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A flexibly mounted cylinder placed in a Newtonian flow undergoes vortex-induced
induced vibrations (VIV) during which the shedding frequency and the oscillation fre-
quency are synchronized. In Newtonian fluids, VIV occurs at Reynolds numbers as low
as Re = 19. Here, we show that the expected VIV response of the cylinder can be greatly
affected if the viscosity of the fluid is shear thinning, by conducting VIV experiments
in a series of fluids of xanthan gum solutions of increasing concentration and increasing
shear-thinning intensity. While the VIV response of the weakly shear-thinning fluid closely
resembles the VIV response of Newtonian fluids, we show that by increasing concentration
and shear thinning, the critical Reynolds number at which VIV occurs increases, while the
reduced velocity at which lock-in begins, the width of the lock-in range, and the oscillation
amplitude decrease. Beyond a critical concentration, VIV is completely suppressed over
the entire range of Reynolds numbers studied here. The increase in critical Reynolds
number and the reduction in the width of the lock-in range and the amplitude are likely
caused by the increased viscosity and increased momentum diffusion of the shed vortices
in the cylinder’s wake, where the shear rate is small and the viscosity is large as it has re-
covered back toward its zero-shear-rate limit. The reduction in the critical reduced velocity
is caused by an increase in the vortex shedding frequency as the fluid becomes more shear
thinning. For the most shear-thinning fluid tested where VIV is completely suppressed, the
vortices are shed very far from the cylinder and do not cause any oscillations.
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I. INTRODUCTION

When a bluff body is placed in Newtonian flow, vortices are shed in its wake. The frequency of
this vortex shedding increases linearly with increasing flow velocity following the Strouhal law. If
the bluff body (e.g., a cylinder) is flexibly mounted, at a certain flow velocity the shedding frequency
equals the natural frequency of the system and the body starts to oscillate. Theses oscillations then
result in a deviation of the shedding frequency from the linear increase predicted by the Strouhal law,
and for a range of reduced velocities (defined as U ∗ = U/D fn, where U is the free stream velocity, D
is the cylinder diameter, and fn is the structure’s natural frequency), the shedding frequency and the
oscillation frequency become synchronized. This range is called the lock-in range and the observed
oscillations are called vortex-induced vibrations (VIV) [1–4].

VIV is a canonical problem in fluid-structure interactions (FSI) and has been studied extensively
for both flexibly mounted and flexible structures. For a flexibly mounted structure placed in flow,
VIV studies have considered cases of a one-degree-of-freedom (1DOF) system allowed to oscillate
in the direction perpendicular to the direction of motion [cross-flow (CF) direction] [1,2], 1DOF
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systems allowed to oscillate only in the direction of flow [inline (IL) direction] [5,6], or at any angle
in between [7]. Cases of two-DOF (2DOF) systems in which the cylinder is allowed to oscillate in
both the CF and IL directions have been considered as well [8–10]. Some recent studies have shown
that VIV can occur also at subcritical Reynolds numbers (defined as Re = UD/ν, where ν is the
kinematic viscosity of the fluid), i.e., Reynolds numbers smaller than the minimum for which vortex
shedding is observed in the wake of a fixed cylinder: Re = 47 [11]. Numerical and experimental
results have shown that CF VIV can be observed at Reynolds numbers as low as Re = 19 [12,13]
for flexibly mounted cylinders and as low as Re = 20 for flexible cylinders [14].

The response of a flexibly mounted cylinder to the flow of a non-Newtonian fluid is much less
well explored. In a series of recent studies, the response of flexible or flexibly mounted cylinders and
sheets placed in the flow of viscoelastic fluids was studied [15–20]. For viscoelastic fluids, purely
elastic flow instabilities can occur at high Weissenberg numbers, Wi = λγ̇ � 1 (where λ is the fluid
relaxation time and γ̇ is the shear rate), and very small Reynolds numbers, Re � 1. These elastic
flow instabilities are capable of driving the motion of flexible or flexibly-mounted structures placed
in flow [15–20]. Viscoelastic fluid-structure interactions (VFSI) have been studied for flexible sheets
[15], flexible [16] and flexibly mounted cylinders [20], and cantilevered beams in both large-scale
flows [18] and within microfluidic devices [17]. In these studies, measurements of the frequency and
amplitude of structural deformation, the fluid velocity profiles, and the flow-induced birefringence
(FIB) were used to quantify the motion of the structure along with the time variation of the flow
field and the state of elastic stress in the fluid during the oscillations. Other VFSI work has shown
how microstructures such as cilia can synchronize between each other due to the elastic effects of
the fluid, generating local elastic stresses that link the structures through the fluid [19]. All these
studies were performed at very small Reynolds numbers; however, fluid rheology has been shown
to affect flows at high Reynolds numbers as well [21,22].

