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Data-driven low-dimensional dynamic model of Kolmogorov flow
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Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing
computational costs for simulation as well as for model-based control approaches. This
work presents a data-driven framework for minimal-dimensional models that effectively
capture the dynamics and properties of the flow. We apply this to Kolmogorov flow in a
regime consisting of chaotic and intermittent behavior, which is common in many flow
processes and is challenging to model. The trajectory of the flow travels near relative peri-
odic orbits (RPOs), interspersed with sporadic bursting events corresponding to excursions
between the regions containing the RPOs. The first step in development of the models is use
of an undercomplete autoencoder to map from the full state data down to a latent space of
dramatically lower dimension. Then models of the discrete-time evolution of the dynamics
in the latent space are developed. By analyzing the model performance as a function of
latent space dimension, we can estimate the minimum number of dimensions required to
capture the system dynamics. To further reduce the dimension of the dynamical model,
we factor out a phase variable in the direction of translational invariance for the flow,
leading to separate evolution equations for the pattern and phase dynamics. At a model
dimension of five for the pattern dynamics, as opposed to the full state dimension of 1024
(i.e., a 32 × 32 grid), accurate predictions are found for individual trajectories out to about
two Lyapunov times, as well as for long-time statistics. Further small improvements in the
results occur as dimension is increased to nine, beyond which the statistics of the model and
the true system are in very good agreement. The nearly heteroclinic connections between
the different RPOs, including the quiescent and bursting timescales, are well captured.
We also capture key features of the phase dynamics. Finally, we use the low-dimensional
representation to predict future bursting events, finding good success.
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I. INTRODUCTION

The development of reduced order dynamical models for complex flows is an issue of
long-standing interest, with applications in improved understanding, as well as control, of flow
phenomena. The classical approach for dimension reduction of these systems consists of extract-
ing dominant modes from data via principal component analysis (PCA), also known as proper
orthogonal decomposition (POD) and Karhunen-Loéve decomposition [1]. PCA determines a set
of basis vectors ordered by their contribution to the total variance (fluctuating kinetic energy)
of the flow. Given Ns data vectors (“snapshots”) xi ∈ RN , one can obtain these basis vectors by
performing singular value decomposition (SVD) on the data matrix X = [x1, x2, . . . ] ∈ RN×Ns such
that X = U�V T . Projecting the data onto the first dh basis vectors (columns of U ) then gives a
low-dimensional representation—a projection onto a linear subspace of the full state space. To find a
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FIG. 1. Schematic of state space with initial conditions collapsing onto an invariant manifold where the
long-time dynamics occur.

reduced order model (ROM), a Galerkin approximation of the Navier-Stokes equations (NSE) using
this basis can be implemented; these have demonstrated some success in capturing the dynamics of
coherent structures [2,3]. Previous research has also used POD as well as a filtered version thereof
[4], which are linear reduction techniques, to reduce dimensions and learn a time evolution map
from data with the use of neural networks (NNs) [5].

Although PCA provides the best linear representation of a data set in dh dimensions, in general
the long-time dynamics of a general nonlinear dynamical systems are not expected to lie on a linear
subspace of the state space. For a primer and more details on data-driven dimension reduction
methods for dynamical systems, refer to Linot and Graham [6]. For dissipative systems, such as the
NSE, it is expected that the long-time dynamics will lie on an invariant manifold M, which can
be represented locally with Cartesian coordinates, but may have a complex global topology [7]. In
fluid mechanics, this manifold is often called an inertial manifold [8–10]. Figure 1 schematically
illustrates a simple example of this idea. Consider a dynamical system ẋ = F (x) for state variable
x ∈ RN . As time proceeds, general initial conditions in this space evolve toward an invariant
manifold M of dimension dM, which in this example can be described by the equation q = �(p),
where x = [p, q]T , p ∈ RdM , q ∈ RN−dM . Furthermore, if we write the dynamics in terms of p
and q as ṗ = f (p, q), q̇ = g(p, q), then trajectories on M evolve according to ṗ = f (p,�(p)): i.e.,
the long-time dynamics are given by a set of ordinary differential equations in dM dimensions,
rather than the N dimensions of the original system. More generally, since M is invariant under the
dynamics, the vector field on M is always tangent to M, and the dynamics on M are determined
by this vector field. In the present work, we do not require that the manifold be represented in this
simple form, but rather a more general form G(x) = 0. In this example, G(x) = q − �(p).

In general one can think of breaking up M into overlapping regions that cover the domain, to find
a local representation. These are called charts and they are equipped with a coordinate domain and
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a coordinate map [11]. The strong Whitney’s embedding theorem states that any smooth manifold
of dimension dM can be embedded into a Euclidean space of so-called embedding dimension 2dM
[11,12]. This means that in the worst case we can expect in principle to be able to find a 2dM-
dimensional Euclidean space in which the dynamics lie. To find a dM-dimensional Euclidean space,
one would in general need to develop overlapping local representations and evolution equations—
this avenue is not pursued in the present work but has been done elsewhere [13]. In this work,
we aim to find a high-fidelity low-dimensional dynamical model using data from simulations of
two-dimensional Kolmogorov flow. In this work, the governing Navier-Stokes equations will only
be used to generate the data—the models will only use these data, not the equations that generated
them. NNs will be used to map between the full state space and the manifold, as well as for the
dynamical system model on the manifold.

A number of previous studies have focused on finding data-driven models for fluid flow problems
with the use of NNs. Srinivasan et al. [14] developed NN models to attempt to predict the time
evolution of the Moehlis-Faisst-Eckhardt (MFE) model [15], which is a nine-dimensional model for
turbulent shear flows. They used two approaches to finding discrete-time dynamical systems. The
first is to simply use a neural network as a discrete-time map, yielding a Markovian representation of
the time evolution. The second is to use a long short-term memory (LSTM) network, which yields
a non-Markovian evolution equation. Despite the fact that the dynamics are in fact Markovian, the
LSTM approach worked better, yielding reasonable agreement with the Reynolds stress profiles.
Page et al. used deep convolutional autoencoders (CAEs) to learn low-dimensional representations
for two-dimensional (in physical space) Kolmogorov flow, showing that these networks retain a
wide spectrum of lengthscales and capture meaningful patterns related to the embedded invariant
solutions [16]. They considered the case in which bursting dynamics is obtained at a Reynolds
number of Re = 40 and n = 4 wavelengths in the periodic domain. Nakamura et al. used CAEs
for dimension reduction combined with LSTMs and applied it to minimal turbulent channel flow
for Reτ = 110, where they were shown to capture velocity and Reynolds stress statistics [17].
They studied various degrees of dimension reduction, showing good performance in terms of
capturing the statistics; however, for drastic dimension reduction they showed how only large
vortical structures were captured. Hence, the selection of the minimal dimension to accurately
represent the state becomes a challenging task. Reservoir networks have also shown great potential
in learning nonlinear models for time evolution. For example, Doan et al. trained what they call an
autoencoded reservoir-computing (AE-RC) framework where the latent space is fed into an echo
state network (ESN) to model evolution in discrete time [18]. By considering the two-dimensional
Kolmogorov flow for Re = 30 and n = 4, good performance was obtained when comparing the
kinetic energy and dissipation evolution in time. They also showed how the model captures
the velocity statistics. However, the nature of the reservoir in the ESN stores past history, making
the model non-Markovian.

