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The attached-eddy model (AEM) is one of the most successful coherent-structure-based
phenomenological models in wall turbulence. In the classical AEM, the probability density
of eddy pe is assumed to follow an inverse law with the eddy size he, i.e., pe ∝ h−1

e ,
to satisfy a constant Reynolds-shear-stress distribution in the inertial layer of canonical
wall-bounded turbulent flows. In this paper, we first extend the AEM to general attached
eddies with pe ∝ h−α

e , where α is an arbitrary positive real number. Scaling laws for
velocity covariance (Reynolds stress) by general attached eddies are derived. Preliminary
evidence for the validity of the model is provided from adverse-pressure-gradient turbulent
boundary layer and turbulent wing boundary layer flows. Second, considering that the
eddy cascade self-similarity is manifested by generalized power laws for probability
density pe, population density Me, area coverage Ce, and volume fraction Ve of eddies,
i.e., pe ∝ h−α

e , Me ∝ h−β
e , Ce ∝ h−γ

e , and Ve ∝ h−ζ
e , we directly connect the exponents with

the fractal dimension De of the general attached eddies in a simple and clear way. The
present paper highlights that the scaling laws of velocity covariance in the inertial layer
of wall-bounded turbulent flows can be directly linked to the characteristics of the cascade
self-similarity of the general attached eddies. We believe that the scaling laws derived here
and the generalized power-law relationships are useful for a deeper understanding of the
connection between coherent structures and turbulence statistics.

DOI: 10.1103/PhysRevFluids.8.044603

I. INTRODUCTION

Coherent-structure-based modeling of wall-bounded turbulent flow is an active topic in turbu-
lence research and is far from maturity. The classical attached-eddy hypothesis (AEH) by Townsend
[1], as well as the following attached-eddy model (AEM) [2–6], are some of the most celebrated
kinematic and phenomenological models in wall turbulence [7]. We will use the term AEM in this
paper to denote both AEH and AEM. In the AEM, a wall-bounded turbulent flow is modeled as a
superposition of hierarchically self-similar wall-attached eddies populated and randomly distributed
in the inertial region. The most well-known predictions of the AEM are the logarithmic laws for
streamwise or spanwise fluctuating velocity variances and the constant wall-normal fluctuating
velocity variance. During the last decade, benefiting from the rapid development of advanced
experimental and computational techniques, evidence supporting the AEM has been established
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from experimental measurements [8–24], highly accurate numerical simulations [20,25–37], and
reduced-order modeling [38–42]. Applications of AEM have arisen like generating turbulence
inflow data [43]. Recent studies have also indicated that other types of eddies besides attached
eddies coexist in the outer region of canonical wall turbulence [4,19,20,44–48].

Townsend [1] proposed the first AEM. He surmised that, in the inertial region of wall turbulence,
predominant energy-containing eddies have diameters proportional to the distance of their centers
from the wall, in a sense attached to the wall. He further assumed that turbulent flows are made up of
contributions from attached eddies of various sizes with self-similar velocity distribution. Then the
velocity covariance can be computed by summing up the contributions from all eddies with various
sizes, which is

〈u+
i u+

j 〉(z) =
∫ δ

z
pe(he)Ii j (z/he)dhe, (1)

where u+
i = ui/Uτ , ui is the fluctuating flow velocity in the ith direction, Uτ (≡√

τw/ρ, where τw is
mean wall-shear stress and ρ is fluid density) is friction velocity, Ii j is the eddy intensity function
which quantifies contribution by eddies of the same size, z is the wall-normal height from the wall,
δ is the outer scale of a wall flow (boundary-layer thickness, pipe radius, or half-channel height),
and 〈·〉 indicates ensemble average. In this paper, x, y, and z denote coordinates in streamwise,
spanwise, and wall-normal directions, respectively, and u, v, and w are the corresponding fluctuating
velocities. Note that pe(he) denotes the probability density function (PDF) of a point located in an
eddy with size he. Furthermore, Townsend deduced that for a small z/he, I13 ∝ z/he. In order to
reach a constant Reynolds shear stress −〈uw〉, it is required that pe(he) ∝ 1/he from Eq. (1). This is
the well-known inverse law for pe. Then, the logarithmic laws for streamwise and spanwise velocity
variances and the constant law for wall-normal velocity variance can be obtained. In fact, Townsend
did not invoke any representative eddies, and his theory was based on a continuous description of
eddies, not a discrete one in three-dimensional space.

Perry and Chong [2] refined Townsend’s AEM by introducing the 	 vortex as representative
eddy. For a hierarchy of geometrically self-similar eddies whose size doubles with a factor of 2,
together with the inverse PDF, i.e., pe(hn) ∝ 1/hn, Perry and Chong were able to obtain the same
predictions of velocity covariances as those proposed by Townsend. To the authors’ understanding,
the AEM of Perry and Chong is a semidiscrete model, as they did not calculate three-dimensional
flow fields via spatially distributed eddies, but utilized the eddy intensity function (or similar
functions), and integrated it with the product of the eddy’s PDF in a similar way as Townsend did,
i.e., Eq. (1). The AEM of Perry and Chong was further improved in a series of works by Perry et al.
[3], Perry and Marusic [4], and Marusic [5], e.g., extended from the wall region to the whole flow
[3], extended to boundary layers with pressure gradient [4], as well as the adoption of the 
-vortex
packet as representative eddy [5].

Woodcock and Marusic [6] improved the presentation of the AEM in a more rigorous way.
They introduced the concept of population density of eddies in three-dimensional space (see their
Appendix A). Let Me(hn) be the number of eddies of scale n attached to the wall of a unit area, that
is, the eddy’s population density. By assuming that there are as many eddies of scale n + 1 on an
area of (2L)2 as those of scale n on an area of L2, they deduced that

Me(hn) ∝ 2−2n, (2)

or

Me(hn)/Me(h1) = 2−2(n−1) = (hn/h1)−2, (3)

where hn/h1 = 2n−1. Equation (3) implies a −2 power law for the population density Me with eddy
size hn. With the −2 power law for the eddy’s population density, de Silva et al. [49] generated
three-dimensional synthetic velocity fields by attached eddies for the first time, which is denoted
as the fully discrete AEM. A packet of 	 vortices is chosen as representative eddy following the
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hairpin-packet paradigm [50], which consists of seven 	 vortices with an average spacing of 0.4l
(l is the wall-normal height of the largest eddy in the packet) and an inclination angle of 10◦. The
flow field was calculated according to the Biot-Savart law. This synthetic fully discrete AEM has
been subsequently improved or applied in many aspects, e.g., generating wall-normal or spanwise
velocity fields [51,52], accounting for the effect of spatial exclusion of eddies within the same
scale [53], incorporating the meandering feature of large-scale structures to the flow direction [54],
proposing a spectral-scaling-based extension of the AEM [55], and data-driven enhancement of the
AEM [56]. Reasonable agreements between experimental measurements and synthetic realizations
have been reported.