Shear thinning and fluid elasticity are known to have a significant impact on vortex shedding from
a fixed rigid cylinder at high Reynolds numbers. Coelho and Pinho [21,23,24] observed the effect
of shear-thinning, weakly elastic fluids on the wake of a fixed cylinder in a Reynolds number range
of 50 < Re < 9000. They found that shear thinning decreases both the boundary layer thickness
and the formation length of the recirculation bubble, leading to an increase in the Strouhal number,
St = fsD/U , where fs is the vortex shedding frequency. Fluid elasticity, on the other hand, increases
the formation length and decreases the Strouhal number [25–27]. Lashgari et al. [28] studied the
instability mechanism and first bifurcation of a fixed cylinder in a fluid with a power law viscosity
through numerical simulations and linear theory. When defining the Reynolds number with a zero-
shear viscosity, they found that shear thinning dramatically destabilizes the flow around the cylinder
and reduces the critical Reynolds number at which vortex shedding occurs, while shear-thickening
fluids produce the opposite effect. They also showed with this same Reynolds number definition
that the recirculation bubble length approaches the same size at the critical Reynolds number for all
fluid properties. When changing their definition of the Reynolds number to a weighted average of
the local Reynolds numbers over the whole domain, they found that the critical Reynolds number
remains the same regardless of fluid properties and is similar to that for Newtonian fluids, Re = 47.
They found that increasing shear thinning also intensifies the vorticity close to the cylinder.

More recently, Patel et al. [29] numerically studied the response of a 1DOF flexibly mounted
cylinder in inelastic shear-thinning and shear-thickening power law fluids. They found that when
the Reynolds number is defined based on the zero-shear-rate viscosity, shear thinning enhances
oscillations and shear thickening suppresses oscillations compared with the Newtonian case. They
then defined a characteristic Reynolds number, Rechar = UD/ηchar, in which the viscosity is based
on a characteristic shear rate around the cylinder, γ̇char = U/D, and showed that at a constant
characteristic Reynolds number, the oscillation amplitude remains constant for both shear-thinning
and shear-thickening fluids independent of the zero-shear-rate viscosity and power-law index. The
vortex structure in the wake, however, was quite different. They found that in the wake of the
shear-thinning case the vortices decay away more quickly because the viscosity of the fluid, and
therefore the rate of momentum diffusion, in low-shear-rate regions of the flow is higher than either
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FIG. 1. A schematic of the experimental setup featuring the rotating water channel and the flexibly mounted
rigid cylinder.

the Newtonian or the shear-thickening cases. Their simulations showed that, for power-law fluids,
the VIV response is determined only by the local Reynolds number around the cylinder.

In the present work, we investigate experimentally the VIV response of a flexibly mounted
cylinder allowed to oscillate in the CF direction in fluids that are shear thinning. We discuss how
different fluid concentrations influence the VIV response of the system in various Reynolds numbers
and reduced velocities. The wake is visualized through particle image velocimetry (PIV) and the
influence of fluid concentration on the wake is discussed by observing local vorticity, shear rate,
and extension rate.

II. EXPERIMENTAL SETUP

A circular rotating water channel (Fig. 1) was used for these experiments. The channel was
comprised of two concentric acrylic cylinders with radii of R1 = 30 cm and R2 = 25.4 cm attached
to a circular acrylic surface to produce a channel with a width of W = 4.6 cm and a depth of 13 cm.
The channel was spun from its center and produced flow velocities in the range of 1.5–23.5 cm/s
at the center of the channel at R = 27.7 cm. A detailed description of the setup can be found in
Boersma et al. [13]. A 2-mm-diameter stainless steel cylinder was suspended in the center of the
channel from two parallel strips of spring steel which acted as a spring. The cylinder was submerged
by 53.5D of its length and was suspended 1.5D from the bottom of the channel. The channel width
was 23D. By using two strips of spring steel, the pendulum effect in the response of the cylinder
was eliminated. The system’s natural frequency was adjusted by increasing or decreasing the length
of the springs through a vertically adjustable collar that created a clamped boundary condition. This
allowed U ∗ to change while keeping U and the Reynolds number constant. The rectangular cross
sections of the steel springs ensured that the cylinder could only oscillate in the transverse direction.
The adjustable spring length resulted in a small change in mass ratio m∗ (defined as the moving
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FIG. 2. (a) Shear and (b) extensional rheology measurements for various concentrations of xanthan gum in
water at 20 ◦C. Power-law model fits are superimposed over each data set.

mass of the system divided by the displaced mass of the fluid) for each reduced velocity. We have
shown previously [13] that this change in mass ratio has a negligible effect on the VIV response.
The structural damping of the system was measured using a decay test in air, and was found to be on
the order of 10−3 for all spring lengths. The rotating nature of the setup created a linearly sheared
flow across the channel walls. Despite this variation in the flow velocity across the channel, since
the channel width was 23D and the expected magnitude of the cylinder oscillations was less than
0.5D, the flow remained relatively uniform in the range where oscillations were expected.

