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The evolution of turbulence kinetic and internal energy plays a critical role in aero-
dynamics and thermodynamics. Following the previous study on the framework of energy
exchange in compressible turbulent flows [Fan et al., Phys. Rev. Fluids 7, L092601 (2022)],
we rigorously derive the spectral transport equations of turbulence kinetic and internal
energy in terms of the two-point correlations of velocity and a sound-speed-like variable,
respectively. With the equations, the spectral distributions of the budget terms, including
production, dissipation, pressure strain, heat-conduction action, spatial and interscale trans-
fer, are comprehensively examined in the hypersonic turbulent boundary layers at Mach
number 5.86 and friction Reynolds number 420. Special attention is paid to the effect of
wall cooling. The results enlighten the scale dependence of the energy transport across
space and scales, and among components, helping us to clarify the evolution of turbulence
kinetic and internal energy in high-speed turbulent flows.
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I. INTRODUCTION

The momentum transport and energy exchange in compressible turbulent boundary layers are
important for aerodynamic design and thermal protection of high-speed vehicles. Due to the effects
of density variation and velocity dilatation, the statistical properties and dynamical features in
compressible turbulent boundary layers are more complex than those in incompressible turbulent
boundary layers [1–23]. In the hypersonic regime, the wall temperature of the high-speed vehicles
is usually lower than the recovery temperature of the freestream flow. A growing body of studies
investigates the flow dynamics in hypersonic boundary layers over cold walls [11,24–28], showing
that the mean and fluctuating fluid variables are altered not only by the variation of Mach number,
but also by the strength of wall cooling. In particular, the nonmonotonic profile of mean temperature
across the boundary layer invalidates the classical van Driest transformation [29], leading to a poor
matching of velocity profile to its incompressible counterpart. To explicitly account for the wall
heat flux, modified scaling relations and generalized Reynolds analogy have been proposed, such as
Zhang et al. [30], Trettel and Larsson [31], Shadloo et al. [32], and Griffin et al. [33], to name a few.

When the wall temperature decreases, Duan et al. [11] observed enhanced compressibility effects
in the turbulent boundary layers at Mach number 5, as signified via the rapid increase of turbulent
and fluctuating Mach numbers. The turbulent structures, such as the near-wall streaks and hairpin
vortices, tend to be more coherent with wall cooling [11,24], which may account for the increase
of the skin-friction drag at the same friction Reynolds number [34]. Zhang et al. [25] observed
that the intensity of pressure fluctuations is dramatically modulated by the wall temperature in the
near-wall region but remains almost intact away from the wall. With Helmholtz decomposition, Yu
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and Xu [27] split the velocity fluctuations into solenoidal and dilatational components to quantify
the effects of compressibility over cold walls. They found that as the wall temperature decreases, the
dilatational components gradually dominate the vertical motions and tend to reduce the skin friction
by 4%–6% in hypersonic channel flows. Xu et al. [28,35] investigated the influence of wall cooling
on the transfer of kinetic energy in hypersonic turbulent boundary layers. They [35] stated that the
wall cooling has the effect to promote the interactions between the kinetic and internal energy, which
are governed by the dilatational velocity field. In addition, the wall cooling is able to enhance the
local reverse transfer of kinetic energy from small- to large-scale structures while suppressing that
from large to small scales [28].

In this study the major objective is to clarify the evolution processes of kinetic and internal
energy in hypersonic turbulent boundary layers. To this end the approach of spectral analysis is
adopted, with terms in the budget equations spectrally decomposed to reveal the scale dependence of
energy exchange across space and scales, and among components [36]. In incompressible turbulent
flows, where the internal energy is a constant, the spectral analysis has been well performed on
the transport of turbulence kinetic energy [36–39], whereas for the compressible turbulence the
spectral decomposition of turbulence kinetic energy budgets becomes more complicated due to the
spatial and temporal variation of density [40]. In order to include the effect of density variation,
new variables were utilized in the kinetic energy spectrum [41]. By introducing a density-weighted
quantity ω = √

ρu (where ρ is density and u is the velocity component), Praturi and Girimaji
[42] derived the spectral evolution equation for kinetic energy and examined the effect of pressure
dilatation and interscale transfer in compressible turbulence. They found that the interaction between
the internal and kinetic energy, associated with the pressure dilatation, causes the oscillations of the
dilatational kinetic energy at large scales.

On the other hand, Clark [43] and Arun et al. [44] derived the transport equation of the
scale-space energy density function on the basis of a mean-density-weighted two-point velocity
correlation [45]. Arun et al. [44] investigated the effects of density variation and dilatation on
the energy cascade and concluded that the production is influenced by long-distance interactions
whereas the pressure dilatation is more localized in scale space. To characterize the evolution
of internal energy and analyze its interaction with kinetic energy, it is feasible to manipulate the
internal energy transport equation in a similar manner to that of kinetic energy. For instance, Miura
and Kida [46] introduced a pressure-based variable � = √

p/(γ − 1) (where p is pressure and γ is
the specific heat ratio), so that �2 directly corresponds to the internal energy. Recently, Mittal and
Girimaji [40] have derived the transport equations for the mean and fluctuating components of �,
establishing a mathematical framework to quantify the exchange and interactions between internal
energy and kinetic energy. The budget terms in this pressure-based framework are found to be
vanishingly small as compared to the magnitude of the kinetic contributions [35], which is ascribed
to the small pressure fluctuations. In our previous work, Fan et al. [47] proposed to formulate
the internal energy transport equation on the basis of a sound-speed-like variable (which will be
introduced in Sec. II) and quantified the routes of energy exchange in hypersonic turbulent boundary
layers with/without wall cooling. The formulation of the internal energy transport equation shares
full structural similarity with that of the kinetic energy transport equations [47], which allows us to
illuminate the connections and differences between the kinetic and internal energy. However, as for
the spectral analysis of the internal energy, no further studies have been found in the open literature
to date, to the best of the authors’ knowledge.

In this study we aim to perform a systematic and in-depth spectral analysis of the turbulence ki-
netic and internal energy budgets in the hypersonic turbulent boundary layers, with special attention
paid to the effects of wall temperature. This paper is outlined as follows. In Sec. II we derive the
transport equations for the two-point correlations of velocity and a sound-speed-like variable, which
yield the spectral decomposition of the turbulence kinetic energy and turbulence internal energy
budget equation. Direct numerical simulations of three spatially developing zero-pressure-gradient
hypersonic turbulent boundary layers are described in Sec. III. In Secs. IV and V, the spectral
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analysis of the budgets is conducted to reveal the evolution of turbulence kinetic and internal energy,
respectively. Finally, concluding remarks are given in Sec. VI.

II. TRANSPORT EQUATIONS

A. Transport equation for the two-point correlation of velocity

By applying Reynolds decomposition to the Navier-Stokes equations, we can get two forms of
equations for the velocity fluctuations [44],
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where 〈·〉 and {·} are the Reynolds- and Favre-averaging operators, respectively, and the single
and double prime represent the turbulent fluctuations with respect to the Reynolds and Favre
average, respectively. t is time, ρ is density, xk (k = 1, 2, 3) denotes the streamwise, wall-normal
and spanwise direction, respectively, and uk denotes the corresponding velocity components. σi j =
−pδi j + τi j , where p is pressure, δi j is the Kronecker delta, τi j is the viscous stress calculated by
μ[(∂ui/∂x j + ∂u j/∂xi ) − 2

3δi j∂uk/∂xk], and μ is the dynamic viscosity.
Considering two points at (x1, x2, x3) and (x̃1, x̃2, x̃3), a generalized velocity correlation in the

compressible flows is defined as [45]

Rρuiu j = 〈
1
2 (ρ + ρ̃)u′′
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j

〉
, (3)

where the superscript ·̃ denotes the variable at (x̃1, x̃2, x̃3). The time derivative of Rρuiu j is expressed
as
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Substituting (1) and (2) into (4), we can obtain the transport equation for the two-point correlation
tensor Rρuiu j (see more details in Arun et al. [44]):
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The right-hand terms in (5) are expressed as
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∂ ũ′′
j

∂xk

〉
+

〈(
1 + ρ

ρ̃

)
τ̃ ′

jk

∂u′′
i

∂ x̃k

〉)
, (6b)

R�p

ρuiu j
= 1

2

(〈(
1 + ρ̃

ρ

)
p′ ∂ ũ′′
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i {ũk}
∂ ũ′′
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where RPk
ρuiu j

is interpreted as the production term, Rεk
ρuiu j

accounts for the viscous dissipation, R�p

ρuiu j

for the pressure strain, R
Dp
ρuiu j and RDν

ρuiu j
account for the pressure and viscous diffusion, respectively,

RDt
ρuiu j

for the turbulent convection, RC
ρuiu j

for the mean-flow convection, and RM
ρuiu j

is associated with
the effect of density variation.

