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In order to understand the rotational motion of a microswimmer in a Newtonian fluid, we
model it as an infinite cylinder with a helical, propagating surface wave. Using the method
of series expansion, we calculate the linear and angular velocities of the cylinder, assuming
that the wave amplitude is much smaller than the wavelength. To the first order in the wave
amplitude, for the first mode of a purely azimuthal wave (that is, when the wavelength
equals the cylinder’s circumference), the cylinder moves along a circular path in the plane
normal to its axis. Otherwise, the first-order velocities of the cylinder are zero, like the
Taylor sheet. The time-averaged motion of the cylinder is determined by calculating the
second-order velocities; the axial component of the wave vector leads to the linear motion
of the cylinder along its axis and the azimuthal component to the angular motion around
the axis. With the same stroke, the cylinder is always slower and less efficient than the
Taylor sheet.

DOI: 10.1103/PhysRevFluids.8.044201

I. INTRODUCTION

Microswimmers swim through a fluid by periodically deforming their bodies in such a way
that the time reversal symmetry is broken. Their dynamics happen in a low Reynolds number
regime where the inertial effects do not play a significant role: their motility is mainly due to
the viscous effects [1]. The swimming mechanism of microswimmers is now well understood;
starting from Taylor’s sheet, many models have been developed to comprehend various aspects of
the dynamics of microswimmers [2–6]. Moreover, there has been considerable research done on how
microswimmers interact with each other and with the wall [7–14]. Recently growing understanding
of complex fluids has led to increased interest in how fluid complexity impacts the swimming speed
[15–23].

So far microswimmers have been studied largely in context of their translational motion. How-
ever, the microswimmers such as Escherichia coli do not simply propel through the fluid, they
also spin around their directions of propulsion [24–27]. Inspired by them we construct a simple
model which can explain not only the linear but also the angular motion of microswimmers. On
symmetry grounds, one anticipates that a swimmer cannot perform rotational dynamics without
having handedness in its structure and inherent movements. So the chirality of the microswimmer
is crucial to its angular motion. The helical cylinder, a microswimmer model with chirality, has
already been investigated in the context of the linear motion of microorganisms having helical
flagella [3,28,29].

Here the microswimmer is modeled as an infinite cylinder whose surface is subject to a prescribed
helical wave. The helicity of the wave provides the chirality to the cylinder, which is essential
for the rotational motion of microorganisms. The traveling helical wave of cilia movements has
been observed on the surface of Paramecium [27]. Our calculation relies on the following two
assumptions: (1) Reynolds number is zero and (2) the wavelength is much larger than the wave
amplitude so that one can expand the velocity and pressure fields in terms of the amplitude. The
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FIG. 1. (a) Schematic diagram of a cylinder whose surface is subject to a helical, propagating wave. The
radial coordinate of a surface point on the cylinder at (φ, z) is given by R(φ, z, t ) = a + b sin(mφ + kzz − ωt ).
(b) The black curve shows the cross section of the cylinder at z = 0. Here m = 3, akz = 1, and b = 0.1a.

main findings of this paper are as follows: the azimuthal component of the wave vector of the wave
is responsible for the angular motion of the cylinder and the axial component for the translational
motion. For the first mode of a purely azimuthal wave (i.e., when the wavelength is equal to the
circumference of the cylinder), the cylinder performs an orbital motion in the plane normal to its
axis, apart from the angular motion. The Taylor sheet is always faster and more efficient than the
cylinder for given wavelength, frequency, and amplitude of the wave.

The rest of the paper is organized as follows: Sec. II discusses our model. In Sec. III the results
are presented. A brief discussion is provided in Sec. IV. In Sec. V we conclude.