The hierarchical random and additive process (HRAP) formalism, proposed by Yang et al.
[57–59], can be regarded as a simplified version of the AEM [7]. In this model, the (stream-
wise) velocity fluctuation induced by attached eddies is assumed to be an independent and
identically distributed random variable. The same scaling laws for the streamwise, spanwise,
and wall-normal velocity covariances with the AEM have be obtained. In addition, scaling
laws for the moment-generating functions [57], two-point correlations [58], structure functions
[60], and probability density [61] of turbulence velocity were also derived from the HRAP
framework.

In the classical AEM, besides self-similar velocity distribution of attached eddies, another
strong assumption is the eddy’s probability density with size he following pe(he) ∝ h−1

e , which
was determined according to the constant Reynolds-shear-stress distribution robustly observed in
numerous canonical wall-bounded turbulent flows. However, the constant Reynolds-shear-stress
distribution may not hold in complex turbulent flows, hence neither does pe(he) ∝ h−1

e . For ex-
ample, many laboratory experiments and well-resolved simulations of adverse-pressure-gradient
turbulent boundary layers (APGTBLs) have well-demonstrated nonconstant Reynolds-shear-stress
distributions in the outer layer [62–69]. Therefore, an important question is whether attached eddies
exist in complex turbulent flows. In this paper, we attempt to extend the classical AEM to general
attached eddies with pe(he) ∝ h−α

e , where α is an arbitrary positive real number. It is expected that
this generalization can be useful in deepening the understanding of one vital topic in turbulence
research, i.e., the connection between coherent structures and turbulence statistics. Furthermore, we
will connect the exponents of generalized power laws for the probability density, population density,
area coverage, and volume fraction with the fractal dimension of general attached eddies, leading to
a more complete knowledge of the attached eddies. It is noted that the terms eddies, motions, and
coherent structures can be interchangeable in this paper [70,71].

The structure of the paper is as follows. In Sec. II, we will revisit the classical AEM and then
extend it to the general attached eddies. In Sec. III, we will connect the power laws and the fractal
dimension of the general attached eddies. The issue of the near-wall turbulence intensity peak
scaling will be discussed in Sec. IV. The final conclusions will be given in Sec. V.

II. THEORY

A. The classical AEM

Here we give an overview of the classical Townsend’s attached-eddy theory [1] and the HRAP
formalism [57–59]. Wall-bounded turbulent flow is considered to be homogeneous in both stream-
wise and spanwise directions, as well as statistically stationary. The theory is mainly free of viscous
effects, and thus is valid for z+ � 1. The parallel velocity components, i.e., u and v, satisfy the
free-slip condition. The wall-normal velocity obeys the impermeable condition. The attached eddies
are assumed to be independently and randomly superimposed in the outer region for z > zr , and
shed footprints in the inner viscous region for z < zr , where z+

r = 100 is the critical viscous cutoff
height of inner and outer regions [72]. In the following, all variables are normalized by the viscous
units, i.e., the friction velocity Uτ and kinematic viscosity ν, and the “+” superscript will be omitted
(when it is not omitted, this is done for emphasis purposes).
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1. Townsend’s theory

Townsend [1] assumed that attached eddies have similar velocity distribution, as

u(x, xe) = f
(

x − xe

he

)
, (4)

where xe = (xe, ye, he) is the center of a single eddy (he is eddy center height), and u is the induced
velocity distribution of the eddy at xe.

Thus, the one-point velocity covariance contributed by two eddies at xe and x′
e is

ui(x, xe)u j (x, x′
e) = fi

(
x − xe

he

)
f j

(
x − x′

e

h′
e

)
. (5)

The random distribution assumption of attached eddies implies that the velocity correlation from
different eddies should be zero on average. Thus we only consider the nonzero velocity covariance
contribution from one eddy, which is

ui(x, xe)u j (x, xe) = fi

(
x − xe

he

)
f j

(
x − xe

he

)
. (6)

The velocity covariance contributed by eddies with size he at a constant z plane (z < he) is

〈ui(z, he)u j (z, he)〉 =
∫∫

p̃e(xe) fi

(
x − xe

he

)
f j

(
x − xe

he

)
d

(
xe

he

)
d

(
ye

he

)
, (7)

where p̃e(xe) is the probability density of a point located in the eddy at xe, and should be independent
of xe and ye, owing to the uniformly random distribution of eddies, satisfying

p̃e(xe) = pe(he), (8)

where pe(he) is the probability density of a point located in eddies with size he. According to Eq. (7),
we have

〈ui(z, he)u j (z, he)〉 = pe(he)Ii j (z/he), (9)

where

Ii j (z/he) =
∫∫

fi

(
x − xe

he

)
f j

(
x − xe

he

)
d

(
xe

he

)
d

(
ye

he

)
, (10)

which is the eddy intensity function of Townsend [1]. The velocity covariance by all eddies is the
summation or integral of eddies with size he > z (smaller eddies do not contribute), resulting in
Eq. (1).

At a constant z and letting z∗ = z/he, we have dz∗/z∗ = −dhe/he [73]. Therefore, Eq. (1)
becomes

〈uiu j〉(z) =
∫ 1

z/δ
he pe(he)Ii j (z/he)

dz∗

z∗ . (11)

Townsend [1] proposed the following asymptotic estimations for z∗ → 0:

I11 → a1, I22 → b1, I33 → z∗2, I13 → z∗, (12)

according to the velocity boundary conditions, with a1 and b1 being constants. By knowing
−〈uw〉 = 1 in the inertial layer from numerous experimental measurements, it is deduced that
pe(he) ∝ h−1

e . Thus the scaling laws for the velocity covariances can be obtained using Eq. (12) as

〈u2〉 = B1 + A1 ln(δ/z), (13)

〈v2〉 = B2 + A2 ln(δ/z), (14)

〈w2〉 = C3, (15)

where A1 ∼ A2, B1 ∼ B2, and C3 are constants.
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2. The HRAP formalism

The HRAP formalism [57–59] is regarded as a simplification of Townsend’s theory [7]. In this
model, the velocity or other quantity induced by the attached eddies is assumed to be an independent
and identically distributed random variable.

