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Bathtub vortex effect on Torricelli’s law
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We investigate experimentally the unsteady draining flow from a rotating tank. The fluid
in the tank is first set in solid rotation, before the draining hole is opened. We show that
the draining may be drastically reduced by the rotation, as the vortex circulation increases
together with the surface deformation. We demonstrate that the usual Torricelli’s draining
law has to be modified with the surface deformation and that the draining time is mainly
governed by a nondimensional parameter corresponding to the ratio of the size of the outlet
to the thickness of the Ekman boundary layer.
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I. INTRODUCTION

Nearly four centuries ago, Torricelli discovered the law describing the emptying of a vessel
under the acceleration due to gravity g [1]. This law, which was demonstrated one century later by
Bernoulli when neglecting viscous dissipation [2], relates the draining velocity vT to the mean water
level H above the bottom hole, vT (t ) = √

2gH (t ), at any time t , for a hole of section s much smaller
than the section S of the vessel. The evolution of H (t ) established from mass conservation leads to
the total draining time T0 = (S/s)

√
2H0/g. Many works devoted to the emptying of tanks with a free

surface in the open air focus on some discrepancies between this theoretical law and experimental
data [3–9]. These discrepancies can be taken into account by using a corrective coefficient β < 1
in the draining law, i.e., vβT = βvT . Many subtle phenomena come into play near the outlet. From
a simple analysis of the vena contracta of the water jet, β can be as small as 1/2 [10] but other
phenomena such as wetting effects give rise to experimental β values from 0.64 to 0.93, depending
on the geometry of the outlet but also on its size relative to the capillary length [9]. The total draining
time Tβ is thus expected to be 1/β longer than its ideal value T0.

In contrast to small vessels such as bottles of water where a vortex can hardly be observed
without rotation, a vortex appears during the draining of large open-air tanks. This is a common
observation for emptying baths, but this also occurs at much larger scales in environmental or
industrial situations, for instance in the case of hydraulic dams with a loss of efficiency and wear
of equipment [11–13] or in the case of nuclear power plants with major safety issues [14–16]. The
emptying process is an incredible amplifier of vorticity and the popular experiments of Shapiro [17]
and Trefethen et al. [18] perfectly illustrate this phenomenon. Carried out under very controlled
conditions, they are like the Foucault’s pendulum, part of the human-scale demonstrations of the
Earth’s rotation [19,20].

When the fluid is drained without any rotation, the flow structure is simple with a point sink flow
close to the outlet section and connected far away to a downward uniform flow. The structure of
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FIG. 1. Schematic drawing of (a) the experimental setup and (b) the outlet cylindrical draining pieces.
(c) Typical radial dependence of the azimuthal velocity uθ (r): experimental data from PIV measurements for
� = 5 rpm, φ1, and at t = 2000 s (black symbols), and Rankine’s model fit of equation uθ = �/2πr with
� = 7.4×10−3 m2 s−1 (orange solid line). The gray area corresponds to a zone where the distorted interface
prevents correct azimuthal velocity measurements.

the vortex flow is more complex. It consists of several regions that have been studied under steady
conditions, i.e., at constant water level H [21–36]. Two distinct regions of the flow contribute to the
emptying. The boundary layer at the interface is drained within a fine pipe region above the outlet.
A part of the Ekman boundary layer that develops at the bottom wall of the tank flows directly into
the outlet section while the remaining part is pumped upwards and forms complex structures in the
bulk. Andersen et al. [27,29] estimated that the flow rate QE coming from the Ekman boundary
layer accounts for 90% of the total drained flow Q and found the relation QE = �δ/2 where δ is
the thickness of the boundary layer and � is the velocity circulation associated with the vortex. It
is worth noting that the vortex flow characterized by its circulation and core size deforms the free
surface accordingly [36].

Although differences in draining velocities with and without a vortex have been reported in
steady conditions [29], to our knowledge, no study has been done to investigate in detail the
influence of vortex flow on the unsteady Torricelli’s law. In this article, we address this question
with a rotating vessel. We show that a transition between two different draining regimes takes place
resulting in a slower draining in the case of rotation. The study of bathtub vortex in a rotating
reference frame is widely used [27,29,33–35] and allows the vortex to be controlled in intensity and
stabilized on the axis of rotation, avoiding possible complex precession motion.