For the turbulent boundary layers under scrutiny, we do not consider the two-point correlation in
the wall-normal direction, assuming x2 = x̃2. The streamwise and spanwise separation are defined
as rx = x̃1 − x1 and rz = x̃3 − x3, respectively. Then the term of turbulent convection (RDt

ρuiu j
) can be

further decomposed into energy transport in the spatial direction and across scales, viz.
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= RDt,x
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+ RDt,‖
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where RDt,x
ρuiu j represents the effect of streamwise heterogeneity, RDt,⊥

ρuiu j denotes the transport of Rρuiu j

in the wall-normal direction, and RDt,‖
ρuiu j denotes the transport across scales. Note that RDt,x

ρuiu j is not
considered in channels as the streamwise homogeneity is assumed [36]. The latter two contributions
in (7) satisfy

∫ ∞
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Hereafter, as a matter of convenience, we also use x, y, and z to represent the streamwsie, wall-
normal, and spanwise direction, respectively, and use u, v, and w to represent the corresponding
velocities. Then the three terms on the right-hand side of (7) are formulated as
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′′〉

∂X
, (9a)

RDt,⊥
ρuiu j

= −1

2

∂〈rρuiu j v
′′〉

∂y
− 1

2

∂〈rρuiu j ṽ
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′′〉

∂y
+ 1

2

〈
ρ̃ũ′′
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where rρuiu j = 1
2 (ρ + ρ̃)u′′

i ũ′′
j and X = (x + x̃)/2.

Lastly, substituting (7) into (5) and taking the Fourier transform, we can get the evolution
equation of Rρuiu j in the frequency domain:
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with lim(rx,rz )→(0,0) Rρuiu j (rx, y, rz ) = ∫∫
Eρuiu j (kx, y, kz )dkxdkz, where kx and kz are the streamwise

and spanwise wave number, respectively. Terms in Eq. (10) are reminiscent of the Reynolds stress
budgets, and it can be regarded as a spectral decomposition of the Reynolds stress transport
equation (except for EDt,‖

ρuiu j ). In this paper we will only consider the three diagonal elements in
the Reynolds stress tensor (turbulence kinetic energy) and investigate the scale dependence of the
turbulence-kinetic-energy evolution.

B. Transport equation for the two-point correlation of a sound-speed-like variable

A sound-speed-like variable φ [47] is utilized to derive the governing equations of turbulence
internal energy. The sound-speed-like variable φ is expressed as

φ = √
CvT = c

[(γ − 1)γ ]1/2
, (11)

where Cv is the specific heat at constant volume, T is temperature, c is the speed of sound, and
γ is the specific heat ratio. With this definition the internal energy becomes e = ρφ2, which is
straightforwardly analogized to the expression of kinetic energy, k = 1/2ρu2

i , allowing similarities
and differences of the energy evolution between the kinetic energy and internal energy to be
discovered [47].

With (11), the energy equation in the Navier-Stokes equations is reformulated as
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where qk is the heat conduction calculated by qk = −K∂T /∂xk and K is the thermal conductivity
coefficient. For brevity, let f = −∂qk/∂xk − p∂uk/∂xk + τi j∂ui/∂x j . Applying Reynolds decom-
position to (12), we obtain the primitive and conservative form of the fluctuating φ equations,
respectively, as
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Similar to (3), we define the two-point correlation of φ′′ as

Rρφφ = 〈
1
2 (ρ + ρ̃ )φ′′φ̃′′〉. (15)
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The time derivative of Rρφφ also incorporates four terms, i.e., ρ̃φ̃′′∂φ′′/∂t , ρφ′′∂φ̃′′/∂t ,
φ̃′′∂ρφ′′/∂t , and φ′′∂ρ̃φ̃′′/∂t , which can be obtained on the basis of (13) and (14):
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Consequently, we can get the transport equation of Rρφφ ,
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)
φ̃′′

(
p∂uk/∂xk

2φ

)〉
+

〈(
ρ

ρ̃
+ 1

)
φ′′

(
p̃∂ ũk/∂ x̃k

2φ̃

)〉)
, (18c)

Rvw
ρφφ = 1

2

(〈(
ρ̃

ρ
+ 1

)
φ̃′′

(
τi j∂ui/∂x j

2φ

)〉
+

〈(
ρ

ρ̃
+ 1

)
φ′′

(
τ̃i j∂ ũi/∂ x̃ j

2φ̃

)〉)
, (18d)

RDt
ρφφ = −1

2

(〈
ρ̃φ̃′′u′′

k

∂φ′′

∂xk
+ φ̃′′ ∂ρu′′

kφ
′′

∂xk

〉
+

〈
ρφ′′ũ′′

k

∂φ̃′′

∂ x̃k
+ φ′′ ∂ρ̃ũ′′

k φ̃
′′

∂ x̃k

〉)
, (18e)

RC
ρφφ = −1

2

〈
ρ̃φ̃′′φ′′ ∂{uk}

∂xk
+ φ̃′′ ∂ρ{uk}φ′′

∂xk
+ ρφ′′φ̃′′ ∂{ũk}

∂ x̃k
+ φ′′ ∂ρ̃{ũk}φ̃′′

∂ x̃k

〉
, (18f)

RM
ρφφ = −1

2

(
〈ρφ̃′′〉
〈ρ〉

〈
f

2φ
− 〈ρu′′

kφ
′′〉

∂xk

〉
+ 〈ρ̃φ′′〉

〈ρ̃〉

〈
f̃

2φ̃
− 〈ρ̃ũ′′

k φ̃
′′〉

∂ x̃k

〉)
. (18g)
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Similar to the decomposition of RDt
ρuiu j

, the turbulent convection of RDt
ρφφ is also decomposed into

three parts:

RDt
ρφφ = RDt,x

ρφφ + RDt,⊥
ρφφ + RDt,‖

ρφφ, (19)

where RDt,x

ρφφ represents the effect of streamwise heterogeneity, RDt,⊥
ρφφ denotes the transport of Rρφφ in

the wall-normal direction, and RDt,‖
ρφφ denotes the transport across scales. The RDt,⊥

ρφφ and RDt,‖
ρφφ satisfy∫ ∞

0
RDt,⊥

ρφφdy = 0, ∀(rx, rz ), (20a)

lim
(rx,rz )→(0,0)

RDt,‖
ρφφ = 0, ∀y. (20b)

The three components in (19) are formulated as

RDt,x

ρφφ = −1

2

〈rρφφu′′〉
∂X

− 1

2

〈rρφφ ũ′′〉
∂X

, (21a)

RDt,⊥
ρφφ = −1

2

∂〈rρφφv′′〉
∂y

− 1

2

∂〈rρφφ ṽ′′〉
∂y

, (21b)

RDt,‖
ρφφ = ∂〈rρφφu′′〉

∂rx
− ∂〈rρφφ ũ′′〉

∂rx
+ ∂〈rρφφw′′〉

∂rz
− ∂〈rρφφw̃′′〉

∂rz

+ 1

2

(〈
φ′′v′′ ∂ρ̃φ̃′′

∂y
+ ρφ′′v′′ ∂φ̃′′

∂y

〉
+

〈
φ̃′′ṽ′′ ∂ρφ′′

∂y
+ ρ̃φ̃′′ṽ′′ ∂φ′′

∂y

〉)

− 1

2

∂〈rρφφv′′〉
∂y

− 1

2

∂〈rρφφ ṽ′′〉
∂y

+ 1

2

〈
ρ̃φ̃′′φ′′ ∂u′′

k

∂xk
+ ρφ′′φ̃′′ ∂ ũ′′

k

∂ x̃k

〉
, (21c)

where rρφφ = 1
2 (ρ + ρ̃ )φ′′φ̃′′.

With Fourier transformation, the transport equation of Rρφφ is converted into the wave-number
space,

∂Eρφφ

∂t
= EPe

ρφφ + EQ
ρφφ + E pw

ρφφ + E vw
ρφφ + EDt,⊥

ρφφ + EDt,‖
ρφφ + EDt,x

ρφφ + EC
ρφφ + EM

ρφφ. (22)

As a complement to (10), Eq. (22) implements a spectral decomposition on the transport
equation of the turbulence internal energy, which will be used to examine the spectral distributions
of the internal energy transport across space and scales, and among components.

III. DIRECT NUMERICAL SIMULATION OF HYPERSONIC TURBULENT BOUNDARY LAYERS

Direct numerical simulations (DNSs) of hypersonic turbulent boundary layers are performed
with a finite differencing solver, STREAmS (Supersonic TuRbulEnt Accelerated navier-stokes
Solver), which was developed by Bernardini et al. [48]. It solves the three-dimensional compressible
Navier-Stokes equations for a perfect heat-conducting gas. The viscosity coefficient is calculated by
Sutherland’s law. The thermal conductivity coefficient K is calculated by K = Cpμ/Pr, where Cp

is the specific heat at constant pressure, and Pr is the molecular Prandtl number being a constant
of 0.72. The specific heat ratio γ is assumed to be equal to 1.4. The convective terms are dis-
cretized with a hybrid sixth-order energy-conserving/fifth-order weighted essentially nonoscillatory
(WENO) scheme [49]. The viscous terms are approximated with a sixth-order central difference
scheme. For time advancing, a three-stage, third-order Runge-Kutta scheme [50] is adopted, and
the Courant-Friedrichs-Lewy (CFL) number is set less than unity. Periodic boundary conditions are
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TABLE I. Flow properties at the considered location and the initial and final time considered for collecting
flow samples. (T0 and Tf represent the initial and final time considered for sample collection.)