Cylinder oscillation amplitude and frequency were measured through a noncontacting distance-
measuring laser (Panasonic HL-G11). The wake was visualized by seeding the fluids with neutrally
buoyant glass spheres (Dantec Dynamics) with a diameter of 10 μm. A plane was illuminated with
a laser sheet and the wake was captured using a high-speed camera (Phantom V4.2). Vorticity, shear
rate, and extension rate were then calculated through PIV using an open source PIV software for
MATLAB, PIVLAB v2.55 [30].

III. FLUID RHEOLOGY

The test fluids used in these experiments were created by mixing xanthan gum (Now Real
Foods) in water over a concentration range of 0 � c � 0.50 g/L. The shear viscosity of each
solution was fully characterized using a Discovery HR-3 hybrid rheometer with a cone-and-plate
attachment in order to determine the characteristic Reynolds number as defined by Patel et al. [29],
Rechar = UD/ηchar. The shear viscosity of each fluid is shown in Fig. 2(a). Note that only one decade
of shear rate data are presented in Fig. 2(a) because over the characteristic Reynolds number range
accessible in our flow cell, the shear rate varied only in the range of 10 s−1 < γ̇char = U/D <

100 s−1. At these concentrations, all the solutions were found to be shear thinning. In each case, a
power law was used to satisfactorily model the fluid viscosity such that η = mγ̇ n−1 [31], where
η is the shear-rate-dependent viscosity and γ̇ is the shear rate imposed by the rheometer. The
consistency index m and the power-law exponent n for various concentrations are given in Table I,
and the power-law fit is superimposed over the data in Fig. 2(a). Shear rheology was measured three
times for each temperature and concentration. The resulting average power-law fits were highly
repeatable and had a standard deviation of around 1% for both m and n. Increasing the xanthan gum
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TABLE I. Power-law model fits to the shear viscosity of various concentrations of xanthan gum in water.
The data include the consistency index (m) and the power-law exponent (n).

m (Pa sn)
Concentration (g/L) 20 ◦C 25 ◦C 30 ◦C n

0.10 2.9 × 10−3 2.6 × 10−3 2.3 × 10−3 0.9
0.20 6.6 × 10−3 5.6 × 10−3 5.3 × 10−3 0.8
0.35 1.4 × 10−2 1.2 × 10−2 1.1 × 10−2 0.7
0.50 3.8 × 10−2 3.4 × 10−2 3.0 × 10−2 0.6

concentration increases the power-law exponent, resulting in an increased shear-thinning effect with
increasing concentration. Shear rheology measurements were performed at temperatures of 20 ◦C,
25 ◦C, and 30 ◦C because the fluid temperature in the experiments was not controlled but fluctuated
with the room temperature. Time-temperature superposition was used to correct the viscosity used
in the definition of the Reynolds number based on the temperature at the time of data collection.
Table I and Fig. 2(a) present the rheology measurements at 25 ◦C. At other temperatures, the power-
law indices were similar, varying by a maximum of ±2%, but the viscosity and the consistency
index decreased with increasing temperature.

The extensional viscosity of each xanthan gum solution was characterized by conduct-
ing dripping-onto-substrate capillary breakup extensional rheology (CaBER-DoS) measurements
[32–34]. In CaBER-DoS, a droplet of fluid is expelled from a nozzle at a relatively low flow
velocity. When the drop makes contact with the substrate beneath the nozzle, it partially wets the
substrate, creating a fluid filament between the nozzle tip and the substrate. Once formed, the fluid
filament undergoes a surface-tension driven pinch-off that is the basis for capillary-break extensional
rheology measurements. A more complete summary of our experimental method and equipment
can be found in Rosello et al. [35]. For the fluids used here, depending on the fluid properties, the
filament breakup is resisted by either fluid inertia or the extensional viscosity of the fluid. In the
inertiocapillary breakup regime, the radius of the fluid filament will decay as Rmid/R0 ∝ (tc − t )2/3,
while for a Newtonian fluid in the viscocapillary breakup regime, the radius of the fluid filament will
decay as Rmid/R0 ∝ (tc − t ), where R0 is the initial radius, typically taken to be that of the nozzle,
and tc is the breakup time of the liquid filament [36]. For a power-law fluid, the filament decay does
not follow either exponent, but depends on the extensional power-law index nE . Doshi et al. [37]
showed that for a power-law fluid in CaBER

