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Active colloidal systems with nonequilibrium self-organization constitute a long-
standing, challenging area in material sciences and biology. To understand how
hydrodynamic flow may be used to actively control self-assembly of Janus particles (JPs),
we developed a model for the many-body hydrodynamics of amphiphilic JPs suspended
in a viscous fluid with imposed far-field background flows [Fu et al., J. Fluid Mech. 941,
A41 (2022)]. In this paper we alter the hydrophobic distribution on the JP-solvent interface
to investigate the hydrodynamics that underlies the various morphologies and rheological
properties of the JP assembly in the suspension. We find that JPs assemble into unilamellar,
multilamellar, and striated structures. To introduce dynamics, we include a planar linear
shear flow and a steady Taylor-Green mixing flow and measure the collective dynamics of
JP particles in terms of their (a) free energy from the hydrophobic interactions between the
JPs, (b) order parameter for the ordering of JPs in terms of alignment of their directors,
and (c) strain parameter that captures the deformation in the assembly. We characterize
the effective material properties of the JP structures and find that the unilamellar structure
increases orientation order under shear flow, the multilamellar structure behaves as a shear
thinning fluid, and the striated structure possesses a yield stress. These numerical results
provide insights into dynamic control of nonequilibrium active biological systems with
similar self-organization.

DOI: 10.1103/PhysRevFluids.8.050501

I. INTRODUCTION

Janus particles (JPs) are colloids with dissimilar chemical or physical functionalities between
the two sides of their surfaces [1,2]. Self-propelling JPs, for example, with a permanent biphasic
asymmetry, have emerged as a rich chemical platform for the exploration of active matter [3]
and mobility-induced phase separation. In the absence of mobility and any imposed flow, JPs
self-assemble into oligomers of various geometries and sizes depending on the interactions between
JPs and the viscous solvent [4–6], with tunable functions for biomedical engineering applications
[2,7–11].

When driven by an external flow, dynamic rearrangement of JPs emerges naturally from the
interactions between particles and fluid in colloidal matter [12]. Such colloidal hydrodynamics
belong to a wide class of nonequilibrium self-organization in physics, often with complexity and
features similar to that of biological systems such as living cells, bacterial baths, and animal flocks
[13,14]. A long-standing challenge in fluid mechanics and material science is to solve the “inverse”
problem of creating a model colloidal system that will self-assemble into prescribed structures [15].
For example, the framework of geometrical frustration, which has been used to explain disordered
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systems, could instead be used to design new, ordered systems, through specific choices for the
shapes or interactions of the particles [16].

In this paper we focus on collective hydrodynamics of immobile (non-self-propelling) JPs in
a viscous fluid under an imposed far-field flow. The amphiphilic JP has a hydrophobic surface
on one side and a hydrophilic surface on the other side [17]. The many-body hydrodynamics
of amphiphilic Janus particles assembled as vesicles (self-enclosed bilayers of JPs) suspended
in a viscous fluid in the inertialess regime (zero Reynolds number) has been studied using
boundary integral numerical simulations [18,19]. The dynamics of the JP suspension arises sponta-
neously from the combination of long-range hydrodynamic interaction and nonlocal interactions
between JPs through the distribution of a hydrophobic attraction potential (HAP). In a quies-
cent flow, an amphiphilic JP suspension self-assembles into micelles and bilayers of JPs that
provide an alternative means for computing the mechanical moduli of a colloidal membrane in
numerical simulations [18,20,21]. Under background flows, the hydrodynamics of a JP vesicle
(a self-enclosed bilayer of JPs) exhibit many familiar behaviors of a vesicle: elongation and
alignment along the extensional direction, tank-treading, and rupture of a vesicle under shear
flow [19,22–26].

Molecular dynamics (MD) and Monte Carlo simulations provide another means for simulating
the interaction between amphiphilic JPs, solvents, and substrates [6,27–29]. In these methods,
pair potentials are used to describe the interaction between amphiphilic JPs by prescribing angle-
dependent forces and torques that bring the hydrophobic sides of two amphiphilic JPs into
opposition. On the other hand, the HAP formulation in this paper has attractive, long-range forces
and torques, and they are instead derived from a boundary value problem for the molecular structure
of water [30–34]. Unlike in MD or Monte Carlo simulations, the HAP interactions are nonadditive
[18], so that the interactions between a pair of JPs are affected by the presence of other particles. As
such, the HAP is a phase-field function that represents the properties of the solvent in the presence
of JPs. Such an approach falls into the category of work that considers particles as a discretization
of a continuum problem [35].

Here we take advantage of the flexibility of the HAP model to examine the effects of tuning
the distribution of hydrophobicity on JP surfaces. Such variation of the boundary condition on JP
surfaces has been realized experimentally by using chemicals to adjust the polarity of the viscous
solvent [2,11,17]. We show that a simple tuning of the hydrophobic distribution leads to transitions
from unilamellar to multilamellar or striated superstructures of JPs. Focusing on the fluid-structure
interactions that correspond to such transitions, we investigate the deformation of these novel
structures in background flows and map out their collective behavior away from equilibrium.
Looking forward, including other fields such as electric potential for JPs synthesized with charged
polymers [5,6,17] is straightforward within the context of the boundary integral representations [36],
opening further lines of investigation.

