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Turbulent signals are known to exhibit burstlike activities, which affect the turbulence
statistics at both large and small scales of the flow. In our study, we pursue this problem
from the perspective of an event-based framework, where bursting events are studied across
multiple scales in terms of both their size and duration. To illustrate our method and
assess any dependence on the Reynolds number (Re), we use two data sets: from the
Melbourne wind tunnel (Re ≈ 14 750) and from SLTEST, an atmospheric surface layer
experiment (Re ≈ 106). We show that an index, namely, the “burstiness index,” can be
used successfully to describe the multiscale nature of turbulent bursting while accounting
for the small-scale intermittency effects. With this index, we demonstrate that irrespective
of Re, the presence of large amplitude fluctuations in the instantaneous velocity variance
and momentum flux signals are governed by the coherent structures in the flow. For small-
scale turbulence, a Re dependence is noted while studying the scalewise evolution of the
burstiness features of second-order streamwise velocity increments ((�u)2). Specific to the
wind-tunnel data set, the burstiness index of the (�u)2 signal displays a strong dependence
on height and decreases as the scales increase with the maximum being obtained at scales
comparable to the dissipative structures. However, such features are nearly absent in the
atmospheric flows. To conclude, this research paves a way to evaluate the effect of bursts
on the turbulence statistics at any specified scale of the flow.
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I. INTRODUCTION

In any stochastic signal, bursts are typically characterized by the presence of strong amplitude
fluctuations, exceeding the standard deviation of the signal by multiple orders [1]. Understanding
the origin of these bursts is important, since these are often known to occur in a plethora of physical
systems. Some of their examples include (but are not limited to) (1) extreme dissipation and flux
events in turbulent flows [2,3], (2) rogue waves appearing on sea surfaces [4], (3) large solar flare
events in astrophysical systems [5], and (4) extreme rainfall events in weather and climate systems
[6].

In the context of turbulence research, perhaps the first documentation of bursts was carried out
by Kline et al. [7] while observing the occasional break-up of the near-wall streaks in wall-bounded
turbulent flows. Typically, such bursting activities lead to large-amplitude fluctuations in velocity
variance and momentum flux signals, and, therefore, they are considered to be an integral part
of turbulence dynamics [8]. Given their importance, since Kline’s study, numerous experimental
and theoretical studies have been undertaken to understand the role of these bursts in turbulence
production [9].

It is generally recognized that the presence of coherent structures, such as hairpin vortices, is
primarily responsible for such bursting phenomena [10,11]. Moreover, researchers have shown that
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nearly 80% of the Reynolds stress production happens through these bursts [12,13]. On the one
hand, on the theoretical side, Jiménez [14] has shown how the origin of these bursts can be explained
through the solutions of Orr-Sommerfeld equations. On the other hand, in experimental research,
the detection of bursts has mostly been achieved through variable interval time averaging (VITA)
and quadrant-hole methods [15–17]. Through such experimental schemes, one typically studies
the dynamical features of extreme events in the instantaneous velocity variances and streamwise
momentum flux signals, thereby connecting them with the coherent structures in the flow. Recently
using direct numerical simulations, a few studies have explored the three-dimensional topology of
the coherent structures associated with these extreme events [18,19].

From the above discussion, it is apparent that the bursts described so far are connected to the
energy-containing structures (comparable to the integral scales) in the flow and, therefore, could
be aptly characterized as large-scale bursts. However, in fully developed turbulent flows, there
exists another type of bursts associated with smaller scales of the flow, comparable to the inertial
subrange and dissipative range scales [20,21]. These small-scale bursts are typically identified
through the extreme events in velocity increments, such as in �u(τ ) = u′(t + τ ) − u′(t ), where
u′ is the streamwise velocity fluctuations, t is time, and τ is the time lag.

In particular, the probability density functions of velocity increments become increasingly non-
Gaussian as the eddy timescales decrease, a phenomenon associated with small-scale intermittency
[21]. The presence of such extreme events in the velocity increments disrupts the self-similarity of
the small-scale eddy structures as predicted by Kolmogorov [21]. This causes anomalous scalings
in the higher-order structure functions (|�u(τ )|m �= m/3, where m is the moment order), which are
often studied through multifractal analysis. The multifractal framework was introduced by Parisi
and Frisch [22] by assuming that there exists a continuous range of scaling exponents and for any
fixed scale of the flow the scale invariance holds with some prescribed probability function. By
doing so, one recovers a nonlinear relationship between the order of the structure functions and
their scaling exponents [23]. Subsequently, to better understand the phenomenology of small-scale
turbulence, further developments have taken place by proposing different variants of multifractal
models, such as the ones by Meneveau and Sreenivasan [24] and She and Leveque [25].

Despite these developments, there lacks a unifying framework through which one can connect
the small- and large-scale bursts. This is because as opposed to the non-Gaussianity associated with
small-scale bursts, the fluctuating velocity signals through which the large-scale bursts are detected
typically display near-Gaussian behavior [16]. Therefore, it remains largely unexplored how the
burstiness features of a turbulent signal evolve as the scales of the eddies increase or decrease
systematically. This issue is even more pertinent for high Reynolds number (Re) flows, which are
characterized by a wide spectrum of eddy sizes.

The recent reviews by Graham and Floryan [9] and Sapsis [8] show that the state-of-the-art theo-
retical models, mostly borrowed from nonlinear dynamical systems, do not specifically account for
the multiscale nature of turbulent bursts in high-Re flows. In addition to these studies, Yeung et al.
[2] also mention the challenging aspects associated with these bursts when the Reynolds number of
the flow is increased. Particularly, Yeung et al. [2] show that the topology of the structures associated
with extreme events in small-scale turbulence does not necessarily scale with the increasing Re. In
fact, their results highlight a nontrivial relationship between the large-amplitude fluctuations and the
Reynolds number of a turbulent flow. Given the resurgence of interest in the topic of extreme events,
it is timely to revisit this problem in high-Re flows by treating the impact of multiscale bursts on
turbulence statistics through an alternative framework.

Before we describe the objectives of this study, it is prudent to explain how the presence of
bursts affects the turbulence statistics at different scales of the flow. To illustrate this concept, in
Fig. 1 we show a schematic of a near-neutral atmospheric surface layer flow (or, equivalently, a high
Re wall-bounded turbulent flow). Such flows are characterized by large Re values and typically
occur in the lowest 10% of the atmospheric boundary layer with a negligible effect of buoyancy
on turbulence production [26]. Moreover, in these flows, the vertical profile of the mean velocity
is logarithmic [u ∝ ln(z), where z is the height] and the presence of attached eddies dominates
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FIG. 1. Schematic diagram of a near-neutral atmospheric flow is shown to indicate the presence of burst
activities in various turbulence statistics. In this diagram, the x axis is in the direction of the mean wind (u),
and the z axis represents the vertical. Conceptually, the logarithmic layers (where u ∝ ln z) of such flows are
populated with coherent structures such as the attached eddies (shown in red) and small-scale detached eddies
(shown in blue). These small-scale eddies are comparable to the inertial-subrange scales, while the scales of the
coherent structures are of the order of the energetic-scale motions. This is highlighted through the premultiplied
energy spectrum, which is more representative of the vertical velocity. While conducting measurements on a
micro-meteorological tower, the impact of these eddy motions is registered on the instantaneous evolution of
Reynolds stress components (u′2, u′w′) and small-scale quantities such as the second-order velocity increments
(�u2). To illustrate this through an example, on the right-hand side three 30-min time series of (u′/σu)2 (pink),
(�u/σ�u)2 (light blue), and |u′w′/u′w′| (red) are shown from an experimental data set (see Sec. II A 2).

the flow statistics [27,28]. However, there is also the presence of small-scale detached isotropic
eddies, whose contribution is negligible to the overall flow statistics as they are sampled from
the inertial subrange of the energy spectrum. This is shown through a cartoon of premultiplied
spectrum in Fig. 1 where the inertial subrange can be identified by a +2/3 power law. Nevertheless,
at a given measurement level (typically on a mast), the small-scale eddies are responsible for
the strong amplitude fluctuations in the velocity increments [e.g., �u(τ )]. On the other hand, the
energetic-scale eddies mainly give rise to strong amplitude variations in the bulk quantities such as
the streamwise or vertical velocity fluctuations (u′ or w′) and instantaneous momentum flux signals
(u′w′).

Due to these differences, an interesting outcome emerges when one considers the time series of
the following signals: u′2, [�u(τ )]2, and u′w′. The first and last of such signals represent the time
evolution of the streamwise velocity variances and momentum fluxes (Reynolds stress components),
which are supposedly governed by the large-scale eddy structures. Contrarily, the middle one
[�u(τ )]2, represents the instantaneous variations in the energy content at a timescale τ of the flow

([�u(τ )]2). To demonstrate this point, we show an example of (u′/σu)2, (�u/σ�u)2, and |u′w′/u′w′|
time series from a near-neutral atmospheric flow (see Fig. 1). Since the momentum flux signal is
a sign-definite quantity, absolute values are undertaken to better highlight their burst features. For
comparison purposes, these quantities have been suitably normalized by their mean values, i.e.,
by variances (σ 2

u , σ 2
�u) and covariance (u′w′). Notwithstanding their different origins, these three

time series display qualitatively similar behavior, i.e., they all appear to be bursty (characterized by
several “spikes” in the signal). However, through visual inspection, it remains a challenging task to
quantify whether the turbulence generation at smaller scales of the flow is more bursty than at larger
scales. In other words, answering this question requires an interlink to be established between the
small- and large-scale bursts, which, broadly speaking, motivates the present study.
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Conventionally, strong amplitude variations or bursts in a signal are studied through the tails of a
probability density function (PDF) by employing a statistic known as kurtosis [29,30]. The kurtosis

is a fourth-order moment of any stochastic fluctuating signal x′, defined as (x′/σx )4, where σx is
the standard deviation. However, since the PDF of a signal is insensitive to its temporal structure,
randomly ordering the values does not have any effect on the kurtosis estimation. In this study,
we revisit a quantity named the “burstiness index” that can successfully account for the strong
amplitude variations in a signal, while being sensitive to the signal structure. Unlike VITA or
the quadrant-hole method, no arbitrary thresholds are needed for evaluating the burstiness index.
Although this index had earlier been proposed by Narasimha et al. [31], we reinterpret its physical
meaning and extend its usage beyond just studying the momentum-flux signals. For instance, in
contrast to previous studies, where different tools are used to investigate the small- and large-scale
bursts (e.g., multifractal analysis or VITA), we adopt a scale-aware event-based framework to
seamlessly synthesize the characteristics of small- and large-scale bursts.