Case M∞ Reτ Tw/Tr Reδin Reθ Reδ2 H12 T0u∞/δin Tf u∞/δin

adiabatic 5.86 416 1.0 277949.3 15068 2040 14.9 156.87 549.60
cold1 5.86 419 0.76 175169.9 10864 1842 12.84 97.07 269.86
cold2 5.86 425 0.25 21167.0 2122 1074 8.19 111.41 293.69

employed in the spanwise direction. The nonreflecting boundary conditions [51] are imposed at the
upper and outflow boundaries. The isothermal no-slip conditions are used at the walls. The flow is
initialized with a mean field of fully developed compressible turbulent boundary layer, with velocity
fluctuations superposed at the inlet boundary via a synthetic digital filtering approach [52]. More
details on boundary and initial conditions can be retrieved in Bernardini et al. [48].

In the present study, three DNSs of spatially developing, zero-pressure-gradient hypersonic
turbulent boundary layers are carried out at freestream Mach number 5.86. The wall-to-recovery
temperature ratio Tw/Tr is set as 1.0, 0.76, and 0.25, which are named adiabatic, cold1, and
cold2, respectively. The Tr is the nominal recovery temperature determined by Tr = T∞[1 + r(γ −
1)M2

∞/2], r = 0.89. The inflow Reynolds number Reδin (= ρ∞u∞δin/μ∞) is adjusted to make the
corresponding local friction Reynolds number Reτ (= ρwuτ δ99/μw ) at approximately 420, where the
subscript ∞ denotes the freestream values and w denotes the variables at the wall, δin and δ99 are the
99% boundary-layer thickness at the inflow station and the considered location xtarget, respectively,
and uτ is the friction velocity calculated by

√
τw/ρw, with τw being the wall shear stress. Additional

details in terms of the local Reynolds numbers Reθ (= ρ∞u∞θ/μ∞), Reδ2 (= ρ∞u∞θ/μw), and
shape factor H12 (= δ∗/θ ) are listed in Table I, with δ∗ and θ being the displacement thickness and
momentum thickness, respectively. In the present research we choose to match Reτ mainly based on
the previous literature [26,34,53] and also to limit the computational costs. If we choose to match
a different definition of Reynolds number, differences may occur but the qualitative trend of the
variations of coherent structures with regard to the wall-cooling intensity remains unchanged; see
Duan et al. [11] who chose Reδ2 for an example. For the statistical ensemble, the flow fields are
collected during a time period more than 100δin/u∞.

Table II shows the computational domain and the grid resolutions. The computational domain
is set as Lx×Ly×Lz = 60δin×10δin×3πδin, which is discretized using Nx×Ny×Nz grid points in the
x (streamwise), y (wall-normal), and z (spanwise) direction, respectively. In the streamwise and
spanwise directions, the mesh is uniformly distributed, whereas in the wall-normal direction the
mesh is hyperbolically stretched to cluster grid points close to the wall. In the wall-normal direction,
the grid spacings at the wall and edge of the boundary layer, �y+

w and �y+
δ , are less than 0.5 and

7.4, respectively, and grid spacings in the streamwise and spanwise directions, �x+ and �z+, are
less than 7.1 and 5, respectively, satisfying the requirements of DNS. The superscript + denotes
normalization by viscous units, namely, using the wall density ρw, the friction velocity uτ , and the
viscous length δν = μw/(ρwuτ ).

An examination on the adequacy of the mesh is conducted. In Fig. 1 we show the spanwise
spectral distributions of the density-weighted streamwise velocity fluctuations at y+ = 15 and

TABLE II. Details of the computational domains and grid resolutions.

Case Lx×Ly×Lz Nx×Ny×Nz �y+
w �y+

δ �x+ �z+ xtarget

adiabatic 60δin×10δin×3πδin 3400×480×580 0.45 6.03 5.10 4.69 56.47δin

cold1 60δin×10δin×3πδin 3000×360×600 0.22 7.31 5.65 4.44 56.00δin

cold2 60δin×10δin×3πδin 2106×336×512 0.27 6.86 7.10 4.39 53.57δin
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FIG. 1. Spectral distributions of density-weighted streamwise velocity fluctuations in the spanwise direc-
tion at (a) y+ = 15 and (b) y+ = 100.

y+ = 100. The absence of energy pileup at the high-wave-number end confirms that there is no
numerical energy drain in the DNSs, indicating that the spanwise grid resolution is sufficient to
resolve all energetically relevant scales [13]. Furthermore, to ensure the feasibility of the synthetic
digital filtering approach in hypersonic turbulent boundary layers, the distributions of wall pressure
fluctuations, normalized by the local wall shear stress, are also examined as a function of friction
Reynolds number. As displayed in Fig. 2, the intensities of pressure fluctuations are in good
agreement with the DNS data of Huang et al. [54]. At last, the DNS statistical profiles of the
mean streamwise velocity with van Driest transformation, {u}+

vd , and the Reynolds stress, 〈ρu′′u′′〉+,
〈ρv′′v′′〉+, and 〈ρw′′w′′〉+ and 〈ρu′′v′′〉+, at Tw/Tr = 0.76 and 0.25 are compared with results in
Zhang et al. [26]. As shown in Fig. 3, good agreements are found, confirming the reliability of the
present DNS database.

IV. SPECTRAL ANALYSIS OF TURBULENCE KINETIC ENERGY BUDGETS

In this section we pay attention to the evolution processes of turbulence kinetic energy (TKE).
The spectra of two-point velocity correlations Rρuiui (i = 1, 2, 3) are first examined, followed by the
discussions on the spectra of turbulence kinetic energy production, viscous dissipation, pressure
strain, and turbulence kinetic energy transport. The one-dimensional spectra are only examined in

300 350 400 450 500
Re

1

2

3

4

5

6

7

p'
w

,rm
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w
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cold1
cold2
M6Tw076, Huang et al.
M6Tw025, Huang et al.

FIG. 2. Intensity of wall pressure fluctuation normalized by the local wall shear stress p′
w,rms/τw as a

function of friction Reynolds number. The solid triangular symbols denote the DNS data in Huang et al. [54].
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FIG. 3. Wall-normal profiles of (a) mean streamwise velocity with van Driest transformation, (b) density-
weighted Reynolds stress at Tw/Tr = 0.76, and (c) density-weighted Reynolds stress at Tw/Tr = 0.25. The
black dashed line and the black dot-dashed line represents the matching reference cases in Zhang et al. [26].
The blue solid lines in (a) denote the linear law of the wall {u}+ = y+ and the incompressible logarithmic law
{u}+ = 2.5 ln y+ + 5.2.

the spanwise direction, as the scale separation tends to be more evident in the spanwise direction at
relatively low Reynolds numbers [36,55], and the energy-containing eddies can be well character-
ized by their spanwise wavelengths [56].

A. Turbulence kinetic energy

Figure 4 displays the wall-normal profiles of the three components of turbulence kinetic energy,
〈ρu′′u′′〉+, 〈ρv′′v′′〉+, and 〈ρw′′w′′〉+. The magnitudes shown in Fig. 4 suggest major contributions
of turbulence kinetic energy from the main stream. In the adiabatic case, the inner peak of 〈ρu′′u′′〉+
locates at y+ ≈ 13. The logarithmic variations of 〈ρu′′u′′〉+ and 〈ρw′′w′′〉+, as marked by the dashed
lines in panels (a) and (c), and the near-wall plateau of 〈ρv′′v′′〉+ are observed, consistent with the
prediction of the attached eddy hypothesis [54,57].

When the wall temperature decreases, the locations of the TKE peaks are shifted away from
the wall (in terms of viscous units); the peak magnitude of 〈ρu′′u′′〉+ is slightly increased, whereas
those of 〈ρv′′v′′〉+ and 〈ρw′′w′′〉+ are decreased, which are also reported by Huang et al. [54].
In the cold2 case, the strong wall cooling makes it obscure to identify the logarithmic variations
of 〈ρu′′u′′〉+ and 〈ρw′′w′′〉+, and enhances 〈ρv′′v′′〉+ exceptionally in the very-near-wall region
(y+ < 6). To eliminate the wall-temperature effects and collapse the Reynolds normal stress pro-
files onto a unified curve, various transformations have been proposed [19,26,58]. However, the
compressibility transformation to map the statistical profiles to an equivalent incompressible flow
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FIG. 4. Wall-normal profiles of (a) 〈ρu′′u′′〉+, (b) 〈ρv′′v′′〉+, and (c) 〈ρw′′w′′〉+ in the hypersonic turbulent
boundary layers under three wall conditions. The black dashed line in panel (a) denotes 〈ρu′′u′′〉+ = 8.22 −
1.03 log y+ and that in (c) 〈ρw′′w′′〉+ = 3.13 − 0.27 log y+.
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FIG. 5. Spanwise premultiplied spectra (a) kzE+
ρuu, (b) kzE+

ρvv , and (c) kzE+
ρww in the hypersonic turbulent

boundary layers under three wall conditions. The gray solid line, blue dashed line, and orange dot-dashed line
denote the adiabatic, cold1, and cold2 case, respectively. The contour lines indicate 0.2, 0.4, 0.6, and 0.8 of
their maxima, from outside to inside; the same for the following contours if not specially stated.

by taking thermodynamics into account is out of the scope of the present study, and we will not
discuss it hereafter.