This paper is organized as follows. Section II summarizes the general mathematical formulation.
Section III describes the three types of hydrophobicity distribution that we use in the numerical
simulations. Section IV outlines the quantitative measures used to describe the collective hydrody-
namics of JPs summarized and discussed in Sec. V. Finally, Sec. VI provides a conclusion and a
discussion of future directions.

II. GOVERNING EQUATIONS: HYDROPHOBIC ATTRACTION
POTENTIAL MOBILITY PROBLEM

The governing equations are a system of partial differential equations for the position and
orientation of a collection of rigid JPs [19]. We first pose the Stokes equations for the mobility
problem giving the hydrodynamic interactions for the particle suspension. The hydrophobic forces
come from solving a screened Laplace equation. Particle collisions are avoided through a near-field,
pair potential for their steric interactions.
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A. Mobility problem

The JPs are disks of radius c suspended in a viscous solvent with center ai and orientation θi

relative to the horizontal axis, where i = 1, . . . , Nb, and Nb is the number of particles. The domain
� ⊂ R2 is the solvent phase and t is time. The boundary of � is ∂� = �1 ∪ · · · ∪ �Nb , where �i is
the boundary of Janus particle i. The sets �, �1, . . ., and �Nb depend on t . Assuming that inertial
terms are negligible, the solvent satisfies the Stokes equations

−μ�u + ∇p = 0, x ∈ �, (1)

∇ · u = 0, x ∈ �, (2)

u − u∞ → 0, |x| → ∞, (3)

where u is the velocity, p is the pressure, u∞ is the background flow velocity, and μ is the constant
solvent viscosity. The solvent velocity satisfies the no-slip boundary condition for a rigid body
motion

u(x) = vi + ωi(x − ai )
⊥, x ∈ �i, (4)

where vi is the translational velocity, ωi is the angular velocity, and 〈x, y〉⊥ = 〈−y, x〉.
To obtain forces, define the free energy [18,19]

F = γ

∫
�

(ρ|∇u|2 + ρ−1u2) dx + M

2

∑
j �=i

P

( |ai − a j | − 2c

ρ0

)
, (5)

where u(x, t ) is the order parameter for water [30,31], ρ is a decay length, and γ is an interfacial
tension. The order parameter u(x, t ) is assumed to minimize the free energy F and therefore satisfies
the screened Laplace boundary value problem

−ρ2�u + u = 0, x ∈ �, (6)

u = g, x ∈ ∂�, u → 0, |x| → ∞. (7)

The boundary condition g encodes hydrophobic properties of the particle-solvent interface. The
dimensionless repulsion profile takes the form P(s) = 1 − sin(πs/2) for 0 � s < 1 and P(s) = 0
for s � 1. The parameter ρ0 is the distance below which steric repulsion becomes important, and M
is the repulsion modulus.

Letting ν be the particle outward normal, the force Fi and torque Ti coming from the free energy
acting on �i are [18]

Fi =
∫

�i

Tν ds − M

ρ0

∑
j �=i

ai − a j

|ai − a j |P′
( |ai − a j | − 2c

ρ0

)
, Ti =

∫
�i

(x − ai )
⊥ · (Tν) ds. (8)

Here,

T = γ [ρ−1u2I + ρ(|∇u|2I − 2∇u∇uT )] (9)

is the second-order hydrophobic stress tensor. Repulsion is rotationally symmetric and does not
enter Ti.

Without inertia, (u, p) satisfy the force-free and torque-free conditions, meaning that the force
and torque from the hydrodynamic stress on each particle balance the total force and torque coming
from the hydrophobic potential and repulsion. We have∫

�i

σ · ν ds = Fi,

∫
�i

(x − ai )
⊥ · (σ · ν) ds = Ti, i = 1, . . . , Nb, (10)

where σ = −pI + μ(∇u + ∇uT ) is the hydrodynamic stress tensor.
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To perform a single time step, we (i) solve (6) and (7) for u, (ii) compute the force and torque (8),
and (iii) solve the Stokes equations (1)–(3) subject to (4) and (10). The velocities (vi, ωi ) obtained
from (4) are used to update the particle positions and orientations using the second-order Adams-
Bashforth scheme with time step size �t .

The interactions generated by the HAP mobility problem formulation (1)–(10) lead to particle
self-assembly. In terms of scaling, ρ sets the effective distance of the hydrophobic interactions;
ρ0 determines the distance where attraction and repulsion are in balance, i.e., smaller values of ρ0

lead to more compact particle assemblies. The rate of self-assembly is proportional to tension γ ,
inversely proportional to viscosity μ, and approximately inversely proportional to ρ [18].

B. Boundary integral representations

We require a method to accurately solve the Stokes and screened Laplace equations in intricate,
unbounded geometries. This is done by recasting Eqs. (1)–(4) and Eqs. (6) and (7) as boundary
integral equations (BIEs) and discretizing each BIE at N points on each of the Nb particles with a
collocation method. To express the solution of (6) and (7), we adopt the double-layer potential

u(x) = D[σ ](x) =
∫

∂�

∂G(x − y)

∂νy
η(y) dsy, x ∈ �, (11)

where G(x) = 1
2π

K0(|x|/ρ) is the fundamental solution of the screened Laplace equation (6), K0 is
the zeroth-order modified Bessel function of the second kind, νy is the unit outward normal at y,
and η is a scalar-valued density function. The subscript in dsy denotes integration with respect to
y ∈ ∂�. To satisfy the boundary condition (7), the density function must satisfy [37]

g(x) = 1
2η(x) + D[η](x), x ∈ ∂�. (12)