Although previous research has found data-driven ROMs for fluid flow problems, the focus on
these has not been to find the minimal dimension required to capture the data manifold and dy-
namics. Linot and Graham have addressed this issue for the Kuramoto-Sivashinsky equation (KSE)
[6,19]. They showed that the mean-squared error (MSE) of the reconstruction of the snapshots using
an AE for the domain size of L = 22 exhibited an orders-of-magnitude drop when the dimension of
the inertial manifold is reached. Furthermore, modeling the dynamics with a dense NN at this dimen-
sion either with a discrete-time map [19] or a system of ordinary differential equations (ODE) [6]
yields excellent trajectory predictions and long-time statistics. Increasing domain size to L = 44 and
66, which makes the system more chaotic, affects the drops of MSE significantly. However a drop
is still seen, and when obtaining the dynamics and calculating long-time statistics, good agreement
with the true data is obtained. This work, denoted “Data-driven manifold dynamics” (DManD), has
been extended to incorporate reinforcement learning control for reduction of dissipation in the KSE,
yielding a very effective control policy [20].

We aim to extend this approach to the NSE, specifically to the two-dimensional Kolmogorov
flow, where an external forcing drives the dynamics. As Re increases, the trivial state becomes
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unstable, giving rise to periodic orbits (POs), relative periodic orbits (RPOs), and eventually chaos.
Relative periodic orbits correspond to periodic orbits in a moving reference frame, such that in
a fixed frame, the pattern at time t + T is a phase-shifted replica of the pattern at time t . The
nature of the weakly turbulent dynamics at a Reynolds number of Re = 14.4, and connections
with RPO solutions, are the focus of this study. Due to the symmetries of the system, the chaotic
dynamics travels between unstable RPOs [21] through bursting events [22] that shadow heteroclinic
orbits connecting the RPOs. A past study [23] shows that low-dimensional representations can be
found with PCA for two-dimensional Kolmogorov flow, where in the case of weakly turbulent data,
the first two PCA basis functions in the streamfunction formulation capture most of the energetic
content when filtering out the bursting events before the analysis, and including a third basis function
captures the bursting information. This point hints at the low-dimensional nature of this system,
where a low number of PCA basis functions can energetically represent the data. However, even
though the energy can be contained in a low number of basis functions, this does not imply that
these will properly capture the dynamics [24]. In [23], development of a model of time-evolution
was not considered.

Returning to the aims of the present work, our focus is twofold. We aim to learn a minimal-
dimensional high-fidelity data-driven model for the long-time dynamics of two-dimensional
Kolmogorov flow with the use of an autoencoder (AE), and a discrete-time map, in the form of
a dense NN, of the dynamics on the invariant manifold. In this map, the future time prediction
only depends on the present state (on the manifold), in keeping with the Markovian nature of
the dynamics on the manifold. This approach contrasts with models that use an RNN such as
an LSTM, which carry a memory of past states, thus they are not Markovian. It is important to
note, however, that the dimension of the invariant manifold is not known a priori, and if we map
the data onto a manifold of too low a dimension, then the dynamics on that manifold will not be
Markovian. Accordingly, in this work we will carefully assess the performance of our Markovian
models as a function of manifold dimension. For our results, the model predictions will be evaluated
as a function of dimension, considering short-time trajectories, long-time statistics, quiescent and
bursting time distributions, and predictions of bursting events. This paper is structured as follows:
In Sec. II we present the governing equations together with the symmetries of the system. We also
present the dynamics at the two values of Re considered and the connections of the RPOs with
the chaotic regime. In Sec. III we show the methodology for data-driven dimension reduction and
dynamic modeling, which includes the AE architecture and the time map NN. Section IV shows the
results, and concluding remarks are given in Sec. V.

II. KOLMOGOROV FLOW FORMULATION AND DYNAMICS

The two-dimensional Navier-Stokes equations (NSE) with Kolmogorov forcing are

∂u
∂t

+ u · ∇u + ∇p = 1

Re
∇2u + sin(ny)x̂ (1)

∇ · u = 0, (2)

where u = [u, v] is the velocity vector, p is the pressure, n is the wave number of the forcing, and
x̂ is the unit vector in the x direction. Here Re =

√
χ

v
( Ly

2π
)3/2, where χ is the dimensional forcing

amplitude, ν is the kinematic viscosity, and Ly is the size of the domain in the y direction. We
consider the periodic domain [0, 2π/α] × [0, 2π ] with α = 1. Vorticity is defined as ω = ∇ × u.
The equations are invariant under several symmetry operations [25], namely a shift (in y)-reflect (in
x), a rotation through π , and a continuous translation in x:

S : [u, v, ω](x, y) → [−u, v,−ω]

(
− x, y + π

n

)
, (3)

R : [u, v, ω](x, y) → [−u,−v, ω](−x,−y), (4)
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FIG. 2. (a) Time evolution of KE at Re = 13.5. (b) Time evolution of KE at Re = 14.4. (c) Time evolution
of D and I at Re = 14.4.

Tl : [u, v, ω](x, y) → [u, v, ω](x + l, y) for 0 � l <
2π

α
. (5)

The total kinetic energy for this system (KE ), dissipation rate (D), and power input (I) are

KE = 1

2
〈u2〉V , D = 1

Re
〈|∇u|2〉V , I = 〈u sin(ny)〉V , (6)

where the subscript V corresponds to the average taken over the domain. For the case of n = 1, the
trivial solution is linearly stable at all Re [26]. It is not until n = 2 that the laminar state becomes
unstable, with a critical value of Rec = n3/221/4 [27–29].