II. MODEL

We consider an infinitely long cylinder of radius a submerged in a Newtonian fluid whose surface
is subject to a helical, propagating sinusoidal wave. The reader should note that the centerline of
the cylinder remains straight, only the surface deforms, unlike the models presented in [3,28] (see
Fig. 5). Let the axis of the cylinder be along the z axis; at time t , the axial distance of a point on the
deforming surface having azimuth φ and axial position z is given by

R(φ, z, t ) = a + b sin(mφ + kzz − ωt ), (1)

where m is an integer, kz(� 0) is the z component of the wave vector, and ω and b are the angular
frequency and the amplitude of the helical wave, respectively (see Fig. 1). When m = 1, our model
exhibits some similarities with the model presented by Taylor [3] for helical flagella, but they are
not exactly identical (see Appendix A). As the azimuthal component of wave vector is m/a, the
“effective” wave number and speed of the helical wave are given by k = √

k2
z + (m/a)2 and c =

ω/k, respectively. We assume that ε = bk � 1. In our analysis, we consider that m � 0; the final
results remain the same as m changes sign, other than reversing the angular velocity of the cylinder.

A. Equations of motion for the Newtonian fluid

Considering that the fluid is incompressible, the stress tensor for the velocity field u is given
by [30]

σ = η(∇u + ∇uT)−p, (2)

where p is the pressure field and η is the dynamic viscosity: the superscript T stands for the matrix
transpose. Here the first term is the stress due the viscosity of the fluid. At zero Reynolds number,
the fluid is in mechanical equilibrium, i.e., the net force per unit volume on the fluid is zero [30]:

∇ · σ = 0. (3)

The incompressibility of the fluid leads to the condition

∇ · u = 0. (4)
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Substituting σ into Eq. (3) yields

η∇2u − ∇p = 0. (5)

B. Boundary conditions

We solve Eq. (5) in a cylindrical coordinate frame comoving and corotating with the cylin-
der. Adopting no-slip boundary conditions on the cylinder, the fluid velocity at a surface point
rs = R(φ, z, t )ρ̂ + zẑ of the cylinder is simply given by the velocity of the surface point drs/dt .
Thus,

u(ρ = R, φ, z) = drs

dt
= −cε cos(mφ + kzz − ωt )ρ̂. (6)

Let −Umẑ and −Ωmẑ be the time-averaged linear and angular velocities of the cylinder in the
laboratory frame. Then, in the frame attached with the cylinder,

〈uφ〉|ρ→∞ = ρΩm, (7a)

〈uz〉|ρ→∞ = Um, (7b)

where the angular bracket stands for the average over time.
As the external force and torque on the cylinder are zero, in the stationary state, the net force and

the net torque F and τ acting on it due to the fluid should be zero. The formulas to calculate F and
τ are given in Appendix B 3.

C. Series expansion method for solving the fluid equations

In order to solve the equations discussed above, expanding u and p in ε:

u = εu(1) + ε2u(2) + · · · , (8a)

p = εp(1) + ε2 p(2) + · · · . (8b)

The two leading-order terms of the boundary condition (6) in ε then yield

u(1)(ρ = a) = −c cos(mφ + kzz − ωt )ρ̂, (9)

u(2)(ρ = a) = −1

k

∂u(1)

∂ρ

∣∣∣∣
a

sin(mφ + kzz − ωt ). (10)

We expand Eq. (5) in ε and solve it for u(1) and u(2) with the above boundary conditions.
For the case of m = 1 and kz �= 0, the first-order torque normal to the cylinder’s axis is found to

be nonzero. Its consequences are discussed in Sec. III A. For all other cases, the zero-force and the
zero-torque conditions are satisfied.

From the form of the surface wave on the cylinder [see Eq. (1)], one can see that a phase shift
of π is equivalent to the transformation ε → −ε. Since a phase shift alone cannot affect the time-
averaged swimming dynamics of the cylinder, one expects Um and Ωm to be the even functions
of ε. Therefore, the leading-order terms of Um and Ωm would be quadratic in ε. Also, in Eq. (5),
η can be absorbed into the pressure p. It is therefore obvious that Um and Ωm are independent of
η [1].