By employing this framework, we ask the following: (1) Do the bursts have similar physical
properties when the instantaneous variations in velocity variances and momentum flux signals are
considered? (2) How exactly do the burst features of such Reynolds stress components evolve as
the eddy timescales in the flow increase or decrease systematically? (3) What is the role of the
Reynolds number on the signal’s burstiness characteristics? For assessing the Reynolds number
effects, we employ data sets from two different experiments conducted in a wind tunnel and in
a near-neutral atmosphere whose Re values are different by almost two orders of magnitude. We
restrict ourselves to near-neutral stability since at such conditions the atmospheric surface layer is
known to behave analogously to a flat-plate boundary layer flow [32]. The present study is organized
into three different sections. In Sec. II we provide the descriptions of the experimental data sets and
methodology used in this study, in Sec. III we present and discuss the results, and in Sec. IV we
conclude and provide future research direction.

II. DATA SET AND METHODOLOGY

A. Data set

1. Wind tunnel experiment

One of the data sets we use is from a fully developed turbulent boundary layer flow over an
aerodynamically smooth flat plate, as obtained in the wind-tunnel facility of the University of
Melbourne [33]. The friction Reynolds number of this flow is Re = δu∗/ν ≈ 14750, where δ is the
boundary-layer thickness (0.361 m), u∗ is the friction velocity (0.626 m s−1), and ν is the kinematic
viscosity of air (1.532 × 10−5 m2 s−1). In this wind tunnel experiment, hot-wire anemometers were
deployed to measure the time series of the streamwise velocity, u. The turbulent fluctuations in the
streamwise velocity (u′) were computed by subtracting the time-averaged mean velocity (u) from
u. These measurements were recorded at a sampling frequency ( fs) of 20 kHz for up to 120 s at
41 wall-normal coordinates z, spanning between 0.1 mm and 526 mm. Moreover, the time series
of u were collected for three acquisition cycles, and therefore, the results reported in Sec. III are
averaged over these three cycles. Further details of the experiment can be found in Baars et al.
[34]. Throughout this study, the wall-unit normalization is indicated by the + superscript such
that u+ = u/u∗ and z+ = zu∗/ν. Note that from the wind-tunnel experiment, only the u′ signal is
available, and we restrict its vertical extent up to z+ � 104. This is because beyond that height one
encounters an intermittent region where turbulent-nonturbulent patches dominate the flow behavior
[35].

2. Atmospheric experiment

To compare the turbulent features with an even higher Reynolds number flow, we use an
atmospheric field-experimental data set from the Surface Layer Turbulence and Environmental
Science Test (SLTEST) experiment [36,37]. The SLTEST experiment ran continuously for nine
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days from 26 May 2005 to 03 June 2005, over a flat and homogeneous terrain at the Great Salt
Lake desert in Utah, USA (40.14◦ N, 113.5◦ W). The aerodynamic roughness length (z0) at the
SLTEST site was z0 ≈ 5 mm [38], thereby indicating the smoothness of the surface. Although the
measurement of atmospheric boundary layer depth δ was not directly available at the SLTEST site,
but by assuming it around 500 m with a typical u∗ value of 0.2, the friction Reynolds number
of the SLTEST experiment could be estimated as Re = (u∗δ)/ν ≈ 106. Note that we consider
ν = 1.8 × 10−5 m2 s−1, following Marusic et al. [39].

During this experiment, nine north-facing time-synchronized CSAT3 sonic anemometers were
mounted on a 30-m mast, spaced logarithmically over an 18-fold range of heights, from 1.42 m to
25.7 m, with the sampling frequency ( fs) being set at 20 Hz. The continuous sonic anemometer data
were divided into half-hour runs with each run containing the time-synchronized data from all nine
sonic anemometers. In order to select the runs for our analysis, the data were subjected to various
quality checks, such as stationarity, meteorological conditions at the experimental site, thresholds
on the kinematic heat flux and friction velocity, satisfying the constant flux layer assumption and
inertial-subrange scalings, etc. These details are outlined in Chowdhuri and Deb Burman [40].

In this study we use a subset of 20 near-neutral runs having −L > 200 m (L is the Obukhov
length), so that all the nine sonic anemometers lay deep within the log layer. The friction velocity
u∗ is computed as

u∗ = (u′w′2 + v′w′2)
1
4
, (1)

where u′w′ and v′w′ are the streamwise and cross-stream momentum fluxes respectively, at z =
1.4 m. For all our selected runs, u∗ varied between 0.26 amd 0.2. This range of u∗ values is
in agreement with previous studies conducted in the near-neutral atmospheric surface layer [41].
Unless otherwise mentioned, the presented turbulence statistics in Sec. III are ensemble averaged
over this set of near-neutral runs. While conducting the analysis on the atmospheric data set, we
focus our attention on the following signals, such as the streamwise (u′) and vertical velocity
fluctuations (w′), and their product (u′w′), which is the instantaneous momentum flux. The turbulent
fluctuations (u′ and w′) are computed by subtracting the 30-min linear trend from the respective
variables. Henceforth, the wind-tunnel and atmospheric experiments are referred to as the TBL and
SLTEST experiments, respectively. In the next section, we discuss the methodology to compute the
burstiness index.

B. Methodology

1. Burstiness index

In Fig. 2(a) we show a section of a u′ time series from the TBL experiment at z+ = 67. It
is evident that the time series u′ undergoes transitions from positive to negative states as time
evolves. Such transitions are associated with the passage of eddy structures over the measurement
location [42,43]. We denote the length of any positive or negative events by Np, which can also be
transformed to a timescale tp after multiplying by the sampling period 1/ fs. It is obvious that the sum
over the length of all the events should be equal to the length of the time series (N). Corresponding
to any event of length Np, the area under the time series represents the contribution of that event
to any desired turbulent statistic. For instance, if one considers the m-order moment of a stochastic
signal, then the fractional contribution from an event (also described as event size) of length Np can
be expressed as

Sm,n
p = 1

T × |u′(t )|m
∫ t+(Np/ fs )

t
|u′(t )|m dt, (2)

where T is the total duration of the time series (T = N/ fs) and |u′(t )|m is the time-averaged m-order
moment, which for m = 2 is simply the variance. Note that the superscript n in Sm,n

p is exclusively

used to indicate the normalization with |u′(t )|m. Moreover, we use the absolute values of the signal
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FIG. 2. (a) A flowchart explaining the computation of the burstiness index (Bm
x ) for any measured turbulent

signal x′ corresponding to its moment order m. For illustration purposes, we use the u′ signal at z+ = 67
from the TBL experiment. The gray-shaded region is used to highlight the area under the burstiness curve,
corresponding to m = 1. (b) For the same u′ signal, the contours of the logarithms of joint probability density
function (JPDF) between Np/〈Np〉 and S2

p/〈S2
p〉. The quantities 〈Np〉 and 〈S2

p〉 denote the averaged event length
and size, respectively. The pink line with markers indicates a power-law relationship between the two. (c) The
variations in B2

u when the u′ signal is randomly shuffled (RS) in a gradual manner or when its Fourier phases
are altered by changing the parameter (k) of a von Mises distribution. To quantify the variations, on the left-
and right-hand sides of the y axis, the ratios B2

u/B2
u (RS) and B2

u/B2
u (k) are plotted, respectively.

while defining this quantity, such that the fractional contribution from the events to any order of
the moment remains sign-indefinite and bounded between 0 to 1. It is clear that when summed
over all the possible Sm,n

p values it returns unity. One can also follow the same procedure for the
vertical velocity signal by replacing u′ with w′. However, only the first-order moment is relevant
for the momentum flux signal, since that represents the total time-averaged flux. In the parlance of
a complex systems approach, these localized event lengths and their contributions can be compared
to size-duration relationships for systems exhibiting self-organized critical (SOC) behavior, such as
the sandpile model for avalanche dynamics [44,45].

After defining Sm,n
p and Np, one can sort the Sm,n

p values from the largest to smallest and then
cumulatively sum them together. This cumulative sum converges to unity, since Sm,n

p values are

divided by |u′(t )|m. Let us denote this cumulative sum as F (Sm,n
p ). Similarly, corresponding to the

sorted values of Sm,n
p , one can cumulatively sum the event lengths by normalizing them with respect

to the length of the time series (N). We denote this as F (Np). As a next step, F (Sm,n
p ) and F (Np) are

plotted against one another, which one refers to as a burstiness curve. An example of such a curve
is shown in Fig. 2(a), where different moment orders are plotted (m = 1 to 9).

We next explain how such a plot between F (Sm,n
p ) and F (Np) can be used to infer the strength of

the amplitude variations, thereby capturing the effect of the turbulent bursts. If one considers a signal
without any amplitude variation but only the lengths of the positive and negative events are preserved
[otherwise known as a telegraphic approximation (TA)], then for such a signal the burstiness curve
would be a straight line with a slope of 45◦. This is because the fractional contributions of the events
will be identical to the length up to which the events persist. We illustrate this by creating a synthetic
signal of u′(t ) all of whose values are replaced with ±σu, where the sign depends on the original
signal. Thereafter, if we plot FTA(Sm,n

p ) against FTA(Np), then, as expected, the points fall exactly on
the 45◦ line [shown as green circles on the burstiness curve in Fig. 2(a)].

Therefore, the farther the plot between F (Sm,n
p ) and F (Np) differs from the straight line [repre-

senting FTA(Sm,n
p ) vs FTA(Np)], the stronger amplitude variations are present in the signal, and hence,
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they appear more bursty. This is reflected in Fig. 2(a), where one observes if the moment orders are
increased (thereby enhancing the importance of the extreme events), the curves significantly deviate
from the straight line. One can thus use the area under the curve between F (Sm,n

p ) and F (Np) and
subtract it from 0.5 (which is the area under the 45◦ straight line) to quantify the peaked nature of
a signal. For illustration purposes, in Fig. 2(a) we shade this area in gray for the burstiness curve
corresponding to m = 1. To numerically compute the area under the burstiness curve, we use a
trapezoidal approximation. This area with 0.5 subtracted is referred to as a burstiness index and
denoted by Bm

x , where m is the moment order and x is the signal under investigation.
This whole procedure behind the computation of the burstiness index is graphically illustrated

through a flow chart in Fig. 2(a). The burstiness index will be 0 if no amplitude variation is present
in the signal. On the other hand, the maximum value of a burstiness index will be 0.5, because both
F (Sm,n

p ) and F (Np) are bounded between 0 and 1, and therefore, the burstiness curve cannot cross
the upper half of the triangle. Further utilities of the burstiness index are explained below.