Figure 5 plots the spanwise premultiplied spectra of the TKE components, kzE+
ρuu, kzE+

ρvv ,
and kzE+

ρww. In the adiabatic case, the streamwise energy spectra kzE+
ρuu exhibit an inner peak at

λ+
z ≈ 100, which characterizes the spanwise spacing of the near-wall coherent structures, similar

to the features in incompressible wall turbulence [56,59]. A second peak appears at (λz/δ99, y+) ≈
(1.0, 100), although it is not apparent at the present relatively low Reynolds number. The second
peak represents the dynamics of large- and very-large-scale motions in the outer region [60–62]. The
spectra kzE+

ρvv in the adiabatic case are more intense within y+ = 20 ∼ 100, since the impermeabil-
ity of the wall limits the wall-normal fluctuations from extending close to the near-wall region.
The spectral peaks of kzE+

ρvv and kzE+
ρww locate at λ+

z ≈ 100 and λ+
z ≈ 150, respectively, which is

indicative of the near-wall quasistreamwise vortical structures [56,63]. In the cold-wall cases, the
weak wall cooling (Tw/Tr = 0.76) does not influence the spectral distributions significantly, neither
in scales nor in space, but the other (Tw/Tr = 0.25) does. It can be seen that in the cold2 case, the
spanwise wavelengths of all TKE components are remarkably enlarged, with their peaks lifted up
simultaneously. The second peak in the spectra kzE+

ρuu becomes ambiguous, indicating the reduction
of separation between the viscous- and outer-scale motions [54].

More features of the energy distributions can be gained from the two-dimensional premultiplied
spectra, as shown in Fig. 6. Given that the flow is assumed to be quasiperiodic in the streamwise di-
rection, we perform two-dimensional Fourier transformation of the fluctuations, which are obtained
by subtracting the local mean quantity at a streamwise location from the instantaneous signals.
Three positions at y+ = 15, 100, and 200 are selected to characterize the features in the inner,
logarithmic, and outer region, respectively. Note y+ = 200 amounts to y/δ99 ≈ 0.5. In the inner
region, the Fourier modes of kxkzE+

ρuu are mostly concentrated in the region where λ+
x > λ+

z , which
is ascribed to the near-wall streaks elongated in the streamwise direction. In the adiabatic case, the
spectra peak at (λ+

x , λ+
z ) ≈ (500, 100). Wall cooling has an effect to enlarge the wavelengths of the

local 〈ρu′′u′′〉 structures, although only trivial deviations are found in the cold1 case with weak wall
cooling [see Fig. 6(a)]. The spectra kxkzE+

ρvv and kxkzE+
ρww at y+ = 15, drawn in Figs. 6(b) and 6(c),

respectively, exhibit similar wall-temperature effects as those in kxkzE+
ρuu. One remarkable feature

in the cold2 case is that kxkzE+
ρvv tends to spread significantly in the spanwise-elongated region, i.e.,

λ+
z > λ+

x , indicating that the strong wall cooling renders much stronger spanwise coherence of the
vertical motions than their streamwise organization.

To give further insights into the scales of turbulent structures at y+ = 15, autocorrelations of
u′′, v′′, and w′′ (Ru′′u′′ , Rv′′v′′ , and Rw′′w′′ ) in the streamwise and spanwise directions are calculated
and shown in Fig. 7. We can see that as the wall temperature decreases, the widths of streamwise
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FIG. 6. Two-dimensional premultiplied spectra, (a), (d), (g) kxkzE+
ρuu, (b), (e), (h) kxkzE+

ρvv , and (c), (f), (i)
kxkzE+

ρww , at y+ = 15, 100, and 200, in the hypersonic turbulent boundary layers under three wall conditions.
Legends refer to Fig. 5. The diagonal dashed line denotes λ+

x = λ+
z .

autocorrelations of u′′ and w′′ are increased significantly in the cold2 case, while that of Rv′′v′′ varies
slightly, which is consistent with the phenomenon in Figs. 6(a)–6(c). In panel (d), the spanwise
correlation of u′′ structures at Tw/Tr = 0.76 almost collapses to that at Tw/Tr = 1.0, whereas an
obvious division is visible for the cold2 case at Tw/Tr = 0.25. For the spanwise autocorrelation of
v′′ [panel (e)], its spacing is apparently increased by wall cooling in comparison with the mildly
influenced streamwise autocorrelation in panel (b), leading to the spanwise-oriented v′′ structures
plotted in Fig. 6(b). At last in panel (f) the spanwise spacings of w′′ structures are very similar to
those of u′′ structures. With wall cooling, larger spanwise spacing is also observed in the Rw′′w′′ map.

Figures 6(d)–6(i) show two-dimensional spectra of the TKE components in the logarithmic
(y+ = 100) and outer (y+ = 200) region. The kxkzE+

ρuu, kxkzE+
ρvv , and kxkzE+

ρww peak at larger
wavelengths than those at y+ = 15, and extend more towards the spanwise direction, indicat-
ing increased spanwise coherence [64], as a consequence of the combination of the classical
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FIG. 7. Streamwise and spanwise autocorrelation of (a), (d) u′′, (b), (e), v′′, and (c), (f) w′′ at y+ = 15, in
the hypersonic turbulent boundary layers under three wall conditions.

scale-isotropic turbulence and the streaky motions. The deviations induced by the wall temperature
are, to some extent, relieved in the logarithmic and outer region. In particular, at large wavelengths
the spectral distributions of three cases are quite close to each other; nonetheless, the spectra at
small scales are still biased towards larger λ+

x and λ+
z with the decreasing wall temperature.

B. Turbulence kinetic energy production

The one-dimensional premultiplied spectra of the streamwise TKE production, y+kzEPk+
ρuu , are

plotted in Fig. 8. The other two components in the wall-normal and spanwise directions are not
shown here, as their amplitudes are too small compared with the streamwise one. Note that the
one-dimensional spectra are premultiplied by y+ and kz to represent the energy spectral densities

101 102 103
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101

102

y+

FIG. 8. Spanwise premultiplied spectra of the streamwise TKE production y+kzEPk+
ρuu in the hypersonic

turbulent boundary layers under three wall conditions. Legends refer to Fig. 5.
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FIG. 9. Spanwise premultiplied spectra of the viscous dissipation, (a) y+kzE εk+
ρuu , (b) y+kzE εk+

ρvv , and
(c) y+kzE εk+

ρww, in the hypersonic turbulent boundary layers under three wall conditions. Legends refer to Fig. 5.

in the logarithmic plot. As for the two-dimensional premultiplied spectra of the streamwise TKE
production, they are not shown here for brevity and interested readers can refer to Appendix A 1.

In the adiabatic case, the distribution of y+kzEPk+
ρuu has an inner peak at (λ+

z , y+) ≈ (80, 12) and
an outer peak at (λ+

z , y+) ≈ (385, 170) or (λz/δ99, y/δ99) ≈ (0.94, 0.42). The inner peak is linked
to the near-wall streaks and quasistreamwise vortices [59], and the outer peak is associated with the
self-sustaining mechanism of the outer large-scale motions [65]. The TKE production spectra are
well aligned along an inclined ridge, indicating that the spanwise wavelength of the spectral peak
linearly grows with the distance from the wall [66]. These features are consistent with the findings
in incompressible channel flows [36].

As the wall temperature decreases, the inner peak moves upper and towards larger spanwise
wavelengths, e.g., locating at (λ+

z , y+) ≈ (230, 35) in the cold2 case, whereas the location of
the outer peak is barely influenced. It suggests that the wall cooling has actions to suppress the
production of streamwise TKE associated with the near-wall small-scale motions. The linearly
distributed ridge exhibits a gradually decreasing rate of the spanwise scale with regard to the
wall-normal distance, which is conspicuous in the cold2 case.

