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Polymer stretching in laminar and random flows: Entropic characterization
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Polymers in nonuniform flows undergo strong deformation, which in the presence of
persistent stretching can result in the coil-stretch transition. This phenomenon has been
characterized by using the formalism of nonequilibrium statistical mechanics. In particular,
the entropy of the polymer extension reaches a maximum at the transition. We extend the
entropic characterization of the coil-stretch transition by studying the differential entropy
of the polymer fractional extension in a set of laminar and random velocity fields that are
benchmarks for the study of polymer stretching in flow. In the case of random velocity
fields, a suitable description of the transition is obtained by considering the entropy of the
logarithm of the extension instead of the entropy of the extension itself. Entropy emerges
as an effective tool for capturing the coil-stretch transition and comparing its features in
different flows.

DOI: 10.1103/PhysRevFluids.8.053301

I. INTRODUCTION

The configuration of a linear polymer in a moving fluid drastically changes from coiled to fully
stretched when the Weissenberg number (Wi), i.e., the product of the characteristic velocity gradient
and the polymer relaxation time, exceeds a critical threshold. This phenomenon is known as the
coil-stretch transition [1] and is observed in both laminar [2,3] and random flows [4–6], even though
with partially different features in the two cases. In addition to the nature of the flow, the coil-
stretch transition is influenced by whether the polymer is confined spatially or not [7], as well as
by the solvent quality [8–10], the polymer concentration [11], and the occurence of knots along the
polymer [12]. Moreover, a coil-stretch transition has also been observed in ring polymers [13–15],
entangled polymer melts [16–18], and elastic-sheets [19].

Characterizing the coil-stretch transition and accurately identifying the value of Wi at which
it occurs is essential for predicting the viscoelastic properties of polymer solutions. For instance,
phenomena such as turbulent drag reduction [20–22] and elastic turbulence [23–25] are observed
only if the polymers get sufficiently stretched by the flow. In the case of linear polymers, several
observables have been used to characterize the coil-stretch transition. A natural quantity is the
steady-state distribution of polymer extensions [2–6], which changes dramatically near to the critical
Wi: the mean increases rapidly, the coefficient of variation attains its maximum value, and the peak
shifts from the equilibrium extension Req to the maximum length L (here Req is the polymer root
mean square extension in the absence of flow). Another characterization considers the equilibration
time of the statistics of polymer extension [26,27] or alternatively the autocorrelation time of the
extension [28]. Near the coil-stretch transition these time scales are strongly amplified, and this
causes a critical slowing down of the stretching dynamics.

The coil-stretch transition has also been studied using nonequilibrium thermodynamic concepts
[29–35]. In particular, it has been shown that, in an extensional flow, the entropy of the polymer
extension is maximum at the critical Wi [32]. This result has a clear interpretation in terms of
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information, since the entropy quantifies the “randomness” of the extension within an ensemble
of polymers. In the coiled and stretched states the information concerning the polymer elongation
reaches a maximum because the distribution of polymer extensions is peaked around a single value
(Req and L, respectively). These states are hence minima of entropy. Conversely, the broadening
of the probability distribution of polymer elongations at the transition corresponds to a loss of
information and therefore a maximum of entropy. Recently, Sultanov et al. [36] have extended
this result to random flows by measuring the entropy of the extension of an ensemble of T4 DNA
molecules of maximum length L = 71.7 μm and radius of gyration Rg = 1.5 μm in an elastic
turbulence of von Kármán flow [23,37].

Here we pursue the entropic characterization of the coil-stretch transition by examining a set
of analytical and numerical flows. The goal of our study is to show that since it concentrates
information on the statistics of the extension in a single scalar quantity, entropy is as an effective
tool for comparing polymer stretching in different flows.