Out of all the moment orders, one particular quantity of interest is the u′2(t ) signal, since it
represents the instantaneous variations in the streamwise velocity variance. To explore the temporal
evolution of u′2(t ), one can investigate the joint probability density function (JPDF) between S2

p and
Np. Note that S2

p is the unscaled version of S2,n
p that encapsulates the amplitude information and,

hence, would depend on the signal PDF. A similar approach was taken by Planet et al. [45] while
analyzing the complex interfacial dynamics of the imbibition fronts. They mentioned the quantities
Sp and Np as avalanche sizes and lengths, respectively, and normalized them by their mean values
〈Sp〉 and 〈Np〉. Mathematically, these mean quantities are defined as

〈xp〉 = 1

Z

Z∑
i=1

xp,i, x = {N, S}, (3)

where Z is the number of zero crossings in the signal. Planet et al. [45] found that the JPDF between
Sp/〈Sp〉 and Np/〈Np〉 followed a power-law variation with a slope of 1.31, which they attributed to
the presence of burstlike activities in the interfacial dynamics. In agreement with Planet et al. [45],
we observe the JPDFs between S2

p/〈S2
p〉 and Np/〈Np〉 follow a power-law scaling for the u′2(t ) signal

at z+ = 67 [Fig. 2(b)]. For comparison purposes, we show the same power law of Planet et al. [45]
as a pink line with markers in Fig. 2(b). Therefore, the temporal evolution of the instantaneous
streamwise velocity variance exhibits a complex structure, and through Fig. 2(c), we show that the
burstiness index of u′2(t ) can indeed capture such features.

Since the event contributions to variance and their lengths are strongly interlinked [as seen
through their JPDFs in Fig. 2(b)], the burstlike features of a signal should depend on both PDFs of
the signal and event duration. To disentangle these aspects, we employed two different surrogate
signals. One of the surrogate signals was generated through gradual random shuffling. In this
method, the signal PDFs are preserved but the PDFs of event lengths approach a Poisson distribution
as the strength of the random shuffling (RS) is increased. The second surrogate signal exploits the
Fourier phase-alteration technique (see Appendix A), through which we preserve the PDFs of event
lengths but introduce more extreme events in the signal, thereby affecting its PDF. The alteration of
the Fourier phases is achieved through a von Mises parameter k. As demonstrated in the Appendixes
(see Appendix A), the farther the parameter k deviates from zero the more large-amplitude spikes
appear in the signal. Notice that for both such surrogate signals, the variance remains the same
as the original one. More details on these surrogate data generation techniques can be found in
Appendix A.

In Fig. 2(c) we plot the ratios of the burstiness indices between the original and randomly
shuffled [B2

u/B2
u(RS)] or phase-altered [B2

u/B2
u(k)] signals. One can see that as the strength of the

randomization increases (i.e., the temporal coherence is gradually destroyed), B2
u(RS) decreases

which implies the burstiness index is dependent on the temporal structure of the signal. On the
contrary, as the extreme events in the signal increase (by increasing k) but maintain the temporal
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coherence through event length PDFs, B2
u(k) attain larger values. By combining the two, one can

infer that the burstiness index explains the strong amplitude fluctuations in a signal by taking into
account both the signal’s complex structure and its PDF. In the next section, we show how a similar
approach can be adopted to evaluate the scale dependence of the burstiness index.

2. Scale dependence of the burstiness index

One of the intriguing results in fully developed turbulent flows is that the velocity increments [for
example, �u(τ )] are increasingly non-Gaussian as the time lags (τ ) are reduced [21]. Therefore,
with decreasing τ , the importance of extreme amplitude variations becomes more evident. Instead
of studying this phenomenon through just the PDFs of �u(τ ), one can extend the event framework
to the velocity increments at any prescribed time lag and compute its burstiness index. For instance,
at a time lag τ , one can define event sizes and lengths analogous to Fig. 2(a) by considering �u(τ )
as the relevant signal. We illustrate this through an example in Fig. 3. Henceforth, the normalized
time lags with respect to the wall-unit scaling are denoted as τ+.

From Fig. 3(a) one can clearly see as τ+ decreases (see the legend for different colors) the
normalized PDFs of velocity increments [P(�u/σ�u), where σ�u is the standard deviation of �u
at any given lag] become significantly non-Gaussian. If one compares the distributions of event
lengths for those lags, it can be noticed that at the smallest τ+ value P(Np) decreases quite
rapidly [Fig. 3(b)]. However, as τ+ increases, P(Np) gradually approaches the event length PDFs as
obtained from the u′ signal (solid black line)—having a distinct power-law section with an exponent
−1.6 [Fig. 3(b)]. This implies the event length PDFs of the u′ signal encompass the cumulative
effects of all the flow structures passing over the measurement location. On the other hand, if the
PDFs of event contributions P(S2

p) (or event sizes) to the variances for the velocity increment �u
signals are considered at any τ+ values and compared with the result obtained from the u′ signal,
no such clear dependence on τ+ can be noted [Fig. 3(c)]. Therefore, the event features of the �u
signal evolve in a nontrivial fashion as τ+ increases.

To explore this further, one can study the burstiness curves at any prescribed time lag. In Fig. 3(d)
we show the scale-dependent burstiness indices [Bm

�u(τ+)] of the signal |�um(τ+)|, corresponding
to its moments (m) of the order 1 to 9. We consider the absolute values of velocity increments,
which is regarded as a standard practice in turbulence literature while conducting structure-function
analysis [46]. In Fig. 3(d) m progressively increases from light blue (m = 1) to pink (m = 9).
The dash-dotted horizontal lines of the same color as the curves indicate the Bm

u values. One
can notice that, except for m = 1, the burstiness indices vary similarly for any other m values.
For instance, B2

�u(τ+) attains a maximum at the smallest possible τ+ and then decreases with
increasing lags. Eventually, they saturate to the values (Bm

u ) as obtained from the full signal [u′(t )]m.
More importantly, such saturation typically occurs at scales commensurate with the outer spectral
peak at τ+ = 1000 [34]. Therefore, this outcome points towards a seamless transition from small-
to large-scale bursts as the eddy timescales increase. Note that the inner-spectral (τ+ = 100) and
outer-spectral (τ+ = 1000) peak positions are estimated from the premultiplied u spectra presented
in Baars et al. [34].

The saturation to the full-signal values (Bm
u ) indicates that the large-scale structures mainly

govern the burst features observed in the [u′(t )]m signals. On the other hand, strong amplitude
variations in velocity increments are mainly confined to the small-scale motions. Although not
shown here, but through synthetic turbulence data, one can ascertain that the behavior of Bm

�u(τ+)
with increasing lags is sensitive to the multifractal nature of small-scale turbulence [47].

Hereafter, we will focus on the second- and mixed-order velocity increments, such as �u2(τ+),
�w2(τ+), and �u�w(τ+). As an alternative to the Fourier spectrum or cospectrum, the averages of

these quantities [e.g., �u2(τ+)] physically represent the contribution to Reynolds stress components
(e.g., σ 2

u ) at any specified scale of the flow [48]. Hence, the variations in B2
�x(τ+) (x = u,w) and

B1
�u�w(τ+) with increasing time lags would quantify the role of bursts on the scalewise evolution of
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FIG. 3. (a) The probability density functions (PDFs) of normalized velocity increments (�u/σ�u) plotted
for various time lags (see the legend), corresponding to the u′ signal at z+ = 67. The time lags are normalized by
the inner scaling (τ+), and the black line indicates the PDF of u′/σu. The green dash-dotted line represents the
Gaussian distribution. (b) The PDFs of event lengths (Np) shown for the velocity increment [�u(τ+)] signals
at prescribed τ+ values. The black line indicates the PDF of Np computed for the u′ signal. A −1.6 power law
is shown by the green dash-dotted line. (c) For the same τ+ values, the PDFs of event sizes normalized by

the variances of the velocity increments (�u2). The black line indicates the event size PDFs of the u′ signal.
(d) The scale dependence of the burstiness index [Bm

�u(τ+)], as evaluated for the velocity increments (�u) and
their moment order m. The moment orders increase as one progresses from the light blue color (m = 1) to the
pink one (m = 9). The two vertical lines in (d) denote the inner- and outer-spectral peak positions from the
TBL experiment. The horizontal lines indicate the values of Bm

u .

Reynolds stress components. Since �u�w is a sign-definite quantity, we use their absolute values
(|�u�w|) while computing B1

�u�w(τ+).

3. Randomly shuffled and IAAFT signals

To underpin what flow features are responsible behind the turbulent bursts, we use two different
surrogate signals. One of them is generated through a random-shuffling procedure. In this method,
a random permutation is operated on a time series to disrupt the underlying temporal arrangement,
thereby creating a surrogate data set that does not possess any relationship among the signal data
points. Therefore, in randomly shuffled surrogates, the signal’s PDF remains precisely conserved
albeit the data points appear random.
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The second type of surrogate is generated from a procedure named iteratively adjusted amplitude
Fourier transform (IAAFT). The IAAFT surrogates do not contain nonlinear effects but preserve
the linear effects described by the autocorrelation or Fourier spectrum of the time series [49].
This is accomplished by keeping the Fourier amplitudes of the time series intact, but replacing the
associated Fourier phases with a random uniform distribution between 0 and 2π . The randomness
in the Fourier phases destroys any nonlinear structure of the time series. However, due to the
randomization of the Fourier phases the PDF of the time series becomes Gaussian. Hence, to
preserve both PDF and amplitude spectrum, the Fourier amplitudes and the signal’s PDFs are
adjusted iteratively at each stage of phase randomization until the resultant signal has the same
power spectrum and the PDF as the original one.

In the context of turbulent signals, if the results from an IAAFT surrogate signal are compared
with a randomly shuffled one, then the difference between the two can be directly associated with
the energy spectrum. Therefore, this comparison enables one to ascertain the effect of coherent
structures (which contribute the most to the turbulence kinetic energy) on the desired turbulent
statistic.