C. Viscous dissipation

Figure 9 displays the spanwise premultiplied spectra of the viscous dissipation in three directions,
i.e., y+kzE εk+

ρuu , y+kzE εk+
ρvv , and y+kzE εk+

ρww, in the light of Eq. (6b). In the adiabatic case, the spectrum
y+kzE εk+

ρuu peaks at (λ+
z , y+) ≈ (56, 14). In general, the contribution to y+kzE εk+

ρuu is mostly concen-
trated within the small-wavelength region, say λ+

z < 100 throughout the turbulent boundary layer.
The prominent role of the small-scale motions in the viscous dissipation is essentially consistent
with the Kolmogorov’s similarity hypothesis [67] that the viscous effects are exclusively exerted
on the dissipative-scale motions, which in turn take responsibility for most of the dissipation. The
power-law dependence of the spanwise wavelength of the spectral peak with regard to y+, observed
in channel flows [36], is illegible here, possibly due to the relatively low friction Reynolds number
in the present study. In Fig. 9(b), the spectral distribution of y+kzE εk+

ρvv tends to be concentrated
beyond the buffer layer, with its peak at (λ+

z , y+) ≈ (46, 43) in the adiabatic case. In particular,
this wall-normal dissipation is zero at the wall due to the wall impermeability and no-slip condition.
As for the spectral density y+kzE εk+

ρww, it peaks at (λ+
z , y+) ≈ (81, 34) in the adiabatic case and is

widely distributed and extended to the wall.
When the wall temperature decreases, the spectral distributions are shifted towards larger y+ and

λ+
z , for all of the three components, as a result of the lifting structures with increased coherence

by wall cooling [34]. The Kolmogorov length scale (η+), characterizing the very smallest and
dissipative eddies [67], is also increased in the cold-wall cases (the results are not shown here).
Different from the subtle influences on the outer distributions of the TKE production in Fig. 8, the
effect of wall temperature on the spectra of viscous dissipation is still active even close to the edge
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FIG. 10. Spanwise premultiplied spectra of the pressure strain, (a), (d), (g) y+kzE�p+
ρuu , (b), (e), (h)

y+kzE�p+
ρvv , and (c), (f), (i) y+kzE�p+

ρww , in the hypersonic turbulent boundary layers at (a)–(c) Tw/Tr = 1.0, (d)–(f)
Tw/Tr = 0.76, and (g)–(i) Tw/Tr = 0.25. The ranges of color bar in these figures are the same, with blue to red
denoting negative to positive values [−0.8, 0.8].

of the boundary layer, suggesting that the small-scale motions are altered throughout the whole wall
layer by the wall cooling. Consistent results can be observed in the two-dimensional premultiplied
spectra of the viscous dissipation, as shown in Appendix A 2.

D. Pressure strain

Figure 10 plots the spanwise spectral densities of the pressure strain y+kzE�p

ρuiui
, which acts to

redistribute the TKE among the streamwise, wall-normal, and spanwise components [36]. In Fig. 10
one of the most prominent features is the negative magnitude of y+kzE�p+

ρuu and positive ones of
y+kzE�p+

ρvv and y+kzE�p+
ρww in most regions of the boundary layer and scale space, which indicates that

the streamwise TKE is transferred to the other two components. Exceptions occur in the near-wall
region of y+kzE�p+

ρvv [panels (b), (e), and (h)] and the small-wavelength region of y+kzE�p+
ρww [panels

(c), (f), and (i)]. Near the wall, the negative magnitude of E�p+
ρvv indicates that energy is transferred

from 〈ρv′′v′′〉 at all scales, which is expected since the presence of the impermeable wall compels
the vertical velocity fluctuations to turn to the wall-parallel components. A corresponding positive
E�p+

ρww is manifest in the same region. This reveals that 〈ρv′′v′′〉 is mainly redistributed to 〈ρw′′w′′〉,
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FIG. 11. Spanwise premultiplied spectra of the pressure strain y+kz
∑3

i=1 E�p+
ρuiui

in the hypersonic turbulent
boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr = 0.25. The ranges of color bar in these
figures are the same, with blue to red denoting negative to positive values [−0.04, 0.04].

as a result of the quasistreamwise vortices [36]. On the other hand, in the spectra y+kzE�p+
ρww , a weak

negative region is observed at small spanwise wavelengths, for all three cases. As the corresponding
spectra E�p+

ρvv at the same y+ and λ+
z is observed to be positive, 〈ρw′′w′′〉 is probably transferred

towards 〈ρv′′v′′〉. This kind of energy transfer (from the spanwise to wall-normal direction) always
occurs in the streamwise-elongated (λ+

x > λ+
z ) structures (not shown) and is speculated to be

associated with the streamwise vortex stretching. A comparison between y+kzE�p+
ρvv and y+kzE�p+

ρww

illustrates that the streamwise TKE is redistributed to the spanwise component preferentially in
larger scales, whereas to the wall-normal component in smaller scales [68]. This is consistent with
the phenomenon that the spanwise wavelength of w′′ structures is relatively larger than that of v′′, as
shown in Fig. 5. The decrease of wall-to-recovery temperature ratio will not qualitatively change the
characteristics of kinetic energy redistribution, though the inner-scaled wall distance y+ and length
scale λ+

z of spectral peaks are increased and its intensity of energy transfer is enhanced by wall
cooling [47].

At last, it is worthwhile to point out that, other than the zero trace of pressure-strain tensor in
incompressible flows,

∑3
i=1 E�p

ρuiui
is exclusively nonzero in compressible turbulence as a result of

velocity dilatation. This term consequently induces interactions between the internal and kinetic en-
ergy, and it has been employed as an explicit indicator to measure the fluid genuine compressibility
[5]. Figure 11 plots the spanwise premultiplied spectra of summed pressure strain, y+kz

∑3
i=1 E�p

ρuiui
.

It is observed that the turbulence kinetic energy is drawn and deposited into the internal component
at all scales within the near-wall region, basically y+ < 10. Beyond this region, two-way exchanges
between the kinetic and internal energy at small and large wavelengths are mostly canceled out.
Larger magnitudes of y+kz

∑3
i=1 E�p+

ρuiui
are found in the cold-wall cases, indicating that wall cooling

enhances the effect of compressibility, consistent with the previous findings by Duan et al. [11]
and Zhang et al. [26]. However, under the present Mach-number and wall-temperature conditions,
the magnitude of summed pressure strain is still of minor significance, as the range of color bar
in Fig. 11 is at least an order of magnitude smaller than that in Fig. 10. Actually, even at higher
Mach numbers and lower wall-to-recovery temperature ratios, e.g., M∞ = 13.64 and Tw/Tr = 0.18
in Zhang et al. [26], the contribution of pressure strain is still confined within a very-near-wall layer
and is small enough to be neglected (refer to Figs. 15 and 17 in Zhang et al. [26]). Therefore in
this paper we will not pay attention to the contribution of pressure strain to the kinetic and internal
energy interactions.

E. Transport of turbulence kinetic energy among space and scales

The transport of TKE among space and scales is controlled by pressure diffusion, viscous
diffusion, and turbulent convection, as seen in Eq. (17). Due to the relatively mild streamwise
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FIG. 12. Wall-normal profiles of pressure diffusion of turbulence kinetic energy, D+
p,k,uiui

, in the hypersonic
turbulent boundary layers under three wall conditions.

development of the boundary layer in comparison with the wall-normal statistical variations, the
spatial energy transport occurs primarily in the wall-normal direction.

1. Pressure diffusion

The wall-normal profiles of pressure diffusion, Dp,k,uiui = −∂〈p′u′′
i 〉/∂xi, are shown in Fig. 12.

The streamwise and spanwise components, Dp,k,uu and Dp,k,ww, are negligible. The wall-normal
component Dp,k,vv dominates the energy transport, from 10 < y+ < 30 in the adiabatic and cold1
case to the near-wall region, and from 30 < y+ < 100 in cold2 case. The integral of Dp,k,vv over the
wall layer is zero, corroborating the balance of pressure transport in space.

Figure 13 depicts the spanwise premultiplied spectra of pressure diffusion y+kzE
Dp+
ρvv . The

positive spectra near the wall (y+ < 10) indicate energy receiving at all spanwise wavelengths,
regardless of the wall temperature. Beyond the very-near-wall layer, an energy donor (negative)
region is observed, with the spanwise wavelength approximately proportionally scaling with y+.
Specifically, at large wavelengths the energy is transported from a region near the boundary-layer
edge towards the near-wall region as a result of outer-layer large-scale modulation on the near-wall
dynamics [60,69,70].

2. Viscous diffusion

Figure 14 shows the wall-normal profiles of viscous diffusion, Dν,k,uiui = ∂〈τ ′
iku′′

i 〉/∂xk . The
streamwise component takes the dominance to transport energy from a region (say, around 4 <

y+ < 15 in the case of adiabatic and cold1 and 9 < y+ < 40 in cold2), both towards the wall
and away from the wall. This is also displayed in the premultiplied spectra of streamwise viscous
transport y+kzEDν+

ρuu in Fig. 15. In panel (a), the positive and negative spectral peaks locate at
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FIG. 13. Spanwise premultiplied spectra of the pressure diffusion of wall-normal TKE, y+kzE
Dp+
ρvv , in the

hypersonic turbulent boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr = 0.25. The ranges
of color bar in these figures are the same, with blue to red denoting negative to positive values [−0.2, 0.2].
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FIG. 14. Wall-normal profiles of viscous diffusion of turbulence kinetic energy, D+
ν,k,uiui

, in the hypersonic
turbulent boundary layers under three wall conditions.

(λ+
z , y+) ≈ (80, 2.2) and (80,7.6), respectively, implying that the viscous transport dominantly ap-

pears at small scales in the near-wall region. From the spectra we can see that the downward/upward
viscous transport exhibits in a wide range of wavelengths, with its spatial direction hinging on the
wall-normal distance. Beyond the inner layer (e.g., y > 30 in the adiabatic case), there is almost no
viscous diffusion at any scales. In the cold-wall cases, shown in panels (b) and (c), the peaks move
to a larger λ+

z and a higher y+ position. This variation is consistent with the wall-cooling effect on
the characteristics of the near-wall structures, as discussed in Sec. IV B. Moreover, wall cooling acts
to enhance the spectral density of viscous diffusion of TKE.