II. EXPERIMENTAL SETUP

Our rotating platform consists of two 20-cm-thick cylindrical marble pieces of diameter 1.5 m,
piled up together and separated by a 1-mm-thick air cushion, which allows the upper piece to rotate
without solid friction around the vertical axis of rotation Oz [a sketch of the experimental setup is
shown in Fig. 1(a)]. The rotation velocity � can be changed from 0 to 10 rpm. A Plexiglas cylinder
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of radius R = 145 ± 0.1 mm and length 390 mm whose bottom plate is drilled in its center is
mounted on a metal frame in the rotating platform and is centered along Oz. The leveling is ensured
with a precision of ±0.1◦. Three different cylindrical draining pieces are made of PVC (1 cm thick)
with internal holes of diameter φ1 = 2.9 ± 0.1 mm, φ2 = 3.5 ± 0.1 mm, or φ3 = 4.0 ± 0.1 mm,
respectively [see Fig. 1(b)]. The top of the draining pieces is flush with the bottom wall of the tank.
An hermetic hatch leans against the bottom and can be remotely removed at t = 0 s, at which the
initial level of water is H0 = 375 ± 1 mm. The rotation is imposed during the entire experiment and
1 h before the draining starts at t = 0 s, to be sure that the bulk is initially in solid body rotation. The
typical spin-up time H0/(ν�)1/2 [37,38] which holds for cylindrical geometry and in the presence
of a free surface [34,39] is actually of the order of 103 s, smaller than the settling time of 1 h.
The initial parabolic deformation of the interface �2R2/4g is less than 0.3 mm, thus negligible. We
use chlorinated water with a surface tension σ of 58 ± 4 mN m−1, density ρ of 998 kg m−3, and
kinematic viscosity ν of (1.03 ± 0.02)×10−6 m2 s−1 at the regulated room temperature 19 ± 1 ◦C.
The Ekman number Ek = ν/�R2 is thus in the range 6.7×10−5 � Ek � 2.3×10−4.

The cumulative mass m(t ) of drained water at time t is measured with a precision of 0.5 g
and a sampling frequency of 7 Hz. The scale is centered on Oz, such that no inertial correction
is required for the weight measurement. The mean level of water in the tank is deduced as
H (t ) = H0 − m(t )/ρπR2 within an accuracy of 1 mm. The flow rate Q = ṁ/ρ is determined from
the time derivative of m by using a Savitzky-Golay polynomial interpolation of m(t ) at time t over
eight successive points of measurement [40]. Two video cameras are placed in the rotating frame to
track the free surface and the velocity in the bulk. From the side of the tank, every 10 s we capture the
axisymmetric radial profile of the water level h(r, t ), which satisfies 1

πR2

∫ R
0 h(r, t )2πr dr = H (t ) �

h(R, t ). The radial and azimuthal components (ur, uθ ) of the velocity field in the rotating frame are
measured in a horizontal plane located 1.5 cm above the bottom of the tank using a thin horizontal
670-nm laser sheet and a camera from above thanks to a particle image velocimetry (PIV) technique.
The frame rate of the camera is adjusted between 20 and 60 Hz for the correlation of two successive
images and the mean velocity field is obtained from ten successive velocity fields. Immediately
after the PIV measurement, the ambient light is automatically switched on to make the h(r, t )
measurement. When the water surface is deformed by the vortex core, the particle displacements in
the PIV plane cannot be correctly determined close to Oz. Thus, the core radius, rc, of the vortex
cannot be directly determined in our experiment. However, we can determine the vortex circulation,
�, from the expected variation in azimuthal velocity, �/(2πr). The Rankine model should be valid
in the irrotational region outside the Stewartson boundary layer of thickness R ×Ek1/4 ≈ 2 cm, thus
far enough from the sidewall [29,35]. In our experiments, the validity region is shorter due to the
unsteady nature of the draining. Figure 1(c) shows a typical experimental curve of uθ (r), as well as
the corresponding fitting curve that provides the value of �.

III. EFFECT OF ROTATION ON DRAINING

Figure 2(a) shows some typical time evolutions of the draining velocity vQ(t ) = Q(t )/π (φ/2)2

for different rotation velocity � and hole diameter φ, where vQ and t are made dimensionless
with the initial velocity value

√
2gH0 and total draining time T0 = (2R/φ)2√2H0/g for an ideal

Torricelli’s law, respectively. In such a dimensionless plot, an ideal Torricelli draining would follow
a straight line of slope −1 starting from (0,1). Without rotation, the draining curves are straight lines
with a correction coefficient β = 0.90 ± 0.03 close to 1 as the hole diameter φ is of the order of the
capillary length �c = (γ /ρg)1/2 � 3 mm [9].