III. RESULTS AND DISCUSSION

We begin with comparing the turbulence statistics between the TBL and SLTEST data sets. Such
comparisons enable us to infer the type of coherent structures present in both flows. Thereafter,
we focus on the scaling properties of the event timescales and their magnitudes to probe the
effects of the flow structures on the peaked nature of velocity and momentum flux signals. To
the best of our knowledge, this is the first time event-based features have been compared between
the laboratory and atmospheric flow settings. Furthermore, we introduce a scale-dependent event
framework through which we establish a statistical correspondence between the event and eddy
timescales. We conclude our study by applying this framework to quantify the effect of turbulent
bursts on velocity variances and momentum transport at each scale of the flow.

A. Comparison between the laboratory and atmospheric flows

1. Turbulence statistics

Figures 4(a)–4(c) show the vertical profiles of the mean velocity (u/u∗), velocity variances
(σ 2

u /u2
∗ and σ 2

w/u2
∗), and streamwise and cross-stream momentum fluxes (u′w′/u2

∗ and v′w′/u2
∗).

These quantities and the height (z) are normalized with the wall-unit scaling, such as by u∗ and ν.
The error bars denote the spread from the ensemble mean for the SLTEST data set.

From Fig. 4(a) one can notice that in the TBL experiment, the mean velocity profile stays
logarithmic up to a certain height range (red dotted line). Accordingly, the SLTEST data set
too maintains a logarithmic mean velocity profile (red dash-dotted line). The curves to fit the
logarithmic variations are adopted from Marusic et al. [39]. As per Townsend’s attached eddy
hypothesis [51], the streamwise velocity variances are supposed to follow a logarithmic scaling
in the inertial layer of a wall-bounded turbulent flow [27]. However, such scaling involves the
outer-layer variables (boundary-layer height, δ) and, therefore, cannot be directly compared between
the two experiments. Despite this limitation, vertical profiles of streamwise velocity variances are
characteristically similar between the TBL and SLTEST experiments. This is illustrated through the
blue dotted line in Fig. 4(a). The blue dotted line is digitized from Fig. 1(a) of Yang and Bo [50],
which adopts a semiempirical formulation of σ 2

u /u2
∗ profile from Kunkel and Marusic [52] to fit a

near-neutral atmospheric data set. Our observations indicate that the streamwise velocity variances
of the SLTEST experiment match nicely this prediction.

In contrast to the streamwise velocity variances, σ 2
w/u2

∗ [Fig. 4(b)] remain constant with height,
with the constant being equal to the square of 1.25, as empirically observed by Kader and Yaglom
[53]. On the other hand, the normalized streamwise momentum fluxes (u′w′) remain equal to the
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FIG. 4. (a) The vertical profiles of the normalized mean velocity (u/u∗) and variances (σ 2
u /u2

∗) are compared
between the TBL and SLTEST data sets (see the legend). The blue dotted line in (a) is digitized from Fig. 1(a) of
Yang and Bo [50]. The red lines denote the logarithmic fits of Marusic et al. [39] to the mean velocity
profile. The profiles of (b) normalized vertical velocity variances (σ 2

w/u2
∗) and (c) streamwise and cross-stream

momentum fluxes (x′w′/u2
∗, where x can be u or v) are presented from the SLTEST data set. In (d)–(f),

normalized second-order structure functions Duu/u2
∗, Dww/u2

∗ and mixed-order structure function −Duw/u2
∗

are plotted against r/z, where r is the spatial lag and z is the height. The green dash-dotted lines in (d)–(f)
indicate the inertial-subrange slopes of +2/3 and +4/3, respectively. The cyan-colored line in (d) denotes the
logarithmic scaling of Duu/u2

∗ at larger scales of the flow. The legend at the extreme left end represents the
color codes corresponding to the heights from the TBL and SLTEST experiments.

friction velocity value at the surface, while the cross-stream component (v′w′) is nearly 0 [Fig. 4(c)].
This indicates the surface shear stress aligns with the direction of the mean wind [54].

2. Structure function analysis

All such bulk statistics are in confirmation with Townsend’s attached eddy model, and hence, the
coherent structures present in both flows are supposedly the attached eddies. It is therefore expected
that the impact of such attached eddies would be reflected in the behavior of the energy spectrum

or second-order structure functions. Here we focus on the structure functions (�u(τ )2) since these
statistics are later used while investigating the scalewise behavior of turbulent bursts (Figs. 6 and 7).
Note that the u spectra from the TBL data set are presented in Baars et al. [34], and for the SLTEST
data set, u, w spectra and u-w cospectra are shown in Appendix B (Fig. 9). In all the following
figures (Figs. 4–10), two different color schemes are mostly used to demarcate between the TBL
and SLTEST experiments. For instance, gray-shaded lines with varying intensities represent the
TBL data set, while the colored lines are from the SLTEST experiment (see the legend of Fig. 4).
Specific to the TBL data set, the faintest color indicates the lowest height (z+ = 4.33), and the
darkest one corresponds to z+ = 9965.70.

In Fig. 4(d) we compare the scaling behavior of the streamwise velocity structure functions
[Duu/u2

∗, where Duu = �u(τ )2] between the TBL and SLTEST experiments. As commonly done
while studying the scaling properties of structure functions, we convert the time lags (τ ) to spatial
lags (r = τu) by using the Taylor’s hypothesis [55,56]. Regardless of TBL or SLTEST data
sets, σu/u was less than 0.5, thereby affirming the validity of Taylor’s hypothesis [57]. For both
experiments, one can notice that at scales comparable to the inertial subrange (r < z), Duu/u2

∗ follow
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the +2/3 Kolmogorov scaling. On the other hand, a log scaling is observed at the energetic scales
(r > z) of motion. The cyan-colored line in Fig. 4(d) shows the fitted log scaling as adopted from
Ghannam et al. [58].

This log scaling is expressed as Duu/u2
∗ = A ln(r/z) + B, where A and B are 2.5 and 1.8,

respectively [58]. Physically, the presence of log scaling in the structure functions is a tell-tale
sign of attached eddies in the flow, reflected as a κ−1 scaling (κ is the wave number) in the u
spectrum [27,59,60]. Interestingly, for the SLTEST data set, the attached-eddy scaling is more
prominent in Duu/u2

∗ rather than in its spectral counterpart (Fig. 9). Moreover, in accordance with the
attached-eddy model, such log scaling is absent in Dww/u2

∗, although its +2/3 slope remains intact
[Fig. 2(e)]. In particular, Dww/u2

∗ approach 2σw
2/u∗2 as the scales increase [horizontal blue dashed

line in Fig. 4(e)]. However, in agreement with Chamecki and Dias [61], the structure-function ratio
Dww/Duu remains smaller than the isotropic prediction of 4/3 in the inertial subrange scales (not
shown).

Regarding u′w′, similar to u-w cospectra, mixed-order structure functions −Duw/u2
∗ (Duw =

�u�w) describe the scale-dependent features of momentum transport [62,63]. The negative sign
in Duw is to ensure that the quantity stays positive. At the inertial-subrange scales, −Duw/u2

∗ are
observed to follow the +4/3 scaling as per Wyngaard and Coté [64] [Fig. 4(f)]. However, at
energy-production scales (r > z), −Duw/u2

∗ attain a constant value of 2 [horizontal blue dashed
line in Fig. 4(f)]. This indicates almost all the momentum transport is accomplished through such
scales. More precisely, at energy-production scales, the ejection and sweep motions emerge as the
major transporters of streamwise momentum flux (see Appendix B). Previous studies have shown
that these ejection and sweep structures are ultimately connected to the attached eddies in the flow
[65].

As a side note, since the computation of burstiness index of momentum flux signals involves
absolute values, it is imperative to evaluate how the scaling behavior changes if instead of �u�w,
|�u�w| is used. Due to its absolute nature, we find that the overall scalewise evolution of
|�u�w|/u2

∗ remains similar, but the slope of inertial-subrange empirically changes from +4/3 to
+1/2 (see Fig. S1 [66]). Be that as it may, after establishing the fact that both TBL and SLTEST
flows are in sync with the attached-eddy picture, we next explore how the presence of such eddy
structures is reflected in the statistics of event sizes and duration.

B. Event characteristics of laboratory and atmospheric flows

1. Event timescales

Figure 5(a) shows the PDFs of event timescales (tp = Np/ fs), corresponding to u′, w′, and u′w′
signals. In the parlance of statistical mechanics, these PDFs are also referred to as the persistence
PDFs [67]. The event timescales are normalized in wall units (t+

p ) so that the vertical variations
can be identified in P(t+

p ). The computation procedure of these PDFs is similar to as described
in Chowdhuri et al. [67]. In general, these PDFs show a power-law behavior whose exponents
are nontrivial and difficult to compute analytically except for simple systems such as fractional
Brownian motions [68]. It can be proven that these PDFs encode the effect of the turbulent structures
in the flow. For instance, if one randomly shuffles the turbulent signal (thereby destroying all the
ordered structures) and recomputes these PDFs, the result is very different from the original [shown
as red triangles in Fig. 5(a)]. For comparison purposes, P(tp) of a randomly shuffled signal is
an exponential distribution and has a kurtosis of 9 [69]. However, the kurtosis of original event
timescales [K(tp)] exceeds 9 considerably and can attain values as large as 100 [see Fig. S2(c)
[66]].

For the u′ signals from the TBL experiment, one observes a power-law segment with an exponent
of −1.6 in P(t+

p ). This power-law segment extends almost up to the timescales commensurate with
the outer-spectral peak position (t+

p = 1000). Beyond that, the PDFs deviate from the power-law
behavior, and a clear height variation is observed, implying that the larger timescale events become

044606-12



REVISITING “BURSTS” IN WALL-BOUNDED …

FIG. 5. (a) The PDFs of normalized event timescales [P(t+
p )] corresponding to the u′, w′, and u′w′ signals.

The timescale PDFs of w′ and u′w′ signals are shifted vertically upwards. The green dash-dotted lines show a
power-law scaling with an exponent of −1.6. (b) The vertical profiles of normalized entropy of event lengths
[Hx

n(Np)]. For the TBL flow, Hx
n(Np) is compared with an IAAFT surrogate signal (pink dashed line) and with

u′ > 0 (cyan solid line) and u′ < 0 events (light-blue solid line). The dash-dotted blue horizontal line indicates
z+ = 70. (c) The contours of event contribution curves plotted against the normalized event length scales
(tpu/δ) and z+, corresponding to the TBL experiment. The green markers show those tpu/δ which contribute the
most to the velocity variance. The gray dashed line and pink line with circles denote +1 and +1.6 power laws,
respectively. (d) The vertical profiles of the maxima of event-contribution curves from the TBL experiment.
These maxima are compared with the normalized integral scales of u′ [(γuu)/δ] and velocity variances (σ 2

u /u2
∗).

