear viscosity is defined as ηs = �12/γ̇ , and planar extensional
flow ∇u = ε̇(e1 ⊗ e1 − e2 ⊗ e2) for which we define the extensional viscosity ηe = (�11 − �22)/ε̇.
In both cases we observe a shear-thinning behavior, which we can characterize analytically in the
limit of small deformation rates. The Trouton ratio Tr = ηe/ηs of extensional and shear viscosities
evaluated at the same deformation rates ε̇ = γ̇ , shown in the inset of Fig. 2(b), is predicted to be
taking the Newtonian value Tr = 4 in the limit of small deformation rates. At intermediate rates,
Tr < 4, in contrast to the high shear rates for which our model predicts super-Newtonian values
Tr > 4.

To get analytical results, we evaluate perturbatively the viscosity at low strain rate. To keep the
calculation generic, without explicit reference to the flow geometry, we use the strain rate γ̇ = 2|E|.
For an extensional flow, we thus have γ̇ = 2ε̇. Expanding the steady-state stress in powers of the
shear rate γ̇ as �′

st = �1γ̇ + �2γ̇
2 + o(γ̇ 2), we get from Eq. (26), defining Ê = E/γ̇ and �̂ =

�/γ̇ ,

�1 = κ

β
Ê, (32)

�2 = − κ

2β2
(λ̃ + 2ξ )Ê + 1

β
(�̂ · Ê − Ê · �̂), (33)

with λ̃ = λ + 8
π

[the coefficient λ̃ gathers the contributions of terms proportional to |�′|E in
Eq. (26), coming from the λ term and from the pressure term in the upper-convected Maxwell
derivative]. The viscosity η = �′

st : Ê/γ̇ is then

η = κ

2β

(
1 − λ̃ + 2ξ

2β
γ̇

)
+ o(γ̇ ), (34)

where we used (�̂ · Ê − Ê · �̂) : Ê = 0 and |Ê| = 1/2.
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FIG. 3. Viscosity ηs in simple shear as a function of the volume fraction φ for several values of γ̇ (solid
lines) increasing from dark to light colors. The viscosity decreases close to φJ for large γ̇ /�φ values beyond
the domain of validity of the model (dotted lines). With dashed lines, we show the approximation with the
effective volume fraction ηHard(φeff ), with φeff given in Eq. (37). In the inset, an alternative form of the critical
scaling, Eq. (35), γ̇ ηs = gη(�φ/γ̇ ), with gη(x) = fη(1/x)/x.

The zero-shear viscosity limγ̇→0η(γ̇ , φ) is also the viscosity in the hard-sphere limit ηHard(φ),
as we recall that with our nondimensionalization γ̇ is nothing but the Weissenberg number. Since
β ∼ �φ ≡ φJ − φ for small �φ, the viscosity diverges at the jamming transition as η ∼ �φ−1, to
be contrasted with the stronger divergence η ∼ �φ−ν with ν ≈ 2–2.5, as reported in the literature
(see [4,32,59] and references therein). As shown in solid lines in Fig. 3, for finite γ̇ the viscosity
first increases with φ but stays below the hard-sphere viscosity, in agreement with observations, e.g.,
[26,28,60]. Further increasing φ, the viscosity reaches a maximum below jamming and decreases
close to φJ, where it vanishes (dotted lines in Fig. 3). The decrease of viscosity occurs for large
γ̇ /�φ values, for which the deformation q is large, and therefore lies beyond the limit of validity of
the model.

Remarkably, due to the relation between particle pressure and stress anisotropy, Eq. (21), the
particle pressure is also linear in γ̇ at leading order, a key feature of the rheology of suspensions of
hard particles (which in particular implies a finite macroscopic friction coefficient μ, as we will see
later). This is in contrast to polymeric systems, for which normal stresses are quadratic in γ̇ [27]. In
our model the physical origin of this behavior is transparent: it is a direct consequence of the finite
range of the repulsive force, which implies that only the compressed part of the microstructure
contributes to both pressure and deviatoric stress. For a polymeric system, contributions from the
compressed and elongated parts of the microstructure add up to the deviatoric stress, but cancel out
for the pressure at the lowest order in deformation. However, our model is again like polymeric
viscoelastic models when it comes to the normal stress difference N1 = �11 − �22, which is
quadratic in γ̇ at leading order: in Eq. (32), there is no normal stress difference contribution in
simple shear, but in Eq. (33), the second term, involving the vorticity, gives a finite contribution to
N1.