In a discrete manner, the streamwise velocity fluctuation at z is expressed as

u2 =
N∑

n=1

(pe(hn)�hn)a2
n ∝

N∑
n=1

a2
n, (16)

in which a2
n represents the contribution to u2 by the attached eddies with size hn = ηn−1hmin (hmin =

z is the height of the smallest eddy felt at z, and η = hn+1/hn is the successive constant size ratio
of eddies), and Pe(hn) = pe(hn)�hn is the probability of a point located in the attached eddies with
size hn. Since �hn = hn+1 − hn = (η − 1)hn and pe(hn) ∝ h−1

n , Pe(hn) is a constant and relation
(16) holds.

The streamwise velocity variance can thus be obtained by

〈u2〉 ∝ N〈a2〉, (17)

according to 〈aia j〉 = 〈a2〉δi j (note that ai and a j are identical and independent random variables
if i = j), where δi j is the Kronecker symbol. The number of addends N is determined as follows.
Since hmax = ηN−1hmin, we can get N ≈ ln(hmax/hmin)/ ln η when N is very large (which is true in
high-Reynolds-number flows). As hmax ≈ δ and hmin = z, it yields N ≈ ln(δ/z)/ ln η. Substituting
this relation into Eq. (17), one finally obtains

〈u2〉 ∝ 〈a2〉 ln(δ/z)/ ln η ∝ ln(δ/z), (18)

as 〈a2〉 and η are constants. Thus relation (18) can be written the same as relation (13). The scaling
law for the spanwise-velocity variance (14) can be derived in a similar way.

For the wall-normal velocity fluctuation at z, the HRAP formalism gives [74]

w2 = (pe(h1)�h1)C2
wa2

1, (19)

in which Cw is a constant. Equation (19) implies that the wall-normal velocity fluctuation is
determined by the closest neighboring attached eddies at z. As a result, the wall-normal velocity
variance is

〈w2〉 ∝ 〈a2〉 = const. (20)

According to Eqs. (16) and (19), the Reynolds shear stress by attached eddies is

〈uw〉 ∝ 〈a2〉 = const. (21)

The scaling predictions by the HRAP formalism, i.e., (18), (20), and (21), are exactly the same
as those by Townsend’s theory, thus they are consistent with each other for the classical attached
eddies.

B. General attached eddies

Here we derive scaling laws for the velocity covariance of general attached eddies with pe(he) ∝
h−α

e in the framework of both generalized Townsend’s theory and the HRAP formalism.
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1. Generalized Townsend’s theory

First, we substitute pe(he) ∝ h−α
e into Eq. (1), which yields

〈uiu j〉 ∝
∫ δ

z
h−α

e Ii j (z/he)dhe. (22)

With the asymptotic relations (12), we can obtain

〈u2〉 and 〈v2〉 ∝ 1

α − 1

(
1

zα−1
− 1

δα−1

)
, (23)

〈w2〉 ∝ z2

α + 1

(
1

zα+1
− 1

δα+1

)
, (24)

〈uw〉 ∝ z

α

(
1

zα
− 1

δα

)
. (25)

Note that here we should exclude the case of α = 1 to avoid singular scaling laws for 〈u2〉 and
〈v2〉, which should be obtained from the classical AEM. The cases of α = −1 and 0 should also be
excluded for nonsingular scaling laws for 〈w2〉 and 〈uw〉, respectively.

For the streamwise and spanwise velocity variance 〈u2〉 and 〈v2〉, as well as z � δ in the inertial
layer, relation (23) can be reduced to⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈u2〉 and 〈v2〉 ∝ δ1−α

1 − α

[
1 −

( z

δ

)1−α
]

∝ const, if α < 1,

〈u2〉 and 〈v2〉 ∝ z1−α

α − 1

[
1 −

( z

δ

)α−1
]

∝ z1−α, if α > 1.

(26)

Thus the streamwise and spanwise velocity variances by general attached eddies are constants if
α < 1, and proportional to z1−α if α > 1.

For the wall-normal velocity variance 〈w2〉, as well as z � δ in the inertial layer, relation (24)
can be reduced to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈w2〉 ∝ − z2δ−(α+1)

α + 1

[
1 −

( z

δ

)−(α+1)
]

∝ z2, if α < −1,

〈w2〉 ∝ z1−α

α + 1

[
1 −

( z

δ

)α+1
]

∝ z1−α, if α > −1.

(27)

Thus the wall-normal velocity variance by general attached eddies is proportional to z2 if α < −1,
and to z1−α if α > −1.

For the Reynolds shear stress 〈uw〉, as well as z � δ in the inertial layer, relation (25) can be
reduced to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈uw〉 ∝ − zδ−α

α

[
1 −

( z

δ

)−α
]

∝ z, if α < 0,

〈uw〉 ∝ z1−α

α

[
1 −

( z

δ

)α]
∝ z1−α, if α > 0.

(28)

Thus the Reynolds shear stress by general attached eddies is proportional to z if α < 0, and to z1−α

if α > 0.

2. Generalized HRAP formalism

Next, we resort to generalizing the HRAP formalism.
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For the streamwise velocity fluctuation, the relation pe(hn) ∝ h−α
n is substituted into Eq. (16),

which yields

u2 ∝
N∑

n=1

h1−α
n a2

n. (29)

Then the streamwise velocity variance is

〈u2〉 ∝
(

N∑
n=1

h1−α
n

)
〈a2〉. (30)

With hn = ηn−1hmin = ηn−1z, we can get

〈u2〉 ∝
(

N∑
n=1

qn−1

)
z1−α〈a2〉 = 1 − qN

1 − q
z1−α〈a2〉, (31)

where q = η1−α . In addition, since N ≈ ln(δ/z)/ ln η, we can find

qN ≈
(

δ

z

)(1−α)

. (32)

Note that if α < 1, q > 1 since η > 1, and qN � 1 when N is very large. Then Eq. (31) can be
reduced to

〈u2〉 ∝ qN z1−α ∝ const. (33)

On the other hand, if α > 1, q < 1 and qN ≈ 0 when N is very large. Therefore, Eq. (31) is
simplified to

〈u2〉 ∝ z1−α

1 − q
〈a2〉 ∝ z1−α. (34)

The HRAP modeling and resulting scaling laws for the spanwise velocity variance 〈v2〉 are similar
to the streamwise one, so we do not repeat them here.