II. POLYMER MODEL AND FLOW CONFIGURATIONS

The polymer is modelled as a finitely extensible nonlinear elastic (FENE) dumbbell [38–40]. In
the Appendix, we show that, for a bead-spring chain, the results only differ in minor quantitative
details. The evolution equation for the polymer end-to-end vector R is

dR
dt

= κ(t ) · R − f (R)
R
2τ

+
√

R2
0

τ
ξ(t ), (1)

where κi j (t ) = ∇ jui(t ) is the velocity gradient at the center of mass of the polymer, τ is the poly-
mer longest relaxation time, R0 = Req/

√
3, f (R) = (1 − R2/L2)−1, and ξ(t ) is three-dimensional

white noise. Within this model, the radius of gyration is Rg = Req/2 =
√

3
2 R0 and the extensibility

parameter is defined as b = (L/R0)2 [38]. The dumbbell model can in principle be refined to include
effects such as hydrodynamic interactions or a conformation-dependent drag force [38,39]. Given
that our work is focused on the entropic characterization of the coil-stretch transition, rather than on
the properties of the dumbbell model itself, for the sake of simplicity we restrict to the basic version
of the model, which in any case has proved useful for a qualitative, and sometimes even quantitative,
understanding of the coil-stretch transition, in both steady [1–3,41] and random [21,42–44] flows.

Calculating the entropy requires obtaining the stationary probability density function (PDF) of
the extension, P(R), from Eq. (1), analytically or numerically. We shall consider the following
set of model flows, which have been widely employed in the study of polymer stretching and are
representative of more complex situations. For each of these flows, the main results on the statistics
of the extension are recalled below.

A. Extensional flow

The uniaxial extensional flow u = γ (−x/2,−y/2, z) is the first configuration in which the
coil-stretch transition has been predicted [1] and observed experimentally [2]. It consists of a
direction of pure stretching and two directions of compression with magnitudes that ensure in-
compressibility. The Weissenberg number is defined as Wi = γ τ and its critical value is Wicr =
1/2. If the rescaled end-to-end vector ρ = R/L is expressed in spherical coordinates as ρ =
ρ(sin θ cos φ, sin θ sin φ, cos θ ), then the stationary PDF of ρ is

P(ρ) ∝ (1 − ρ2)b/2 exp

{
bWi

2
ρ2[3 cos2(θ ) − 1]

}
, (2)
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where b = (L/R0)2 is the extensibility parameter [38]. An integration over the angular variables
yields

P(ρ) = 2πρ2
∫ π

0
P(ρ) sin θ dθ ∝ ρ e− bWi

2 ρ2
(1 − ρ2)b/2 erf

(
i

√
3bWi

2
ρ

)
, (3)

where erf is the error function.

B. Shear flow

In a linear shear flow u = (σy, 0, 0), the coil-stretch transition is not observed [45]. Owing to
thermal fluctuations, the dynamics of the polymer indeed consists of a sequence of tumbling events
which in turn correspond to as many coiling and stretching events, so that persistent stretching
is never realized [46–48]. Nevertheless, it will be instructive to study the entropy of polymer
extension also in this configuration and compare its behavior with that observed in other flows.
The Weisseinberg number is Wi = στ , and the PDF of ρ is now calculated numerically by means
of Brownian Dynamics simulations of Eq. (1), where the nonlinearity of the elastic force is resolved
by using Öttinger’s rejection algorithm [49].

C. Batchelor-Kraichnan (BK) flow

In random flows, it is convenient to define the Weissenberg number as Wi = λτ , where λ is
the Lyapunov exponent of the flow, i.e., the average stretching rate of line elements. A general
theory of the coil-stretch transition in random flows has been developed by Balkovsky et al. [43] for
linear polymer elasticity (Oldroyd-B model) and by Chertkov [44] for nonlinear polymer elasticity
(FENE model). For intermediate extensions 1/

√
b � ρ � 1, the PDF of ρ behaves as ρ−1−α with

α decreasing as a function of Wi and crossing zero at Wi = 1/2. Therefore, in the limit L → ∞ the
PDF of ρ is not normalizable if Wi � 1/2. This is interpreted as an indication that the coil-stretch
transition also exists in random flows and the critical Wi is again Wicr = 1/2. For finite L, the
measured slope may be affected by the nonlinearity of the elastic force, but the theory still implies
an analogous strong modification of P(R) at Wic [44].