Within the set of approximations performed here, we find that (λ̃ + 2ξ )/β > 0, which causes the
shear thinning. More importantly, Eq. (34) implies that the viscosity change �η(γ̇ ) = η(γ̇ ) − η(0)
is linear, �η ∝ γ̇ y with y = 1. This is unusual for constitutive models, at least for simple shear
flows, for which other viscoelastic models in the literature give y = 2 (e.g., Johnson and Segalman
[61], Giesekus [62–64], Larson [55] or Phan-Thien and Tanner [65,66]). Indeed, in our model, the
terms leading to y = 1 are the “singular” ones involving |�′| in Eq. (26). Measured values of y
reported in the literature are rather diverse but usually are � 1. Numerical simulations by Vågberg
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FIG. 4. Dimensionless first normal stress difference N1 as a function of dimensionless shear rate γ̇ for
several volume fractions below the jamming volume fraction φJ, under simple shear flow.

et al. show y ≈ 0.93 [26], while others by Kawasaki et al. show y ≈ 0.56 [22]. Experiments on
emulsions, foams, and microgels are compatible with y ≈ 0.4–0.5 [14,15].

In Fig. 4 we show the normal stress difference viscosity N1/γ̇ = (�11 − �22)/γ̇ that we measure
in simple shear flow, as a function of γ̇ . As expected from Eq. (33), N1 vanishes in the small γ̇ limit.
For finite γ̇ , it is a concave function, which is consistent with the behavior observed in simulations
of emulsions [17,18,29]. The concavity is increasing with increasing φ, and at large φ we see a
decrease of N1/γ̇ at large γ̇ . Such a decrease has been observed in emulsions for large viscosity
ratios between the two phases [18].

B. Critical scaling

The question of a critical scaling for the rheology of suspensions of soft particles close to the
jamming transition is recurring in the literature [14,15,19,20,22]. Close to the jamming transition,
it has been proposed from experimental observations that the viscosity follows a scaling law

η�φa = fη(γ̇ /�φb), (35)

with a ≈ 1.7 and b ≈ 3.8 [14]. Numerical simulations of idealized suspensions reported a similar
scaling form, but with exponents a ≈ 1.65 and b ≈ 2.85 [19]. Corrections to scaling are, however,
known to be significant in the range of �φ accessible in practice both in experiments and numerics,
and therefore the precise evaluation of the true critical exponents is challenging [20,22].

In our model, as we have β ∼ �φ, one can rewrite Eq. (34) under the scaling form (35) with
a = b = 1, where fη is a known scaling function, independent of both γ̇ and �φ. This critical
scaling property is illustrated in the inset of Fig. 2(a), for the viscosity ηs in simple shear. For small
enough �φ values, the rescaled viscosity ηs�φ falls onto a master curve as a function of γ̇ /�φ,
whereas we can see deviations from this master curve for �φ = 0.05. Similarly, in the inset of
Fig. 2(b), we show the Trouton ratio ηe/ηs, which close to jamming is a function of γ̇ /�φ only.
Alternatively, this critical scaling can be used to rescale data obtained for varying φ at fixed values
of γ̇ , as in Fig. 3. Indeed, we have ηsγ̇ = gη(�φ/γ̇ ) with gη(x) = fη(1/x)/x. This alternative form
is shown in the inset of Fig. 3.