The NSEs are evolved numerically in time in the vorticity representation on a [dx × dy] =
[32 × 32] grid following the pseudospectral scheme given by Chandler and Kerswell [25], which
is based on the code by Bartello and Warn [30]. We show here time-series results for the two
dynamical regimes considered in this work, an RPO regime at Re = 13.5 and a chaotic regime
at Re = 14.4. Figure 2(a) shows the KE evolution for an RPO obtained at Re = 13.5. Due to
the discrete symmetries of the system, there are several RPOs [22], as we discuss further below.
Figure 2(b) shows the KE evolution for a trajectory at Re = 14.4. The dynamics are characterized
by quiescent intervals where the trajectories are close to RPOs (which are now unstable), punctuated
by heteroclinic-like excursions between the RPOs, which are indicated by the intermittent increases
of the KE . The RPOs are all related by the symmetries S and R [22,31,32]. This behavior can
also be seen in Fig. 2(c), where the black curve corresponds to the time evolution of D and the blue
curve to the time evolution of I . Figure 3 shows a state-space projection of a trajectory onto the
plane Re[a0,1(t )] − Im[a0,1(t )], where a(kx, ky, t ) = akx,ky (t ) = F{ω(x, y, t )} is the discrete Fourier
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FIG. 3. Evolution of the real and imaginary components corresponding to the a0,1(t ) Fourier mode for
Re = 13.5 and 14.4.

transform in x and y. The gray curve corresponds to Re = 14.4 and the different blue curves show
four different RPOs related by the shift-reflect symmetry S at Re = 13.5.

III. DATA-DRIVEN DIMENSION REDUCTION AND DYNAMIC MODELING

A. Dimension reduction with autoencoders

To learn a minimal-dimensional model for the two-dimensional Kolmogorov flow, we first have
to find a low-dimensional nonlinear mapping from the full state to the reduced representation. For
this purpose, we consider a common machine-learning architecture known as an undercomplete
autoencoder (AE), whose purpose is to learn a reduced representation of the state such that the
reconstruction error with respect to the true data is minimized. The AE consists of an encoder, E (·),
that maps from the full space RN to the lower-dimensional latent space h(t ) ∈ Rdh (i.e., coordinates
on the manifold M), and a decoder, D(·), that maps back to the full space. Flattened versions
of ω(x, y, t ) are used, which we refer to from this point on as ω(t ), so N = 32 × 32 = 1024. We
shall see that the latent space dimension dh will be much smaller than the dimension N of the
full spatially resolved state. The encoder E (ω(t )) is a coordinate mapping from RN to M, and the
decoder D(h(t )) is the mapping back from M to RN .

We train the AEs with ω(t ) obtained from the evolution of NSE for the original data as well
as accounting for the discrete and continuous symmetries. By accounting for the symmetries,
it is expected that the networks will perform better by not having to learn the symmetries in
the latent space mapping. We account for the continuous symmetry in x, Tl , with the method
of slices [33,34]. The kx = 1, ky = 0 Fourier mode is used to find the spatial phase: φx(t ) =
atan 2{Im[a1,0(t )], Re[a1,0(t )]}. This can then be used to phase-align the vorticity snapshots such
that this mode is a pure cosine: ω̂(x, y, t ) = F−1{F{ω(x, y, t )}e−ikφx (t )}. Doing this ensures that
the snapshots lie in a reference frame where no translation happens in the x direction. We will learn
evolution equations for both ω̂(t ) and φx(t ), which we will denote as the pattern dynamics and phase
dynamics, respectively. We also consider the shift-reflect (SR) symmetry, S , as well as the rotation
through π , R. To account for the SR symmetry, the goal is to collapse the phase-aligned snapshots
to the same common state. We can define two indicator functions such that the SR subspace is
specified. The first one, Ieven = sgn(φy), where φy(t ) = atan 2{Im[a0,1(t )], Re[a0,1(t )]}, is the spatial
phase in y. The second indicator function is Iodd = sgn ( Re[a2,0(t )]), the sign of the real part of the
second Fourier mode in x. We can then map the vorticity snapshots in such a way that Ieven, Iodd > 0
by applying SR operations to the state. The rotation symmetry is accounted for, on top of the SR
symmetry, by minimizing the l2-norm of the data with respect to a template snapshot. This is done
by applying the discrete operation that rotates and shift-reflects the vorticity snapshots and selecting
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FIG. 4. Autoencoder loss vs epochs over training and test data sets corresponding to a trial from the case
Re = 14.4, dh = 9.

the snapshot that minimizes the norm. We note that we take a different approach for reducing the
symmetries compared to previous research on symmetry-aware AEs [35].

Previous work [19] has shown that training a NN to learn the difference between the data and
the projection onto the leading PCA basis vectors improved reconstruction performance compared
to learning a latent space directly from the full data. To present the framework, we will use the
phase-aligned and flattened vorticity ω̂(t ), since that is what we use for the time evolution. Below,
however, we will present some results where other versions of the data are used—e.g., the data with
phase-shifting. The autoencoder aspect of the analysis is identical.

We begin the process by computing the projection of the data onto the first dh basis vectors,
PdhU

T ω̂(t ). We then seek to learn a dh-dimensional correction to that projection, E (U T ω̂(t ))—the
sum of these is the latent-space representation h(t ). In other words, the encoding step learns the
deviation from PCA,

E (U T ω̂(t )) = h(t ) − PdhU
T ω̂(t ). (7)

We emphasize that this step is not simply a projection onto a linear subspace defined by dh PCA
modes—rather, it is an approach that learns the deviation of the data from that projection. Similarly,
the decoding section learns the difference

D(h(t )) = U T ˜̂ω(t ) −
[

h(t )

0

]
, (8)

where ˜̂ω(t ) corresponds to the reconstruction of ω̂(t ). Inserting Eq. (7) into Eq. (8) and noting
that by definition ˜̂ω(t ) = U [PdhU

T ω̂(t ), Pd−dhU
T ω̂(t )]T , we get that the exact solution satisfies

E (U T ω̂(t )) + Ddh ((h(t )) = 0. To satisfy this constraint, we add it to the loss function as a penalty
to obtain

L = ‖ω̂(t ) − ˜̂ω(t )‖2 + αL‖E (U T ω̂(t )) + Ddh (h(t ))‖2, (9)

where ‖ · ‖ is the l2-norm, and we select αL = 1. We can now train the AEs by minimizing L via
stochastic gradient descent. We train four AEs at each of several values of dh to study the MSE of
the reconstruction of ω̂(t ). All models were trained for 300 epochs with an Adam optimizer using
Keras. After 300 epochs no further improvement over the test data was observed; see Fig. 4. The
training data consist of long-time series from the direct simulations, with initial transients removed.
We use a total of 105 snapshots separated by τ = 5 time units for Re = 14.4, and 104 snapshots
separated by τ = 5 for Re = 13.5. We do an 80%/20% split for training and testing, respectively.
Figure 5(a) shows a summary of the AE, and Table I gives information on the layer dimensions
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FIG. 5. Neural network frameworks for (a) autoencoder, (b) discrete-time map for pattern prediction, and
(c) discrete-time for phase prediction.

and the activations used in each layer of the encoder and decoder. At each value of dh, the model
with the smallest MSE over a test data set from the phase-aligned data is then selected for the
discrete-time map. We will show in Sec. IV A that factoring out the phase dramatically increases
AE performance.