For the wall-normal velocity fluctuation, we substitute pe(hn) ∝ h−α
n into Eq. (19), and obtain

w2 ∝ h1−α
1 a2

1 = z1−αa2
1. (35)

Therefore, the wall-normal velocity variance satisfies

〈w2〉 ∝ z1−α. (36)

For the Reynolds shear stress, we can similarly get

〈uw〉 ∝ z1−α. (37)

It is clearly seen that the scaling laws for the streamwise and spanwise velocity variances
by the generalized HRAP formalism, i.e., (33) and (34), are exactly the same as those by the
generalized Townsend’s theory, i.e., (26). The generalized HRAP prediction for the wall-normal
velocity variance, i.e., (36), is the same as that by the generalized Townsend’s theory with α > −1,
i.e., (27). In addition, the generalized HRAP prediction for the Reynolds shear stress, i.e., (37), is
the same as that by the generalized Townsend’s theory with α > 0, i.e., (37). In the end, to make
the generalized Townsend’s theory and the generalized HRAP model consistent with each other, we
speculate that α > 0 should be enforced so that the exponent of the power law for the probability
density pe is negative.
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FIG. 1. Reynolds-stress profiles of adverse-pressure-gradient turbulent boundary layer flows with different
Reynolds number Reτ and the Clauser pressure-gradient parameter βc from the high-fidelity simulation data of
Pozuelo et al. [69] and Bobke et al. [66].

C. Evidence

We have revisited the classical Townsend’s attached-eddy theory and the recent HRAP formal-
ism. Then we extend both theories to the general attached eddies with probability density pe(he) ∝
h−α

e , where α can be an arbitrary positive real number. Scaling laws for the velocity covariances
have been derived. Both theories yield consistent predictions. At the current stage, it is hoped
that these theoretical predictions for the general attached eddies could be useful for elucidating the
connection between coherent structures and turbulence statistics of complex turbulent flows. One
possible case is adverse-pressure-gradient turbulent boundary layer flow. There has been extensive
evidence showing that the magnitude of the Reynolds shear stress increases with the wall-normal
distance in these flows [62–69,75], which may follow the scaling (37) with 0 < α < 1.

Figure 1 shows the Reynolds-stress profiles of various APGTBL flows with different fric-
tion Reynolds number Reτ (Reτ = Uτ δ/ν) and Clauser pressure-gradient parameters βc (βc =
δ∗/τwdP/dx, where δ∗ is the displacement thickness and dP/dx is the mean streamwise pressure
gradient) from the high-fidelity simulation data by Pozuelo et al. [69] and Bobke et al. [66]. It is
seen that in the range of ≈0.2 < z/δ∗ <≈ 1.0, the Reynolds-stress components display reasonable
agreement with the scaling laws (26)–(28) by the generalized AEM with 0 < α < 1, i.e., 〈u2〉 and
〈v2〉 are almost constant, while 〈w2〉 and 〈uw〉 follow z1−α . Moreover, according to Figs. 1(c) and
1(d), we find that the value of the exponent α monotonically decreases with the increase of the
magnitude of the pressure-gradient parameter βc. This is consistent with the fact that for very small
βc, it can be expected that the flow is closer to zero-pressure-gradient turbulent boundary layer
(ZPGTBL) conditions, where the classical attached eddies with α = 1 are observed. It should be
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FIG. 2. Reynolds-stress profiles of turbulent NACA4412 wing boundary layer flow with different Reynolds
number Reτ and the Clauser pressure-gradient parameter βc from the high-fidelity simulation data of Tanarro
et al. [68].

noted that the present evidence shown in Fig. 1 is from APGTBL with mild streamwise pressure
gradients. On the other hand, for APGTBL with a very strong pressure gradient (βc → ∞), the
Reynolds stress may deviate from the proposed scalings [75]. This may be owing to the fact that
the flow is more like a free shear layer than a ZPGTBL [75]. Therefore, it may be implausible
that the attached eddies exist in this case. Also note that with a larger Reynolds number the inner
and outer separation is more evident, and the wall-normal range within which the scaling laws are
predicted by the generalized AEM is wider. This is consistent with the knowledge from the canonical
wall-bounded turbulent flows, since the AEM is a theory more suitable for high-Reynolds-number
flows.

Figure 2 displays the Reynolds-stress profiles of turbulent boundary layer flow over a NACA4412
wing at two streamwise locations with different values of the pressure-gradient parameter but with
similar Reynolds numbers. It can be seen that the scaling laws given by the generalized AEM are
also in good agreement with the wing data in the inertial region. In addition, as in APGTBL flows,
the value of α fitted by the data decreases with the increase of βc. The above results demonstrate
that the present generalized AEM may predict reasonable Reynolds-stress scaling laws of different
wall-bounded turbulent flows, including flat-plate APGTBLs and turbulent wings.

III. CASCADE SELF-SIMILARITY OF ATTACHED EDDIES

Although the classical attached-eddy model is very successful in predicting scaling laws in the
inertial layer of canonical wall turbulence, several issues remain elusive. First, the connection of
pe with the eddy’s spatial properties is unclear, e.g., the eddy’s population density among others.
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x
y

z
h1

h2

l1

l2
w1

w2

Flow direction

FIG. 3. Sketch of Townsend’s wall-attached eddies with two hierarchies, where h2/h1 = 2. The geometry
of an attached eddy with scale n is characterized by its height hn, length ln, and width wn in three-dimensional
space, respectively.

Perry and Chong [2] implicitly addressed this issue by assuming that the average spacing between
eddies is proportional to the eddy’s height and showed that such a hierarchy of wall-attached
eddies corresponds to Townsend’s AEM. However, this connection is indirect. Second, an empirical
relation, −〈uw〉 = 1, was utilized to fix pe in the AEM, which may be an unnecessary assumption.