One may wonder whether the critical scaling property is limited in our model to the expansion to
order γ̇ 2 of the deviatoric stress tensor �′

st performed to derive Eq. (34), with possible corrections
to scaling when taking into account higher orders in γ̇ . We have checked that the critical scaling
property remains valid when performing an expansion to order γ̇ 3 of �′

st, corresponding to an
expansion to order γ̇ 2 of the viscosity η. This critical scaling property can be understood as follows

053302-11



NICOLAS CUNY, ERIC BERTIN, AND ROMAIN MARI

from the steady-state version of Eq. (26). Neglecting the �φ dependence of other coefficients than
β ∝ �φ (an assumption valid in the critical regime �φ 
 1) and dividing Eq. (26) by �φ, one
finds that the �φ dependence can be reabsorbed into a scaled tensor E/�φ. The only dependence
on γ̇ that is not rescaled by �φ is in the vorticity �. Recalling that the pressure p appearing in
the term 2pE in Eq. (26) is proportional to |�′| from Eq. (21), one finds that the rescaled viscosity
η�φ = (�′

st : Ê )�φ/γ̇ is a function of γ̇ /�φ as long as the projection �′
st : Ê of the deviatoric

stress tensor �′
st on the normalized strain rate tensor Ê is independent of the vorticity �. This

property remains true at least up to order γ̇ 3 in the expansion of �′
st, as mentioned above, due to the

relation (�̂ · Ê − Ê · �̂) : Ê = 0. Whether it is valid at all orders in γ̇ is a difficult question, which
we do not attempt to address here. In any case, Eq. (26) is expected to be valid only at low shear
rate due to the weakly anisotropic expansion performed in Sec. III C, and considering a high-order
expansion of Eq. (26) in γ̇ may not be physically relevant.

Interestingly, the critical scaling (35) of the viscosity also sheds light on the idea mentioned in
the introduction that particles effectively appear softer when increasing shear stress. The viscosity
of soft particles may then be approximated as ηHard(φeff ), where ηHard(φ) is the viscosity for a
suspension of hard spheres at volume fraction φ [21]. As ηHard(φ) corresponds in our model to the
limit of ηs(γ̇ , φ) when the dimensionless shear rate γ̇ goes to zero, one can thus define φeff through
the relation ηs(γ̇ , φ) = ηs(0, φeff ). Using the critical scaling given in Eq. (35), one finds

φeff = φJ − �φ
fη(0)

fη(γ̇ /�φ)
. (36)

At small shear rate γ̇ , φeff is close to the nominal volume fraction φ, and it decreases with increasing
shear rate [since fη is a decreasing function; see inset of Fig. 2(a)], in agreement with physical
intuition. For small enough γ̇ /�φ, one finds

φeff = φ − λ̃ + 2ξ

2β0
φJγ̇ , (37)

so that φeff − φ is actually independent of �φ to leading order in γ̇ . The approximation η(φ, γ̇ ) ≈
ηHard(φeff (γ̇ )) is in dashed lines in Fig. 3.

C. Soft granular rheology

In the previous section, we presented the rheology under constant volume. Alternatively, the
rheology can be expressed in the framework of constant particle pressure rheology, initially pro-
posed in the context of dry granular media [67–69]. In this framework, the control parameters are
the pressure p and the shear rate γ̇ , which can be grouped into a dimensionless number called the
viscous number J [70],

J = γ̇

p
. (38)

(We recall that γ̇ and p are made dimensionless; see Sec. II). Rheology in simple shear is still
characterized by the deviatoric stress (i.e., the off-diagonal stress component), which is scaled by
the applied pressure in the macroscopic friction coefficient

μ = �12

p
. (39)

Scalar constitutive equations for the shear components of the stress and strain rate tensors can
then be formulated in terms of the two functions μ(J, p) and φ(J, p). One may alternatively use the
dimensionless shear rate γ̇ instead of the dimensionless pressure p, in which case the rheology is
expressed as μ(J, γ̇ ) and φ(J, γ̇ ). Sticking to J and p as dimensionless numbers, for low particle
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softness, corrections to the jamming limit J, p → 0 have been discussed in [22] and take the generic
form

μ(J, p) = μJ + bμJβμ − cμ pαμ, (40)

φ(J, p) = φJ − bφJβφ + cφ pαφ . (41)

Exponent values βμ ≈ 0.346, βφ ≈ 0.391, αμ ≈ 0.56, and αφ ≈ 0.75 have been evaluated in nu-
merical simulations of a three-dimensional suspension of harmonic spheres [22].