B. Time evolution via a dense NN

After finding h(t ) from the AEs, we seek a discrete-time map

h(t + τ ) = F (h(t )) (10)

that evolves h(t ) from time t to t + τ . We fix τ = 5. The function F is also expressed as a dense
NN. Here we train five NNs for the different dh cases with the following loss:

Lt = ‖h̃(t + τ ) − h(t + τ )‖2, (11)

where h(t + τ ) comes from true data and h̃(t + τ ) = F (h(t )) from the prediction, and we select
the one with the best performance. For the discrete-time map, we trained for 600 epochs with the
use of a learning rate scheduler. In this case, we noticed an increase in performance when dropping
the learning rate hyperparameter by an order of magnitude after 300 epochs. Figure 5(b) shows a
summary of the framework just described, and Table I gives information on the layer dimensions
and activations used in each layer.

TABLE I. Neural network layer dimensions and activations used in each layer.
Sigmoid function are denoted “S.”

Function Shape Activation

Encoder E 1024 : 5000 : 1000 : dh S:S:S
Decoder D dh : 1000 : 5000 : 1024 S:S:linear
Evolution F dh : 500 : 500 : dh S:S:linear
Phase prediction G dh : 500 : 500 : 500 : 1 S:S:S:linear
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FIG. 6. MSE vs dimension dh over the test data corresponding to (a) Re = 13.5 and (b) Re = 14.4. The
PCA curve corresponds to the MSE of the reconstruction for the test data set with respect to the true data ω(t ),
with no symmetries factored out, using the truncated U into dh dimensions such that ω̃(t ) = UdhU

T
dh

ω(t ); the
“Original,” “Phase,” “Phase-SR,” and “Phase-SR-Rotation” curves correspond to the MSEs of the reconstruc-
tion for the test data set with respect to the true data using AEs. In the curve labeled “Original,” no symmetries
are factored out, and in the other curves the corresponding symmetries in the labels are factored out.

As discussed previously, the time evolution is done in the phase-aligned space. To complete the
dynamical picture, we seek a discrete-time map for the phase evolution,

�φ̃x(t + τ ) = G(h(t )), (12)

where �φx(t + τ ) = φx(t + τ ) − φx(t ). Because of translation equivariance, the actual phase is
only unique to within a constant. We train five NNs for the different dh cases with the following
loss:

Lp = ‖�φ̃x(t + τ ) − �φx(t + τ )‖2, (13)

such that �φ̃x(t + τ ) = G(h(t )). Figure 5(c) shows a summary of the framework we have described,
and Table I gives information on the layer dimensions and activations used in each layer.

IV. RESULTS

We present results as follows. First we will show the AE performance for the various dh and sym-
metries considered. We then report results for time evolution models, again studying performance
as a function of the number of dimensions. Both the evolution of the pattern and the phase dynamics
are considered. We wrap up the results by predicting bursting events based on the low-dimensional
representation.

A. Dimension reduction with autoencoders

We begin by showing results for Re = 13.5. In Fig. 6(a), we see the MSE versus dh trend, where
the gray curve corresponds to the PCA reconstruction for the original data [ω̃(t ) = UdhU

T
dh

ω(t )], the
black curve to the AE with the original data, and the blue curve to the AE with the phase factored
out before training. The MSE is calculated over the test data set. Notice that, as expected, the AEs
perform better than PCA. This is because of the nonlinearities that are added to the linear optimal
latent space found in PCA in combination with the nonlinear decoder. The blue curve exhibits a
sharp drop in the MSE at a dimension of dh = 2, which is the correct embedding dimension for
a limit cycle. This happens because the phase is accounted for; the dynamics of the system in the
phase-aligned reference frame corresponds to a PO, and the autoencoder does not have to learn
all the possible phases due to the continuous translation in x. The overall embedding dimension is
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FIG. 7. Trajectory of I (t ) vs D(t ) corresponding to Re = 13.5 for (a) true and (b) predicted data corre-
sponding to dimensions dh = 2.

dh + 1 = 3, where 1 corresponds to the phase. Hence we are able to estimate the dimension for this
system by looking at the drop in the MSE curve.

We now consider the Re = 14.4 case, where the dynamics are chaotic, moving between the
regions near the now unstable RPOs. In Fig. 6(b), we show the same curves as in Fig. 6(a) but we
also include the green and magenta curves, which in addition factor out the SR and the SR-Rotation
symmetries, respectively, before training the AEs. These are included due to the added complexity
of Re = 14.4, where the chaotic trajectory travels in the vicinity of the RPOs related by the
symmetry groups previously discussed. A monotonic decrease in MSE can be seen for the different
symmetries considered in the blue, green, and magenta curves, but no sharp drop is apparent.
Instead we notice that the MSE drops at different rates in different regions. For example, in the
blue curve corresponding to the phase-aligned data, we see a sharp drop from dh = 1–6 followed by
a more gradual drop from dh = 6–13. In the following sections, we couple the dimension-reduction
analysis with models for prediction of time evolution for the phase-aligned data. We expect that
this combination will help us determine how many dimensions are needed to correctly represent the
state.

B. Time evolution as a function of dimension—Short-time predictions

The focus of this work is the chaotic dynamics at Re = 14.4. Before considering that case, for
completeness we briefly present results for Re = 13.5. In Fig. 7 we see D(t ) versus I (t ) for the true
and predicted dynamics at dh = 2; they are indistinguishable. At dh = 1, which is not shown, the
model fails and the dynamics cannot be captured. The reason for this is simple—the embedding
dimension for a limit cycle is two.

Now we return to the case of Re = 14.4, focusing first on short-time trajectory predictions. The
Lyapunov time tL for this system is approximately tL ≈ 20 [36], hence tL ≈ 4τ . We take initial
conditions h(t ) ∈ Rdh to evolve recurrently with the discrete-time map F (·), such that h̃(t + τ ) =
F (h(t )), h̃(t + 2τ ) = F (h̃(t + τ )), h̃(t + 3τ ) = F (h̃(t + 2τ )) and so on. After evolving in time,
the data are then decoded to get ˜̂ωh(t ) and compared with ω̂(t ). We consider trajectories with ICs
starting in the quiescent as well as in the bursting regions. The nature of the intermittency of the data
makes it challenging to assign either bursting or quiescent labels. We consider a window of past and
future snapshots and a criterion on ‖ω̂(t )‖ to make this decision, using the algorithm described in
Algorithm 1.