The BK flow has been used extensively in the analytical study of turbulent transport below
the viscous-dissipation scale (see Ref. [50] and, for applications to polymer dynamics, Ref. [51]
and references therein). The velocity gradient is an isotropic tensorial white noise with correlation
〈κi j (t )κkl (t ′)〉 = λδ(t − t ′)(4δikδ jl − δi jδkl − δilδ jk )/3, where i, j = 1, 2, 3. The properties of this
stochastic flow allow an exact calculation of P(ρ) (see Refs. [44,52]):

P(ρ) = c ρ2

(
1 + 2bWi

3
ρ2

)−β

(1 − ρ2)β, (4)

with Wi = λτ , β−1 = 2(b−1 + 2Wi/3), and

c−1 =
√

π �(β + 1)

4�(5/2 + β )
2F1(3/2, β; 3/2 + β + 1; −2bWi/3). (5)

Here � and 2F1 denote the Gamma and hypergeometric functions, respectively. In this case, the
exponent of the power-law region of the PDF is α = 2β − 3 ≈ −3(1 − 1/2Wi) for b � 1.

D. Isotropic turbulence

Although useful for a qualitative study of the coil-stretch transition, the BK flow is Gaussian and
has zero correlation time. It therefore cannot capture all features of a fully turbulent flow. Thus,
we also consider polymers in homogeneous isotropic turbulence. To this end, we use a database
of Lagrangian trajectories from a direct numerical simulation (DNS) of the three-dimensional
incompressible Navier-Stokes equations [53,54]. These were solved by means of a standard, fully

053301-3



MUSACCHIO, STEINBERG, AND VINCENZI

dealiased pseudospectral method on a cubic domain of size 2π with 5123 collocation points and
periodic boundary conditions. The flow was driven to a stationary state by an external force
that maintained a constant energy injection rate. The choice of the kinematic viscosity and the
energy injection rate yielded a Taylor-microscale Reynolds number Rλ = 111. The velocity gradient
κ(t ) was calculated along a large number of fluid trajectories by using a bilinear interpolation
algorithm. Here we use this database of time series of κ(t ) to solve Eq. (1) for an ensemble of
104 polymers. Since attention is restricted to single polymer dynamics, the polymer feedback on
the flow is disregarded. Equation (1) is again solved by using Öttinger’s rejection algorithm [49].
The values of the parameters of the dumbbell model in the DNS are R0 = 1 and L = 18. The
extensibility parameter is b = (L/R0)2 = 182. The effect of thermal noise on the position of the
center of mass is disregarded, since thermal fluctuations are negligible compared to the fluctuations
of the turbulent velocity field. The Weissenberg number is again defined in terms of the Lyapunov
exponent. In the present simulation λ ≈ 0.136τK , where τK is the Kolmogorov dissipation time
scale, in accordance with previous estimates in isotropic turbulence [55,56]. Numerical simulations
of isotropic turbulence [28,57] have shown that P(ρ) behaves as a power of ρ for 1/

√
b � ρ � 1,

as predicted by Balkovksy et al. [43].

III. DIFFERENTIAL ENTROPY

Recent studies [32,36] have shown that the P(R) broadens at the transition from the coiled to
the stretched state. The broadening of P(R) can be interpreted as a loss of information concerning
the polymer elongation, which can be quantified in terms of the Shannon entropy. The results of
Refs. [32,36] confirm that the Shannon entropy attains a maximum at the Weissenberg number
corresponding to the transition.

The definition of the information entropy in the case of polymers requires some care, because the
elongation R is a dimensioned and continuous variable. The extension of the discrete information
entropy to a continuous random variable x ∈ R has been originally proposed by Shannon, which
introduced the concept of differential entropy:

Sx = −
∫

P(x) log[P(x)] dx, (6)

where P(x) is the steady-state probability density function of the variable x. Unlike the discrete
entropy, the differential entropy has some drawbacks. It can be negative [because P(x) can assume
values larger than 1], and it is not invariant under a change of variable. Considering a transformation
y = g(x), the corresponding entropies are related via Sy � Sx + ∫

P(x) log | ∂g
∂x |dx, where | ∂g

∂x | is the
Jacobian of the transformation g and the equality holds if the transform is a bijection. A further
problem arises if x is a dimensioned variable, as in the case of the polymer elongation. In this case,
P(x) has the dimension of [1/x] and therefore the definition of log[P(x)] is inappropriate.