For the velocity, we use the completed double-layer potential representation [38]

u(x) = u∞(x) + D[η](x) +
Nb∑

i=1

(S(x, ai ) · Fi + R(x, ai )Ti ), x ∈ �, (13)

where η is a vector-valued density function and

D[η](x) = 1

π

∫
�

(x − y) · νy

|x − y|2
(x − y) ⊗ (x − y)

|x − y|2 · η(y) dsy. (14)

The Stokeslets and Rotlets are

S(x, ai ) = 1

4π

(
− ln |r|I + r ⊗ r

|r|2
)

, R(x, ai ) = 1

4π

r⊥

|r|2 , (15)

respectively, where r = x − ai. Letting x approach �i in (13), applying the jump condition of the
double-layer potential [39], and imposing the no-slip boundary condition (4), the density function
η, translational velocity vi, and rotational velocity ωi satisfy

vi + ωi(x − ai )
⊥ = u∞(x) − 1

2
η(x) + D[η](x) +

Nb∑
j=1

(S(x, a j ) · F j + R(x, a j )Tj ), (16)

∫
�i

η ds = Fi,

∫
�i

η · (x − ai )
⊥ ds = Ti, (17)

for x ∈ �i and i = 1, . . . , Nb. Alternative full-rank layer potential representations for rigid body
motions are possible [40,41].

We discretize Eq. (12) and Eqs. (16) and (17) using high-order interpolation-based quadra-
ture rules. Smooth integrals are computed with the spectrally accurate trapezoid rule, and nearly
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FIG. 1. The leftmost diagram illustrates the particle �i with center ai, radius c, and director d, along with
the angle α. The three rightmost panels plots show g(x) and the respective solutions u(x) of (6) for an isolated
particle.

singular integrals, caused by close contact between two particles, are computed with a high-order
interpolation-based quadrature rule [42].

After discretizing and applying quadrature, the result is an NNb × NNb linear system and a (2N +
3)Nb × (2N + 3)Nb linear system for Eq. (12) and for Eqs. (16) and (17), respectively. These are
solved with the matrix-free generalized minimal residual method (GMRES), and the second-kind
nature of the BIEs guarantees that the number of GMRES iterations is mesh independent.

III. TUNABLE HYDROPHOBICITY

The parameters are modeled after those for phospholipid in water [43]. We use μ = 1 mPa s
for the viscosity of water at room temperature. Pure lipid components give a range of interfacial
tensions [44–47] 0.7–5.3 pN/nm. We use γ = 4.1 pN/nm, which gives a physically reasonable
elastic modulus κ of lipid bilayers [18,19]. The particle radius c = 1.25 nm represents one-half
of phospholipid length [43], and the screening length ρ = 5 nm derives from experimental force-
distance measurements of hydrophobic attraction [32–34,46]. A repulsion modulus M = 2 pN
and distance ρ0 = 0.5 nm gives an interparticle distance around one particle radius, ensuring the
accuracy of the boundary integral representations (11) and (13) without overly aggressive mesh
refinement. The characteristic time and length are 1 ns and 1 nm, respectively.

Boundary conditions and equilibrium configurations

The boundary condition g(x) in (7) defines the spatial distribution of hydrophobicity and hy-
drophilicity. Referring to Fig. 1, we let

g(x) = a(b + cos α), a = (πc(2b2 + 1))−1/2, x ∈ �i, (18)

where α is the angle between the vector x − ai and the particle director di = (cos θi, sin θi ). The
scalar b shifts the periodic date up and down, and the scalar a normalizes g so that

∫
�i

g2(x) ds = 1.
The side of the particle where α = 0 is called the tail, and the side where α = π is the head.

Based on the choice of b, the boundary condition (BC) (18) can be classified into one of three
categories: type I, amphiphile, b = 1, g is positive on one side representing a hydrocarbon-water
interface and is zero on the other representing an apolar, hydrophilic region; type II, asymmetric
hydrophobe, b = 2, g is positive on both sides but more so on one side; and type III, polar, b = 0,
g is positive on one side and negative on the other, representing a water structure with positive and
negative charge [30,48].

Figure 2 shows the steady state in a quiescent flow. Three distinct phases emerge. For type
I, amphiphiles, the tail interactions are attractive, and particles collectively form disjoint bilayer
components [Fig. 2(b)]. We refer to this as the “bilayer” phase.
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FIG. 2. (a) shows the t = 0, Nb = 198 particle configuration with random orientation and initially confined
to a box. (b), (d), and (e) show bilayer, multilamellar, and striated phases composed of amphiphilic (type I),
asymmetric hydrophobe (type II), and polar (type III) JPs, respectively. (c) and (f) plot the free energies (5)
and alignment order parameter (22) with respect to t . The open symbols in (c) are for Nb = 60, and the solid
symbols are for Nb = 198 but normalized by 60/198, showing that the energy approximately scales with the
number of particles. Alignment in the striated phase is particle number dependent; see triangle symbols in (f).

For type II, asymmetric hydrophobes, both sides of the JP are hydrophobic but more so on the
tail. Over short times, these particles self-assemble into bilayers. However, unlike for type I JPs, the
heads are also hydrophobic, and so over long times, the bilayers sort into a “multilamellar” phase.
The number of layers depends on the number of particles. Figure 2(d), for example, shows a multi-
lamellar structure with four layers and one with two layers in the inset. Onionlike dendrimersomes
have previously been studied by molecular dynamics simulations using an anisotropic pair potential
[6,29].