This soft granular rheology approach can also be applied to our constitutive model. The tensorial
constitutive equation (26) allows us to generalize the soft granular rheology relation μ(J, p) into a
tensorial form, by introducing tensors μ = �′/p and J = E/p. At lowest order, we find

μ = μJ − π2

8κ
(λ̃ + 2ξ )pÊ + π

κ
p[�̂ · J − J · �̂] (42)

with μJ = π
2 Ê. Several comments are in order. First, the fact that our theory gives a nonzero value

of μJ is already a nontrivial result, and is again a consequence of the finite range of the repulsive
interaction in our model. Second, the vorticity potentially brings a nontrivial tensorial contribution
to μ, in such a way that the tensor μ is not necessarily proportional to Ê.

However, in the case of a simple shear flow geometry, the effect of vorticity on the shear
component of Eq. (42) disappears. We define the off-diagonal components of μ and J as μ and
J/2, respectively, to match standard definitions [22,71]. We get for the lowest order expansions of
μ(J, p) and φ(J, p) the simple form

μ(J, p) = μJ − cμ p, φ(J, p) = φJ − bφJ, (43)

with μJ = π/4. By comparison with Eq. (40), we find αμ = βφ = 1 and bμ = cφ = 0 while the
other coefficients cμ and bφ are nonzero:

cμ = π2

16κ
(λ̃ + 2ξ ), bφ = 2κφJ

πβ0
. (44)

Note that the term involving the vorticity disappears as it has no off-diagonal component in a simple
shear flow.

The decrease of μ with increasing p is well documented for soft particles [22,71], or even
for Brownian particles [72,73], as Brownian motion has somewhat similar effects on rheology as
softness [21]. The reason why no correction in J appears in the expansion of μ(J, p) for our model
can be traced back to the very simple parametrization of the anisotropic pair correlation function
introduced in Eq. (14), which forces the deviatoric stress tensor to be proportional to the pressure
with a proportionality factor independent of �φ. On the other side, the reason for the absence of a
correction in p in the expansion of φ(J, p) lies in the low order of the expansion. Going to the next
order in the expansion of φ(J, p) requires us to perform the expansion of the pressure to order q2,
thus extending Eq. (20) to the next order. In this way, one finds the first correction of φ(J, p) in p,
which takes the form

φ(J, p) = φJ − bφJ + c′
φJ p (45)

(where c′
φ is a known coefficient), meaning that the relevant variables to evaluate the corrections of

φ around φJ are rather J and γ̇ = J p.
In Fig. 5(a) we plot the results of numerical integration of Eq. (26) for μ. As control parameters

in Eq. (26) are φ and γ̇ , while μ and J are outcomes, we present results as μ as a function of J
for several fixed (small) values of the dimensionless shear rate γ̇ . To evaluate the pressure we used
Eq. (21) with |�′| evaluated at first order in γ̇ [Eq. (32)] to remain consistent in our expansion in q.
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FIG. 5. (a) Macroscopic friction coefficient μ = �12/p as a function of the viscous number J = γ̇ /p in
simple shear, for several values of the dimensionless shear rate (Weissenberg number) γ̇ , with solid lines. With
dashed lines, predictions from Eq. (46). In the inset the same data plotted as a function of J/γ̇ , showing that
all shear rates collapse on the same curve, which is predicted to be exact at the lowest order in J and p by
Eq. (46) (prediction shown in dashed line). (b) Volume fraction as a function of J , for the same values of the
dimensionless shear rate γ̇ . The effect of softness is not visible, as it scales as γ̇ , which largest value here is
γ̇ = 10−4.

The predictions of the lowest order expansion in p = γ̇ /J , obtained from Eq. (43) as

μ(J, γ̇ ) = μJ − cμ

γ̇

J
, (46)

are shown in dashed line for comparison. We recover a plateau of value μ = μJ at large J ,
corresponding to a small pressure p. At low J values (keeping γ̇ fixed), particle softness induces a
decrease in μ, and we find that in the J → 0 limit, μ vanishes for all finite γ̇ . It should, however, be
noted that in this limit the microstructure anisotropy q is large, and the model reaches its limits of
validity.

According to Eq. (43), the curves for several values of γ̇ can be collapsed by plotting them as a
function of J/γ̇ , as long as p = γ̇ /J is small enough. This rescaling is plotted in the inset of Fig. 5,
which shows the quality of the collapse even for surprisingly large values of p of order 1.