In this section, we will directly connect the eddy’s probability density with its population density,
area coverage, and volume fraction, in a simple and clear way. It will be shown that the inverse law
for pe is equivalent to the −2 power law for the eddy’s population density or constant area coverage.
Therefore, the assumption of constant Reynolds-shear-stress distribution in the classical AEM is
relieved, which in turn is also a prediction of the AEM. Furthermore, the power-law relationships
of the classical attached eddies will be extended to the general attached eddies, and the exponents
of the power laws will be connected with the fractal dimension of the general attached eddies.

A. The classical attached eddies

Figure 3 displays a sketch showing the attached eddies with two hierarchies for simplicity.
Generally, the shape of the eddies is the same while their sizes vary according to their hierarchies,
as illustrated in Fig. 3. We assume that the size of the eddies increases with a constant ratio η

(η = hn+1/hn) according to the geometrical self-similarity, which requires that the lengths, widths,
and heights of the eddies in different hierarchies are proportional to each other, as

h2

h1
= l2

l1
= w2

w1
= η, (38)

where (h1, l1,w1) and (h2, l2,w2) are the (height, length, width) of the first and second hierarchies
of eddies, respectively, as shown in Fig. 3. We also implicitly assume that the sectional shape and
size of the eddies are the same at each height. In Fig. 3, an attached eddy is represented by an
elongated cube, just for illustration purposes.

Second, we assume that, for the classical attached eddies, the eddy’s area coverage on a horizontal
plane is independent of its size, resulting in the −2 power law for the eddy’s population density. Let
us take the two hierarchies of eddies illustrated in Fig. 3 as an example. The size of the small eddies
is one-half of that of the large eddy in each direction, thus the number of small eddies should be
four times larger to keep the same area coverage, for η = 2 illustrated in Fig. 3. Here constant area
coverage means that the eddy’s footprint fills the wall (or any other horizontal plane) with constant
area fractions regardless of their sizes. With this picture in mind, we will derive the connection
between the eddy’s probability density and population density.

In probability theory, the probability density function f (ξ ) of a random variable ξ is defined by

f (ξ ) = dF (ξ )

dξ
, (39)
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where F (ξ ) is the cumulative distribution function of ξ , and F (ξ0) represents the probability of
ξ < ξ0. In a discrete system, we can approximate Eq. (39) as

f (ξn) ≈ �F (ξn)

�ξn
, (40)

where �F (ξn) = F (ξn+1) − F (ξn) is the probability at ξ = ξn, and �ξn = ξn+1 − ξn.
Now turn to Townsend’s classical attached eddies. We aim to determine the eddy’s probability

density pe(hn). Equation (40) now becomes

pe(hn) ≈ �F (hn)

�hn
, (41)

where F (hn) is the cumulative distribution function of eddies with size hn, and it represents the
probability of h < hn. Thus �F (hn) = F (hn+1) − F (hn) is the probability of eddies with size hn, or
more precisely, the probability of a point located in the footprint of an eddy with size hn, which is
equivalent to the eddy area coverage Ce(hn). According to the constant coverage of the classical
attached eddies, �F (hn) is a constant. On the other hand, �hn = hn+1 − hn = (η − 1)hn ∝ hn.
Therefore, we can easily obtain the inverse law for the eddy’s probability density according to
Eq. (41), i.e.,

pe(hn) ∝ 1/hn. (42)

Note that this derivation is solely based on the assumptions of geometrical self-similarity and
constant area coverage. No empirical assumption is invoked. Knowing the inverse law for the
eddy’s probability density, the predictions of velocity covariance by the AEM can be directly
obtained, without prescribing the constant Reynolds-shear-stress distribution a priori. From a
theoretical viewpoint, we relieve one unnecessary empirical assumption in the AEM. It can be
further deduced that the volume fraction of the classical attached eddies follows a linear law,
i.e., Ve(hn) ∝ hn, as Ve(hn) ∝ Ce(hn)hn (Ce is the eddy’s area coverage). Here the volume fraction
is defined as the ratio between the volume filled by attached eddies and the volume of total
space.

A number of previous studies have reported a (or close to) −2 power law for the eddy’s
population density or the inverse law for the eddy’s probability density by analyzing flow data. For
example, Lozano-Durán et al. [76] showed a −2 power law for the population density of attached
Reynolds-shear-stress clusters in turbulent channel flow. Cheng et al. [77] obtained a −1.9 power
law for the population density of negative u eddies, a −1.6 power law for both negative and positive
w eddies, and a −1.3 power law for positive u eddies in turbulent channel flows. Cheng et al. [78]
further reported a −2.5 power law for the population density of negative streamwise wall shear
stress fluctuations. Considering the probability density, de Silva et al. [79] observed an inverse
law for the eddy’s probability density of large-scale wall-coherent motions from two-dimensional
particle-image-velocimetry data of turbulent boundary layers.

Recently, Hu et al. [80] were also able to observe close to −2 power laws for the eddy’s
population density of both positive and negative u and w clusters of attached eddies by analyzing
flow data, using the spectral decomposition method of Hu et al. [20], the spectral linear stochastic
estimation of Baars et al. [81], and the clustering methodology [76,77,82–86]. The flow data were
extracted from the direct numerical simulation (DNS) of turbulent channel flow at Reτ = 5200
[28], which is publicly available in Johns Hopkins Turbulence Database [87]. Here we give a brief
overview of the extraction methodology. First, the flow velocity of all attached eddies was isolated
by the spectral decomposition scheme of Hu et al. [20]. Second, the coherent velocity of that at
the eddy’s center z+

c (z+
c = 100, 200, 400, and 800, respectively) was calculated using the spectral

linear stochastic estimation [81] with the reference height zr = zc. Third, the footprint velocity of
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FIG. 4. (a) Area coverage, (b) probability density, and (c) volume fraction of discrete hierarchies of
Townsend’s wall-attached eddies varying with the eddy’s height, extracted from turbulent channel flow at
Reτ = 5200 [28].

each hierarchy of attached eddies was obtained by subtracting the footprint velocity of larger eddies
from the coherent velocity in a top-down manner. Last, the clustering methodology [76,77,82–86]
was adopted to analyze the geometrical and population properties of each hierarchy of attached
eddies. The clustering percolation parameter αc is set to 1.3, as it has been shown that the results
are not sensitive to it [80].