Finally, type III, bipolar JPs possess a head that repels the tail of neighboring particles. These JPs
initially form chains with their directors perpendicular to the length of the chain. The chains form
stria where the particles lie on a square grid and the orientations alternate between layers [Fig. 2(e)].
We refer to this as the “striated” phase.

See Sec. S1 of the Supplemental Material for movies showing the transition of 60 JPs that are
initialized randomly [inset of Fig. 2(a)] to the steady-state configurations [insets of Figs. 2(b), 2(d),
and 2(e)] [49].

IV. MEASURING DEFORMATION

To quantify the hydrodynamics of JP phases, we use the free energy F , a strain parameter E , and
a scalar order parameter S2 for alignment. First we simplify the form of the free energy (5). Using
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integration by parts and (6), we obtain

F = −γ

∫
∂�

ρg∇u · ν ds + M

2

∑
j �=i

P

( |ai − a j | − 2c

ρ0

)
. (19)

Here, we have substituted g for u since the boundary values are given. However, evaluating ∇u · ν on
∂� based on (11) involves calculating a gradient of a double-layer potential which has a well-known
obstacle in numerical implementation. The Appendix describes how we overcome this obstacle.

Figure 2(c) tracks the free-energy profiles for all relaxation runs. In quiescent background flow,
the energies are decreasing with respect to t showing that time stepping correctly accounts for
viscous dissipation. Furthermore, the normalized energy plots provide evidence that the free energy
per particle with specified boundary condition is independent of the total particle number Nb.

To measure positional order, we introduce the strain parameter,

E = 1

Nb

Nb∑
i=1

∥∥∥∥1

2

(
FT

i Fi − I
)∥∥∥∥, (20)

where Fi is an approximate deformation gradient and ‖ · ‖ is the Frobenius norm. The Green-
Lagrange strain tensor 1

2 (FT
i Fi − I ) measures departure of fluid deformations from a rigid body

motion. To define Fi, we solve the overdetermined system

a j (t ) − ai(t ) = Fi(a j (0) − ai(0)), j = 1, . . . , Nb, (21)

for Fi by weighted least squares. That way, if the particle positions are given by a map f (ai(0), t ) =
ai(t ), then Fi ≈ ∇f (ai(0), t ). The weights wi = exp ( − ‖a j (0) − ai(0)‖/4c) with particle radius c
ensure that the linear approximation holds for particles near ai.

Finally, we use the scalar order parameter S2 to quantify the orientational order [50]:

S2 = 1

Nb

Nb∑
i=1

1

2
(3 cos2(θi − θ̄ ) − 1). (22)

Here, θ̄i is a circular mean defined as the orientation of the principal eigenvector of the matrix∑
j d jd�

j where j runs over the particles whose centers lie within 4c of that of particle i. Defined as
such, S2 lies in the range −1/2 � S2 � 1 with a value S2 = 1 indicating perfect alignment between
particles while S2 = −1/2 indicates isotropic alignment locally. The cutoff distance 4c was chosen
empirically so that the average includes nearest neighbors but excludes next-nearest neighbors.

In Fig. 2(f), the multilamellar phase is highly ordered whereas the bilayer phase is somewhat
disordered because it consists of several components forming isolated bilayers, micelles, and
vesicles [Fig. 2(b)].

The striated phase order admits more than one pattern depending on the number of particles
[Fig. 2(f), triangles]. When the number of particles is small, there is only a single pattern where
the directors are more or less parallel and alternate directions [Fig. 2(e), inset]. A larger number of
particles results in multiple alignment patterns: the alternating sign pattern as in the small-particle-
number case [Fig. 2(e), top right rectangle] and an X-shaped alignment [Fig. 2(e), top left rectangle].

V. RESULTS AND DISCUSSION

We subject the type I, II, and III JP phases to background flows and measure their material
response. The background flows are a shear flow

ush
∞(x) = γ̇ (ey · x)ex (23)

and a Taylor-Green (TG) flow

uTG
∞ (x) = λγ̇ ( − cos(ex · x/λ) sin(ey · x/λ)ex + sin(ex · x/λ) cos(ey · x/λ)ey), (24)
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where the orthonormal vectors ex and ey are the horizontal and vertical directions, respectively.
The shear flow replicates the motion of a fluid between two parallel, moving plates excluding wall
effects. In TG flow, λ controls the size of the πλ × πλ TG cells. Throughout this section, we use
λ = 2 nm so that the JP phases occupy about nine cells.

In both cases, γ̇ is the shear rate. The flow rate λγ̇ is chosen so that (24) has the same rate
of viscous dissipation per area as for (23). In other words,

∫
A

1
2μ|∇u + ∇uT |2 dA is the same for

u = ush
∞ as for u = uTG

∞ when integrated over a TG cell A.
To obtain a range for γ̇ , consider the capillary number

Ca = μγ̇ R3

κ
, (25)

where R = 10 nm and κ = 20 kB T are the characteristic phase-sample radius and bending rigidity,
respectively. That is, κ gives the elastic stress for restoring the phase-sample shape. Shear stress
overcomes elastic stress when Ca > 1, and this yields γ̇ > 2 × 10−2 ns−1 = 2 × 106 s−1. Thus
our values for γ̇ range between 0 ns−1, corresponding to quiescent flow, and 0.2 ns−1, capable
of rupturing the sample. Such shear rates are compatible with molecular dynamics simulations
[27], those for large unilamellar vesicles (LUVs), [51], and shearing in blood capillary vessels
[52] where shear rates range over 100–2000 s−1. From the particle diffusion time D/L2 and
advection time L/u = (γ̇ )−1, D = 0.17 × 10−9 m2 s−1 and L ∼ 10 nm, we obtain a Péclet number
Pe = (D/L2)/(L/u) ∼ 60, suggesting that advection dominates the particle transport.