3. Turbulent convection

The turbulent convection of TKE is expressed as Dt,k,uiui = −1/2∂〈ρu′′
i u′′

i u′′
k 〉/∂xk , and its wall-

normal profiles are shown in Fig. 16. It is found that the transport of 〈ρu′′u′′〉 takes the dominance
in the turbulent convection, and the other two components are negligibly small. As a result we only
plot the turbulent-convection spectra of 〈ρu′′u′′〉 in Fig. 17.

Since
∫ ∞

0 RDt,⊥
ρuu dy = 0 for any rz, the turbulent energy transfer in the y direction is examined

at different spanwise wavelengths. At small λ+
z , Dt,k,ρuu transports energy both towards the wall

and away from the wall, from a region corresponding to the characteristic inner-layer structures. In
the large-scale region, e.g., λ+

z > 200 for the adiabatic case, the inner layer receives energy from
a region extending far away from the wall, as a token of the outer-layer large-scale modulation
[60,69,70]. Similar phenomenon is observed in panels (b) and (c), except that the spectra are indeed
amplified, denoting the enhanced turbulent energy transfer across space by wall cooling.

On the other hand, the spanwise premultiplied spectra of the interscale TKE transport,
y+kzE

Dt,‖+
ρuu , y+kzE

Dt,‖+
ρvv , and y+kzE

Dt,‖+
ρww , are shown in Fig. 18. Positive and negative magnitudes
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FIG. 15. Spanwise premultiplied spectra of the viscous diffusion of streamwise TKE, y+kzEDν+
ρuu , in the

hypersonic turbulent boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr = 0.25. The ranges
of color bar in these figures are the same, with blue to red denoting negative to positive values [−0.8, 0.8].
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FIG. 16. Wall-normal profiles of turbulent convection of turbulence kinetic energy, D+
t,k,uiui

, in the hyper-
sonic turbulent boundary layers under three wall conditions.

in the spectra denote the energy receipt and donor in the transport process, respectively. The
inclined donor regions in Figs. 18(a), 18(d) and 18(g) are aligned with the spectral distribution
of TKE production in Fig. 8, and those in Figs. 18(b), 18(c) 18(e), 18(f), 18(h), and 18(i) with
the wall-normal and spanwise pressure-strain spectra in Fig. 10. The receipt regions at smaller
wavelengths tend to be correlated with the viscous-dissipation spectra (see Fig. 9). This reveals that
the interscale turbulent convection of TKE underlies the energy exchange among components in
terms of TKE budget.

Moreover, since the interscale turbulent transfer inherit the property of
∫

EDt,‖
ρuiui dkz =

limrz→0 RDt,‖
ρuiui = 0 at any y, we can examine it at all specific wall distances. In Figs. 18(a), 18(d)

and 18(g), the streamwise TKE (〈ρu′′u′′〉) is found to be transported from a region (corresponding
to TKE production) to both smaller (dominant) and larger scales. The former is consistent with
the energy cascade from large to small scales [67] and is particularly related to the self-sustaining
mechanism, where the streaks break down and produce smaller-scale structures [71], while the later
denotes an inverse transfer, causing the large-scale structures affected by the small scales, which
was also discovered by Kawata and Alfredsson [72] in the transport of Reynolds shear stress. They
reported that such an inverse interscale transport acts to support the turbulent energy production at
large scales away from the wall. Similar phenomenon is found in the interscale transport of spanwise
TKE [see Figs. 18(c), 18(f) and 18(i)], whereas in the spectra y+kzE

Dt,‖+
ρvv , energy is transported only

from large- to small-scale motions [see Figs. 18(b), 18(e) and 18(h)]. As for the effects of wall
cooling on the interscale energy transport, it is exactly the same as what we discussed above and
thus will not be reiterated here.
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FIG. 17. Spanwise premultiplied spectra of the turbulent convection of streamwise TKE among space,
y+kzE

Dt,⊥+
ρuu , in the hypersonic turbulent boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr =

0.25. The ranges of color bar in these figures are the same, with blue to red denoting negative to positive values
[−1.2, 1.2].
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FIG. 18. Spanwise premultiplied spectra of the turbulent convection of TKE among scales, (a), (d), (g)
y+kzE

Dt,‖+
ρuu , (b), (e), (h) y+kzE

Dt,‖+
ρvv , and (c), (f), (i) y+kzE

Dt,‖+
ρww , in the hypersonic turbulent boundary layers

at (a)–(c) Tw/Tr = 1.0, (d)–(f) Tw/Tr = 0.76, and (g)–(i) Tw/Tr = 0.25. The ranges of color bar in these
figures are the same, with blue to red denoting negative to positive values [−1.5, 1.5].

V. SPECTRAL ANALYSIS OF TURBULENCE INTERNAL ENERGY BUDGETS

We focus on the evolution processes of turbulence internal energy (TIE) in this section. The
spectral distributions of two-point φ′′ correlation Rρφφ and critical budget terms, including the
turbulence internal energy production, heat conduction, and turbulence internal energy transport,
are investigated.

A. Turbulence internal energy

Figure 19 shows the wall-normal profiles of turbulence internal energy, e+
t = 〈ρφ′′φ′′〉+, which

is found to be mainly distributed in the logarithmic and outer region. Two peaks are observed at
y+ ≈ 25 and 250, with the latter exceeding the former, in the adiabatic and cold1 case. In the
cold2 case, the e+

t is slightly increased in y+ < 5 but is greatly suppressed beyond this region. This
indicates that the strong wall cooling tends to reduce the generation of TIE across the wall layer,
except in the viscous sublayer.

Figure 20 plots the spanwise premultiplied spectra of TIE, kzE
+
ρφφ . In the adiabatic case, two

spectral peaks are observed, with the primary one located in the outer region at (λz/δ99, y/δ99) ≈
(1.3, 0.55) and the second one at (λ+

z , y+) ≈ (130, 20). This is essentially different from the
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FIG. 19. Wall-normal profiles of turbulence internal energy e+
t in the hypersonic turbulent boundary layers

under three wall conditions.

distribution of TKE, which is mainly concentrated in the inner region, at least at the present
Reynolds numbers. The weak wall cooling in the cold1 case has mild impacts on the spectral
distributions, whereas in the cold2 case the inner peak is invisible, and the outer spectra associated
with the large-scale motions are barely changed.

The two-dimensional premultiplied spectra of TIE, kxkzE
+
ρφφ , are displayed in Fig. 21 at the three

selected wall-normal distances, y+ = 15, 100, and 200. In panel (a) at y+ = 15 the Fourier modes
are largely concentrated within the streamwise-elongated region for the adiabatic and cold1 case,
which is associated with the temperature streaks in the inner region [13]. With strong wall cooling,
at Tw/Tr = 0.25, the spanwise wavelength is observably enlarged, with energy peaks roughly along
the diagonal (λ+

x = λ+
z ).

To check the effects of wall temperature on the coherence of the φ′′ structure at y+ = 15, two-
point autocorrelation maps are quantified in Fig. 22. We can see that weak wall cooling in the cold1
case has less impact on the coherence, but the strong wall cooling in the cold2 case enlarges the
coherence both in the streamwise and spanwise direction.

In the logarithmic (y+ = 100) and outer (y+ = 200) region, shown in Figs. 21(b) and 21(c), large
amounts of TIE are carried by the larger-scale motions, which exhibit a tendency to scale isotropy
away from the wall. The effects of wall cooling on the φ′′ structure are apparent at small wavelengths

101 102 103

z
+

100

101

102

y+

FIG. 20. Spanwise premultiplied spectra kzE
+
ρφφ in the hypersonic turbulent boundary layers under three

wall conditions. Legends refer to Fig. 5.
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FIG. 21. Two-dimensional premultiplied spectra kxkzE
+
ρφφ , at (a) y+ = 15, (b) y+ = 100, and (c) y+ = 200,

in the hypersonic turbulent boundary layers under three wall conditions. Legends refer to Fig. 5.

but trivial at large scales, similar to the observations from the spectral distributions of TKE in Fig. 6.
This suggests that the wall temperature has similar impacts on the structure sizes of the dynamical
variables (u′′, v′′, w′′) and the thermodynamical variable (φ′′) across the wall layer.

B. Turbulence internal energy production

On the basis of Eq. (18a), Fig. 23 plots the spanwise premultiplied spectra of the TIE production,
y+kzE

Pe+
ρφφ . Prominent contributions of the TIE production are visualized particularly in the outer

region, which is consistent with the observations in Figs. 19 and 20. In the adiabatic case, the
spectral distribution has two peaks. The primary one is dominated by the large-scale motions in
the outer region at (λ+

z , y+) ≈ (385, 200) or (λz/δ99, y/δ99) ≈ (0.93, 0.48), and the second one
locates at (λ+

z , y+) ≈ (80, 16), which is related to the small-scale thermodynamic structures in the
inner layer. The two peaks are connected with an inclined ridge, indicating the self-similar nature
of wall-normal heat flux (〈ρφ′′v′′〉) from y+ = 16 to 200, which is inherently reminiscent of the
characteristics of Reynolds shear stress.