We further examine whether the probability density, area coverage, and volume fraction of the
extracted eddies by Hu et al. [80] follow the inverse law, constant law, and linear law, respectively.
The average size of each hierarchy of eddies is denoted by ln, wn, and hn in length, width, and height,
respectively, which are determined by the size of the bounding box enclosing an eddy cluster. Let
Ne,n be the total number of the extracted eddy clusters of the nth hierarchy. The eddy area coverage
can be calculated as Ce(hn) = Ne,nlnwn/(Nf LxLy), where Nf is the total number of flow-field
snapshots used in the calculation, while Lx and Ly are the lengths of the computational domain in x
and y, respectively. The eddy’s probability density is determined by pe(hn) = Ce(hn)/hn, according
to Eq. (41). The eddy’s volume fraction is obtained by Ve(hn) = Ne,nlnwnhn/(Nf LxLyLz ), where Lz is
the height of the simulation domain. The results are shown in Fig. 4. It can be observed that for both
positive and negative u and w clusters, the eddy’s area coverage Ce approximately follows a constant
law, the eddy’s probability density pe approximately follows a −1 power law, and the eddy’s volume
fraction satisfies a linear law, in good agreement with the theoretical argument. It should be noted
that the viscous-scaled eddy’s height h+

n appears to be relatively small (10 < h+
n < 100). This is

because only intense velocity fluctuations are included in the clustering analysis, therefore their sizes
are much smaller than the eddy’s center height [80]. Despite this, the extracted velocity footprints
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at each height do have coherence with those at the center height, which deeply penetrate into the
near-wall region, benefiting from the usage of the spectral linear stochastic estimation method [81].
We also note that it may be interesting to use more advanced methods involving nonlinearities like
deep neural networks [88] to estimate the footprints.

B. The general attached eddies

In this subsection, we connect the exponents of the power laws for the probability density,
population density, area coverage, and volume fraction with the fractal dimension of the general
attached eddies.

The generalized power laws for the probability density and population density of eddies with
size hn are

pe(hn) ∝ h−α
n , Me(hn) ∝ h−β

n , (43)

where α and β are arbitrary real numbers. According to the geometrical definitions, the eddy’s area
coverage Ce and volume fraction Ve follow

Ce(hn) ∝ Me(hn)h2
n ∝ h2−β

n = h−γ
n , (44)

Ve(hn) ∝ Ce(hn)hn ∝ h3−β
n = h1−γ

n = h−ζ . (45)

We resort to Eq. (41) to obtain

pe(hn) = �F (hn)

�hn
∝ Ce(hn)

�hn
∝ h1−β

n . (46)

From the above derivations, we can directly relate the exponents of the generalized power laws
for the probability density (α), population density (β), area coverage (γ ), and volume fraction (ζ )
with each other, as

β = α + 1, γ = α − 1, ζ = α − 2. (47)

Therefore, for the general self-similar attached eddies, the power-law exponents α, β, γ , and ζ are
dependent on each other. In other words, if we obtain any one of them, the other three can be directly
determined from the relations (47).

In the context of fractality, self-similarity indicates a fractal invariant under ordinary geometric
similarity; to quote Mandelbrot, “when each piece of a shape is geometrically similar to the whole,
both the shape and the cascade that generates it are called self-similar” [89]. Thus, general self-
similarity indicates both geometrical and cascade self-similarities. The geometrical self-similarity
of attached eddies is well depicted in Fig. 3 and Eq. (38). On the other hand, the classical attached
eddies with β = 2 constitute a good example for the cascade self-similarity, like the perfect-binary-
tree-like structure illustrated in Perry and Chong [2] and Woodcock and Marusic [6]. Nonetheless,
any cascade with a constant β can be self-similar in general, as any perfect tree structure is self-
similar. Thus, we can imagine that the general attached eddies are fractal-like objects. Next, we
will connect the exponents α, β, γ , and ζ with the fractal dimension De of the general self-similar
attached eddies.

Interestingly, fractals can be manifested by power laws for surface area or volume with scale
[89], which in our case can be expressed as

Ce(hn) ∝ h2−De
n , (48)

or

Ve(hn) ∝ h3−De
n . (49)
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FIG. 5. Sketch of self-similar wall-attached eddies with two hierarchies and h2/h1 = 2: (a) β = 1 and
(b) β = 3.

By comparing (48) or (49) with (44) or (45), we can simply find

De = α + 1 = β = γ + 2 = ζ + 3. (50)

Relation (50) indicates that the exponent of the generalized power law for the eddy’s population
density is equivalent to the eddy’s fractal dimension. For Townsend’s classical attached eddies, we
already know that α = 1, hence De = 2 according to (50). For the footprints of eddies on a surface,
De = 2 implies that the eddy’s fractal dimension is the same as the two-dimensional topological
dimension, thus they are space filling, while in three-dimensional space the fractal dimension is
smaller than the topological dimension, thus non-space-filling [90,91]. It is also noted that Lozano-
Durán et al. [76] also estimated the fractal dimension of Reynolds-shear-stress clusters as 2, the
same as that of classical Townsend’s attached eddies.

We illustrate two other scenarios of general self-similar attached eddies with β = 1 and 3,
respectively, as shown in Fig. 5. Assuming h2/h1 = 2, the number of the first-hierarchy eddies is
two times that of the second-hierarchy eddies with β = 1, and eight times with β = 3. According to
(47), the probability density follows pe(hn) ∝ const and h−2

n , the area coverage obeys Ce(hn) ∝ hn

and h−1
n , and the volume fraction complies Ve(hn) ∝ h2

n and const, respectively. This illustration
emphasizes that Townsend’s classical attached eddies, which fit well in canonical turbulence, are
only one of many possibilities of general self-similar eddies. We may not exclude other possibilities
of the existence of eddy organization. It should be noted that β = 1 implies α = 0, which leads
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to a singular scaling law for the Reynolds shear stress, i.e., Eq. (28). Therefore, Fig. 5 is only for
illustration purposes.