When the rotation is large enough, the draining curves are no longer straight lines but a drastic
reduction of the draining velocity appears during the discharge. This reduction leads to a significant
increase of the experimental draining time T for increasing � as shown in Fig. 2(b) for all � and
φ. The time T (�), defined as the time for which 99% of the initial water level has been drained,
increases with � by a factor that increases with increasing φ, up to twice T (0) for the largest � and
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FIG. 2. (a) Time evolution of vQ/
√

2gH0 for φ = φ1 and φ3, and � = [0, 2, 7] rpm. The time t is scaled
by T0 = (2R/φ)2

√
2H0/g. (b) Experimental draining time T (�) scaled by T (0) as a function of � for φ1, φ2,

and φ3.

φ. This phenomenon is observed to be closely related to the deformation of the free surface during
the discharge.

IV. DRAINING MODEL FROM SURFACE DEFORMATION

Typical photographs of the interface evolution are displayed in Figs. 3(a)–3(c) for � = 2 rpm
and φ2. Initially, the interface remains flat and the draining curve does not deviate from Torricelli’s
law, with vQ = vβT , even when the vortex is well formed in the bulk. The free surface then slightly
deepens above the hole [≈3 mm in Fig. 3(a)] as the vorticity concentrates, which is accompanied
by a slight decrease of the draining velocity [≈1% in Fig. 3(e)]. The air core continues to deepen
[≈2 cm in Fig. 3(b)], with now a significant drop in the draining velocity [≈4% in Fig. 3(e)].

The reduction of the draining velocity vQ compared to the usual value vβT can be understood
by considering the momentum balance equations in the rotating frame. When neglecting surface
tension effects [36], the pressure distribution p in the bulk can be considered as hydrostatic:

p(r, z) = p0 + ρg[h(r) − z], (1)

where p0 is the atmospheric pressure at the free surface.
Following Milne-Thomson [10] and Andersen et al. [29], the viscous terms in the momentum

equation can be neglected. Under the quasistatic approximation, the momentum equation integrated
over the whole fluid domain D of surface Sc [see Fig. 3(d)] reduces to

ez ·
∫∫
©

Sc

ρu(u · dS) = −2πρg
∫ R

0
h(r)r dr − ez ·

∫∫
©

Sc

p dS (2)

along the z axis, the projection of the centrifugal and Coriolis forces being zero following this axis.
By considering the uniform draining velocity veff a little below the outlet where the jet section is
seff = π (φeff/2)2 and where the pressure is p0, Eq. (2) yields

ρv2
eff seff = 2πρg

∫ φ/2

0
h(r) r dr. (3)

In the simple case without surface deformation, when h(r, t ) = H (t ), the vena contracta
should correspond to seff/s = (φeff/φ)2 = 1/2 as recalled in the introduction from Bernoulli’s
theorem [10]. In the more general case with surface deformation, the draining velocity takes
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FIG. 3. (a)–(c) Photographs of the interface during the emptying for � = 2 rpm and φ2 at (a) H (t = 396 s)/
H0 = 0.66, (b) H (t = 696 s)/H0 = 0.46, and (c) H (t = 1006 s)/H0 = 0.3. At that moment, bubbles are
formed and carried down the outlet from the tip of the vortex. (d) Schematic drawing of the tank and fluid
domain D (in blue), which includes the volume of water in the tank and the contracted jet at the outlet. (e), (f)
Draining velocity vQ scaled by vβT as a function of the instantaneous water height H scaled by its initial value
H0 for (e) φ2 and � = 2 rpm, and (f) φ1 and � = 7 rpm. The gray curve corresponds to mass measurements
and the red points to Eq. (4) with interface shape measurements. The black dashed line shows the reference
value vQ = vβT .

the form

vQ(t ) = β

√
4g

(φ/2)2

∫ φ/2

0
h(r, t )r dr. (4)

This general equation relates the draining velocity to the shape of the free surface above the hole
without any modeling of the interface shape. When the free surface deepens locally due to a strong
enough bathtub vortex, the draining is thus expected to be decreased accordingly. This prediction
can be tested in our well-controlled rotating experiments.

Figures 3(e) and 3(f) show the agreement between the draining velocity calculated from Eq. (4)
using the experimental profiles of the interface and the draining velocity measured by the mass
derivative for two cases with different � and φ. While Torricelli’s law systematically overestimates
the draining velocity by up to 20%, the present model remains within a 3% range. When the interface
starts to be destabilized with some oscillations due to bubble entrainment from the tip [Fig. 3(c)],
h(r, t ) can no longer be measured with confidence. This phenomenon of bubble entrainment is well
known in the literature [41,42].