III. RESULTS

First, we present the dynamics of the cylinder at the first order in ε in Sec. III A. We then talk
about the second-order results in Sec. III B.
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A. The first-order results

Solving Eq. (5) for u(1), we obtain (see Appendix B 4)

u(1)
ρ = u(10)

ρ (ρ) cos(mφ + kzz − ωt ), (11a)

u(1)
φ = u(10)

φ (ρ) sin(mφ + kzz − ωt ), (11b)

u(1)
z = u(10)

z (ρ) sin(mφ + kzz − ωt ), (11c)

where

u(10)
ρ = c

(
as{[(kzρ)2 − m(m + 2)]Km(kzρ) + 2(m + 1)kzρKm+1(kzρ)}Km+1(as)Km(as)

kzρFm(as)

+a2
s [mKm(kzρ ) − kzρKm+1(kzρ )]Km+1(as )2 − mkzρ[kzρKm(kzρ ) + (m + 2)Km+1(kzρ )]Km(as )2

kzρFm(as )

)
, (12a)

u(10)
φ = c

m[(m + 2)Km(as) − asKm+1(as)][asKm(kzρ)Km+1(as) − kzρKm+1(kzρ)Km(as)]

kzρFm(as)
, (12b)

u(10)
z = c

[mKm(as) − asKm+1(as)][asKm(kzρ)Km+1(as) − kzρKm+1(kzρ)Km(as)]

Fm(as)
, (12c)

and

Fm(as) = [
2m(m + 2) − a2

s

]
Km+1(as)Km(as)2 + a2

s Km+1(as)3 + masKm(as)3

− (3m + 2)asKm+1(as)2Km(as), (13)

with as = akz. Presenting the kz = 0 case first: for m = 0 and kz = 0, u(1) = 0 as this case represents
a cylinder with no surface waves. Setting kz = 0 into the above equations, for m > 0, we obtain

u(1)
ρ = c

2

(
a

ρ

)m−1[
(m − 2)

a2

ρ2
− m

]
cos(mφ − ωt ), (14)

u(1)
φ = c

2
(m − 2)

(
a

ρ

)m−1[ a2

ρ2
− 1

]
sin(mφ − ωt ), (15)

u(1)
z = 0. (16)

The vanishing z component of the velocity field is due to the absence of the wave propagation
along the z direction. For m = 1, that is, the wavelength is equal to the circumference of cylinder,
in a Cartesian coordinate frame attached to the cylinder, the first-order velocity field far from the
cylinder is given by (also see Appendix D)

lim
ρ→∞ εT · u(1) = − 1

2 cε(cos ωt, sin ωt, 0). (17)

So, in the laboratory frame, the first-order velocity of the cylinder U (1)
1 = (cε/2)(cos ωt, sin ωt, 0)

is nonzero, and the cylinder performs an orbital motion in xy plane with the angular frequency ω on
a circular path of radius b/2 centered at (0, b/2, 0). This is an interesting observation as no model
of microswimmers so far has predicted the motion at the first-order in the wave amplitude, although
the time average of the velocity of the cylinder still remains zero. For m > 1, u(1) → 0 as ρ → ∞,
and hence the first-order velocity of the cylinder is zero.

For kz �= 0, u(1) always vanishes at ρ → ∞. Therefore, the cylinder exhibits no motion to the
first order. Figure 2 shows the profile of u(1) around the cylinder in xy and xz planes for m = 3 and
as = 1 at t = 0; the vector plot displays the in-plane direction of u(1)/c and the density plot depicts
the value of u(1)/c. Clearly, the magnitude u(1) decays to zero with distance from the cylinder.
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FIG. 2. The first-order velocity field u(1) around a deforming cylinder shown in Fig. (1) for kz �= 0. (a) In
the xy plane; (b) in the xz plane. The arrow points along the in-plane projection of the direction of u(1), and the
color map displays the magnitude of u(1)/c, where c ≡ ω/k and k = √

k2
z + m2/a2. The black curves represent

the cross sections of the surface of the cylinder. Here m = 3, as ≡ akz = 1, b = 0.05a, and t = 0.