(e, f) The contours of event contribution curves towards the velocity variances and momentum fluxes from
the SLTEST experiment. (g) The vertical profiles of burstiness index (B2

u,w , B1
u′w′ ) for the SLTEST and TBL

experiments. This index is compared with randomly shuffled (RS) and IAAFT surrogate signals shown as light
and dark pink lines, respectively.

more probable as the heights increase. On the contrary, for the same signals from the SLTEST
experiment, one notices hardly any difference among different heights. Nevertheless, the same
power law is found to be present for the SLTEST data too, despite their extent being different.
It can be shown that under a different scaling (for instance, using δ as a scaling height), P(tp)
between the TBL and SLTEST experiments compare quite nicely [see Fig. S3(a) [66]]. For the w′
and u′w′ signals, at larger t+

p values, a height dependence is observed in the PDFs. These PDFs can
be successfully collapsed if z is used as a scaling parameter, thereby affirming the existence of the
locally attached eddies (not shown).

To quantify these different behaviors of P(t+
p ), one can compute its Shannon entropy. Moreover,

to relate this quantity to the organization of the flow structures, the Shannon entropy (H) is
normalized with respect to a randomly shuffled (RS) signal. However, for accuracy purposes, it
is recommended to use the event lengths (Np) instead of their timescales (tp = Np/ fs). We do this
because the set of event lengths are natural numbers (e.g., {1, 2, 3, . . . }) rather than a continuous
variable. Therefore, their PDFs [P(Np)] transform to probability mass functions (PMFs) whose
computation does not suffer from any arbitrary binning [70]. As a result, normalized Shannon
entropy of the event lengths (Np) are defined as

Hx
n(Np) =

∑
i P

(
Nx,r

p,i

)
ln

[
P
(
Nx,r

p,i

)]
∑

i P
(
Nx

p,i

)
ln

[
P
(
Nx

p,i

)] , (4)
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where x is the signal under investigation (x = u′,w′, u′w′), Nx,r
p denotes the event lengths from a RS

sequence of x, and P(Nx,r
p ) are their associated probabilities. Note that Hx

n(Np) is bounded between
0 and 1, as the entropy is maximum for an RS sequence. Since an RS sequence is devoid of any
order, the further the deviation of Hx

n(Np) from 1, the more organized the flow is. In Fig. 5(b) we
show the vertical profiles of Hx

n(Np) associated with u′, w′, and u′w′ signals.
From Fig. 5(b) one notices the profiles of the Shannon entropies are different between the two

flows. The Hu′
n (Np) of the TBL experiment remains significantly lower than its counterpart from

the SLTEST experiment, thereby indicating more organization. Specific to the SLTEST data set,
Hu′

n (Np) values are nearly constant with height. On the other hand, Hw′
n (Np) and Hu′w′

n (Np) increase
with height, albeit at different rates. Some recent works have indeed pointed out that although a
hierarchy of attached eddies supposedly governs the flows in a neutral atmospheric surface layer and
in a laboratory setting, their organization is not similar and depends on the flow configuration [71].
Interestingly, such conclusions in previous studies have been drawn from a spectral perspective, but
our results demonstrate that even from an event perspective the same principle holds.

Moreover, Hu′
n (Np) of the TBL experiment shows a clear inflection in its vertical profile at around

z+ = 70 [denoted as a blue dash-dotted horizontal line in Fig. 5(b)]. This feature is sensitive to the
energetic-scale motions as the entropy of an IAAFT surrogate signal (pink dash-dotted line) shows
a similar inflection as the original one. Therefore, to investigate this phenomenon more carefully,
we evaluate the normalized Shannon entropies of Np separately for the positive [Hu′>0

n (Np)] and
negative [Hu′<0

n (Np)] fluctuations. The computation of Hu′>0
n (Np) or Hu′<0

n (Np) is similar to Eq. (4),
where the event lengths and their probabilities are conditioned on positive or negative fluctuations.
Unlike SLTEST, for the TBL experiment, P(t+

p ) displays a distinctly different behavior between
u′ > 0 and u′ < 0 signals. For instance, heavy tails of the event timescale PDFs (quantified through
the kurtosis of tp) are governed by the negative events as compared to the positive ones (see Fig. S2
[66]). Note that this difference is not reflected in the mean timescale (tp

+) and is only evident
through the large-scale events [Figs. S2(a) and S2(b) [66]].

Coming back to Fig. 5(b), we observe the the inflection in Hu′
n (Np) is captured in the negative

events (light blue line) as opposed to the positive ones (cyan line). More importantly, beyond
z+ = 70, Hu′>0

n (Np) approaches a near-constant value. This indicates the the organizational structure
of the high-speed streaks (u′ > 0) is height-invariant at z+ > 70. Recent numerical experiment
results of Bae and Lee [72] show that the low-speed (u′ < 0) streaks in wall-bounded flows merge
progressively as the heights increase from the viscous sublayer to the inertial layer. They conclude
that the low-speed streaks change their characteristics at approximately z+ = 70, the same location
where we observe the inflection point in Hu′

n (Np). Therefore, this inflection can be interpreted as
a sign of the change in the structural properties of turbulence as one transitions from the viscous
sublayer to the inertial or log layer. We next demonstrate how these coherent structures influence
the temporal evolution of the signal by investigating the relationship between S2

p and tp.

2. Event contributions

In Fig. 5(c) we show the contour plot of normalized event contributions to the streamwise velocity
variance (S2+

p,u) against the event timescales (tp,uu)/δ and heights (z+) from the TBL experiment.
Note that we convert tp to a length scale using the local mean wind speed (u), and subsequently
normalize it with δ. Through such scaling, we intend to probe the influence of outer-scale structures
on event statistics.

The event contributions are converted to densities by dividing them with the logarithmic bin
width of (tp,uu)/δ so that when integrated over all the (tp,uu)/δ values the result is σu

2/u2
∗. We denote

these event densities as 〈S2+
p,u| (tp,uu)

δ
〉, and their logarithms are plotted as the contours in Fig. 5(c).

The individual event contribution curves at each z+ value are shown in Fig. S3(b) [66], whose
maxima are highlighted through green triangle markers. The black contour lines in Fig. 5(c) denote
the regions of substantial contributions to σ 2

u from some specific events. On the individual event
contribution curves [Fig. S3(b) [66]], these specific events are demarcated by two black dash-dotted
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horizontal lines. The blue vertical lines in Fig. 5(c) indicate the locations of inner- and outer-spectral
peak positions in outer-layer coordinates [34]. On the other hand, the two horizontal lines in Fig. 5(c)
represent those z+ locations where the inner-spectral (z+ = 12) and outer-spectral (z+ = 474) peak
positions appear [34].

If one locates those (tp,uu)/δ values corresponding to which the event contributions are maximum
([(tpu)/δ]max) and plot their vertical profiles [shown as green triangles in Fig. 5(c)], they follow a
distinct power law of +1.6. This is apparently clearer in Fig. 5(d), where a +1.6 power law is fitted
to the green triangles. Furthermore, [(tpu)/δ]max approach the outer-spectral peak position as the
height increases and happen to be nearly equal to the integral scale of u′ [γu, black dash-dotted line
in Fig. 5(d)]. As a standard practice, γu is obtained by integrating the autocorrelation function up to
its first zero crossing [73].

Similarly to [(tpu)/δ]max, the black contour lines of S2+
p,u vertically evolve in a power-law fashion,

i.e., they vary as (z+)1.6. Note that the power-law portion of the black contour lines is evident only
beyond a certain z+, approximately where the logarithm region starts. This power law is shown as
a pink line with circular markers in Fig. 5(c). From Fig. 5(d), one also notices that the maximum
event contributions (red line with triangles) match the vertical profile of σu

2/u2
∗ (light blue line).

Particularly for the logarithmic layer, the vertical profile of σu
2/u2

∗ is predicted by the attached
eddy hypothesis [74], and therefore, these results imply that most of the event contributions come
from such coherent structures. However, in an event-based framework, self-similarity of the attached
eddies in the vertical direction is imposed as a (z+)1.6 power law instead of just z+. The expectation
of z+ scaling arises from how the frequency spectra of streamwise velocity signals scale with height
in the logarithmic region of wall-bounded flows [75,76]. In the spectral representation, the attached
eddies are assumed to be space filling [74]. Yet from Fig. 5(c) it is evident that the black contour lines
deviate significantly from a +1 power law as indicated by the gray dashed line. We hypothesize that
this distinction arises because in an event framework the attached eddies need not be space filling,
and accordingly, they can be a part of a fractal set with a noninteger dimension. This is at present a
conjecture, and further pursuance of it is beyond the scope of this study.

In addition to the TBL experiment, one observes an almost identical behavior if the SLTEST
data set is considered. For instance, in Fig. 5(e) the vertical evolution of the normalized event
contributions towards σ 2

u and σ 2
w is shown. These event contributions are represented through filled

contours for σ 2
u , while the contour lines represent σ 2

w. Although δ was not directly available at the
SLTEST site, we used the integral scale of u′ at the topmost SLTEST height as its proxy. In Fig. 5(f)
the contours are shown for the momentum flux. Here we consider the absolute momentum flux
signal |u′w′| while describing the event features. From both Figs. 5(e) and 5(f) it is clear that the
significant event contributions do vertically evolve as a (z+)1.6 power law (shown as a pink line with
circular markers). Since large event contributions are associated with strong amplitude variations, it
is interesting to see how such behavior is encoded in the burstiness index.