For initial data, note that the steady-state type I amphiphiles phase consists of a number of disjoint
bilayer components [Fig. 2(b)]. To also have a single-component type I phase, we reinitialize the
data to have a ring-shaped vesicle bilayer. This phase is distinguished from “bilayer” by “vesicle
BL” in the figures. For the same number of JPs, the vesicle bilayer has lower free steady-state
energy (F = 24.6 kB T nm−1) than the disordered bilayer phase (F = 27.2 kB T nm−1). Since the
simulations are for two dimensions, multiplying F by a length gives the energy of a transversely
invariant, three-dimensional phase.

The simulation setup consists of placing each of the phases in either a shear or TG background
flow and then solving for the particle trajectories in time. In each setup, we solve for 500 time steps
with �t = 2 ns, yielding time courses for t ∈ [0, T ], T = 1 μs. We then postprocess the trajectories.

Figures 3(e)–3(l) show the typical streamlines for JP phases in background flow. Although the
plots only show the region near the JPs, the fluid velocity u and order parameter u are accounted
for in all of R2. Moreover, u satisfies the rigid boundary condition at every JP-fluid interface, i.e.,
the particles interact with the local flow field and are not merely carried by background flow. See
Sec. S1 of the Supplemental Material for movies showing the dynamics of the JP suspensions in
Fig. 3 [49].

Figures S1– S8 in the Supplemental Material contain the fully resolved time courses for the
free energy F , alignment order S2, and strain E [49]. The eight setups correspond to the four
JP phases—bilayer, vesicle BL, multilamellar, and striated—and two background flows—shear
and TG. The data are plotted with the same vertical and horizontal axes to facilitate comparisons
between simulation setups. Each setup considers a range of shear rates γ̇ in the interval [0, 0.2] ns−1.

The fully resolved time courses in Figs. S1– S8 in the Supplemental Material contain significant
oscillations due to the particle-based formulation and tumbling inherent to the background flows
[49]. To extract meaningful data, we further postprocess the F , S2, and E curves by taking their
time average over the interval t ∈ [0, T ].

A. Strain and alignment

The plots reveal highly distinct material responses from each phase. Figures 3(a) and 3(b) show
the time-averaged strain 1

T

∫ T
0 E dt over a broad range of shear rates. Strain E measures the non-

rigid-body deformation relative to the initial state and expectedly increases with shear rate. The
greatest increase occurs with the type I amphiphiles, suggesting that this phase has the lowest elastic
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FIG. 3. (a) and (b) show the average strain increase for bilayer, vesicle BL, multilamellar, and striated JP
structures under a shear flow and a TG flow, respectively. (c) and (d) show the average alignment of the four JP
structures under a shear flow and a TG flow, respectively. Each snapshot in (e)–(l) contains the configuration
of the JP structure without ruptures using a specific type of boundary condition, and the background curves
indicate the velocity streamlines.

modulus (squares). In comparison, the striated phase consisting of type III polar JP is basically rigid
(triangles).

Figures 3(c) and 3(d) plot the time-averaged alignment order S2. The vesicle and striated phases
possess the greatest alignment order, and for the most part, S2 decreases with increases in shear rate.
However, there is an exception. The type I bilayer phase alignment order actually increases under
both shear and TG flows (solid squares). This suggests that the mixing action of background flow
has the effect of moving the disordered bilayer phase out of a local equilibrium and into a state with
greater order. This surprising increase, brought about by combining previously broken bilayer end
caps, is accompanied by a slight decrease in free energy [Fig. 4(a), solid squares].

The sudden jumps in Figs. 3(a) and 3(b) and commensurate drops in Figs. 3(c) and 3(d) indicate
the existence of a critical shear rate γ̇∗. This means that for γ̇ < γ̇∗, the JP phase remains intact
while for γ̇ > γ̇∗, the phase ruptures. For example, the vesicle BL phase has γ̇∗ of approximately
0.05 ns−1 under shear flow and TG flow. However, the critical shear rate is flow pattern dependent
because the striated phase has γ̇∗ = 0.14 ns−1 under shear flow while γ̇∗ = 0.05ns−1 under TG
flow. Due to variable stress distribution, the critical shear rate in TG flow likely depends on the cell
size parameter λ. The disordered bilayer phase does not really possess a critical shear rate because
it already consists of several, disjoint components. The jump in Fig. 3(a) (solid squares) simply
corresponds to disjoint components drifting apart in the shear flow. The type II multilamellar phase
did not rupture for any of the shear rates considered.
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FIG. 4. The change in average free energy vs shear rates for shear flow and TG flow simulation results is
plotted in (a) and (b). (c) contains quadratic fits to the change in free energy as a function of displacement in
interparticle distance from equilibrium.