The influences of wall cooling on the internal-energy-containing motions are found to be similar
to those we discussed in Sec. IV B. With the strong wall cooling (cold2 case), the spectral peak in
the inner region is barely visible, and most of the TIE is produced in the outer region. The turbulent
dynamics beyond y+ � 50 account for more than 75% of the total amount of TIE production.
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FIG. 22. Streamwise and spanwise autocorrelation of φ′′ at y+ = 15 in the hypersonic turbulent boundary
layers under three wall conditions. Legends refer to Fig. 7(d).
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FIG. 23. Spanwise premultiplied spectra of the TIE production y+kzE
Pe+
ρφφ , in the hypersonic turbulent

boundary layers under three wall conditions. Legends refer to Fig. 5.

This confirms the reduction of scale separation under wall cooling [54]. Additional information
is provided by the two-dimensional premultiplied spectra, which is discussed in Appendix A 3.

C. Heat conduction

The action of heat conduction is of particular importance in compressible turbulent boundary
layers, which plays a significant role in the evolution of TIE. Figure 24 plots its one-dimensional
spanwise premultiplied spectra y+kzE

Q+
ρφφ (with its two-dimensional premultiplied spectra given in

Appendix A 4). The Fourier modes are mostly concentrated within the small scales in the outer
region, and the spectral peak locates at (λ+

z , y+) ≈ (42, 200), (50, 200), and (100, 240) in the
adiabatic, cold1, and cold2 case, respectively. This suggests that the thermal energy is mostly
carried and transferred by the small-scale motions throughout the boundary layer. Note that the
spectral density y+kzE

Q
ρφφ is always negative, yielding energy transfer from the fluctuating to the

mean field [47]. The source is probably the interscale transfer from the dominant TIE production at
larger scales, which will be discussed in the next section.
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z
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FIG. 24. Spanwise premultiplied spectra of the contribution by heat conduction y+kzE
Q+
ρφφ , in the hypersonic

turbulent boundary layers under three wall conditions. Legends refer to Fig. 5.

044604-23



YITONG FAN AND WEIPENG LI

100 101 102 103

y+

-0.02

-0.01

0

0.01

0.02

0.03

D
t,e+

adiabatic
cold1
cold2

FIG. 25. Wall-normal profiles of turbulent convection of TIE, D+
t,e, in the hypersonic turbulent boundary

layers under three wall conditions.

D. Turbulent convection of turbulence internal energy among space and scales

The turbulent convection term, Dt,e = −∂〈ρφ′′φ′′u′′
k 〉/∂xk , redistributes the TIE among space

and scales to locally balance the energy gain and loss as a result of the dynamics of turbulent
motions. Its wall-normal profile is plotted in Fig. 25. In the adiabatic case, the transport of 〈ρφ′′φ′′〉
is mainly convected from the region y+ = 10 ∼ 30 to the near-wall region (y+ < 10). When the
wall is cooled, this type of transport tends to be attenuated and shifted away from the wall in terms
of y+.

As suggested by Eqs. (21a)–(21c), the TIE convection can be further decomposed into energy
transport associated with the streamwise heterogeneity, along the y direction and across scales. The
contribution of streamwise heterogeneity is not reported here, as its magnitude is affirmed to be
ignorable in the present cases under scrutiny.

Figure 26 shows the spanwise premultiplied spectra y+kzE
Dt,⊥+
ρφφ . In the small-wavelength region

(λ+
z < 200), Dt,e transports internal energy both towards the wall and away from the wall, from a

region centering around (λ+
z , y+) ≈ (86, 15), which corresponds well with the second peak of TIE

production spectra (see Fig. 23), and is closely related to the characteristic near-wall structures.
At large wavelengths the internal energy is deposited near the wall from regions far from the
wall. Decreasing the wall temperature does not qualitatively change the features of TIE turbulent
convection but makes the spectral distribution clustered at larger λ+

z and y+, since the near-wall
structures are enlarged and lifted up in the viscous units.
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FIG. 26. Spanwise premultiplied spectra of the turbulent convection of TIE among space, y+kzE
Dt,⊥+
ρφφ , in the

hypersonic turbulent boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr = 0.25. The ranges
of color bar in these figures are the same, with blue to red denoting negative to positive values [−0.2, 0.2].
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FIG. 27. Spanwise premultiplied spectra of the turbulent convection of TIE among scales, y+kzE
Dt,‖+
ρφφ ,

in the hypersonic turbulent boundary layers at (a) Tw/Tr = 1.0, (b) Tw/Tr = 0.76, and (c) Tw/Tr = 0.25.
The ranges of color bar in these figures are the same, with blue to red denoting negative to positive values
[−0.5, 0.5].

As for the interscale TIE transport, its spanwise premultiplied spectra y+kzE
Dt,‖+
ρφφ are shown

in Fig. 27. In contrast with y+kzE
Dt,⊥+
ρφφ in Fig. 26, the interscale transport takes more significant

responsibility in the total TIE convection. In Fig. 27, the negative region, denoted as an energy
donor, is corresponding with the spectra of TIE production as shown in Fig. 23. The positive regions
represent energy recipients, which tend to be correlated with the internal energy exchange by the
action of heat conduction (see Fig. 24), drawing the internal energy from the fluctuating to the
mean flow field. Such alignment of the donor and recipient regions with the spectral distributions
of production and heat-conduction action suggests that the interscale transport acts to promote
the energy redistribution among components involved in the internal energy budget equation.
Furthermore, for all of the three cases, energy was found to be primarily transported from large
scales to small scales, which is consistent with the energy cascade. Near the wall, an inverse
transfer from small to large scales is also observed in Figs. 27(a) and 27(b), while it is almost
indiscernible with strong wall cooling in panel 27(c). At last, to obtain more comprehensive insights
of interscale transport, its two-dimensional spectra are examined at y+ = 15 and 100. Details are
given in Appendix A 5.

VI. CONCLUSIONS

In the present study the spectral budget equations of turbulence kinetic and internal energy (TKE
and TIE) are derived based on the two-point correlations of velocity and a sound-speed-like variable
(φ), respectively. By introducing φ, the formulation of the TIE transport shares fully structural
similarity with the TKE transport equation [47]. It allows us to investigate the spectral distributions
of the budgets in the TKE and TIE transport equations in a similar manner and reveal the scale
dependence of energy flow across space and scales, and among components. The spectral densities
of TKE and TIE budgets, including production, dissipation, pressure strain, heat-conduction action,
spatial and inter-scale transfer, are comprehensively quantified in the hypersonic turbulent boundary
layers with/without wall cooling.

In the adiabatic turbulent boundary layers, the evolution processes of TKE and TIE are found
to be similar, in a general sense. Nonetheless, the TKE is primarily carried by the inner-layer
streamwise-elongated motions, while the TIE is mostly carried by the outer-layer nearly scale-
isotropic structures, at the Reynolds number under scrutiny. The spectral density of TKE and
TIE production exhibits two peaks which are well aligned along an inclined ridge, supporting the
attached eddy hypothesis in terms of both dynamical and thermal structures. Differently, the inner
peak, associated with the near-wall streaky and quasi-streamwise vortical motions, dominates the
production of TKE, while the production of TIE is largely contributed by the large-scale modes
in the outer region. The TKE production occurs mostly in the streamwise direction and will be
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redistributed to the spanwise and wall-normal components via the so-called pressure strain, with the
former preferentially in larger scales. However, as for the viscous dissipation of TKE and the heat
conduction, which transfers the TIE from the fluctuating field to the mean-flow field, they occur
at small scales across the whole wall layer, with the spanwise wavelength λ+

z mostly concentrated
within 100. For this to happen, the TKE components and TIE are redistributed in orientation by the
interscale turbulent transport, where a predominant transfer is found from the characteristic modes
to smaller scales. The wall-normal interaction and modulation between the near-wall and outer-layer
motions is manipulated by pressure diffusion, viscous diffusion, and turbulent transport. Notably, in
compressible turbulence, the exchange between TKE and TIE is ascribed to the velocity dilatation.
In the near-wall region, TKE is transferred to TIE at all wavelengths, and beyond that a two-way
exchange is observed at different scales, yielding a counterbalanced energy interaction.