3. Burstiness behavior

In Fig. 5(g) we show the vertical profiles of burstiness indices corresponding to the instantaneous
evolution of velocity variances (B2

u and B2
w) and absolute momentum flux (B1

u′w′) signals. It is clear
that the behavioral features of this index are nearly indistinguishable among all the flow quantities,
with all showing an increase with height. This outcome is very different from the perspective
of signal PDFs as those are considerably different for the three flow quantities (see Fig. 10 in
Appendix C). Furthermore, in contrast to the signal PDFs, the burstiness index changes for an RS
time series (light pink line) but remains nearly preserved in an IAAFT surrogate (dark pink line).
This is demonstrated through the u′ signal from the TBL experiment. For this signal, the vertical
profile of B2

u of an RS sequence is qualitatively similar to excess kurtosis (Ke) in Fig. 10. However, as
soon as the energy spectrum of the signal is considered through an IAAFT surrogate, the burstiness
index becomes almost equal to the original one. Therefore, this index, unlike kurtosis, takes the
coherent structures into account while quantifying strong amplitude variations in the signal.
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Hitherto, we have focused on the full-signal behavior while discussing the bursts in the generation
of velocity variance or momentum flux. As discussed above, these bursts are typically related to
the presence of attached eddies in the logarithmic layer. However, it is not immediately clear how
these bursts are different from the small-scale bursts which cause large-amplitude fluctuations in
velocity increments [e.g., �u(τ )]. Accordingly, one may ask if the small-scale bursts are more
intense than the ones associated with x′2 (x = u,w) or u′w′ signals. To investigate such aspects,
we introduce a scale-dependent event framework. The associated technical details are illustrated
through an example in Sec. II B. Below we describe the results obtained from this framework.

C. A scale-dependent event framework

Through this scale-dependent event framework, we first demonstrate a statistical correspondence
between the eddy and event timescales (tp). This is often considered to be a challenging issue since
in event analysis the structures are based in physical space while the eddy timescales are generally
represented through Fourier modes [77]. However, with the Wiener-Khinchin theorem, since the
structure functions are equivalent to the Fourier spectra, the eddy timescales can also be defined in
terms of time lags or τ . For our purposes, we normalize τ with wall-unit scaling and denote it as τ+.
To highlight any height dependence, we prefer to use τ+ instead of converting the same to the spatial
lags. Subsequently, for each τ+, one computes the event statistics of the velocity increments [e.g.,
�u(τ+)]. For instance, similar to Fig. 1(a), one can define Np (event lengths) values for the �u(τ+)
signal. If with increasing τ+ the event statistics converge towards the values as obtained from the
full signal (e.g., u′, w′, or u′w′), one can infer the PDFs of event timescales [P(tp

+), Fig. 5(a)] are
a cumulative effect of all the eddy structures present in the flow. By doing so, one establishes an
association between the eddy and event timescales.

1. Correspondence between eddy and event timescales

To accomplish this objective, we choose the mean and kurtosis of event lengths (Np) as the
two relevant statistical measures. Physically, mean event length (Np) is inverse of the zero-crossing
density, a quantity which is often linked to the Taylor microscale [78,79]. On the other hand, kurtosis
of event lengths [K(Np)] is related to how fat the tails of the event PDFs are.

In Figs. 6(a) and 6(b) we present Np(τ+) and K[Np(τ+)] for the �u(τ+) signals from the
TBL and SLTEST experiments. For comparison purposes, we mark the kurtosis of an exponential
distribution (K = 9) in Fig. 6(b), i.e., the distribution of disordered event lengths. One can clearly
see that N�u

p (τ+) and K[N�u
p (τ+)] indeed attain a plateau towards the full signal values (evident

from the flat regions) as the large-scale structures are considered. To be precise, for the TBL data
set, this saturation occurs at timescales nearly equal to the outer spectral peak position, which is at
τ+ = 1000. Therefore, one can conclusively prove that the heavy tails of the event timescale PDFs
in Fig. 5(a) are a result of the large-scale structures (comparable to the outer-layer scales) passing
over the measurement location.

Interestingly, N�u
p (τ+) values increase monotonically with τ+, whereas for K[N�u

p (τ+)] a
monotonic increase is observed only beyond the inner spectral peak position, i.e., for τ+ > 100. In
fact, barring the top four heights of the TBL data set (z+ = 5610–9965), K[N�u

p (τ+)] undergoes
a transformation from subexponential (K < 9) to superexponential (K > 9) distribution as one
crosses τ+ = 100. Apart from this, the result related to N�u

p (τ+) presents a contradiction with
previous studies. For instance, Sreenivasan et al. [78] interpreted the mean zero-crossing density
of a turbulent signal to be proportional to the Taylor microscale using a formulation proposed by
Rice [80]. For a turbulent time series (e.g., u′), the Taylor microscale (λ) is defined as

λ = σu

[(
∂u
∂t

)2] 1
2

, (5)
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FIG. 6. The scale-dependent (a) mean event lengths [N�u
p (τ+)], (b) kurtosis of event lengths (K[N�u

p (τ+)]),
(c) normalized Shannon entropy of event lengths (H�u

n [Np(τ+)]) plotted against τ+ for the horizontal velocity
increments computed from the TBL and SLTEST data sets. The color codes are similar to Figs. 4(d)–4(f).
In (a)–(c) and (e), the right-hand-side of the y axis represents the vertical profile of the inner-scaled Taylor-
microscale (λ+) evaluated from the u′ signal of the TBL data set (blue-dotted line). (d) The normalized Shannon
entropy of event lengths for the vertical velocity (�w) and mixed-order increments (�u�w) from the SLTEST
data set. The mixed-order increments are represented at the right-hand side of the y axis, and gray shades are
used to denote the nine SLTEST heights (see the legend at the extreme right end). (e) The scale-dependent
burstiness indices for the horizontal velocity increments. (f) Burstiness indices corresponding to �w and
�u�w from the SLTEST data set. Similar to (d), the mixed-order increments are represented by the right-hand
side of the y axis, albeit the original values are vertically shifted for clarity purposes.

which physically represents the timescales of the dissipative structures [81]. Since mean event length
is an inverse of zero crossing density, one would thus expect N�u

p (τ+) will converge at scales
comparable to λ+ (scaled with wall units). However, such an expectation does not hold, as one
can see from Fig. 6(a) that N�u

p (τ+) converge at scales τ+ = 1000, which is many orders larger
than λ+ (shown as a blue line from the TBL data set). As a consequence, this negates any possibility
of associating the mean zero-crossing density to λ. Note that we only compute λ+ from the TBL
data set given its fine temporal resolution of the order of Kolmogorov scales.

Moreover, this framework can even be extended to study the organizational features of turbulence
at each scale of the flow. In fact, similarly to using the normalized Shannon entropy (with respect
to an RS signal) of Np [Hn(Np)], one can also investigate the scalewise evolution of this quantity by
extending it to the velocity increments. Namely, one can use the same Eq. (4) to compute Hn(Np)
but for the �u signal at any time lag τ+. Mathematically, this can be expressed as

H�u
n [Np(τ+)] =

∑
i P

(
N�ur

p,i

)
ln

[
P
(
N�ur

p,i

)]
∑

i P
(
N�u

p,i

)
ln

[
P
(
N�u

p,i

)] , (6)

where �ur is the velocity increments corresponding to an RS sequence of u′ (u′
r), i.e., u′

r (t + τ+) −
u′

r (t ). In Fig. 6(c) we plot Hn[Np(τ+)] of �u signal from the TBL and SLTEST experiments. For
the TBL data set, one can notice that, irrespective of z+, the maximum values of H�u

n [Np(τ+)]
appear at around τ+ ≈ 5. Since this peak timescale of the Shannon entropy is comparable to λ+,
the dissipative structures (identified through λ+) are more disorganized as compared to the rest of
the scales. Nevertheless, as the scales increase, H�u

n [Np(τ+)] decreases (thereby indicating more
organization) and eventually saturates towards Hu′

n (Np).
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A similar situation is observed with the SLTEST data set, i.e., the values of H�u
n [Np(τ+)]

decrease with the increasing timescales. However, the H�u
n [Np(τ+)] values of the SLTEST data

set remain substantially larger than the TBL one. Therefore, this implies a Re dependence on
how the eddy structures organize themselves at each τ+. Although at inertial subrange scales the
turbulence features are assumed to be Re-independent (owing to the local isotropy assumption), our
results indicate that this does not hold for the present data sets at hand. Additionally, H�u

n [Np(τ+)]
curves display an excellent collapse for all nine heights of the SLTEST data. Previous studies
have indicated that the outer-layer structures (scale with the boundary-layer depth, δ) govern
the organizational features of streamwise velocity fluctuations in atmospheric surface layer flows
[82,83]. One plausible interpretation of this collapse is these global structures, otherwise known as
very-large-scale motions (VLSMs), not only determine the large-scale organizational features of u′
but also extend their footprints down to inertial subrange eddies. Evidently, the presence of such
large-scale structures violates the principle of local isotropy, which, by the way, is also reflected in
the Dww/Duu ratios being smaller than 4/3.

Unlike H�u
n [Np(τ+)], a different scenario arises for �w and �u�w signals. Similar to the verti-

cal profiles of Hw′
n (Np) and Hu′w′

n (Np) [Fig. 5(b)], H�w
n [Np(τ+)] and H�u�w

n [Np(τ+)] show a clear
height dependence across all τ+ values [Fig. 6(d)]. For visualization purposes, H�u�w

n [Np(τ+)]
of the SLTEST data set are shown on the right-hand-side axis of Fig. 6(d) with the heights being
identified in gray-shaded colors (see the legend). Given that the local attached eddies (scales with
z) have height-dependent features, this result indicates that they exert their influence at scales
comparable to the inertial subrange scales. However, at inertial subrange scales, since negligible
transport of momentum is accomplished [Figs. 4(f) and 9(d)], they mostly act as inactive motions
[84].

2. Scale-dependent burstiness index

The results presented so far illustrate a close association between the eddy and event timescales.
After establishing such a connection, we next evaluate the scalewise evolution of the burstiness
index. We focus on the second- and mixed-order velocity increments since these two quantities
describe the scalewise contributions to velocity variances (σ 2

x , x = u,w) and momentum fluxes
(u′w′). In Fig. 6(e) we show B2

�u(τ+) from the TBL and SLTEST experiment. For the TBL data,
B2

�u(τ+) decreases as the scales increase with the largest values being typically associated with
the dissipative structures. Eventually, at scales τ+ = 1000 and beyond, B2

�u(τ+) approach the full
signal value, which is B2

u [shown in Fig. 5(g)].
Furthermore, much like the vertical profile of B2

u , the shapes of B2
�u(τ+) curves change with

height, thereby implying a connection between the small- and large-scale bursts. Typically, the
influence of large scales on small-scale statistics is hypothesized to be the reason behind the
appearance of anomalous scalings in structure function moments [85]. It is therefore encouraging
to notice that the scale-dependent burstiness index captures such information quite seamlessly
by considering only the �u2 signal. Although there is a growing body of literature that affirms
the existence of large-scale influences on the small-scale statistics [21,86–88], there also exists
alternating evidence that the small-scale bursts are supposedly independent of large-scale features,
established through a concept called decimated turbulence [89,90]. We leave this debate to future
research endeavors since it is beyond the scope of the present study.