B. Free energy

Figure 4 plots the time-averaged relative free energy 1
T

∫ T
0 (F − F0) dt , where F0 is (19) at t = 0.

The greatest increase occurs with the type II multilamellar phase, with the other phases showing a
moderate change in a few kB T nm−1.

Figure 4(c) plots the free energy against the displacement x = cE representing the change in
mean interparticle displacement from equilibrium; c = 1.25 nm is the particle radius. The energies
in Fig. 4(c) are essentially quadratic in x suggesting that the interactions are harmonic locally around
equilibrium. The harmonic bond strength is strongest between polar JPs, and it is greater by factors
of 2 and 5 than that for asymmetric hydrophobes and amphiphiles, respectively. This makes sense
when considering that the free energy of the steady-state striated phase is also greatest [Fig. 2(c),
around 85 kB T nm−1]. However, the bond strength in the multilamellar phase comes in second,
despite having the least steady-state free energy (around 15 kB T nm−1). The data point to the fact
that the binding properties do not only scale with free energy, but also involve the details of the
interface’s hydrophobicity, which are tuned by (18) in our model.

C. Rheology

So far, we have considered static material properties, namely, constant strains maintained by
an external force provided by background flow. Now we consider dynamic material properties.
Specifically, we look at the strain rate

Ė =
(

1

T

∫ T

0

∣∣∣∣dE

dt

∣∣∣∣
2

dt

)1/2

. (26)

The reason for defining Ė in this way is that the shear flow ush
∞ simulations correspond to a

complex fluid within a drag plate rheometer where the shear stress is set by μγ̇ and the observed,
sample shear rate is Ė . The definitions carry over to the TG flow case directly. Also, as a practical
consideration, the rotation of nonisotropic JP phases in the background flow leads to oscillation in
the strain time courses making systematic fitting challenging (see Supplemental Material, Figs. S1–
S8 [49]). The integral in (26) averages out these oscillations and gives physically meaningful values.

The shear stress-strain rate data are excellently fit by power laws. Figures 5(a)–5(c) show the
data for type I, type II, and type III JPs, respectively, under both shear flow (squares) and TG
flow (triangles). The bilayer phases consisting of type I JPs are basically Newtonian with viscosity
0.014 MPa μs = 14 mPa s, about 14 times the viscosity of water at room temperature [Fig. 5(a),
dashed curve]. The vesicle bilayer phase is slightly shear thickening [Fig. 5(a), solid curve]. Similar
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FIG. 5. Rheology of type I, II, and III phases. (a) shows that bilayer phases behave as a Newtonian fluid.
(b) provides that the multilamellar phase shows a near-shear-thinning behavior. A pseudoplastic behavior of
deformation in striated phases is shown in (c).

shear thickening behaviors are found in continuum vesicle models [53,54]. The multilamellar phase
consisting of type II JPs is somewhat shear thinning, but its viscosity is larger than for type I.
Finally, the striated phase is strongly shear thinning. This further explains the rigidlike behavior of
the striated phase found in the strain, shear-rate relationships from Figs. 3(a) and 3(b) (triangles).

D. Discussion

We choose the range of shear rates γ̇ ∈ [0, 0.02] ns−1 by analyzing the capillary number of the JP
phases. With this range, there is a critical shear rate γ̇∗ for the vesicle BL and striated phases where
shear stresses exceeded elastic stresses, leading to rupture. The multilamellar phase did not rupture.
By varying model parameters, we perform a dimensional analysis on γ̇∗. Focusing on type III JPs in
shear flow, γ̇∗ = 0.14 ns−1 for the basic model parameters (see Sec. III). Increasing and decreasing
the tension parameters γ and M by up to 10% (collectively denoted �γ/γ ) led to basically the same
relative increase or decrease in critical shear rate (denoted �γ̇∗/γ̇∗). This suggests that the critical
shear rate scales linearly with the tension parameters. Conversely, increasing (decreasing) the length
parameters c (particle radius), ρ, and ρ0 by up to 10% (collectively denoted �c/c) leads to roughly
twice the relative decrease (increase) in the critical shear rate. This points to an inverse-quadratic
scaling in length. Figure 6(a) summarizes the findings and suggests the scaling

μγ̇∗ = KIII
γ L

c2
. (27)

The scalar KIII is specific to the striated phase under shear flow. Here, L is the diameter of the phase
sample, which is proportional to γ ∗ since the striated phase tends to cleave during rupture (see
movie in the Supplemental [49]). Our previous work [19] found the scaling μγ̇∗ = KIγ c2/(ρL2) for
a vesicle BL in shear flow.

So far, Sec. V has shown that variations in free energy and strain generally depend on the
distribution of fluid stresses, i.e., shear versus TG flow. To further illustrate how fluid stresses
interact with the geometry of the JP phases, we initialize a circular vesicle bilayer in various TG-flow
cell sizes λ ranging from λ = 1 nm in Fig. 6(b) to λ = 4 nm in Fig. 6(e). These JP vesicles fluctuate
and deform around the steady shape of an octagon (λ = 1 nm), a dimpled square (λ = 2 nm), a
rounded diamond (λ = 3 nm), and a rounded rectangle (λ = 4 nm). See Sec. S1 of the Supplemental
Material for a movie showing the dynamics of the JP vesicle for the four different values of λ in
Figs. 6(b)–6(e) [49].