Let us emphasize that Eq. (4) is established for the entire emptying process, regardless of whether
the Ekman boundary layer is established or not. When the boundary layer is established, the flow
structure is comparable to that observed under steady-state conditions, as illustrated in the inset
of Fig. 4(a). The water flux through the Ekman layer at the bottom of the container of thickness
δ = √

ν/� is QE = �δ/2 � Q [27,29], giving us a useful link between the discharge flow rate Q and
the circulation �. A typical time evolution of the Ekman draining velocity vE (t ) = QE (t )/π (φ/2)2
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FIG. 4. (a) Time evolution of the draining velocity vQ(t ) (orange curve) and the Ekman draining velocity
vE (t ) = �(t )δ/[2π (φ/2)2] (gray curve) for � = 3 rpm and φ3. The black dashed line corresponds to Eq. (9).
The two vertical dotted lines correspond to the time τ at which the draining velocity significantly deviates from
the usual Torricelli’s velocity and to the time τs at which the supercritical regime appears. The inset shows the
flow structure in the steady case: the Ekman boundary layer and pumping (in red), and the draining pipe (in
blue). (b) Evolution of the Ekman draining velocity vE with the total draining velocity vQ for all � and φ. The
blue line corresponds to vE = vQ. (c) Time evolution of vQ scaled by β

√
2gH for φ3 and � = [0, 2, 3, 5, 7] rpm,

where the time t is scaled by T (0). The dashed lines correspond to the values from Eq. (9) for � �= 0.

is shown in Fig. 4(a); vE first increases, reaches a maximum (t ≈ 500 s), and eventually decreases.
The total draining velocity vQ decreases during the entire emptying process with an abrupt drop-off
at τ ≈ 350 s. Then, the gaseous core extends to the outlet section at τs ≈ 500 s and vQ almost merges
with vE . During this final stage of the draining process (t � 700 s), both velocities decrease linearly.
This important result is common to all experiments with rotation as shown in Fig. 4(b), where vE is
plotted as a function of vQ: at the first stage of each experiment, vE increases when vQ decreases,
but the remarkable observation is that all the curves collapse onto the straight line vE = vQ in the
final stage of the draining. In our experiments, this last stage occurs after a transient time ranging
approximately from 11 to 23 min which accounts for one-quarter to one-half of the total emptying
time.

V. SUPERCRITICAL REGIME

In most of our experiments, at a critical stage of the draining, the gaseous core extends to the
outlet section. This so-called supercritical regime [31] happens faster the greater the rotation and
the larger the hole size. In this regime, the interface shape should be governed by the circulation of
the vortex � [43]:

h(r, t ) = h(R, t ) − �(t )2

8π2gr2
, (5)

for φg/2 � r � R, where φg(t ) =
√

�(t )2/[2π2gh(R, t )] is the diameter of the gas core at the outlet.
The model presented in Eq. (5) is not intended to perfectly fit the shape of the interface, which
has been the subject of many studies [31,44]. Instead, it serves as an intermediary for predicting the
draining velocity based on characteristic quantities of the problem (H , �, ν, φ, and β). Equations (4)
and (5) yield

vQ(t ) = β

√
4g

(φ/2)2

∫ φ/2

φg/2

(
h(R, t ) − �(t )2

8π2gr2

)
rdr, (6)

where vQ = Q/π (φ/2)2 represents the average velocity calculated over the entire emptying section,
including the gaseous core, and can therefore be directly compared to the experimentally measured
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(a) (b)

FIG. 5. (a) Transition time τ and (b) draining time T , both normalized by T (0), as a function of �(φ/2)2/ν.
Same symbols as in Fig. 2(b). The solid lines correspond (a) to the best power fit τ/T (0) = 0.6ν/�(φ/2)2 of
the data and (b) to the estimate T/T (0) = τ/T (0) + [1 − τ/T (0)](vQ/vβT )−1, with τ/T (0) given by the power
fit of (a) and vQ/vβT by Eq. (9) with β = 0.9.

draining velocity of the container. Integrating Eq. (6) yields

vQ(t ) = β
√

2gh(R, t )

{
1 + �2

2gh(R, t )π2φ2

[
−1 + 2 ln

(
�√

2gh(R, t )πφ

)]}1/2

. (7)