Jaynes proposed to fix these issues by introducing the concept of relative entropy in terms of the
limiting density of discrete points [58]. The relative entropy is defined as the negative Kullback-
Leibler divergence [59] from the distribution P to the reference invariant measure M:

Hx = −DKL(P||M ) = −
∫

P(x) log

[
P(x)

M(x)

]
dx. (7)

An alternative approach consists in nondimensionalizing the argument of the logarithm with a
characteristic scale � homogeneous to x:

S�
x = −

∫
P(x) log[P(x)�] dx. (8)

The modified entropy S�
x is related to the Shannon differential entropy via S�

x = Sx − log �.
Recalling that P(x)� = P(x/�), the modified entropy is equivalent to the differential entropy of
the dimensionless quantity x/�, that is, S�

x = Sx/�.
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FIG. 1. Left: Entropy of ρ vs Wi for different flows. In all cases (except for the experimental data) the
extensibility parameter is set to b = 182. The experimental data have been translated vertically by �Sρ = 0.33,
which corresponds to a fit to a dumbbell with b ≈ 302. Right: Entropy of y = ln ρ for the BK and turbulent
flows and for the same parameters as in the left panel. The inset shows Sy together with the entropies S−

y and
S+

y associated with the PDFs of y conditional on Q < 0 and Q > 0, respectively.

For the specific case of the polymer end-to-end distance R, we propose here to use the differential
entropy of the rescaled polymer elongation ρ = |R|/L, defined as

Sρ = −
∫ 1

0
P(ρ) ln[P(ρ)] dρ. (9)

Here and in the following we use the natural logarithm in the definition of the entropy. The variable
ρ assumes values in the interval (0,1) and its PDF is normalized as follows:

∫ 1
0 P(ρ) dρ = 1. The

differential entropy (9) is equivalent to the relative entropy (7) with respect to the uniform measure
M(ρ) = 1. As a consequence, the entropy Sρ assumes only negative or null values. The maximum
value Sρ = 0 is attained for a uniform distribution P(ρ) = 1, which corresponds to the maximum
uncertainty of the polymer elongation. The differential entropy (9) is also equivalent to the modified
entropy (8) of R with characteristic scale L: Sρ = SL

R = − ∫
P(R) ln[P(R)L]dR. The relation Sρ =

SL
R = SR − ln L shows that a change of the maximum elongation L corresponds to a shift of the

entropy. In the next Section we will discuss how this property can be exploited to determine the
parameter L of the dumbbell model which best fits the experimental data. For the cases of random
or turbulent flows, we will also show that the coil-stretch transition is better described in terms of the
differential entropy of the dimensionless quantity y = ln ρ. The entropies of y and ρ are related via
Sy = Sρ − E[ln(ρ)]. Finally, we note that in the case of a dumbbell in potential flows, the differential
entropy SR = Sρ + ln L coincides with the thermodynamic entropy in Ref. [32].

IV. RESULTS

The differential entropy of the rescaled polymer length is now used to characterize and compare
the coil-stretch transition in the flows introduced in Sec. II. Sρ is plotted in Fig. 1 (left panel) as a
function of Wi; in all cases (except for the experimental data) the extensibility parameter is set to a
representative value of b = 182.

In the extensional flow, Sρ displays a narrow maximum at Wi near critical, i.e., the coil-stretch
transition is marked by a strong amplification of the entropy of ρ. This behavior reflects the fact
that, at both small and large Wi, the PDF of ρ is dominated by a peak (near to either 1/

√
b or 1),

whereas only in a narrow range of Wi around Wicr the PDF has a broader shape. A large variety of
polymer configurations is thus observed at the coil-stretch transition, as can be appreciated by direct
inspection of the time series of ρ [27,60].
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In the shear flow, Sρ starts growing in an appreciable way only when Wi is significantly greater
than Wicr. However, it eventually reaches values higher than for the extensional flow. This is
consistent with the distributions of the extensions that have been observed in experiments [45,46]
and numerical simulations [61,62]. The aforementioned tumbling events indeed entail continuous
recoiling and restretching of the polymer. Therefore, fairly large Wi are required to stretch polymers
appreciably, and since the tumbling frequency increases with Wi [46–48], the distribution of the
extensions becomes broader and broader as Wi grows. A pronounced maximum at extensions
comparable to L only forms for Wi as large as 200 [62], and only then is Sρ expected to start
decreasing.