Rmid

R0
= φ(nE )σ

mE R0
(tc − t )nE , (1)

where Rmid is the minimum radius of the filament; R0 is the radius of the nozzle; φ(n) is a constant
that is dependent on the power law index nE and must be determined numerically [36]; σ is the
fluid surface tension, which we have assumed to be equal to that of water; tc is the time of capillary
breakup; and t is the time of experiment. From this equation, it is possible to fully characterize
a power-law fluid if the extensional power-law index is between the inertio-capillary and visco-
capillary limits, 0.667 < nE < 1.0.

Each fluid was tested with CaBER-DoS three times and the consistency index and the power-law
exponent were determined by fitting the diameter thinning to Eq. (1). The extensional viscosity of
each solution was calculated from the power-law model fit defined by ηE = mE ε̇ nE −1, where ηE

is the extensional viscosity and ε̇ is the extension rate [31,36], and is presented in Fig. 2(b). The
extension consistency index mE and the extension power-law exponent nE for each concentration
are given in Table II, and the resulting power-law model fit is superimposed over the extensional
viscosity data in Fig. 2(b). The thinning of the extensional viscosity is quite different from the
thinning of the shear viscosity. While increasing xanthan gum concentration results in stronger shear
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TABLE II. Power-law model fits to the extensional viscosity of various concentrations of xanthan gum in
water. The data include the extension consistency indices (mE ) and the extensional power-law exponents (nE ).

Concentration (g/L) mE (Pa snE ) nE

0.10 6.6 × 10−1 ± 0.13 0.68 ± 0.03
0.20 5.5 × 10−1 ± 0.15 0.74 ± 0.01
0.35 2.2 × 10−1 ± 0.12 0.83 ± 0.06
0.50 1.4 × 10−1 ± 0.03 0.87 ± 0.10

thinning and a decrease in the power-law index, the opposite trend is observed in extension. The
observed diameter decay results in an extensional power-law index that increases with increasing
xanthan gum concentration, meaning that the higher-concentration solutions are less extensionally
thinning than the lower-concentration solutions. Because the extension rate in CaBER-DoS is not
controlled, but rather dictated by the fluid properties, measurements of extensional viscosity were
only possible at very large extension rates in the range of 103 < ε̇ < 104. These extension rates
are well above the extension rates expected in the wake of the cylinder and much larger than the
maximum shear rate accessible with our shear rheometer. As a result, a direct comparison between
the shear and extensional rheology cannot be made. However, if one assumes that the power-law
behavior holds and the extensional viscosity is extrapolated back to an extension rate of ε̇ = 102s−1,
the result is a Trouton ratio of Tr = ηE/η ≈ 150 for the c = 0.10 g/L case and Tr ≈ 15 for the
c = 0.50 g/L case. These large Trouton ratios suggest that the xanthan gum solutions may exhibit
some elasticity at the very high extension rates tested here. Similar extensional thinning behavior
and Trouton ratios were observed by Martín-Alfonso et al. [38], who used flow through a hyperbolic
contraction to characterize the extensional viscosity of the xanthan gum solutions at significantly
higher concentrations than tested here.

IV. RESULTS

We performed a series of VIV experiments for xanthan gum concentrations in the range of
0 < c < 0.50 g/L, and over the characteristic Reynolds number range of 23 < Rechar < 100 and
reduced velocity range of 4 < U ∗ < 10, in order to investigate the effect of shear thinning on the
VIV response of a 1DOF flexibility-mounted cylinder allowed to oscillate in the CF direction. The
experiments at a constant Reynolds number were conducted at a constant flow velocity, and the
reduced velocity was changed by changing the stiffness of the system. The change in the Reynolds
number for different sets of experiments was achieved by changing the incoming flow velocity.
Each time history was recorded for 2 min after steady state was achieved. A period of at least
3 min was given between the end of each test and the beginning of the next. The amplitude and
frequency of the cylinder’s VIV response for all the solutions tested here are presented in Figs. 3
and 4. In these figures, the dimensionless amplitude of oscillations A∗ = A/D and the dimensionless
frequency of oscillations f ∗ = f / fn are plotted, where A is the amplitude of oscillations, f is its
frequency, and fn is the system’s natural frequency in air. It is clear from the plots of Fig. 3 that
the addition of xanthan gum has a significant impact on the VIV response of the cylinder. For the
lower concentrations, c = 0.10 g/L, 0.20 g/L, and 0.35 g/L, VIV is observed. However, for the
highest concentration tested, c = 0.50 g/L, VIV is completely suppressed over the entire range of
the characteristic Reynolds numbers accessible in our flow cell, Rechar < 100. The observed VIV
response is in the form of oscillations over a range of reduced velocities (the lock-in range) for
which the oscillation frequency stays close to the natural frequency of the system (Fig. 4).