For λ = 1 nm and λ = 2 nm, multiple TG cells are inside the JP vesicle as the inner leaflet
of JPs moves clockwise along the boundary faster than the outer leaflet. For λ = 3 nm and λ = 4
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FIG. 6. In (a), the relative change in γ̇∗ is linear in the relative change of the tension parameters γ and
M with slope 1. Additionally, the relative change in γ̇∗ has slope −2 with respect to the relative change in
the length parameters c, ρ, and ρ0. (b)–(e) show the tank-treading configurations of a vesicle bilayer; the
configurations with streamlines of a vesicle are for a TG flow at t = 1 μs with λ = 1, 2, 3, 4, respectively. In
(f), inset, the relative enclosed area A/A0 for the four cases in (b)–(e) decays to a steady state. The steady-state
A∞/A0 relative area is nonmonotonic in λ.

nm, there is only one TG cell inside the JP vesicle, and the JPs in the bilayer tank-tread in the
counterclockwise direction [Figs. 6(b)–6(e)]. Finally, we calculated the vesicle area A and length L.
As shown in Fig. 6(f), the relative area achieves a steady state A∞/A0 that is greatest for λ = 4 nm
yet least for λ = 2 nm. The relative length L/L0, however, is constant in t for all cell sizes (data not
shown). In other words, the fluid-structure interactions of JPs give rise to nonmonotonic dependence
of membrane permeability on the TG cell size λ. Such dynamic permeability due to fluid-structure
interactions is also found in the clogging of spherical particles in a rectangular microfluidic channel
[55].

We have excluded thermal fluctuations because they are unresolved in the JP phases we con-
sider. For a tensionless, planar membrane, the Fourier coefficients for the profile height h(x) =∑

k h(k)eik·x satisfy [56]

〈|h(k)|2〉 = kB T

LxLy

1

κ|k|4 , (28)

where x is a point in an Lx × Ly rectangular membrane patch, k = (2πm/Lx, 2πn/Ly) with m, n ∈
Z, not both zero, and κ is the membrane bending modulus.

To estimate h(k), the Nb = 60 JP vesicle in Fig. 3(e) has arclength Lx ≈ 50 nm. Our prior work
[18,19] gave κ ≈ 20 kB T . Since our simulations are two dimensional, we restrict our attention to
transversely invariant fluctuations where n = 0. Substituting these values gives

〈|h(k)|2〉 ≈ 4 nm3

Ly

1

m4
, m = ±1,±2, . . . . (29)

For any moderate transverse depth, say, Ly > 4 nm, the leading Fourier coefficient has a magnitude
less than 1 nm with the remaining coefficients dropping off to zero precipitously. The expected
amplitudes coming from thermal fluctuations are therefore negligible compared with particle size.
The elastic moduli for the type II and type III phases are greater by a factor of 2 and 5, respectively,
than those for type I [Fig. 4(c)], making thermal fluctuation even more negligible in these cases.

The fact that the fluctuation amplitudes are small is not a consequence of stiffness. Quite the
opposite, the value κ = 20 kB T agrees with the experimental literature where micrometer-sized
vesicles observably fluctuate [57]. Rather, because the wave vector k is inversely proportional
to the characteristic size of Lx and Ly, larger energies are required to fluctuate membranes over
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smaller wavelengths, and these energies exceed the available thermal energy when the wavelengths
approach tens of nanometers as demonstrated above.

The calculated viscosities—14 mPa s for type I JP phases and 21 mPa s for type II JP phases—are
physically reasonable. In two-dimensional dilute suspensions, the Einstein viscosity correction is
1 + 2φ + 4φ2 + O(φ3), where φ � 1 is the volume fraction [58–61]. In Figs. 3(e)–3(h), the volume
fraction is φ ≈ 0.5, which would correspond to an effective shear viscosity of 4 mPa s according
to Einstein’s viscosity correction. Note, however, that since φ = 0.5 is outside of the dilute limit,
one expects viscosities ten or more times greater than the viscosity of water [62], and a number
of analytical and numerical approaches have been successfully applied to these dense suspensions
[63].

Further parametric studies are required to differentiate between passive effects and JPs’ preferred
alignments. For example, the difference between the values 14 mPa s for type I JPs and 21 mPa s for
type II JPs can be explained by the fact that the multilamellar phase is more tightly packed than the
bilayer phase [Figs. 3(e)–3(h)]. Furthermore, it seems that the viscosity, and the tendency toward
shear thinning in the case of type III JPs where viscosity is effectively infinite for low strain rates
[Fig. 5(c)], is related to particle coordination. That is, a single JP coordinates with the following:
one neighbor in the apposing bilayer for type I, two neighbors at the tail and head interfaces for type
II, and four neighbors (front, back, left, and right) for type III.

Scaling laws for the “virial viscosity,” the nonhydrodynamic part of the relative viscosity in
steady shear, have been determined experimentally [64]. Other simulation studies have investigated
the rheology of strain-hardening capsules as a function of membrane inextensibility using the three-
dimensional immersed boundary method [65], studied dilute suspensions of compound particles
[66], and shown how shear thickening in systems with widely different particle properties arises
when adhesion forces bring particles into frictional contact [67]. Within this context, membrane
inexstensibility in the case of type I amphiphiles and adhesion in general can be inferred from the
functional relationships between free energy and displacement in Fig. 4(c), for example.