With wall cooling the near-wall structures are lifted up with increased coherence in terms of wall
units, and the separation between the viscous- and outer-scale motions is reduced at a matching fric-
tion Reynolds number. Remarkably, strong wall cooling is able to enhance the spanwise coherence
of vertical motions (v′′) and thermal structures (φ′′) greatly, in comparison with their streamwise
elongation. It causes a large contribution of the spanwise-oriented modes to the wall-normal TKE
and TIE in the near-wall region (at y+ ≈ 15). The wall cooling exerts opposite effects on the (spatial
and interscale) transport of TKE and TIE, where the magnitude of the former is increased by
wall cooling whereas that of the latter is suppressed. In general, we find that the effects of wall
temperature exist throughout the boundary layer primarily by means of modifying the small-scale
motions, and the wall cooling will not qualitatively impact the underlying mechanisms of energy
evolution.
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APPENDIX: TWO-DIMENSIONAL PREMULTIPLIED SPECTRA OF TKE AND TIE BUDGETS

1. Turbulence kinetic energy production

Figure 28 shows the two-dimensional premultiplied spectra of the streamwise TKE production
(kxkzEPk+

ρuu ) at y+ = 15, 100, and 200. Note that in order to bring out the weak spectra in the region
λ+

z > λ+
x , the contour lines in Fig. 28 denote 0.05, 0.3, 0.55, and 0.8 of their maximum. The general
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FIG. 28. Two-dimensional premultiplied spectra of the streamwise TKE production kxkzEPk+
ρuu at (a) y+ =

15, (b) y+ = 100, and (c) y+ = 200, in the hypersonic turbulent boundary layers under three wall conditions.
Legends refer to Fig. 5, with the contour lines exceptionally denoting 0.05, 0.3, 0.55, and 0.8 of their maximum,
respectively, from outside to inside.
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features of the spectral distribution are very similar to those of kxkzE+
ρuu in Fig. 6. At y+ = 15, shown

in Fig. 28(a), the spectra are mostly oriented in the streamwise direction, since the TKE production
here is closely related to the near-wall streaks and quasistreamwise vortices. With wall cooling, the
TKE tends to be generated by turbulent structures at larger streamwise and spanwise wavelengths. In
particular, in the cold2 case, a weak spectral peak appears around λ+

x = 200, featuring a spanwise-
oriented (λ+

z > λ+
x ) energy distribution. This is related to the stronger spanwise coherence of the

velocity fluctuations, especially in the wall-normal direction as depicted in Fig. 6(b).
In the logarithmic and outer regions, shown in Figs. 28(b) and 28(c), respectively, the streamwise

TKE production is locally produced by large-scale motions with the increasing distance from the
wall, which agrees with the observation in Fig. 8. When the wall temperature decreases, the spectra
at small scales shift towards larger streamwise and spanwise wavelengths, similar to the observations
in the inner region in Fig. 28(a). The spectral distributions at large scales are mildly affected by wall
cooling.

2. Viscous dissipation

The two-dimensional premultiplied spectra of viscous dissipation, kxkzE εk+
ρuu , kxkzE εk+

ρvv , and
kxkzE εk+

ρww, are plotted in Fig. 29, at y+ = 15, 100, and 200. In the inner region, see Figs. 29(a)–29(c),
the spectra are concentrated within the region where λ+

x > λ+
z , indicating the streamwise elongation

of the energy density distributions, which is associated with the near-wall structures, such as the
streaks and the quasistreamwise vortical structures. The wall cooling causes remarkable effects
on the spatial elongation or spacing of dissipative motions. A striking phenomenon in the spectra
kxkzE εk+

ρvv is that the distributions, centering around λ+
x = 100, spread significantly towards the

spanwise-oriented region where λ+
z > λ+

x in the cold2 case. It is similar to the observation in the
spectra kxkzE+

ρvv , shown in Fig. 6(b).
In the logarithmic and outer regions, as shown in Figs. 29(d)–29(i), the dissipation spectra

kxkzE εk+
ρvv become more isotropic among scales, whereas kxkzE εk+

ρuu are preferentially located in
λ+

x > λ+
z and kxkzE εk+

ρww in λ+
z > λ+

x , which is consistent with the feature of isotropic turbulence
[36] that the variance of the longitudinal derivatives is half that of the transverse derivatives. At
last, the decrease of wall temperature increases both the streamwise and spanwise wavelengths of
dissipative motions.

3. Turbulence internal energy production

In the two-dimensional premultiplied spectra kxkzE
Pe+
ρφφ at y+ = 15, shown in Fig. 30(a), the TIE

production in the inner region is primarily associated with the temperature streaks, thus yielding the
streamwise-elongated feature, especially at Tw/Tr = 1 and 0.76. In the cold2 case, a weak negative
region appears around (λ+

x , λ+
z ) ≈ (370, 120) [marked by “+” in panel (a)], which is due to the

locally positive correlation of v′′ and φ′′ at the specific wave-number region. The magnitude of the
negative peak is approximately −33% of the positive maximal value. The negative spectra balance
with the positive ones, thus reducing the inner-layer contribution to TIE production. Note that the
local negative TIE production is also observed in the other two cases but only at a limited range of
wavelengths, and the peak magnitude is merely −2% ∼ −3% of the positive maximum.

Away from the wall (at y+ = 100 and 200), shown in Figs. 30(b) and 30(c), the TIE pro-
duction is more concentrated at larger wavelengths, which is consistent with the phenomenon in
one-dimensional spanwise spectra that large-scale motions dominate the contribution to the TIE
production in the outer region. At half boundary-layer thickness (y+ = 200), the spectra become
nearly diagonally symmetrical with respect to λ+

x = λ+
z , which indicates that the thermodynamic

structures related to the TIE production are approximately isotropically distributed in scales.
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FIG. 29. Two-dimensional premultiplied spectra of the viscous dissipation, (a), (d), (g) kxkzE εk+
ρuu , (b), (e),

(h) kxkzE εk+
ρvv , and (c), (f), (i) kxkzE εk+

ρww, at y+ = 15, 100, and 200, in the hypersonic turbulent boundary layers
under three wall conditions. Legends refer to Fig. 5.

4. Heat conduction

The two-dimensional premultiplied spectra of the heat conduction are plotted in Fig. 31. In
the inner region (y+ = 15), the spectral peak of kxkzE

Q+
ρφφ locates at (λ+

x , λ+
z ) ≈ (140, 60) in the

adiabatic turbulent boundary layer (at Tw/Tr = 1), and the action of heat conduction can be sprayed
to very small spanwise scales. When the wall is cooled, the shape and orientation of the spectral
distribution are maintained; nevertheless larger streamwise- and spanwise-wavelength structures
are found to dominate the contribution of heat conduction.

At y+ = 100 and 200 shown in panels (b) and (c), the spectral peaks are unexpectedly observed
at smaller scales than those at y+ = 15. This is quite different from the spectra of TIE production,
that large amounts of energy are carried by the larger-scale motions in the outer region. The effects
of wall temperature on the energy spectra are apparent, particularly at small scales, even far away
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FIG. 30. Two-dimensional premultiplied spectra of the TIE production kxkzE
Pe+
ρφφ at (a) y+ = 15, (b) y+ =

100, and (c) y+ = 200, in the hypersonic turbulent boundary layers under three wall conditions. Legends refer
to Fig. 5, with the contour lines specially denoting 0.05, 0.3, 0.55, and 0.8 of their maximum, moving inward.
The red dashed line in Fig. 30(a) denotes −0.05 and −0.3 of the maximum from outside to inside for the cold2
case.

from the wall. Therefore it is conjectured that the wall-temperature effects on the energy evolution
exist throughout the boundary layer, via modifying the small-scale motions primarily. In addition,
the isotropic behavior of heat conduction at y+ = 100 is specifically more evident than that of
the aforementioned TKE budgets. This is directly associated with the thermal structures, which
spread more significantly in the spanwise direction relative to their streamwise elongation than the
dynamical structures, at off-wall positions [13].

5. Turbulent convection of turbulence internal energy among scales

Figure 32 shows the two-dimensional spectra of interscale TIE transport at y+ = 15 and 100.
Note that in the two-dimensional space, the structure scale λ+ is determined by both streamwise
and spanwise wavelength, as λ+ = √

λ+2
x + λ+2

z , which is marked by the dotted lines in Fig. 32.
As displayed in panels (a)–(c), the energy donor region is well aligned with the two-dimensional
spectra of the TIE production in Fig. 30(a), reconfirming that the interscale transport is capable
to redistribute the energy production from the streamwise-elongated modes. On the other hand,
the inverse transfer is apparent in the spanwise-elongated region, at y+ = 15. Its mechanism was
tentatively explained by Lee and Moser [36], that the transfer from small to large scales is possibly
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FIG. 31. Two-dimensional premultiplied spectra of the heat conduction kxkzE
Q+
ρφφ at (a) y+ = 15, (b) y+ =

100, and (c) y+ = 200 in the hypersonic turbulent boundary layers under three wall conditions. Legends refer
to Fig. 5.
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FIG. 32. Two-dimensional premultiplied spectra of the turbulent convection of TIE among scales,
kxkzE

Dt,‖+
ρφφ , in the hypersonic turbulent boundary layers at (a), (d) Tw/Tr = 1.0, (b), (e) Tw/Tr = 0.76, and

(c), (f) Tw/Tr = 0.25 at y+ = 15 and 100. The ranges of color bar in these figures are the same, with blue to
red denoting negative to positive values [−0.002, 0.002]. The outermost dotted line denotes λ+ = 1000 and
decreases with a factor of 1/

√
10 for each dotted line moving inward.

due to the nonlinear interaction of outer-layer large-scale motions and the inner-layer small scales,
as the receipt larger-scale region in kxkzE

Dt,‖+
ρφφ coincides with the receipt region in kxkzE

Dt,⊥+
ρφφ . This

phenomenon is also observed in the present results but not repeatedly shown. Away from the wall,
this peculiar phenomenon vanishes. In addition to the redistribution across scales, at a given scale
λ+, energy transfer is also observed towards motions with a different orientation of wavelength
[73], e.g., from streamwise-oriented motions to spanwise-oriented ones. The strong wall cooling
attenuates the turbulent energy transport and its spectra are hard to identify in the maps of panels
(c) and (f), as also suggested by Fig. 27.
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