The plots of Fig. 3 show that with increasing concentration, the amplitude and width of the
lock-in range decrease. At the low concentration of c = 0.10 g/L, the VIV response in Fig. 3(a)
follows the VIV response of a 1DOF cylinder placed in Newtonian flow. For a 1DOF cylinder in
a Newtonian flow, VIV is observed for Reynolds numbers larger than Re ≈ 18 [13]. At a constant
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FIG. 3. Amplitude of the VIV response as a function of Rechar and U ∗ for various concentrations:
(a) 0.10 g/L, (b) 0.20 g/L, (c) 0.35 g/L, and (d) 0.50 g/L. The characteristic shear rates γ̇char range from
(a) 9.6 to 45.5 s−1, (b) 24.1 to 64.6 s−1, (c) 42.4 to 86.1 s−1, and (d) 75.0 to 100.0 s−1.

FIG. 4. Normalized frequency in the lock-in range versus U ∗ for various Reynolds numbers and various
concentrations: (a) 0.10 g/L, (b) 0.20 g/L, and (c) 0.35 g/L.
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FIG. 5. Amplitude of the VIV response as a function of the Reynolds number at U ∗ = 7.5 for various
concentrations. Results for water are from our previous work [13].

reduced velocity, the VIV amplitude for a Newtonian flow increases with Reynolds number from
Re = 18 to Re = 33 before reaching a plateau beyond which the amplitude of the VIV response
is independent from the Reynolds number [13]. A similar VIV response is observed here for the
0.1 g/L concentration. This is more clearly seen in Fig. 5, where the dimensionless amplitude is
plotted as a function of the Reynolds number at a constant reduced velocity of U ∗ = 7.5 for all
four concentrations. For comparisons, the VIV response for a Newtonian case (water) based on our
previous work [13] is also plotted. The responses for the 0.10 g/L concentration and water very
closely match. In both cases, the oscillations begin at Rechar = 18 and the amplitude increases up to
A∗ ≈ 0.3 before reaching a plateau. Increasing the xanthan gum concentration increases the critical
Reynolds number for the onset of oscillations. For the 0.20 g/L and 0.35 g/L concentrations, VIV is
observed at Rechar ≈ 30 and Rechar ≈ 45, respectively. In all cases, the amplitude of oscillations in-
creases with the Reynolds number before reaching a maximum. This maximum amplitude decreases
with increasing concentration until it reaches zero for the 0.50 g/L concentration. For the 0.20 g/L
and 0.35 g/L concentrations, the maximum amplitudes at U ∗ = 7.5 are A∗ ≈ 0.25 and A∗ ≈ 0.12,
respectively. As the reduced velocities are changed, the mass ratios also change slightly for each
case, since we change the reduced velocity by changing the length of the spring that moves with the
spring. For the lowest concentration of 0.10 g/L, the mass ratio changes from m∗ = 38 to m∗ = 46
for the smallest characteristic Reynolds numbers tested for that concentration (i.e., Rechar = 17)
and from m∗ = 26 to m∗ = 29 for the largest characteristic Reynolds number (i.e., Rechar = 100).
This change decreases as the concentration is increased such that at the highest concentration tested
here (i.e., 0.50 g/L), the mass ratio varies from m∗ = 23 to m∗ = 25 for all characteristic Reynolds
numbers tested at that concentration. We had shown before [13] that such relatively small changes
in the mass ratio do not influence the amplitude of observed oscillations.

It is seen in Fig. 5 that the amplitude at U ∗ = 7.5 for the 0.35 g/L concentration does not reach a
plateau, but decreases after reaching a maximum around Rechar = 55. This is due to the fact that for
the shear thinning fluids studied here, the lock-in range shifts to the left (lower reduced velocities)
as the Reynolds number is increased, which in turn results in a shift in the maximum amplitude
of oscillations to lower values of reduced velocity (Fig. 3). As a result, if instead of plotting
the amplitudes at a constant reduced velocity, we plot the maximum amplitude (Fig. 6), then for
the three concentrations that demonstrate VIV, the maximum amplitudes approach a plateau as the
Reynolds number is increased. This plateau amplitude decreases from A∗ = 0.41 to 0.30 to 0.22 and
to 0 as the concentration is increased from 0.10 g/L to 0.50 g/L.