In Fig. 5(b) we show the corresponding numerical results for φ as function of J for the same
dimensionless shear rate values as in Fig. 5(a). Following Eq. (45), the effect of varying the shear
rate is of order γ̇ , and is indeed unnoticeable in Fig. 5(b).

D. Transients

We now investigate the transient rheology predicted by our model. In Fig. 6(a) we show the
predicted load curves in simple shear starting from an initial resting condition �′ = 0, for several
values of the shear rate. At small shear rates, load curves are monotonic and steady state is reached
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FIG. 6. (a) Load curve in simple shear, �12, as a function of strain γ , for �φ = 0.001 and several values
of shear rate γ̇ , increasing from bottom to top. (b) Load curves for several �φ values (increasing from dark
to light) and several γ̇ , bundled by groups sharing the same scaled shear rate values γ̇ /�φ, increasing from
bottom to top. Load curves collapse on a master curve in the small shear rate limit, showing the critical scaling
of the dynamics at work.

after a strain of order 1. At rates γ̇ � 10−5, steady state takes longer to achieve, up to a strain
γ ≈ 5, and the suspension passes through a stress overshoot for γ ≈ 1. There are few reports of
experimental load curves for suspensions of soft particles below jamming, but stress overshoots
have been observed in polymer blend emulsions [39,58], or in simulations of emulsions [16].

Remarkably, in our model a scaling form also holds for the temporal evolution of the stress.
Indeed, following the same reasoning that concludes to the existence of scaling in steady state, we
find that asymptotically close to jamming, the stress follows �′ = f�′ (γ̇ /�φ, t�φ). This implies
that stress-strain load curves at different �φ can be superimposed if compared for the same values
of γ̇ /�φ. This is done in Fig. 6(b), showing the presence of scaling as well as deviations from it
when �φ exceeds a few percent.

We also investigate the predictions of the model in shear reversal, where starting from a steady-
state simple shear flow under shear rate γ̇ , one suddenly reverses the flow direction ∇u → −∇u.
The viscosity and normal stress difference N1 = �11 − �22 scaled by their respective steady-state
values ηst and N st

1 are shown as a function of postreversal strain in Fig. 7 and its inset. For all
shear rates, ηs/η

st at reversal discontinuously jumps from 1 to −1, reflecting the fact that the
configuration did not change at reversal. For the same reason, N1/N st

1 is continuous at reversal.
The later evolution towards the steady-state value ηs/η

st = 1 depends on the shear rate. At large
shear rates, the viscosity has a nonmonotonic evolution to steady state, with an overshoot at strains
of order 1. The normal stress difference first decreases before increasing back up to its steady-state
value. By contrast, at low rates, the relaxation is monotonic and very quick. In fact, in the limit
of vanishing shear rates (i.e., the hard particle limit), the viscosity (and normal stress difference)
returns to steady state after a vanishing strain. This behavior is of course quite different from what
is observed for suspensions of hard particles [74–77], for which the postreversal transients extend
over a finite strain and are typically nonmonotonic as ηs/η

st passes through a minimum.
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FIG. 7. Shear reversal at �φ = 0.01 for several values of shear rate γ̇ , increasing from dark to light. In the
main panel, the viscosity ηs scaled by its steady-state value ηst as a function of strain after reversal. In inset,
the scaled normal stress difference N1/N st

1 .

This behavior exposes limits of our model coming from the simplified treatment of the mi-
crostructure which is reduced to the anisotropy of the contact shell. In the hard-particle limit the
dynamics of contacts, being driven by elastic forces, is infinitely fast, and thus our model predicts no
shear reversal transients. However, in an actual suspension part of the stress also comes from particle
in near (but not quite in) contact, which anisotropic structure evolves with strain, and not only
elastic forces. This stress contribution can in some cases be neglected, as in steady state, where it is
much smaller than the contributions from contacts close to jamming [47,78,79]. In shear reversal,
however, the contact contribution is transiently strongly suppressed, and taking into account other
stress sources becomes essential for an accurate prediction of the transient [80].