IV. DISCUSSION ON THE SCALING OF THE NEAR-WALL STREAMWISE
TURBULENCE INTENSITY PEAK

Scaling of the near-wall peak of the streamwise turbulence intensity has recently attracted
extensive attention [92–96]. A wider range of studies suggests that the traditional viscous scaling
fails for the near-wall turbulence intensity, which increases with the Reynolds number. This is
mostly attributed to the growing influence of outer large-scale and very-large-scale motions on the
near-wall region [97]. However, there exists controversy on how the near-wall peak grows with
the Reynolds number, and whether its infinite asymptotic value is bounded. For example, if the
scaling law for 〈u2〉 given by the AEM, i.e., Eq. (13), is simply extrapolated to y+ = 15 where
the maximum streamwise turbulence intensity is located, one can also obtain a logarithmic law for
〈u2〉max with Reτ [98], i.e., 〈u2〉max = B + A ln Reτ (A and B are constants). In this case, it is obvious
that 〈u2〉max is unbounded if Reτ → ∞. Note that here A is much smaller than A1, and it is found
that A ≈ A1/2 from empirical data [92]. On the other hand, Skouloudis and Hwang [95] found that
〈u2〉max follows A∞ − B∞/ ln Reτ (A∞ and B∞ are constants) by a resolvent-based reduced-order
model with quasilinear approximation. Particularly, Chen and Sreenivasan [93] proposed that
〈u2〉max(∞) − 〈u2〉max(Reτ ) ∝ Re−1/4

τ according to bounded wall dissipation rate, thus 〈u2〉max is
bounded with Reτ → ∞.

Here we try to inspect this issue from the viewpoint of coherent structures closely related to
attached eddies. According to the inner-outer decomposition [72,81,99,100], the near-wall (y+ <

100) streamwise velocity fluctuation can be decomposed as

u = ui + uo = ui + us + ua + ud︸ ︷︷ ︸
outer footprints

, (51)

where ui is the velocity fluctuation of the inner motions or the so-called near-wall cycle [101–103],
which is believed to be Reynolds-number invariant; us is the footprint velocity of outer small-scale
eddies; ua is the footprint velocity of attached eddies; and ud is the footprint velocity of very-large-
scale detached eddies [20]. Since the different velocity components are assumed to be independent
of each other, one can obtain

〈u2〉 = 〈
u2

i

〉 + 〈
u2

o

〉 = 〈
u2

i

〉 + 〈
u2

s

〉 + 〈
u2

a

〉 + 〈
u2

d

〉
. (52)

According to the spectral linear stochastic estimation of near-wall footprints of outer motions
[72,81], we have

us = F−1
x [Ĥ ûs(y

+
o )], ua = F−1

x [Ĥ ûa(y+
o )], ud = F−1

x [Ĥ ûd (y+
o )], (53)

Ĥ = 〈̂u(y+ )̂u∗(y+
o )〉

〈̂u(y+
o )̂u∗(y+

o )〉 , (54)

where F−1
x is the inverse Fourier transform in the streamwise direction, the hat indicates quantity

after streamwise Fourier transform, the star symbol indicates complex conjugate, Ĥ is the complex
kernel function of the spectral linear stochastic estimation [81], y+

o = 100 is the reference height for
calculating near-wall outer footprints [72], and the definitions of ûs, ûa, and ûd in the outer region
are

ûs =
{

û, λ+
x < y+/ tan θ,

0, otherwise,
(55)

ûa =
{

û, y+/ tan θ < λ+
x < βaδ

+,

0, otherwise,
(56)
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FIG. 6. Decomposition of the peak streamwise turbulence intensity 〈u2〉 at y+ = 15 from DNS data of
channel flows [28,72,104]. (a) Comparison of 〈u2〉, 〈u2

i 〉, and 〈u2
o〉. Red dashed line, 〈u2〉 = 0.67 ln Reτ +

3.44; blue dashed line, 〈u2
i 〉 = 6.59; black dashed line, 〈u2

o〉 = 0.62 ln Reτ − 2.82. (b) Comparison of 〈u2
s 〉,

〈u2
a〉, and 〈u2

d 〉. Black dashed line, 〈u2
a〉 + 〈u2

d 〉 = 0.62 ln Reτ − 2.83; black dashed-dotted line, 〈u2
a〉 + 〈u2

d 〉 =
3.88 − 13.19Re−1/4

τ ; black dotted line, 〈u2
a〉 + 〈u2

d 〉 = 5.46 − 27.01/ ln Reτ ; red dashed-dotted line, 〈u2
a〉 =

0.57 ln Reτ − 3.65.

and

ûd =
{

û, λ+
x > βaδ

+,

0, otherwise.
(57)

Here, λx is the streamwise wavelength, θ = 10◦, and βa = 4 for channel flow [20]. It should be
noted that attached eddies are statistical structures [7]. The characteristics of the attached eddies
displayed here are all statistical measures that were obtained by averaging over plenty of flow-field
realizations.

Figure 6 displays the Reynolds-number dependence of the decomposed streamwise turbulence
intensities at y+ = 15, according to Eq. (52). The utilized datasets are from DNS of turbulent
channel flows [28,72,104]. There are several relevant observations that can be made from Fig. 6.

(i) The magnitude of 〈u2
i 〉 at y+ = 15 is almost Reynolds-number invariant and constitutes more

than 70% of the total intensity 〈u2〉 in the range of Reynolds number shown here. The magnitude of
〈u2

o〉 at y+ = 15 increases with Reynolds number, approximately following 0.62 ln Reτ − 2.82.
(ii) The magnitude of 〈u2

s 〉 at y+ = 15 is very small and can be neglected compared with the
other components. The magnitude of 〈u2

a〉 + 〈u2
d〉 at y+ = 15 increases with Reynolds number in a

logarithmic form approximately, which is well fitted by 0.62 ln Reτ − 2.83. The slope 0.62 is very
close to that by fitting the total 〈u2〉max [28,92], indicating that the logarithmic increase of 〈u2〉max

with Reτ is mostly from outer footprints. In addition, best fits for the Re−1/4
τ and 1/ ln Reτ deficit

laws are also included for comparison.
(iii) By extrapolating the data to low Reynolds numbers, it can be found that 〈u2

o〉 ≈ 0 with
Reτ ≈ 100, thus the outer-footprint intensity vanishes at this Reynolds number. This is consistent
with and confirms that Reτ ≈ 100 is the critical Reynolds number where outer motions emerge
[105]. It can also be informed from the analysis of wall-shear stress fluctuations [106].