The observed shift of the lock-in range to lower reduced velocities and the decrease in the width
of the lock-in range with increasing Reynolds numbers are clearly highlighted in the plots of Fig. 7,
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FIG. 6. Maximum amplitude of the VIV response versus the Reynolds number for various concentrations.

where the reduced velocities of the onset and end of the lock-in range as well as the width of the
lock-in range are plotted versus the characteristic Reynolds number for the three shear-thinning
cases that undergo VIV. From the plot of Fig. 7(a), it is clear that the U ∗ values at which the lock-in
begins and ends decrease as the Reynolds number is increased. Also, at a constant Reynolds number,
as the fluid concentration increases, the critical reduced velocities decrease. Therefore, increasing
shear-thinning effects and the Reynolds number both result in a shift of the lock-in range to lower U ∗
values. From the plot of Fig. 7(b), it is clear that at a constant concentration, the lock-in width tends
to increase as the Reynolds number is increased until it reaches a plateau at the higher Reynolds
numbers. At a constant characteristic Reynolds number, the width of the lock-in range decreases as
the concentration is increased.

In all cases where VIV is observed, the dimensionless oscillation frequencies stay close to one,
f ∗ ≈ 1, as shown in the plots of Fig. 4. These frequency plots also show how the lock-in range

FIG. 7. (a) Critical values of the reduced velocity U ∗ for the onset (– – – -) and end (.........) of the lock-in
range, and (b) the lock-in width as a function of the characteristic Reynolds number.
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moves toward smaller reduced velocities as the concentration is increased. Another trend that is
observed in the frequency plots is that at each concentration, the frequencies decrease slightly as the
Reynolds number is decreased. For example, for the concentration of 0.10 g/L, at the beginning of
the lock-in range, the reduced frequency is less than one, f ∗ < 1, for all Reynolds numbers. Then, as
the reduced velocity is increased, the frequency ratio reaches one for a range of reduced velocities.
Toward the end of the lock-in range, for Rechar > 50, the reduced frequency is greater than one,
f ∗ > 1, but does not reach one for smaller Reynolds numbers. This trend is also observed for higher
concentrations of 0.20 g/L and 0.35 g/L. For both cases, frequencies increase slightly within the
lock-in range, but they cross one only for Rechar > 70. This behavior was observed previously in
the numerical results of Patel et al. [29] as well. As discussed there, the crossing of one in the
frequency plot corresponds to a jump in phase between the displacement and the force from φ = 0◦
to φ = 180◦, and the appearance of a large contribution of the third harmonic in the force. When
the reduced frequency remains smaller than one, f ∗ < 1, the large third harmonic component of the
force and the sudden phase shift are not observed in the response, and displacement and force stay
in phase.

A major finding of this work is that at a constant characteristic Reynolds number, the amplitude
of the VIV response decreases as the xanthan gum concentration (and therefore the degree of shear
thinning) is increased. At first glance, this result directly contradicts the conclusion drawn by Patel
et al. [29]. In their numerical simulations of similar shear-thinning and shear-thickening fluids, they
showed that although the degree of shear thinning can affect the extent of the wake, when the results
are compared at the same characteristic Reynolds number, as done here, the amplitude and frequency
of oscillations are insensitive to the power-law index or the zero-shear-rate viscosity for shear
thinning, shear thickening, and Newtonian fluids. The question of why the experiments performed
here show such a strong dependence on xanthan gum concentration at a constant characteristic
Reynolds number then arises. One possible explanation could be the constitutive model used in the
simulations of Patel et al. The simulations used a Carreau-Yasuda model to describe the fluid, a
model meant for reproducing the power-law dependence of the shear viscosity, which was the goal
of that study. However, that model does not distinguish between shear and extensional flows, and as
a result, the extensional viscosity of the Carreau-Yasuda model will decay with the same power-law
exponent as in shear, and the Trouton ratio at all extension rates will be that of a Newtonian fluid,
Tr = 3. Conversely, as described in Sec. III, the xanthan gum solutions have an extensionally
thinning viscosity that is different from their shear-thinning viscosity. In fact, the extensional
power-law exponent increases as fluid concentration increases. This means that as the fluid becomes
more shear thinning it becomes less extensional thinning, resulting in Trouton ratios that are much
larger than the Newtonian limit, Tr > 3. The flow upstream of the cylinder is in compression, and
the flow in the wake of the cylinder is in extension, as is the flow between the shed vortices. As a
result, the flow around the cylinder is not pure shear, but has mixed flow kinematics. It is possible,
therefore, that the differences in the rheological properties predicted by the constitutive model used
in the simulation of Patel et al. [29] and the rheological properties measured experimentally for the
xanthan gum solutions here are the cause of the differences between the results from simulations
and experiments.