Coming to the random case, Sρ displays a maximum for both the BK flow and isotropic
turbulence. At small and moderate Wi, the two curves are remarkably close despite the idealization
of the BK flow. It has indeed been shown in Ref. [63] that the shape of P(R) and the exponent
of the power-law intermediate region [P(R) ∼ R−1−α for R0 � R � L] are largely insensitive to
the correlation time of the flow up to correlation times of the order of λ−1. At large Wi, the
behavior differs: Sρ saturates in the BK flow, whereas it decreases in isotropic turbulence. The
reason for this is that if the flow is turbulent and Wi is sufficiently large, P(R) displays a power-law
intermediate region together with peak near to L [28]. The development of this sharp peak causes
the reduction of Sρ at increasing Wi. In contrast, such a peak is absent in the BK flow, because
a time-decorrelated velocity field is less effective in stretching polymers up to their maximum
length [52].

Figure 1 (left panel) also shows a qualitative comparison with the experimental data of Sultanov
et al. [36]. This comparison requires some caveats. First of all, the experimental points have been
translated vertically, which corresponds to using the extensibility parameter b of the dumbbell model
as fitting parameter [2,41]. Indeed, the entropy Sρ defined from the PDF of the rescaled elongation
ρ = R/L can be expressed in terms of the entropy of P(R/R0) as Sρ = SR/R0 − ln(b)/2, where
SR/R0 = ∫

P(R/R0) ln(P(R/R0)) d (R/R0), therefore a vertical translation of the entropy is equivalent
to a change of b. In particular, the observation that S(dumb)

ρ � S(exp.)
ρ + �Sρ corresponds to fitting

the experimental data with a dumbbell with equivalent extensibility b(fit) = b(exp.)[exp(−�Sρ )]2.
Thanks to this simple relation, the comparison of the entropy curves provides a useful tool for
determining the parameter b of the dumbbell model which fits the experimental data. A precise,
quantitative comparison between the experiment and the theory is not possible because the Weis-
senberg number was defined in a different way in the two cases. However, the analysis shows that
the experimental data are qualitatively compatible with the entropy of a dumbbell in a random
flow with extensibility parameter b ≈ 302. The latter estimate is obtained from the entropy shift
�Sρ = 0.33. The corresponding value of the ratio (L/Rg)(fit) ≈ 34.5 is not far from the experimental
value (L/Rg)(exp.) = 47.8.

Let us now come back to the comparison between the entropy curves in the random flows and the
extensional flow. In both cases, the maximum of Sρ is an indication of an increased randomness of
the polymer configuration in the transitional regime. However, there are some important differences
in the behavior of Sρ observed in random flows with respect to that of the extensional flow. First, for
a comparable value of Wi the entropy is always greater in random flows. This is because in random
flows P(ρ) has a power-law intermediate region and is therefore broader. Second, the maximum of
Sρ is much wider, since in random flows the transition from the coiled to the stretched state is much
less sharp [4]. Third, the maximum of Sρ is located at a value of Wi larger than Wicr = 1/2. To
understand this latter point, it is necessary to examine the power-law behavior of P(ρ).

As mentioned earlier, in random flows P(ρ) displays a power-law in the intermediate region
1/

√
b � ρ � 1 which scales as P(ρ) ∼ ρ−1−α , where the exponent α turns from positive to

negative at Wicr. Therefore, at the transition P(ρ) ∼ ρ−1. Given that α decreases monotonically
with Wi, it is rather at Wi > Wicr that P(ρ) ∼ ρ0 and the PDF of ρ is the broadest [28,52]. Since
Sρ is a measure of the randomness of ρ, it is therefore natural that in random flows Sρ reaches its
maximum value at Wi > Wicr. This fact explains the behavior of Sρ . However, it also raises the
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issue of an apparent discrepancy between the critical Wi for the coil-stretch transition and the value
of Wi at which Sρ is maximum. How to reconcile these two different thresholds?