Doing this we ensure that snapshots that are contained in the bursting events and have a value
of ‖ω̂(t )‖ similar to quiescent snapshots are correctly classified. We use a threshold on ‖ω̂(t )‖ to
determine if a check is needed. For the classification strategy, any snapshot above a threshold of
60 is classified as bursting with a label of 1. Below 60 we enter a loop as shown in Algorithm 1 to
determine if it should be classified as bursting or quiescent, where quiescent corresponds to a label
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Algorithm 1. Quiescent/Bursting labeling of vorticity snapshots.

W ← [ω̂(t1), ω̂(t2) · · · ] � Matrix with Ns vorticity snapshots, W ∈ RN×Ns

S � Initialize label array S
Wl2 ← ‖W ‖ � Calculate l2-norm of snapshots, Wl2 ∈ RNs

b ← 10 � Number of past snapshots in time to consider
f ← 10 � Number of future snapshots in time to consider
for i = b, b + 1, . . . , Ns − f do � i is snapshot I.D.

if Wl2[i] < 60 then
dp ← abs(Wl2[i − b : i] − Wl2[i]) � Difference between current and past snapshots
bp ← sum(dp > 5) � Sums values that exceed a threshold of 5 (user-defined)
df ← abs(Wl2[i : i + f ] − Wl2[i]) � Difference between current and future snapshots
bf ← sum(df > 5) � Sums values that exceed a threshold of 5 (user-defined)
if bp = 0 or bf = 0 then

S[i − b] ← 0
else

S[i − b] ← 1
end if

else
S[i − b] ← 1

end if
end for

of 0. This check is needed to correctly label snapshots that have comparable ‖ω̂(t )‖ but are still
in the bursting regime. Figure 8 shows a short-time trajectory where the black line corresponds to
‖ω̂(t )‖ and the red to the 0/1 labels. Notice that, as shown in Algorithm 1, some of the data at the
beginning and at the end of the time series will not be labeled, there are no past or future snapshots
to compare to, and they can be removed.

After labeling the data as quiescent or bursting, we then consider the time evolution from ICs
of h(t ) using the models of various dimensions. We will first show sample trajectories from ICs
starting in the two regions, then show the ensemble-averaged prediction error as a function of time.
Figure 9(a) shows the KE evolution for an IC starting in the quiescent region. The black curve
corresponds to the true data and the colored curves to the different dh models. At a dimension of
dh = 3 the predicted KE diverges quickly with respect to the true KE . In the case of dh = 5 we see
that the bursting event is correctly captured, but with a slight lag. However, dh = 7 does not capture
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FIG. 8. Labeling of ω̂(t ) snapshots in a short-time series where 1 corresponds to bursting and 0 to quiescent.
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FIG. 9. Example trajectories of KE at different dh for (a) a quiescent initial condition and (b) a bursting
initial condition, for dimensions dh = 3, 5, 7, 9, and 11.

the bursting in this time frame considered. For dh = 9 the bursting event happens with a significant
lag with respect to the true data and dh = 11 captures the event similar to dh = 5. Figure 9(b) shows
the KE evolution for an IC starting in the bursting region. The black curve corresponds to the true
data and the colored curves to the different dh models. At a dimension of dh = 3 the KE stays
bursting and does not show agreement with the true KE . However, dh = 5 shows better agreement
and is also capable of closely predicting the end of the bursting event. In the case of dh = 7, 9, and
11 these agree closely with the KE evolution before traveling to the quiescent region.

Turning from examples of individual trajectories to ensemble averages, Fig. 10(a) shows ensem-
ble averages of the difference between the true and predicted trajectories, separately considering
ICs in the bursting and quiescent regions. Solid curves correspond to quiescent ICs and dashed
curves to bursting ICs. Starting from dh = 3 we increase up to dh = 12. We selected 104 ICs
in total where approximately 1/3 of the ICs correspond to bursting. As expected, predictions at
dh = 3 diverge quickly from the true dynamics in both quiescent and bursting IC scenarios. With
increasing dh, trajectories track better for both types of ICs. We can also notice that the two darkest
curves, corresponding to dh = 11, 12, fall on top of each other in the case of quiescent ICs, and the
trajectories for the quiescent ICs track almost perfectly for approximately two Lyapunov times for
dimensions dh = 5 and higher. In Fig. 10(b) we show ensemble averages of the difference between
the true and predicted dynamics based on all ICs. The same trend is obtained as discussed for
Fig. 10(a) with dimensions of dh = 9 and higher in similar agreement, and as expected the errors
increase for all of the curves due to the divergence of the bursting ICs. We can conclude that models
of dimensions dh = 5 and higher are very good at capturing trajectories in the quiescent regions,
which happens through the accurate prediction of the oscillatory behavior of the unstable RPO
right before a bursting occurs. Prediction from bursting ICs is harder, due to the complex dynamics
involved in this region. We also consider, in Fig. 10(c), the ensemble averages of the difference
between the true and predicted trajectories versus dh for all ICs at time instants t = 0, tL, 2tL, 3tL.
As expected, with increasing t the trajectories deviate from the true data. However, we notice that
for all of the curves the error decreases with increasing dh, and after dh = 9 little to no improved
performance is observed.

C. Time evolution as a function of dimension—Long-time predictions

In this section, we present long-time statistics for the models and true data at Re = 14.4. From
ICs on the attractor, we evolve for 2 × 105 time units, yielding to get 4 × 104 snapshots of data. This
duration is sufficient to densely sample the quiescent and bursting regions. We note that long-time
statistics did not change if the IC was in a bursting or quiescent region.
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FIG. 10. Difference between true vorticity evolution and vorticity evolution obtained from the time map F
from h(t ), where (a) corresponds to averages taken over bursting and quiescent ICs, and (b) averages over all
the data. (c) Difference between true vorticity evolution and vorticity evolution obtained from the time map F
from h(t ) with varying dh for increasing tL . This corresponds to averages over all the data.