To explore the shear and extension rates in the wake of the cylinder in more detail, in Fig. 8 we
plot the local extension and shear rates on top of the vortices shed from a fixed cylinder placed in a
fluid with 0.20 g/L concentration and at Rechar = 80. The velocity field calculated from PIVLAB is
used to calculate the local strain rate tensors. The local extension rate is defined as ε̇ = (∂ux/∂x −
∂uy/∂y)/2, where x is in the direction of flow and y is perpendicular to that; the local shear rate as
γ̇ = ∂ux/∂y + ∂uy/∂x; and the local vorticity as �ω = ∇ × �u, where the velocity vector is �u = uxî +
uy ĵ. The vorticity, shear rate, and extension rate in Fig. 8 are then normalized by their respective
maximum values. In Fig. 8(a), only the vorticity is shown, and in Figs. 8(b) and 8(c), the local shear
rate and extension rate are superimposed over the vorticity to identify regions dominated by shear
and extension. Upstream of the cylinder, a region of compression (ε̇ < 0) is observed, followed by a
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FIG. 8. (a) Normalized vorticity ω/ωmax, where ωmax ≈ 34 s−1; (b) normalized shear rate γ̇ /γ̇max, where
γ̇max ≈ 45 s−1, overlayed on normalized vorticity; and (c) normalized strain rate ε̇/ε̇max, where ε̇max ≈ 25 s−1,
overlayed on normalized vorticity, plotted in the wake of a fixed cylinder at a concentration of 0.20 g/L and a
Reynolds number of Rechar = 80. The hatched area represents the location close to the cylinder where the PIV
results are not reliable due to the experimental resolution.

region of strong shear along the cylinder’s equator. In the near wake of the cylinder, regions of both
high shear and extension rates are observed. In the far wake, also regions of high shear and extension
rates are observed between the vortices, while regions of uniaxial extension are observed linking
the vortices together and within the vorticies themselves as they are stretched and deformed by the
flow. These observations clearly reinforce the need to accurately capture the shear and extensional
components of viscosity in future numerical simulations.

The subcritical nature of the observed VIV (i.e., observation of oscillations at Reynolds numbers
lower than the critical for the onset of shedding in a rigid cylinder) is exhibited in Fig. 9. In this
figure, the wakes of a fixed cylinder (left column) and a flexibly mounted cylinder (right column) are
shown at Rechar = 50, with each row representing an increase in the concentration from 0.10 g/L
to 0.35 g/L. The flexibly mounted cylinders are at a constant reduced velocity of U ∗ = 7.5. The
response for the concentration of 0.10 g/L (first row) is very similar to the Newtonian response.
This Reynolds number, Rechar = 50, is very close to the critical Reynolds number of Re = 47
for the onset of shedding in the wake of a fixed cylinder. As a result, weak vortex shedding is
observed in the wake of the fixed cylinder in Fig. 9(a). When oscillations are observed, the vortex
structure in the wake of the flexibly mounted cylinder becomes more coherent in Fig. 9(b), where
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FIG. 9. The wake of a fixed cylinder (left column) and a flexibly- mounting cylinder (right column) at
Rechar = 50 and for various concentrations. First row: 0.10 g/L, second row: 0.20 g/L, and third row: 0.35 g/L.
The reduced velocity for the flexibly mounted cylinder is U ∗ = 7.5. The hatched area represents the location
close to the cylinder where the PIV results are not reliable due to the experimental resolution.