The time-dependent PDF P(ρ, t ) satisfies the diffusion equation

∂P

∂T
= − ∂

∂ρi
{[κi j (t )ρ j − f (Lρ)ρi]P} + 1

b
�ρP, (10)

where time has been rescaled as T = t/2τ [38,49]. In a statistically isotropic flow and after the
initial transient, the PDF of the rescaled extension can be assumed to depend only on the polymer
length and not on the polymer orientation (this is true at any time if the initial PDF of ρ is
independent of the polymer orientation). It is therefore convenient to move to spherical coordinates
(see Ref. [64] for the transformation of the diffusion equation under a change of variables) and
drop the derivatives with respect to the angular variables. This turns the relaxation and Laplacian
terms into ∂ρ[ρ f (Lρ)P] and b−1∂ρρ

2∂ρ (P/ρ2), respectively. The flow term can be modelled à la
Richardson, i.e., by describing the stretching effect on the polymer as a diffusion with ρ-dependent
eddy diffusivity [65]. For a smooth random flow (recall that even in turbulent flows polymers
generally lie in the dissipation range, where the velocity field is smooth), the eddy diffusivity must
be proportional to ρ2 [50]. In summary, moving to spherical coordinates, assuming that the solution
of Eq. (10) only depends on ρ, and modeling the flow term via an eddy diffusivity proportional to
ρ2 yields the following equation for P(ρ, t ):

∂P

∂T
= ∂

∂ρ
[ρ f (Lρ)P] + ∂

∂ρ
ρ2K(ρ)

∂

∂ρ

P

ρ2
, (11)

with K(ρ) = Kρ2 + b−1. The coefficient K depends on the the Reynolds and Weissenberg numbers
in a way that is specific to the particular random flow. However, its explicit expression is not needed
for the discussion below.

Equation (11) can be recast as a Fokker-Planck equation with drift coefficient D1(ρ) = 4Kρ −
ρ f (Lρ) + 2/bρ and diffusion coefficient D2(ρ) = Kρ2 + b−1. The associated Itô stochastic equa-
tion is

ρ̇ = D1(ρ) +
√

2D2(ρ) η(t ), (12)

where η(t ) is white noise. Note that, for the BK flow, Eqs. (11) and (12) hold exactly with K =
2Wi/3 [44,52]. One important property of Eq. (12) is that the amplitude of the noise depends on ρ.
This follows from the fact that if the flow is random, the velocity gradient in Eq. (1) plays the role
of a multiplicative noise. However, to be able to use Wi as a control parameter for the coil-stretch
transition, it is desirable to move to a representation where the amplitude of the noise is independent
of the stochastic variable, i.e., a stochastic equation with additive noise only. This is achieved by
considering a transformation of variable of the form [64]:

y ∝
∫

dρ√
D2(ρ)

= 1√
K

ln[Kρ +
√

K (Kρ2 + b−1)] + const. (13)

Around the coil-stretch transition, the coefficient K is O(1). For ρ � 1/
√

b Eq. (13) thus gives

y ∼ ln ρ. (14)

Now note that the PDF of y is related to that of ρ via the relationship P(y) ∝ ρ P(ρ). Therefore,
according to the theory of Balkovsky et al. [43], at Wi = Wicr the power-law region of P(y) is flat
and the entropy of y,

Sy = −
∫

P(y) ln[P(y)] dy, (15)

is expected to reach its maximum value. This suggests that, for random flows, it may be more
appropriate to characterize the coil-stretch transition by measuring the entropy of y rather than that
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of ρ. (The logarithm of the polymer extension has also been used in other contexts, for instance to
improve accuracy in numerical simulations of constitutive models of polymer solutions [66,67] or
to develop a geometric decomposition of the conformation tensor C = 〈ρ ⊗ ρ〉ξ that guarantees the
positive definiteness of both its mean and fluctuating components [68].)

Figure 1 (right panel) shows Sy versus Wi for the BK flow and isotropic turbulence. The exper-
imental data have not been included because calculating P(y) from P(ρ) would require a higher
resolution of the small extensions than that available in the experiment [recall that P(y) ∼ ρ P(ρ)].
As expected, Sy is maximum at Wi = Wicr, which confirms that in random flows Sy provides a
convenient characterization of the coil-stretch transition. The differences between the BK flow
and isotropic turbulence that have been discussed earlier obviously also manifest themselves in
the behavior of Sy.