V. DISCUSSION AND CONCLUSION

We developed a constitutive model to describe the flow behavior of dense non-Brownian suspen-
sions of soft elastic disks. Starting from the microscopic equations of motion, we could express the
dynamics of the stress as an ensemble average of the time evolution of the pair correlation function.
The resulting constitutive model, Eq. (26), describes a viscoelastic shear-thinning behavior, with a
zero-shear-rate viscosity η(γ̇ → 0) diverging at the jamming transition.

Our model has several unique and appealing features. First, while the normal stress difference is
quadratic in shear rate at leading order, N1 ∝ γ̇ 2, the particle pressure has a linear contribution in γ̇ ,
which eludes viscoelastic models known in the literature. This contribution is a direct consequence
of the finite range of contact forces, which implies that pairs of particles in the compressed and
elongated quadrants of the microstructure do not have opposite contributions to the isotropic part of
normal stresses and leads to Eq. (21). These distinct scalings for normal stresses and their differences
is a distinguishing feature of emulsions [17,18,30].

Second, the shear-thinning behavior is uncommon among models of viscoelastic materials,
which usually predict η(γ̇ ) − η(0) ∝ γ̇ 2. By contrast, our model predicts η(γ̇ ) − η(0) ∝ γ̇ , while
available observations for suspensions of soft particles report η(γ̇ ) − η(0) ∝ γ̇ y with y ranging
from ≈0.4 to ≈1, depending on the authors [14,15,17,18,22–24,26]. This unusual prediction stems
from the presence of “singular” terms involving |�′|, which do not naturally arise when developing
phenomenological models following Hand theory, as |�′| is the square root of a tensorial invariant.
The general approach developed here shares its starting point, a formally exact but unclosed stress
evolution from the Smoluchowski equation for the dynamics of the pair correlation function, with
the standard method used to derive constitutive models of polymer solutions or melts (sometimes
called “Smoluchowski” theory). Usual polymeric models derived from microscopics, however, do
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not contain similar singular terms. Indeed, in our model these terms can be traced back to the fact
that extensional quadrants around a given particle do not contribute to the tensorial integrals (6) and
(7) that describe the interplay of the particle-pair dynamics with the applied flow, while extensional
quadrants contribute to the stress evolution in polymeric systems. A further singular term involving
|�′|�′ appears in our approach if we push the expansion to the next order in the anisotropy parameter
q. However, it turns out this term comes with a prefactor turning the rheology to shear thickening.
This calls for improvements in the closures we use in our method.

While many technical challenges faced here, such as closures, are not specific to the softness
of the particles, the constitutive model is not suitable for the description of suspensions of hard
particles. This is obvious when looking at the dynamics under shear reversal. In the limit of infinitely
stiff particles, our model predicts that at reversal the stress jumps instantaneously from its steady-
state value in the forward direction to its steady-state value in the backward direction. Our model
is thus oblivious to the transient decrease of viscosity observed on a strain of order one. Besides,
our model successfully captures the fact that suspensions of hard particles have a finite macroscopic
friction coefficient μ at jamming, in the limit of vanishing viscous number, J → 0. However, μ is
predicted as independent of J in the limit of small dimensionless shear rate (i.e., Weissenberg or
capillary number), whereas experiments and simulations show that μ is an increasing function of
J . If we estimate the proximity of the hard-sphere limit by how far μ is from its hard-sphere limit
value, the inset of Fig. 5 suggests that values of p = γ̇ /J smaller than ≈10−3 are in the hard-sphere
limit, and therefore out of the domain of validity of our model. The deficiencies at large p are tied
to assumptions about the first-neighbor shell. First, the number of particles in the shell (measured
by the weight A) has no intrinsic dynamics, and, second, the distribution of particles within the shell
remains homogeneous (even if the shell distorts, and creates an anisotropic microstructure). Both
these assumptions could probably be relaxed in an extension of the presented model. It is, however,
quite uncertain at this stage whether such an extended model would naturally bridge to established
models for hard-sphere suspensions [81–85], and in particular the recent Gillissen-Wilson model
[86–88].