Unlike the TBL data, a weak scale dependency in B2
�u(τ+) is noted for the SLTEST data. A

similar inference is obtained if one investigates the mixed-order velocity increments. For instance,
in Fig. 6(f), on the right-hand-side axes, B1

�u�w(τ+) are plotted from the SLTEST data. To better
clarify the features, curves are slightly vertically shifted, and the heights are gray-shaded (see the
legend). Identical to B2

�u(τ+), no significant scalewise variations are noted in this quantity for
any measurement level. This occurs in spite of the presence of a clear inertial subrange in the

second- (�u2) and mixed-order (�u�w) structure functions [see Figs. 4(d) and 4(f)]. Therefore,
for the atmospheric flows, the role of strong amplitude fluctuations or bursts in the generation
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of streamwise velocity variances or momentum fluxes remains nearly equal across all the eddy
timescales. Moreover, an identical situation prevails if one considers the cross-stream components,
such as B2

�v (τ+) and B1
�v�w(τ+) (see Fig. S4 [66]). Nevertheless, the same is not true for B2

�w(τ+)
[Fig. 6(f), left-hand-side axes].

In fact, B2
�w(τ+) values not only display a scale dependence but also vary with height. More

importantly, although the scalewise organizational features of �w and �u�w signals remain
qualitatively similar [see Fig. 6(d)], their burst characteristics [B2

�w(τ+) and B1
�u�w(τ+)] are

significantly different. Instead of following B2
�w(τ+), the scalewise variations in B1

�u�w(τ+) follow
the same trend as in B2

�u(τ+). Unfortunately, due to the unavailability of w′ data, the conclusions
regarding the vertical velocity and mixed-order increments cannot be validated for the TBL data set.

At first glance, these burst results seem to paint a counterintuitive picture. One would expect the
burstiness activities to increase as the scales decrease due to the presence of large non-Gaussian
fluctuations which cause small-scale intermittency [21]. One of the aspects of non-Gaussianity
is a statistical asymmetry between the positive and negative values [91]. Whether or not the
scale-dependent event framework captures such non-Gaussian aspects, one can investigate the
burstiness index separately for the positive and negative velocity increments. For carrying out this
computation, one first conditions the event lengths and sizes based on the sign of the velocity
increments. Thereafter, the burstiness curves are plotted separately for the positive and negative
increments with the indices [e.g., B2

�u>0(τ+), B2
�u<0(τ+)] being calculated as per the procedure

described in Fig. 2(a).
To quantify any asymmetry, a ratio between the two is obtained and denoted as

R±
�x(τ+) = B2

�x>0(τ+)

B2
�x<0(τ+)

, x = u,w. (7)

In Fig. 7 we present these ratios and structure-function skewness of u′ and w′ signals from both
experiments. The nonzero values of the structure-function skewness, Dxxx(τ+)/[Dxx(τ+)]3/2 with
x = u,w, is a measure of non-Gaussianity of small-scale turbulence, where the notation Dxxx(τ+)
denotes the third-order structure function, i.e., [�x(τ+)]3. On the other hand, if R±

�x(τ+) are equal
to unity, no asymmetry exists between the burstiness features of positive and negative velocity
increments. One could observe, regarding �u(τ+), that R±

�u(τ+) and Duuu(τ+)/[Duu(τ+)]3/2 behave
similarly, with both showing a significant deviation from unity or zero (depending on the statistic)
as the scales decrease [Figs. 7(a) and 7(c)]. Moreover, as opposed to B2

�u(τ+), the variations in
R±

�u(τ+) remain remarkably identical between the SLTEST and TBL data sets.
In fact, for both of these data sets, R±

�u(τ+) attains a clear peak at some intermediate scales.
Specific to the TBL data set, this peak corresponds to the inner-spectral peak position (τ+ = 100)
for the heights within the logarithmic layer. However, as one approaches the viscous sublayer, large
values of R±

�u(τ+) are typically associated with scales comparable to λ+. Eventually, at larger scales
(τ+ > 1000 for TBL data set), both R±

�u(τ+) and Duuu(τ+)/[Duu(τ+)]3/2 saturate to unity and zero,
respectively. Therefore, R±

�u(τ+) successfully captures the non-Gaussian features of small-scale
turbulence. Additionally, the asymmetry between the positive and negative velocity increments at
smaller scales of the flow is also reflected in their organizational structure as confirmed by the
entropy ratios H�u>0

n /H�u<0
n being greater than 1 [see Fig. S5(a) [66]]. In contrast, for the �w

signal, no such asymmetry is noted in R±
�w(τ+), structure function skewness, or in their entropy

ratio H�w>0
n /H�w<0

n [Figs. 7(b) and 7(d), Fig. S5(b)]. The vanishing skewness of the �w signal
appears to be in agreement with the results of Mestayer [92] from a high-Re boundary layer flow.

In summary, the scale-dependent event framework provides very useful information about the
structural properties of turbulence at both small and large scales of the flow. Notwithstanding that
the non-Gaussian features of small-scale turbulence (in terms of skewness) is identified through this
framework, an interesting result emerges when one considers the scalewise evolution of burstiness
indices related to �u and �u�w signals. As opposed to the TBL data set, the variations in
B2

�u(τ+) and B1
�u�w(τ+) of the atmospheric flow are found to be nearly scale-invariant. Physically

this finding implies, at smaller scales of a near-neutral atmospheric flow, the connection between
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FIG. 7. The ratios between the burstiness indices computed for positive and negative values [see Eq. (7)
of (a) �u [R±

�u(τ+)] and (b) �w [R±
�w (τ+)] plotted against τ+. The horizontal blue line indicates unity, i.e.,

when the positive and negative velocity increments have similar burstiness features. (c, d) The skewness of the
velocity structure functions (Dxxx/(Dxx )3/2, x = u, w) corresponding to the u′ and w′ signals, respectively. The
zero skewness is denoted by the blue horizontal lines, and the color codes are the same as in Figs. 4(d)–4(f).

burstlike activities and small-scale intermittency is not straightforward. On a more fundamental
level, the Re dependence in the behavior of the burstiness index at smaller scales of the flow bears
a resemblance to the results of Yeung et al. [2]. Through direct numerical simulations, Yeung
et al. [2] pointed out that the features of large-amplitude events of small-scale turbulence do not
necessarily scale with the Reynolds number of the flow. It is promising to note that our results
confirm their prediction, although through a time-series analysis with limited spatial information in
the vertical direction. A consequence of such limitation is that it is at present unclear how exactly
the three-dimensional flow structures induce a Re dependence on the small-scale turbulent bursts,
therefore requiring further research. We present our conclusions in the next section.

IV. CONCLUSION

In this study we propose a scale-dependent event framework that enables us to quantify the role of
strong amplitude fluctuations (or bursts) in turbulence generation across multiple eddy timescales.
To be specific, we intend to probe whether the generation of turbulence at smaller scales of the
flow appears more bursty than at larger scales. To achieve this objective, we revisit the “burstiness
index” and apply it to the velocity fluctuations and their increments. Our approach is in contrast with
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previous research where the event framework had mainly been employed to investigate the strong
events in velocity fluctuations rather than their increments. In particular, through our approach,
we establish a linkage between the small- and large-scale bursts in wall-bounded turbulent flows.
Moreover, we compare our findings between two experiments conducted in a wind tunnel and in
a near-neutral atmosphere (without buoyancy) with the Reynolds number (Re) being different by
almost two orders of magnitude.

Through this framework, we first demonstrate how the organizational structures of the two
flows vary by exploiting a metric based on the Shannon entropy of event lengths. We find that
in both flows, notwithstanding their different organization, burstlike features in the instantaneous
velocity variances [u′2(t ), w′2(t )] and momentum flux [u′w′(t )] signals are governed by the coherent
structures. In particular, for heights within the logarithmic layer, these coherent structures are best
represented by the attached eddies. However, unlike the spectral prediction, our evidence suggests
that the attached eddies in an event framework are identified through a noninteger power law
of height, i.e., z1.6. As well, when the burst characteristics of u′2(t ), w′2(t ), and u′w′(t ) signals
are compared with each other, they are found to be remarkably similar. On the other hand, a
dissimilarity among these three variables is observed when one considers the scalewise evolution
of their burstiness indices. Therefore, to further illustrate how these bursts associated with coherent
structures are different from the bursts at smaller scales of the flow (inertial subrange and dissipative
range), a statistical correspondence is established between the eddy and event timescales. While
doing so, an intriguing scenario appears by turning one’s attention towards small-scale bursts.

Despite the non-Gaussian aspects (considering only skewness) of small-scale turbulence captured
through the scale-dependent event framework, a Re dependence is noted while studying how the
burstiness characteristics of the Reynolds stress components evolve across different scales of the
flow. In this context, the scalewise generation of the Reynolds stress components is described
through second-order (�u2, �w2) and mixed-order (�u�w) velocity increments, respectively.
Regarding the wind-tunnel data set at an Re ≈ 14 750, we find that the generation of streamwise
velocity variances becomes progressively more bursty as the eddy timescales decrease. On the
other hand, for atmospheric flows at an ultrahigh Reynolds number (Re ≈ 106), the burstiness
features of �u2 and �u�w signals are found to be approximately scale-invariant. In contrast, �w2

signals display strong burstlike features as the eddy timescales decrease. Thus, for high-Re flows,
as opposed to general perception, a nontrivial relationship exists between small-scale intermittency
and burstlike activities in the turbulent signal.

Undoubtedly, these results open up research avenues. For instance, one could ask, Why in the
case of atmospheric flows do the burst features of streamwise velocity variances and momentum
fluxes remain nearly equal across all the eddy timescales? How does such a phenomenon connect
with small-scale intermittency, and what is the effect of buoyancy on this? Would the effect of
bursts be similar if different scalar fluctuations and their fluxes are considered? What is the role of
the underlying surface, such as a forest canopy, on burstiness? Are the features of small-scale bursts
universal? We leave these questions for our future research.