For active particles, researchers have obtained analytical expressions for the effective viscosity
resulting from the activity of dilute swimmers in extensional flows [68] and compared numerical
predictions under shear flow derived from Stokesian dynamics and lubrication theory [69]. Suspen-
sions of pushers can yield an apparent reduction in viscous dissipation arising from particle activity.
In contrast, the JP suspensions of the present study do not inject, but rather store energy coming
from the background flow.

VI. CONCLUSION

In this paper, we employ the newly developed JP model using BIEs [18,19] and tune the boundary
conditions with energy normalization to study the collective dynamics of amphiphilic (type I),
biased hydrophobic (type II), and bipolar (type III) JPs under various flowing conditions (quiescent
flow, linear shear flow, and Taylor-Green flow). Three quantities are computed to characterize the
dynamics of the collective configurations of JPs: the free energy F , the strain parameter E , and
the scalar order parameter S2. Under a given flow, we use these three measures of deformations to
quantify the differences in the collective dynamics between the three types of JPs. These results,
summarized below, provide general insight into the dynamic control of active particles in a viscous
suspension.

In a quiescent flow, the free-energy profiles demonstrate that the relaxation process for particles
confined in a certain size of box is independent of the number of particles. However, we find that the
final configuration does depend on the initial distribution of particle directors di. Therefore multiple
patterns or local energy minimum states may appear depending on the initial setup.

Under a relatively weak linear shear flow, the amphiphilic JPs behave as a unilamellar vesicle
that elongates and tank-treads, with the scalar order parameter increasing over time. The assembly
of multilamellar and striated JP structures resembles a rigid body motion with minimal deformation.
The effective viscosity of the material quantitatively validates this result. High-shear-rate cases
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provide a range of critical shear rates where the structures break apart and undergo topological
changes. We further show that free energy, scalar order parameter, and strain are effective measures
to quantitatively capture the collective hydrodynamics of JPs under a linear shear flow.

Under a Taylor-Green flow, the amphiphilic JPs are the most interesting, exhibiting different vesi-
cle shapes depending on the ratio of the size of the TG flow to the vesicle size. These results show
that the shape of the vesicle, whether square or polygonal, can be controlled by adjusting the size of
the cell in the TG flow. In addition, the permeability of the JP bilayer varies nonmonotonically with
the TG cell size. On the other hand, the assembly of multilamellar JPs and the striated JPs behave
more like a rigid body with connected subdomains, and the number of subdomains increases with
increasing strength of the TG flow. Overall, the multilamellar (type II) JP assembly behaves as a
shear thinning fluid, while the striated (type III) JP assembly possesses a yield stress.

The results reported here make inroads into a modeling framework for hydrodynamics of
active colloids [3,14,70,71]. The present study also helps us to understand the rheology of JP
oligomers that may be realized in experiments. We are extending this study to three-dimensional
systems with more realistic features such as size distributions of JPs and thermal fluctuations [36].
From a numerical perspective, it is straightforward to include random perturbations in the particle
shape and boundary condition that mimic interfacial properties found under laboratory conditions
[4,10,11,17].
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APPENDIX

The boundary integral calculation of (19) relies on the following identity:

∇u(x) · νx = − 1

ρ2
tx · S[σ t](x) + d

ds
S

[
dσ

ds

]
(x), x ∈ ∂�. (A1)

Here, tx is the tangent vector and d/ds is the arclength derivative. Substituting (A1) into (19) for
the normal derivative leads to the single layer, S , which is more straightforward to evaluate. The
arclength derivative is computed using the spectrally accurate Fourier differentiation.

To prove (A1), let

S[σ ](x) =
∫

∂�

G(x − y)σ (y) dsy (A2)

be the single-layer potential for a density function σ. Fix x ∈ ∂�, let νx and νy be the unit normal at
x and y, respectively, in ∂�, and let z ∈ �. The subscripts in ∇z and ∇y denote differentiation with
respect to z and y, respectively.

Recall from (11) that u = D[σ ]. Then

∇zu(z) · νx = νx · ∇z

∫
∂�

∂G(z − y)

∂νy
σ (y) dsy

=
∫

∂�

ν�
x (∇z∇�

y G(z − y))νyσ (y) dsy

= −
∫

∂�

ν�
x (∇y∇�

y G(z − y))νyσ (y) dsy,
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since we can interchange ∇z with −∇y. Following the work of Hsiao and Wendland [37] (see
Sec. 1.2 therein),

ν�
x (∇y∇�

y G(z − y))νy = −t�
x (∇y∇�

y G(z − y))ty + �yG(z − y)tx · ty. (A3)

Then, using that �yG(z − y) = ρ−2G(z − y), interchanging ∇y with −∇z once more, and integrat-
ing by parts in arclength s, we obtain

∇zu(z) · νx = −
∫

∂�

�yG(z − y)tx · tyσ (y) dsy +
∫

∂�

(tx · ∇y)(ty · ∇yG(z − y))σ (y) dsy

= −
∫

∂�

1

ρ2
G(z − y)tx · tyσ (y) dsy − (tx · ∇z)

∫
∂�

d

dsy
G(z − y)σ (y) dsy

= − 1

ρ2
tx ·

∫
∂�

G(z − y)tyσ (y) dsy + (tx · ∇z)
∫

∂�

G(z − y)
d

ds
σ (y)dsy.

Letting z → x ∈ ∂�, and noting that both sides of the equation are continuous, we obtain (A1).
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