Such a bridge model should also be able to recover and enlighten the scaling crossover that is
expected for the normal stress differences as a function of γ̇ . Indeed, in the limit of small shear
rates, one should recover the hard-sphere scaling N1, N2 ∼ γ̇ [4,32,59], which should crossover
at finite γ̇ to N1, N2 ∼ γ̇ 2 [16,17,24]. To our knowledge, no constitutive model is able to predict
such crossover at the moment. The reason for the finite normal stress differences for suspensions of
hard particles is an anisotropy in the angular distribution of nearest neighbors. In our model, this
anisotropy is lost in the hard-sphere limit, because the anisotropy introduced in our ansatz for the
pair correlation, Eq. (14), has a dynamics governed solely by elasticity, and thus becomes irrelevant
in the hard-sphere limit. This requirement is too strong for interactions that are separating under
flow, which should instead have a dynamics dominated by advection, and thus retain a nontrivial
anisotropy in the hard-sphere limit.

Here we focused on the two-dimensional case for calculation simplicity. However, the derivation
presented in this article can in principle be generalized to three dimensions. All assumptions made
remain relevant in three dimensions and all calculations can be generalized to three dimensions
at the price of an increase in their complexity. While Hand rules [54] stipulate that several new
tensors combining E and �′ may be involved in a three-dimensional model, from the assumptions
in our model we anticipate that the only additional tensorial terms in three dimensions could be �′2

and E · �′2 + �′2 · E. (In two dimensions these terms do not appear due to the Cayley-Hamilton
theorem.)

While our derivation gives us access to a model which coefficients are known functions of the
microscopic particle properties, the closures and approximations we perform affect the coefficient
values and lead to predictions that are not quantitative. Nonetheless, given the merits of the
model on several qualitative predictions, as discussed above, it is possible that our model becomes
quantitatively accurate if the several coefficients involved in Eq. (26) are considered as adjustable
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parameters of the model, with β as a special case as it should remain a function of �φ to preserve
the existence of the jamming transition, where β vanishes.
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APPENDIX: EVALUATION OF TENSORIAL INTEGRALS

1. Tensors defined by an integral over g

We evaluate here the traceless parts �′, �′, �′, and �′ of the corresponding tensors introduced
in Eqs. (6) to (9), which are defined by integrals over the pair correlation function g(r). We start by
the computation of �′, which can be performed exactly, without relying on a weakly anisotropic
parametrization of g(r). With the form f (r) = r − 2 of the interparticle force chosen here, the
transposed gradient ∇ f T reads

∇ f T = f ′(r) er ⊗ er + f (r)

r
eθ ⊗ eθ = er ⊗ er + r − 2

r
eθ ⊗ eθ , (A1)

whence the relation

(r ⊗ f (r)) · ∇ f T = r ⊗ f (r) (A2)

follows, and we find that � = �. Therefore we have

�′ = �′. (A3)

In contrast, the evaluation of the other tensors �′, �′, and �′ in terms of the tensors E and �′ relies
on the weakly anisotropic parametrization (14) of g(r) and a small q expansion.

The tensors � and � both include the strain-rate tensor E in their definition. To proceed with
the calculation, we need to use a general and explicit expression of the tensor E. The latter being a
symmetric traceless tensor, it can be written without loss of generality as

E =
(

a1 a2

a2 −a1

)
. (A4)

We then have

E : er ⊗ er = a1 cos 2θ + a2 sin 2θ. (A5)

By replacing this expression in the definition of � and � and by applying the same calculation steps
as for the evaluation of the stress tensor, Eq. (16), we obtain after truncation at order q of the small
q, weakly anisotropic expansion,

�′ = ρ2

(
πA − 8

3
(2A − 1)q

)
E − 8

3
qa1(2A − 1)ρ2

(
1 0
0 −1

)
, (A6)

�′ = −4

3
Aqρ2E − 4

3
Aqa1ρ

2

(
1 0
0 −1

)
. (A7)

In these equations, one can recast q in terms of �′ and its norm |�′| using Eqs. (17) and (18). One
then has to reexpress a1 in tensorial form. With this aim in mind, we note that the following tensorial
double contraction is proportional to a1:

�′ : E = 2πAρ2qa1. (A8)

Eliminating in this way q and a1 from Eqs. (A6) and (A7), one ends up with the final expressions of
�′ and �′ given in Eqs. (22) and (23).
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Turning to the evaluation of the tensor �′, we find that its leading contribution is of order q2, so
that �′ can be neglected in an expansion at order q.