(iv) Both 〈u2
a〉 and 〈u2

d〉 increase with the Reynolds number, but their variations are quite
different. A major commonality is that their own variation significantly changes at Reτ = 1000.
At Reτ < 1000, 〈u2

a〉 slowly increases while 〈u2
d〉 rapidly increases with Reτ . At Reτ > 1000,

〈u2
a〉 increases much more rapidly in a logarithmic manner approximately, i.e., 0.57 ln Reτ − 3.65,

while 〈u2
d〉 varies with a weak Reτ dependence. Thus, Reτ = 1000 can be regarded as the critical

Reynolds number where the variations of 〈u2
a〉 and 〈u2

d〉 with Reτ substantially change. The weak
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Reτ dependence of 〈u2
d〉 can also be inferred from Fig. 12 of Hu et al. [20], in which it can be

observed that 〈u2
d〉 at y+ = 100 is almost invariant with Reτ at high Reynolds numbers.

Therefore, the present analysis of channel flow DNS data supports the logarithmic increase of
〈u2〉max with Reτ in the range of Reτ = 180–5200. The origin of the logarithmic increase is solely
from the outer footprints. We have identified different contributions and behaviors of attached eddies
and very-large-scale detached eddies and determined Reτ = 1000 as the critical Reynolds number
for their Reynolds-number dependence. We would like to stress that this conclusion is based on a
relatively narrow Reynolds-number range, and no definitive statement can be made regarding the
scaling and the Reτ trend in the asymptotic regime. The Re−1/4

τ deficit law [93,94] or the 1/ ln Reτ

law [95] may very well be the correct representation at much higher Reynolds number, as discussed
next. One possibility is if 〈u2

a〉 keeps the logarithmic growth for Reτ > 1000 as the AEM predicts,
then it would be required that 〈u2

d〉 gradually decreases at large Reτ . The other possibility is if
〈u2

d〉 keeps the current weak Reτ dependence for Reτ > 1000, one would expect that 〈u2
a〉 deviates

from the logarithmic increase by the AEM prediction at large Reτ . To verify the two possibilities,
high-quality data from DNS and experimental measurements at much higher Reynolds numbers are
very much needed. Last, if we extrapolate the generalized scaling laws for 〈u2

a〉 to the near-wall
region, i.e., (33) and (34), it is inferred that 〈u2

a〉max ∝ const with 0 < α < 1, or 〈u2
a〉max ∝ z1−α

max with
α > 1. However, in complex turbulent flows, we know little about the scalings for 〈u2

i 〉 and 〈u2
d〉,

hence no definite statement regarding near-wall 〈u2〉max can be made at the current stage.

V. CONCLUDING REMARKS

In the present paper, we extend the attached-eddy model to general attached eddies with the
eddy’s probability density obeying pe(he) ∝ h−α

e , where α is an arbitrary positive real number.
Scaling laws for velocity covariance (Reynolds stress) are obtained as follows:{〈u2〉 ∝ const, 〈v2〉 ∝ const, 〈w2〉 ∝ z1−α, 〈uw〉 ∝ z1−α, if 0 < α < 1,

〈u2〉 ∝ z1−α, 〈v2〉 ∝ z1−α, 〈w2〉 ∝ z1−α, 〈uw〉 ∝ z1−α, if α > 1.
(58)

We expect that these scaling laws and the existence of the general attached eddies can be confirmed
in complex wall turbulent flows. Preliminary evidence for the validity of the model from high-
fidelity simulations of adverse-pressure-gradient turbulent boundary layers [66,69] and turbulent
wing flow [68] is provided, in which all the Reynolds-stress components well follow the above
scaling laws in the inertial layer with 0 < α < 1.

The cascade self-similarity of attached eddies is manifested by power laws for the probability
density, population density, area coverage, and volume fraction of eddies. We directly connect the
exponents of these power laws with the fractal dimension of the general attached eddies in a simple
and clear way. Empirical evidence from the extraction results of Hu et al. [80] supports the present
theoretical argument for the classical attached eddies. In addition, it is revealed that the fractal
dimension of the general attached eddies is the same as the exponent of the power law for the
eddy’s population density. Therefore, we highlight that the scaling laws of turbulence statistics in
the inertial layer of wall-bounded turbulent flows can be directly linked to the characteristics of
the cascade self-similarity of general attached eddies. We believe that the scaling laws derived here
and the generalized power-law relationships can be useful to provide a deeper understanding of the
connection between coherent structures and turbulence statistics, and that they can also be useful
diagnostic tools for the cascade self-similarity of eddies in complex wall-bounded turbulent flows.

Furthermore, we have demonstrated that the inverse law for eddy probability density is equivalent
to the −2 power law for population density, which in fact implies a particular cascade self-similarity
of the classical Townsend’s attached eddies. Thus there is no need to assume a constant Reynolds-
shear-stress distribution a priori, which in turn is also a prediction of the AEM. In fact, in the
framework of the AEM, the inverse law for the probability density or the −2 power law for
the population density can yield the constant Reynolds-shear-stress distribution, and vice versa.
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Therefore, mathematically they are equivalent. However, from a physical point of view, structures
are more likely the cause and statistics are the effects. With this causality consideration, we believe
that the constant Reynolds-shear-stress distribution is a result of such an arrangement of attached
eddies.

Finally, we inspect the Reynolds-number dependence of the near-wall streamwise peak turbu-
lence intensity in the context of attached eddies and inner-outer decomposition. The present analysis
principally supports the logarithmic increase of 〈u2〉max with Reτ in the narrow range of Reynolds
number of the analyzed data. The logarithmic law is predominantly associated with the footprints
of the attached eddies and the very-large-scale detached eddies. The quantitative contributions and
statistical behaviors of the attached eddies and very-large-scale detached eddies with Reτ are quite
different. At Reτ > 1000, the contribution by the attached eddies follows a logarithmic increase
with Reτ , while that of the very-large-scale detached eddies exhibits a very weak Reτ dependence.
However, two possibilities for the existence of alternative laws are also discussed, and the need for
high-fidelity data at high Reynolds numbers is emphasized.

For future studies, we have several considerations. First, scaling laws for other turbulence
statistics by the general attached eddies can be derived, such as high-order moments [98,107],
moment-generating functions [57], structure functions [60,108–110], and two-point correlations
[58,73]. Second, direct evidence for the power laws of the population density, probability density,
area coverage, and volume fraction of the general attached eddies is desired, similar to Fig. 4 for
the classical attached eddies. This requires a decomposition of the general attached eddies and outer
very-large-scale motions first, like what has been done in the canonical turbulent flows [20,80].
Third, evidence from other types of flows is also needed, besides the APGTBL and wing flows
presented in this paper.
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