Considering that the total flow rate Q � �δ/2, Eq. (7) reads

A

(
vQ

v�
T

)2[
1 + 1

β2A
− 2 ln

(
A1/2 vQ

v�
T

)]
− 1 = 0, (8)

where v�
T = √

2gh(R, t ) � vT and A = (φ/2δ)2 is a dimensionless parameter corresponding to the
ratio between the outlet radius φ/2 and the thickness of the boundary layer δ = √

ν/�. The solution
of Eq. (8) reads

vQ

vβT
= 1

β
√

−AW−1(−e−(1+1/β2A) )
, (9)

where W−1 is the analytic continuation of the product logarithm function. The draining velocity vQ

in the supercritical regime is thus expected to be proportional to the Torricelli’s velocity vβT with a
factor depending only on the dimensionless parameter A = �(φ/2)2/ν = (φ/2R)2Ek−1. The values
of vQ predicted by Eq. (9) for φ3 and � = 3 rpm is shown with a dashed line in Fig. 4(a) and matches
very well with the experimental data when vQ = vE . The values of vQ/vβT from Eq. (9) compared
to experimental measurements are also shown for φ3 and different � in Fig. 4(c). The agreement is
very good as shown by the plateau values observed for the experimental measurements in the final
discharge regime. These plateau values, ranging from 0.62 to 0.43 as � increases, mean that the
discharge is strongly reduced by the rotation-induced vortex. This strong reduction appears earlier
as � increases.

The time τ at which the draining velocity significantly deviates from the usual Torricelli’s veloc-
ity, as shown in Fig. 4(a), is displayed in Fig. 5(a) for different � and φ as a function of �(φ/2)2/ν.
All data are clustered on a master curve whose best fit is τ/T (0) = 0.6[�(φ/2)2/ν]−1. This implies
that the draining time should not be affected significantly by rotation [T (�) � T (0)] if τ/T (0) > 1,
which corresponds to the condition �(φ/2)2/ν < 0.6. When �(φ/2)2/ν > 0.6, an estimate of the
draining time can be inferred by considering the fraction of draining time in the supercritical regime,
which should correspond to 1 − τ/T (0): T (�)/T (0) � τ/T (0) + [1 − τ/T (0)](vQ/vβT )−1. This
prediction, shown by a solid line in Fig. 5(b), is in good agreement with all the experimental data of
Fig. 2(b), which means that �(φ/2)2/ν is the relevant parameter and that the present model catches
the main physics.
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VI. DISCUSSION AND CONCLUSION

The present experimental study shows that the law of discharge for a water tank obeys a
generalized Torricelli’s law in which the mean water level must be replaced by the local level
above the outlet section. The increase in the vortex strength increases the deformation of the free
surface and consequently decreases the draining velocity and increases the draining time. A model
that considers draining mainly through the Ekman boundary layers predicts that the increase in the
emptying time for a rotating tank is mainly governed by the nondimensional parameter �(φ/2)2/ν,
which writes also as (φ/2R)2Ek−1, involving the Ekman number Ek = ν/�R2. The typical time
at which the unsteady draining starts to deviate from Torricelli’s law scales as T0(2R/φ)2Ek ∝
(R2/φ4)(ν/�)(H0/g)1/2, which is very different from the typical spin-up time H0/(ν�)1/2. Our
model predictions are in good agreement with our experimental measurements (with deviations of
less than 3%), even though we did not account for the effects of surface tension in our model.
As a result, the pressure term in Eq. (1) is overestimated, and the draining velocity obtained with
our model is slightly underestimated. However, we believe that the effect of surface tension in
our experiments is second order. Gas entrainment [see Fig. 3(c)], which is an instability related to
surface tension, is also not taken into account in our model. However, this phenomenon is only
present for a duration that is not representative of our experiments. The consideration of these
different effects on the draining velocity could be an interesting perspective of our work.

In order to be able to predict the draining law in the supercritical regime, we used the model
Eq. (5) for the interface shape. Such a model would not be suitable in the subcritical regime, where
the interface has not yet reached the outlet. In such a subcritical regime, another model could be
used instead of Eq. (5) to model the interface shape, also based on the Rankine model, but this
would have very limited relevance to our experiments. Indeed, in our experiments, the predominant
regime when the boundary layers are established is the supercritical regime.

For larger scale experiments with a larger outlet section, we believe that the present model
Eq. (4) would still be valid. For a smaller outlet section, we expect surface tension effects to be
non-negligible so that the present model should be refined accordingly.
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