Previous studies have investigated the correlation between the polymer extension and the local
flow topology [28,69,70]. In a three-dimensional turbulent flow, the sign of the second invariant
of the velocity gradient, Q = − tr(∇u)2/2, discriminates between the regions of the flow that are
dominated by strain (Q < 0) and those that are dominated by vorticity (Q > 0) [71]. To determine
the dependence of entropy on the local flow topology, we consider the conditional probabilities
P−(y) = P(y|Q < 0) and P+(y) = P(y|Q > 0) and the associated entropies S−

y and S+
y , respec-

tively. These are shown in the inset of Fig. 1 (right panel) as a function of the Weissenberg number.
S−

y is obviously greater than S+
y at large Wi, but the difference between the two entropies is not big.

This is consistent with the fact that the extension of a polymer depends on its stretching history and
not only on the instantaneous velocity gradient.

V. SUMMARY AND CONCLUSIONS

In a nonuniform flow, polymers can be highly deformed by the local velocity gradients. However,
the statistics of the deformation and the way it varies with Wi depend very sensitively on the
properties of the flow. In particular, substantial differences are observed between laminar and
random velocity fields. An entropic characterization of the coil-stretch transition was proposed
by Latinwo et al. [32] for an extensional flow. This characterization has been recently extended
to random flows by Sultanov et al. [36]. We have further developed this approach by examining
a set of flows that have been regarded as benchmarks for the study of polymer stretching, in
both the laminar and the random case. This study confirms that the dependence of entropy on Wi
provides a useful characterization of the change in the statistics of polymer extension that occurs
near the coil-stretch transition. Moreover, it allows a quantitative comparison between flows with
different stretching properties. This characterization is particularly relevant to practical situations
where limited statistics is available. Entropy is indeed less sensitive to statistical fluctuations than
quantities, such as the slope of P(ρ) or the correlation time of ρ(t ), which have been used previously
to describe the coil-stretch transition.
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FIG. 2. Entropy of the fractional end-to-end separation as a function of Wi for a dumbbell and a chain with
N = 10 in (a) a uniaxial extensional flow, (b) a linear shear flow, and (c) isotropic turbulence.

APPENDIX

Consider a chain with N beads and N − 1 springs. If the position of the ith bead is denoted as xi,
the connectors Qi = xi+1 − xi (i = 1, . . . , N − 1) satisfy

Q̇1 = κ(t ) · Q1 − 1

4τ
(2 f1Q1 − f2Q2) + Qc

eq√
6τ

[ξ2(t ) − ξ1(t )],

Q̇i = κ(t ) · Qi − 1

4τ
(2 fiQi − fi+1Qi+1 − fi−1Qi−1) + Qc

eq√
6τ

[ξi+1(t ) − ξi(t )],

(i = 2, . . . , N − 2)

Q̇N−1 = κ(t ) · QN−1 − 1

4τ
(2 fN−1QN−1 − fN−2QN−2) + Qc

eq√
6τ

[ξN (t ) − ξN−1(t )], (A1)

where τ c and Qc
eq are the relaxation time and equilibrium length of the springs, respectively, and

ξi(t ) are independent three-dimensional white noises. The coefficients

fi = 1

1 − (Qi/Qc
max)2

(A2)

describe the nonlinear elasticity of the springs and fix the maximum length of each of them to Qc
max.

Therefore the maximum length of the chain is Lc = Qc
max(N − 1).

Equations (A1) have been solved by means of the Euler-Maruyama method supplemented with
Öttinger’s rejection algorithm, which rejects those time steps for which there exists at least one
index i such that |Qi| > Qc

max(1 − √
dt/10τ )1/2 [49]. We have checked that the fraction of rejected

time steps was negligible for all Wi and for all flows considered here.
The end-to-end separation vector of the chain is R = ∑N−1

i=1 Qi. To compare the results for a
dumbbell (N = 2) with those for a multi-bead chain (N > 2), we have used the mapping proposed
in Ref. [72]. This mapping assumes that the statistics of the end-to-end separation of a N-bead chain
is equivalent to that of a dumbbell with parameters:

τ = N (N + 1)τ c

6
, Req = Qc

eq, L = Qc
max

√
N − 1 = Lc/

√
N − 1. (A3)

In Fig. 2, we plot the entropy of the rescaled end-to-end separation ρ = R/Lc as a function of Wi
for the uniaxial extensional flow, the linear shear flow, and isotropic turbulence. The curves for the
dumbbell model shown in Fig. 1(a) are compared with those for an equivalent chain with N = 10
beads. Only small quantitative differences are observed between the results for N = 2 and N = 10.
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