the shedding is enhanced by the cylinder oscillations. When the fluid concentration is increased
to 0.20 g/L, the shear layers around the stationary cylinder do not interact, as shown in Fig. 9(c).
As a result, the increased shear thinning for concentrations of 0.20 g/L and above suppresses the
vortex shedding in the wake of the fixed cylinder at this Reynolds number, Rechar = 50. When the
cylinder is flexibly mounted and undergoes VIV, as shown in Fig. 9(d), however, vortex shedding is
observed in the wake of the cylinder, highlighting the subcritical nature of this FSI instability. For
the 0.20 g/L concentration, the strength of the shed vortices, measured by their vorticity, is larger
than the strength of vortices in the wake of the oscillating cylinder in the 0.10 g/L concentration.
A similar trend is observed for the 0.35 g/L concentration, where shedding is not observed in the
wake of the fixed cylinder [Fig. 9(e)], but observed in the wake of the oscillating cylinder [Fig. 9(f)].
The vorticity increases even further for the 0.35 g/L case. This observation agrees with previous
literature which showed that increasing the amount of shear thinning of a fluid will intensify the
vorticity close to a fixed cylinder [28,29]. Despite the increasing vorticity, the oscillation amplitude
decreases with increasing concentration (Fig. 5). This might appear counterintuitive. However, it can
be explained by considering the change in size and location of the shed vortices as the concentration
is increased. By considering the vortices in Fig. 9 one notes that with increasing concentration, the
vortices become smaller and are shed closer to the wake centerline, resulting in a narrower wake.
As a result, the orientation of the fluctuating force that the shed vortices impart on the cylinder
shifts from the cross-flow direction more toward the inline direction. This shift in the orientation
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FIG. 10. The wake of (a) a fixed cylinder and (b) a flexibly mounting cylinder at Rechar = 90 and a
concentration of 0.50 g/L. The reduced velocity for the flexibly mounted cylinder is U ∗ = 7.5. The hatched
area represents the location close to the cylinder where the PIV results are not reliable due to the experimental
resolution.

reduces the magnitude of the fluctuating force in the y direction and could contribute to the observed
decrease in the oscillation amplitude with increasing concentration.

At the highest concentration tested, 0.50 g/L, no oscillations are observed for the Reynolds
numbers tested here (Rechar � 90), including Rechar = 50. The wakes of a fixed and a flexibly
mounted cylinder for this concentration are shown in Fig. 10 at Rechar = 90. Since no oscillations
are observed, no significant difference is observed between the wakes in the plots. Clearly vortices
are shed in the wake as expected for a cylinder placed in the flow at this Reynolds number. The
vortices are shed roughly at a distance x/D = 10 downstream of the cylinder, which is much
farther downstream than where the vortices are shed for the cases of lower concentration. As a
result, the fluctuating forces that these vortices exert on the cylinder are not large enough to induce
measurable cylinder motion. For the 0.50 g/L concentration, VIV might be observed at larger
Reynolds numbers, i.e., Rechar > 90, which were not tested here as our experimental setup was
limited to a maximum Reynolds number of Remax = 90 for the 0.50 g/L concentration. We should
note that a decrease in the vortex formation length with increasing Reynolds number was observed
in the 0.20 g/L case for both the fixed and the oscillating cylinder. Similar changes to the formation
length were also observed numerically for a cylinder in the cross flow of a power-law fluid [21,29].
Therefore, we expect that as the Reynolds number is increased past Rechar = 90 in the case of
0.50 g/L concentration, the formation length of the shed vortices will decrease and eventually the
vortices will shed close enough to the cylinder to induce oscillations, but at a Reynolds number
much larger than that of either a Newtonian or a weakly shear-thinning fluid.

V. CONCLUSIONS

It is well known that a flexibly mounted rigid cylinder placed in a Newtonian fluid undergoes
VIV at Reynolds numbers above Re = 18. In this paper, we experimentally investigate the role of
fluid rheology on VIV by replacing the Newtonian fluid with a series of shear-thinning xanthan
gum solutions in water. We increase the concentration in a range from 0.10 g/L to 0.50 g/L, and by
increasing the concentration, we increase the strength of the shear-thinning effects. This manifests
itself as a decrease in the power-law index from n = 0.9 to n = 0.6 with increasing concentration.
We show that when the fluid is made shear thinning, the response of the flexibly mounted cylinder
differs from the Newtonian response in several ways. First, at a constant Reynolds number, the
amplitude of the cylinder oscillations decreases with increasing xanthan gum concentration. For
example, with increasing concentration at Rechar = 60, the dimensionless oscillation amplitude
decreases from A∗ = 0.42 to 0.30 to 0.23 and to 0.0 as the concentration is increased from c = 0.10
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to 0.20 to 0.35 and to 0.50 g/L. Second, with increasing xanthan gum concentration, the lock-in
range is shifted to lower reduced velocities and the width of the lock-in range is reduced. For
example, at Rechar = 60, the width of the lock-in range is reduced from �U ∗ = 3.1 to 2.2 as the
concentration is increased from 0.10 to 0.35 g/L. The critical characteristic Reynolds number at
which oscillations are first observed increases with increasing xanthan gum concentration. In fact,
at the highest concentration studied here, VIV is completely suppressed at the Reynolds number
accessible in our experimental setup. The critical Reynolds number to observe VIV increases from
Recrit = 18 (which is also the critical Reynolds number for VIV in Newtonian fluids) to 30 to 40
and to Recrit > 90 as the concentration of xanthan gum is increased from c = 0.10 to 0.20 to 0.35
and to 0.50 g/L.
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