The wind-tunnel experiment data are available at https://doi.org/10.26188/5e919e62e0dac.
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APPENDIX A: RANDOM-SHUFFLING AND PHASE-ALTERATION EXPERIMENTS

We explain the methodologies to create two different surrogate signals, one of which preserves
the signal PDFs but alters the PDFs of event lengths (Np) whereas for the other, the PDFs of Np are
preserved but the signal PDFs are changed. The first of such surrogate signals is generated through
gradual random-shuffling, while for the latter a phase-alteration technique is used.

In a gradual random-shuffling method, we first choose any signal, for instance, the u′ signal at
z+ = 67, and then locate the midpoint of the signal which will be at the N/2-th point if the signal
length is N . Thereafter, to create a randomized data set at an x% randomization strength (RS), x/2%
of the time series values are randomly shuffled between the left and right halves, i.e., along the
midpoint of the time series. By doing so, we progressively destroy the temporal coherence in the
signal (thereby altering the event lengths) but preserve the signal PDF since the time series values
remain the same. In Figs. 8(a) and 8(b), we illustrate this by showing the PDFs of Np and u′/σu. One
can clearly notice that P(Np) varies greatly for different values of RS while P(u′/σu) is unchanged.

To generate the second type of surrogates, Fourier phase distributions of a signal are altered
through a phase-alteration experiment. To achieve this objective, one first takes the Fourier transform
of a signal and then computes the amplitudes and phases of the Fourier coefficients. As a next step,
the Fourier amplitudes are kept the same, but the phases are sampled from a different distribution
than the original one. After altering the phases, one eventually takes an inverse Fourier transform
to generate a surrogate data set. By preserving the Fourier amplitudes, surrogate data sets from a
phase-alteration experiment share the same Fourier spectrum or the autocorrelation function as the
original. This ensures that the PDFs of event lengths remain identical since those are sensitive to the
autocorrelation function of the time series [68,93]. On the other hand, the alteration of the Fourier
phase distribution produces a time series which has more extreme values with respect to a Gaussian
distribution [94].

In the context of a turbulent signal, the Fourier phase distributions are almost uniform, and,
therefore, one can replace the phase values from a distribution which differs from a uniform one.
Note that this procedure is not identical to phase randomization as in that case the Fourier phases are
randomly shuffled without changing their distribution. Contrarily, in phase-alteration experiment,
we maintain the rankwise order of the Fourier phases while sampling them from a distribution other
than the original one. For our purposes, we chose a von Mises distribution to sample the Fourier
phases [95]. This distribution is defined by a parameter k, whose value when zero indicates a uniform
distribution. However, for k > 0, the von Mises distribution becomes increasingly different from a
uniform one. Since there is no upper bound on k, we restricted the k parameters to between 0 to 9.

We apply this phase-alteration technique on the u′ signal at z+ = 67, and the results are presented
in Figs. 8(c) and 8(d). From Fig. 8(c) no change in P(Np) can be seen as the k parameter is varied, but
the tails of P(u′/σu) become significantly heavier than a Gaussian one [Fig. 8(d)]. Therefore, it be-
comes evident that by increasing k more importance is given to the extreme events in the time series.

APPENDIX B: u, w SPECTRA AND u-w COSPECTRA

Apart from the second- and mixed-order structure functions [Figs. 4(d)–4(f)], we also provide
the spectra of velocity fluctuations and momentum flux cospectra from the SLTEST data set.
For instance, in Figs. 9(a) and 9(b), the premultiplied spectra of horizontal and vertical velocity
fluctuations (κSxx(κ ), where x = u,w) and the associated momentum flux cospectra [κSuw(κ )] are
plotted against the streamwise wave numbers (κ ). These results are averaged over all the selected
near-neutral runs.

The wave numbers (κ ) are estimated by converting the frequencies to wavelengths through
Taylor’s hypothesis and subsequently normalized by the height above the surface (z). On the other
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FIG. 8. (a) The PDFs of event lengths (Np) for the u′ signal at z+ = 67, by gradually increasing the strength
of the random shuffling (RS) from 1 to 100%. The colored lines correspond to different RS strengths (see the
legend), while the black line represents the original u′ signal. (b) The PDFs of normalized velocity fluctuations
(u′/σu) for the original and randomly shuffled u′ signals. Two vertical dash-dotted blue lines represent u′/σu =
±1, and the green dash-dotted line indicates the Gaussian distribution. Similar to (a), (c) the PDFs of Np

by gradually altering the Fourier phase angle distributions of u′ through sampling them from a von Mises
distribution with a parameter k. The colored lines correspond to different k parameters (see the legend). (d) The
PDFs of u′/σu for the u′ signals with different k parameters and the original one.

hand, the spectral and cospectral amplitudes are normalized by the friction velocity (u∗). Although
in the inertial subrange both u and w spectra display −2/3 slope, their behaviors are significantly
different at larger scales of the flow. For instance, the u spectra show a flatter region (thereby
representing the κ−1 scaling), while the w spectral slopes are nearly equal to +1. Moreover, the
w spectral peaks reside at κz = 2.5. Regarding the momentum flux cospectra, they collapse nicely
under the z and u∗ scaling with a peak at around κz = 0.4.

To connect the scale-dependent momentum flux features with the coherent structures (ejections
and sweeps), a polar quadrant analysis is undertaken where the phase angles and amplitudes are
computed at each specific scale of the flow. For such analysis, we use the structure function
analog of momentum flux (i.e., the mixed-order velocity increments �u�w) where the time lags
(τ ) are connected to the eddy time or length scales (r = τ × u). Rather than the conventional
joint probability density functions, polar quadrant representation is a neat way of investigating the
interrelationships between two variables [96]. To briefly explain this procedure, for each normalized
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FIG. 9. The averaged premultiplied (a) u and w spectra and (b) u-w cospectra from the near-neutral
SLTEST data set. In (a), the right-hand-side axes representing the u spectra are vertically shifted for visu-
alization purposes. The green dash-dotted lines indicate the −2/3 spectral slope. For both (a) and (b), spectral
(cospectral) amplitudes [κSuu(κ ), κSww (κ ), κSuw (κ )] are normalized by u2

∗ and the wave numbers (κ) by height
z. (c, d) The contour plots of the probability density functions of scale-dependent phase angles [P(θ�u�w )] and
conditional contributions to the momentum fluxes (〈�u�w|θ�u�w〉) from the topmost SLTEST height. The
length scales (r) are normalized by z.

scale r/z, one evaluates the phase angles associated with the instantaneous values of �u�w as

θ�u�w = arctan (�w/�u). (B1)

Note that θ�u�w varies between −π and π , and these ranges are directly related to the coun-
tergradient (�u > 0,�w > 0 or �u < 0,�w < 0) and cogradient motions (�u > 0,�w < 0 or
�u < 0,�w > 0) at each scale. For instance, when −π/2 < θ�u�w < 0 or π/2 < θ�u�w < π ,
they represent the cogradient motions (ejections and sweeps), while the other ranges correspond
to the countergradient ones (outward- and inward-interactions). As a consequence, the PDFs of
θ�u�w [P(θ�u�w )] provide useful information about what type of motions statistically dominate the
momentum transport at each scale.

Apart from θ�u�w, the momentum fluxes associated with the phase angles can be computed as

〈�u�w|{θ�u�w(i) < θ�u�w < θ�u�w(i) + dθ�u�w}〉 =
∑

�u(i)�w(i)

N × dθ�u�w

, (B2)

where i is the bin index, dθ�u�w is the bin width, and N is the number of samples at lags r/z. The
division by N and dθ�u�w ensures that when integrated over θ�u�w, it would yield �u�w which is
simply the averaged momentum flux at scale r/z. For our purposes, the variable at the left-hand side
of Eq. (B2) is denoted as 〈�u�w|θ�u�w〉 and further normalized by the time-averaged momentum
flux u′w′. Therefore, the scale-dependent aspects of momentum flux transport can be studied more
rigorously by examining this normalized quantity along with P(θ�u�w ).
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FIG. 10. (a) The PDFs of u′/σu from the TBL and SLTEST experiments. (b) The skewness (S) and excess
kurtosis (Ke) of the u′ signals plotted against z+ (see the legend). The error bars denote the spread around
the mean for the SLTEST data set. The PDFs of (c) w′/σw , and (d) u′w′/u2

∗ from the SLTEST experiments.
The green lines in (a) and (c) indicate the Gaussian distribution. The color codes are similar to the legend in
Fig. 4. Two blue dash-dotted lines in (a), (c), and (d) highlight the values ±1 to emphasize the importance of
the large-amplitude events in respective signals.

In Figs. 9(c) and 9(d), we show the contour plots of P(θ�u�w ) and 〈�u�w|θ�u�w〉/u′w′ from the
topmost SLTEST height [pink lines in Figs. 9(a) and 9(b)]. We obtain identical results if any other
heights were used from the SLTEST experiment. One can immediately notice, at scales r/z > 1,
that the momentum transport is mainly governed by the cogradient motions, as the contours show
their peak values at those ranges of θ�u�w. On the other hand, at inertial-subrange scales (r/z < 1),
no such clear preference towards the cogradient motions can be noticed. Therefore, the bulk of the
momentum flux is transported through the ejection and sweep motions at scales commensurate with
the energy-production scales.

APPENDIX C: PDFs OF VELOCITY FLUCTUATIONS AND MOMENTUM FLUX

The bursts in a signal are typically characterized through their PDFs. In Fig. 10 we show the
PDFs of streamwise and vertical velocity fluctuations (u′ and w′) and instantaneous momentum flux
(u′w′) signals. The quantities u′ and w′ are normalized with their respective standard deviations (σu

and σw). On the other hand, u′w′ signals are normalized with u2
∗. By comparing the PDFs of u′,

a difference is noted between the two experiments [Fig. 10(a)]. For instance, although the PDFs
of u′ from the SLTEST experiment are strictly Gaussian at all levels (a nice collapse is evident),
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a deviation from Gaussianity is observed for the TBL experiment. This is highlighted through the
vertical profiles of skewness (S) and excess kurtosis (Ke) in Fig. 10(b). Note that Ke is obtained
after subtracting 3 of a Gaussian distribution.

In addition to u′, the normalized PDFs of w′ and u′w′ collapse nicely for the SLTEST experiment
[Figs. 10(c) and 10(d)]. The PDFs of w′ display a heavier tail towards the positive values, while
the PDFs of u′w′ remain skewed towards the negative side. From Fig. 10(d), one can notice that
P(u′w′/u2

∗) show heavy tails beyond ±1, thereby indicating the presence of extreme flux events
(significantly larger than the mean flux values) at all nine SLTEST levels.
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