Figure 11 shows the joint probability density function (PDF) of I and D for true and predicted
data from models with dh = 3, 5, 7, 9, and 11—note the logarithmic scale, here and below. We notice
that at dh = 3 the different areas corresponding to quiescent and bursting regions are populated
similarly in terms of the probability intensity compared with the true PDF shown, but the shape of
the predicted PDF takes a curved form that is not seen in the true PDF. When we get to dh = 5,
the D and I events are captured better, and similarly for increasing dimensions. We also compute
the joint PDF of Re[a0,1] and Im[a0,1], shown in Fig. 12. From this quantity we can observe the
heteroclinic-like connections between the unstable RPOs, which correspond to the four ribbonlike
regions of high probability. Here we see similar trends as in the joint PDF for I-D: dh = 3 shows
poor qualitative reconstruction compared with higher dimensions, and once dh � 5, the joint PDFs
from the model prediction are virtually indistinguishable from the true PDFs. To further quantify
the relationship of the PDFs from the models to the true data, we calculate the Kullback-Leibler
(KL) divergence,

DKL(P̃||P) =
∫ ∞

−∞

∫ ∞

−∞
P̃{a, b}ln P̃{a, b}

P{a, b}da db, (14)

where P̃ corresponds to the predicted PDF and P to the true PDF. Due to the approximation of the
integral to discrete data, we ignore areas where either the true or predicted PDFs are zero. Let us
first consider the case a = I and b = D. Figure 13(a) shows DKL calculated with varying dh. The
dashed gray line corresponds to DKL calculated over different true data sets. This serves as a baseline
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FIG. 11. Re = 14.4: Joint PDFs of I-D corresponding to Re = 14.4 for (a) true and (b)–(f) predicted data
corresponding to dimensions dh = 3, 5, 7, 9, and 11.

for comparison to the predicted PDFs. A significant decrease happens at dh = 4 followed by small
decreases at higher dimensions. We see that after dh = 5 no significant information is gained, with
errors plateauing at approximately dh � 7. We can also look at the case in which a = Re [a0,1]
and b = Im [a0,1] in Fig. 13(b). We notice that errors of the joint PDF in Fig. 13(b) show a similar
trend as Fig. 13(a) with errors plateauing at approximately dh � 9. We can infer from these results
that the embedding dimension of this system lies in the range dh = 5–9, and furthermore that the
data-driven model can reproduce the long-time statistics with very high fidelity.
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FIG. 12. Re = 14.4: Joint PDFs of Re[a0,1(t )] − Im[a0,1(t )] corresponding to Re = 14.4 for (a) true and
(b)–(f) predicted data corresponding to dimensions dh = 3, 5, 7, 9, and 11.

The above PDFs yield no information about the temporal behavior of the system. One temporal
feature of significant interest in problems with intermittency is the probability density of the
durations of time intervals with different behavior. To address this, we consider the PDFs of time
spent in bursting (tb) and in quiescent (tq) regions. The labeling method discussed in the previous
section is used. For this calculation we take a trajectory of 105 snapshots from an arbitrary IC. The
PDF for the true data is shown in Fig. 14(a) followed by the PDFs that come from the dh = 3,
5, 7, 9, and 11 models in Figs. 14(b)–14(f). The true data show that tq is mostly concentrated
between t ≈ 200 and 300 with a high intensity peak shown at t = 5. We attribute this peak to a
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FIG. 13. Re = 14.4: DKL vs dimension dh for (a) I-D and (b) Re[a0,1] − Im[a0,1] predicted vs true joint
PDFs. Dashed gray line corresponds to DKL calculated over true data sets.

small fraction of snapshots in the bursting region that get mislabeled as quiescent due to the weakly
chaotic nature of the data. We do not expect for this to drastically change our conclusions because
the same labeling system is used for the true data and the models. In the case of tb we notice that
these are mostly concentrated between t ≈ 0 and 200. Looking at both the PDFs and averages of
the times we see that dh = 3 fails to correctly capture the shape of the PDF and also underpredicts
〈tq〉 and 〈tb〉. At dh = 5 we start getting better agreement where we see that the PDFs clearly show
the two regions where tb and tq are concentrated. In the case of dh = 7 we can see that the quiescent
PDF spreads into regions with higher tq and for dh = 9, 11 these seem to agree better with the true
PDF. Figure 15 shows DKL with varying dh for these PDFs. As expected from observing the PDFs,
we see that DKL decreases up until dh = 5 for both cases. In the case of tq we see an increase in
the error after dh = 5, which agrees with the above observation of the PDF at dh = 7. For tb, DKL

seems to keep slightly decreasing after dh = 5. We also notice that for tq, DKL reaches a minimum
at dh = 9 and for tb no significant decrease is observed at dh � 9. In short, these duration statistics
achieve similar agreement at dh = 9, and for the case of tb errors keep decreasing with increasing
dh. We also calculate the mean of tq and tb for the case of dh = 9, and we obtain values of 〈tq〉 = 174
and 〈tb〉 = 97, which agree closely with the true values of 〈tq〉 = 176 and 〈tb〉 = 97.

D. Phase prediction

Recall that we gain substantial accuracy in dimension reduction by factoring out the spatial phase
φx(t ) of the data. Here we complete the dynamical picture of the model predictions at Re = 14.4
by illustrating the predictions of phase evolution, as given by the learned phase evolution Eq. (12).
Figure 16(a) shows a short-time evolution of φx(t ) corresponding to the true and predicted data for
the dh = 3, 5, 7, 9, and 11 models. The smooth increases and decreases in Fig. 16(a) correspond
to trajectories during time intervals where they are near an RPO and thus are traveling in the x-
direction. The intervals where the phase fluctuates rapidly are the bursts during which the trajectories
are moving between the RPO regions. This behavior is well-captured for all of the dimensions shown
except for dh = 3. Notice that although the trajectories diverge, for short times we get around two tL
of prediction horizon where the models still capture the correct dynamics, and Fig. 16(a) provides a
clear visual indication that the loss of predictability occurs during the bursts.

We now take an approach to quantify how well the model performs with respect to the true data.
Taking a look at the drops and increases for φx(t ) we can observe that after every burst the trajectory
will travel, essentially randomly, in either the positive (increasing φx) or negative (decreasing φx)
x direction. This behavior is essentially a run and tumble or random-walk behavior in the sense
that the long periods of positive or negative phase drift correspond to “runs” that are separated by
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FIG. 14. PDFs of tq and tb at Re = 14.4 for (a) true and (b)–(f) predicted data for dimensions dh = 3, 5, 7,
9, and 11.