2. Tensors defined by an integral over g3

We now have to calculate the tensors � and ϒ defined as integrals of g3. To do so, similarly to
the case above the jamming density studied in [44], we use the so-called Kirkwood closure relation
(12) allowing one to approximate g3 by a function of g. By replacing g by its parametrization (14),
g3 can then be expressed as

g3(r, r′) = g0

(
r

1 + q cos 2θ

)
g0

(
r′

1 + q cos 2θ ′

)
g0

(
u

1 + q cos 2ψ

)
, (A9)

with r = |r|, θ = arg(r), r′ = |r′|, θ ′ = arg(r′), u = |r − r′|, and ψ = arg(r − r′). These last two
variables can be expressed as functions of r, r′, θ , and θ ′ as

u =
√

r2 + r′2 − 2rr′ cos(θ − θ ′), (A10)

cos 2ψ = 1

u2
[r2 cos 2θ + r′2 cos 2θ ′ − 2rr′ cos(θ + θ ′)]. (A11)

The detailed derivation of these relations can be found in [44].
Evaluating the tensor �′ in the weakly anisotropic limit (q 
 1), one finds that the leading

contribution is of order q2. As we are performing an expansion to order q, the tensor �′ can thus be
neglected.

We now evaluate the tensor ϒ′ to order q in the small q expansion. We start with the following
identity:

[r⊗ f (r′)] · [∇ f (r)]T = r f (r′) f ′(r) cos(θ ′ − θ ) er ⊗ er + f (r′) f (r) sin(θ ′ − θ ) er ⊗ eθ . (A12)

Using f ′(r) = 1 [since f (r) = r − 2], one can decompose ϒ′ into two contributions ϒ′ = ϒ′
θ + ϒ′

r ,
resulting from the two terms in the r.h.s. of Eq. (A12). Using again symmetry arguments in the
integration over θ and θ ′, we can express ϒ′

θ and ϒ′
r as

ϒ′
θ = ρ3

2

∫
I

dθ

∫ 3π/4

π/4
dθ ′

∫ 2

0
dr r f (r)

∫ 2

0
dr′ r′ f (r′) sin(θ − θ ′) sin(2θ )

× g0

(
r

1 + q cos 2θ

)
g0

(
r′

1 + q cos 2θ ′

)
g0

(
u

1 + q cos 2ψ

) (
1 0
0 −1

)
, (A13)

ϒ′
r = ρ3

2

∫
I

dθ

∫ 3π/4

π/4
dθ ′

∫ 2

0
dr r2

∫ 2

0
dr′ r′ f (r′) cos(θ − θ ′) cos(2θ )

× g0

(
r

1 + q cos 2θ

)
g0

(
r′

1 + q cos 2θ ′

)
g0

(
u

1 + q cos 2ψ

) (
1 0
0 −1

)
, (A14)

where I = [−3π/4, π/4] ∪ [π/4, 3π/4]. To make calculations tractable, we use the following
approximate expressions of u and ψ :

u ≈ 2
√

2[1 − cos(θ − θ ′)], (A15)

cos 2ψ ≈ cos 2θ + cos 2θ ′ − 2 cos(θ + θ ′)
2[1 − cos(θ − θ ′)]

= − cos(θ + θ ′), (A16)

that are obtained from Eqs. (A10) and (A11) under the approximation r ≈ r′ ≈ 2, which is justified
by the fact that the pair correlation function is nonzero essentially close to contact for small
deformations. After some algebra, one finds that the tensor ϒ′

θ has a leading contribution at order
q2 and thus vanishes at order q. Turning to the evaluation of the tensor ϒ′

r , we get that its leading
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order contribution is of order q and is given by

ϒ′
r = −A

9
Bρ3q

(
1 0
0 −1

)
, (A17)

where the coefficient B is given in Eq. (25). Finally we use Eq. (17) to eliminate q in favor of �′,
leading to Eq. (24).
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