“tumbles” that correspond to the bursts, in which the direction of phase motion is reset. Hence, a
natural analysis of quantification for this type of dynamics consists of calculating the mean-squared
displacement (MSD) of the phase,

MSD(t ) = 〈[φx(t ) − φx(0)]2〉. (15)

Figure 16(b) shows the time evolution of MSD of true and predicted data. The black line corresponds
to the true data, and the black and green dashed lines serve as references with slopes of 1 and 1.5,
respectively. The colored lines correspond to models with various dimensions. Looking at the true
curve, we notice a change from superdiffusive (slope = 1.5) to diffusive (slope = 1) scaling that
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FIG. 15. Re = 14.4: DKL vs dimension dh corresponding to PDFs for (a) tq and (b) tb. Dashed gray line
corresponds to DKL calculated over different true data sets.

happens around t ≈ 200, which corresponds to the mean duration of the quiescent intervals, as
discussed above: i.e., to the average time the trajectories travel along the RPOs before bursting. The
trajectory then bursts and reorients, which is captured by the long-time diffusive trend. Looking at
the performance of the models, we observe that dh = 3 does a good job at capturing the short-time
scaling, however it is not able to capture the change in slope that is observed in the true data. It is not
until dh � 5 that the correct behavior at long times is observed—indeed, the predictions agree very
well with the data, with a slight upward shift at long times corresponding to the slight overprediction
of the mean duration of the quiescent periods.

E. Bursting prediction

Previous research has focused on finding indicators that guide predictions of when a burst will
occur. It has been shown for the Kolmogorov flow that before a burst there is a depletion of the
content in the (1,0) Fourier mode, which then feeds into the forcing mode (0, n) [32]. Figure 17
shows how this looks for Re = 14.4, n = 2. By considering a variational framework and finding
solutions to a constrained optimization problem, it was also found that examination of these modes
can lead to predictions of when a burst will occur [37].

With our framework, natural indicators are the latent variables h, which we will consider here
along with some variations, including the indicators used in previous work. To predict bursting
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FIG. 16. (a) Time evolution of φx corresponding to the true data and models with dimensions dh = 3, 5, 7,
9, and 11. (b) MSD of φx (t ) corresponding to true data and models with dimensions dh = 3, 5, 7, 9, and 11.
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Re = 14.4.

events based on a given indicator, we will use a simple binary classifier in the form of a support
vector machine (SVM) with a radial basis function kernel [38]. These have shown success in
predicting extreme events for problems such as extreme rainfall [39]. With this approach, data at
time t are used to learn a function that outputs a binary label of bursting/not bursting at time t + τb.
For all of the cases considered, we use the dh = 5, 9 models, taking a dataset of 5 × 104 snapshots
to train the SVM and another 5 × 104 as a test set.

Figure 18(a) shows the percent correct classification of bursting events with varying time τb in the
future. The gray and black curves corresponds to predicting the events based on the PCA projection
of the data, PdhU

T ω, into the first dh = 5 and 9 coefficients, respectively. The cyan and red curves
correspond to h of dimensions dh = 5 and 9, respectively. We notice that the PCA and h curves
fall on top of one another and have a high probability of correct classification when considering
prediction horizons less than one tL. For this purpose, we see that PCA is enough to predict bursting
events. Figure 18(b) shows the percent correct classification of bursting at time τb in the future
for the previously discussed indicators. None of these work nearly as well as PdhU

T ω or h. The
blue curve corresponds to (1,0) amplitude of the original true data, the green curve to the forcing
(0,2) amplitude, and we also consider �φ in the purple curve. In the case of �φ we see some
predictability at times longer than one tL and less than two. This also happens for the case of (1,0),
however there seems to be no decrease or increase in the probability of correct classification. We
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FIG. 18. Percent of correctly classified bursting events at τb forward in time for (a) PdhU
T ω and h at dh =

5, 9, (b) and indicators �φ, (1,0), and (0,2). Note that the vertical scales in (a) and (b) are very different.
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can see from Fig. 17 that even though there is a depletion in the (1,0) mode preceding bursts,
its amplitude does not change dramatically between quiescent and bursting intervals, which may
be a reason that it does not provide much predictive power. The amplitude (0,2), which changes
more strongly between quiescent and bursting regions, is seen to be the better predictor for bursting
events. At small τb its predictions outperform (1,0) and �φ, however at times larger than one tL, �φ

performs better.

V. CONCLUSION

The nonlinearity of the NSE poses challenges when using ROMs, where the dynamics are
expected to evolve on an invariant manifold that will not lie in a linear subspace. Neural net-
works have proven to be powerful tools for learning efficient ROMs solely from data, however
finding and exploiting a minimal-dimensional model has not been emphasized. We present a
data-driven methodology to learn an estimate of the embedding dimension of the manifold for
chaotic Kolmogorov flow and the time evolution on it. An autoencoder is used to find a nonlinear
low-dimensional subspace and a dense neural network to evolve it in time.

Our autoencoders are trained on vorticity data from two cases: a case in which the dynamics
show a relative periodic orbit solution (Re = 13.5), and a case with chaotic dynamics (Re = 14.4).
The chaotic regime we consider comes with challenges due to the intermittent behavior observed
where the trajectory travels in between quiescent intervals and bursting events. We factor out
the rich symmetries of Kolmogorov flow before training of the autoencoders, which dramatically
improves reconstruction error of the snapshots. This improves training efficiency by not having to
learn a compression of the full state. Specifically, factoring out the translation symmetry decreases
the mean-squared reconstruction error by an order of magnitude compared to the case in which
phase is not factored out, and several orders of magnitude compared to PCA. The phase-aligned
low-dimensional subspace is then used for time evolution where the RPO dynamics is learned
essentially perfectly at dh = 2 for Re = 13.5, and very good agreement for short- and long-time
statistics is obtained at dh = 5 for Re = 14.4. Further small improvements in the results occur
as dimension is increased to nine, beyond which the statistics of the model and true system are
in very good agreement. For comparison, the full state space of the numerical simulation data
is N = 1024.

We also show phase prediction evolution results based on the low-dimensional subspace learned.
The time evolution of the true phase exhibits a superdiffusive scaling at short times and a diffusive
scaling at long times, which we attribute to the traveling near an RPO and the reorientation due to
bursting. Finally, using the low-dimensional representation enables accurate prediction of bursting
events based on conditions about a Lyapunov time ahead of the event. This work opens new avenues
for data-driven ROMs with applications such as control for drag reduction, an example of which is
presented for turbulent Couette flow in [40]. One important challenge that remains is more effective
treatment of systems with intermittent dynamics like those described here. A recent study [13]
has introduced a method that uses the differential topology formalism of charts and atlases to
develop local manifold representations and dynamical models that can be stitched together to form
a global dynamical model. One attractive feature of that formalism is that it enables use of separate
representations for regions of state space with very different dynamics, and it has already been
shown in specific cases to provide dramatically improved results for dynamics with intermittency.

ACKNOWLEDGMENTS

This work was supported by AFOSR FA9550-18-1-0174 and ONR N00014-18-1-2865
(Vannevar Bush Faculty Fellowship). We also want to thank the Graduate Engineering Research
Scholars (GERS) program and funding through the Advanced Opportunity Fellowship (AOF) as
well as the PPG Fellowship.

044402-20



DATA-DRIVEN LOW-DIMENSIONAL DYNAMIC MODEL …

[1] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent Structures, Dynamical
Systems and Symmetry (Cambridge University Press, Cambridge, 2012).

[2] B. R. Noack and H. Eckelmann, A low-dimensional Galerkin method for the three-dimensional flow
around a circular cylinder, Phys. Fluids 6, 124 (1994).

[3] N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, The dynamics of coherent structures in the wall region
of a turbulent boundary layer, J. Fluid Mech. 192, 115 (1988).

[4] M. Sieber, C. O. Paschereit, and K. Oberleithner, Spectral proper orthogonal decomposition, J. Fluid
Mech. 792, 798 (2016).

[5] H. F. S. Lui and W. R. Wolf, Construction of reduced-order models for fluid flows using deep feedforward
neural networks, J. Fluid Mech. 872, 963 (2019).

[6] A. J. Linot and M. D. Graham, Data-driven reduced-order modeling of spatiotemporal chaos with neural
ordinary differential equations, Chaos 32, 073110 (2022).

[7] E. Hopf, A mathematical example displaying features of turbulence, Commun. Pure Appl. Math. 1, 303
(1948).

[8] C. Foias, O. Manley, and R. Temam, Modelling of the interaction of small and large eddies in two
dimensional turbulent flows, ESAIM: Math. Modell. Numer. Anal. 22, 93 (1988).

[9] R. Temam, Do inertial manifolds apply to turbulence? Physica D 37, 146 (1989).
[10] S. Zelik, Attractors. Then and now, arXiv:2208.12101 (2022).
[11] J. M. Lee, Smooth manifolds, in Introduction to Smooth Manifolds (Springer, New York, 2013), pp. 1–31.
[12] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. Math. 45, 220 (1944).
[13] D. Floryan and M. D. Graham, Data-driven discovery of intrinsic dynamics, Nat. Mach. Intell. 4, 1113

(2021).
[14] P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa, Predictions of turbulent shear

flows using deep neural networks, Phys. Rev. Fluids 4, 054603 (2019).
[15] J. Moehlis, H. Faisst, and B. Eckhardt, A low-dimensional model for turbulent shear flows, New J. Phys.

6, 56 (2004).
[16] J. Page, M. P. Brenner, and R. R. Kerswell, Revealing the state space of turbulence using machine learning,

Phys. Rev. Fluids 6, 034402 (2021).
[17] T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata, Convolutional neural network and

long short-term memory based reduced order surrogate for minimal turbulent channel flow, Phys. Fluids
33, 025116 (2021).

[18] N. A. K. Doan, W. Polifke, and L. Magri, Auto-encoded reservoir computing for turbulence learning, in
International Conference on Computational Science (Springer, Krakow, Poland, 2021), pp. 344–351.

[19] A. J. Linot and M. D. Graham, Deep learning to discover and predict dynamics on an inertial manifold,
Phys. Rev. E 101, 062209 (2020).

[20] K. Zeng, A. J. Linot, and M. D. Graham, Data-driven control of spatiotemporal chaos with reduced-order
neural ODE-based models and reinforcement learning, Proc. R. Soc. A 478, 20220297 (2022).

[21] C. J. Crowley, J. L. Pughe-Sanford, W. Toler, M. C. Krygier, R. O. Grigoriev, and M. F.
Schatz, Turbulence tracks recurrent solutions, Proc. Natl. Acad. Sci. USA 119, e2120665119
(2022).

[22] D. Armbruster, B. Nicolaenko, N. Smaoui, and P. Chossat, Symmetries and dynamics for 2-D Navier-
Stokes flow, Physica D 95, 81 (1996).

[23] D. Armbruster, R. Heiland, E. J. Kostelich, and B. Nicolaenko, Phase-space analysis of bursting behavior
in Kolmogorov flow, Physica D 58, 392 (1992).

[24] C. W. Rowley and S. T. M. Dawson, Model reduction for flow analysis and control, Annu. Rev. Fluid
Mech. 49, 387 (2017).

[25] G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions embedded in a turbulent two-dimensional
Kolmogorov flow, J. Fluid Mech. 722, 554 (2013).

[26] V. I. Iudovich, Example of the generation of a secondary stationary or periodic flow when there is
loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech. 29, 527
(1965).

044402-21

https://doi.org/10.1063/1.868433
https://doi.org/10.1017/S0022112088001818
https://doi.org/10.1017/jfm.2016.103
https://doi.org/10.1017/jfm.2019.358
https://doi.org/10.1063/5.0069536
https://doi.org/10.1002/cpa.3160010401
https://doi.org/10.1051/m2an/1988220100931
https://doi.org/10.1016/0167-2789(89)90124-3
http://arxiv.org/abs/arXiv:2208.12101
https://doi.org/10.2307/1969265
https://doi.org/10.1038/s42256-022-00575-4
https://doi.org/10.1103/PhysRevFluids.4.054603
https://doi.org/10.1088/1367-2630/6/1/056
https://doi.org/10.1103/PhysRevFluids.6.034402
https://doi.org/10.1063/5.0039845
https://doi.org/10.1103/PhysRevE.101.062209
https://doi.org/10.1098/rspa.2022.0297
https://doi.org/10.1073/pnas.2120665119
https://doi.org/10.1016/0167-2789(96)00006-1
https://doi.org/10.1016/0167-2789(92)90125-7
https://doi.org/10.1146/annurev-fluid-010816-060042
https://doi.org/10.1017/jfm.2013.122
https://doi.org/10.1016/0021-8928(65)90062-6


PÉREZ DE JESÚS AND GRAHAM

[27] L. D. Meshalkin and Ia G. Sinai, Investigation of the stability of a stationary solution of a system of
equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech. 25, 1700
(1961).

[28] J. S. A. Green, Two-dimensional turbulence near the viscous limit, J. Fluid Mech. 62, 273 (1974).
[29] A. Thess, Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov flow, Phys. Fluids

4, 1385 (1992).
[30] P. Bartello and T. Warn, Self-similarity of decaying two-dimensional turbulence, J. Fluid Mech. 326, 357

(1996).
[31] N. Platt, L. Sirovich, and N. Fitzmaurice, An investigation of chaotic Kolmogorov flows, Phys. Fluids 3,

681 (1991).
[32] B. Nicolaenko and Z.-S. She, Symmetry-breaking homoclinic chaos in Kolmogorov flows, in Nonlinear

World (World Scientific, Singapore, 1990).
[33] N. B. Budanur, D. Borrero-Echeverry, and P. Cvitanović, Periodic orbit analysis of a system with
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