Let us now discuss the force and the torque on the cylinder due to the fluid. The first-order force
on the cylinder is always zero, but the first-order torque τ1 turns out to be nonzero when m = 1 and
kz �= 0,

τ1 = lim
Ln→∞

τ1nτ , (18)

where

nτ = cos(ωt )x̂ + sin(ωt )ŷ, (19)

τ1 = 2πLn(−1)nηωa2K1(as)2K2(as)[(
a2

s + 2
)
K1(as)2K0(as) − a2

s K0(as)3 − asK1(as)K0(as)2 + asK1(as)3
]√

1 + (m/as)2
ε, (20)

and Ln = 2πn/kz is the length of the cylinder between z = −nπ/kz and z = nπ/kz (see Ap-
pendix B 4). Note that the torque τ1 is periodic with the angular frequency ω. Hence the torque
along the cylinder’s axis is zero but not normal to it. Here the axis of the cylinder is fixed along the
z axis of the laboratory frame; if one allows its rotation, a torque-free cylinder is obtained in the
stationary state as τ1 cancels out with the drag torque τv due to the rotation of the cylinder’s axis.
For the rotating cylinder, the torque τ1 would be

τ1 = lim
Ln→∞

τ1[cos(ωt )x̂′(t ) + sin(ωt )ŷ′(t )] ≡ lim
Ln→∞

τ1n′
τ , (21)

where x̂′ and ŷ′ corotate with the cylinder. Let Ψ
(1)

rot be the angular speed of the cylinder around n′
τ .

Then [31,32]

τv � − lim
Ln→∞

πηL3
n

3 ln(Ln/a)
Ω

(1)
rot n′

τ . (22)

The ε-dependent corrections have been neglected here. In the stationary state, τv + τ1 = 0, thus

Ω
(1)
rot = lim

Ln→∞
3τ1 ln(Ln/a)

πηL3
n

. (23)

From Eq. (20), Ω
(1)
rot → 0. Therefore, the torque τ1 tries to rotate the cylinder, but the drag torque

τv suppresses the rotation in the Ln → ∞ limit. However, the actual microorganisms have a finite
length and therefore their axes should exhibit a periodic rotational dynamics due to the torque τ1.
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FIG. 3. The components of the linear and angular velocities of the cylinder along the −ẑ direction, Um

and Ωm as the function of as for various values of m. (a) Um/UT vs as, where UT is the speed of the Taylor
sheet with the wave number kz. The inset shows how the location of the minimum of Um depends on m.
(b) Ωm/|Ψ1(as = 0)| vs as.

B. The second-order results

To calculate the time-averaged translational and angular speeds of the cylinder, we solve Eq. (5)
for 〈u(2)〉, which yields (see Appendix B 5)〈

u(2)
ρ

〉 = 0, (24a)

〈
u(2)

φ

〉 = ckzρ
[asKm−1(as) + mKm(as)]Gm(as)

2Fm(as)
√(

1 + m2/a2
s

) , (24b)

〈
u(2)

z

〉 = c
m[(2 − m)Km(as) − asKm−1(as)]Gm(as)

2a2
sFm(as)

√(
1 + m2/a2

s

) , (24c)

where Gm(as) = as(Km−1(as)2 − Km(as)2) + 2mKm(as)Km−1(as).
In the ρ → ∞ limit, 〈u(2)

φ 〉 is proportional to ρ; thus the cylinder has a nonzero angular velocity
around its axis. From Eqs. (7), the time-averaged components of the angular and the linear velocities
of the cylinder along the −ẑ direction are

Ωm � lim
ρ→∞

1

ρ

〈
u(2)

φ (ρ)
〉
ε2 � −ckz

[asKm−1(as) + mKm(as)]Gm(as)

2Fm(as)
√(

1 + m2/a2
s

) ε2, (25)

Um � lim
ρ→∞

〈
u(2)

z (ρ)
〉
ε2 � c

m[(2 − m)Km(as) − asKm−1(as)]Gm(as)

2a2
sFm(as)

√(
1 + m2/a2

s

) ε2. (26)

If the surface wave is purely axial, namely, m = 0, then Ω0 = 0, as expected because the cylinder
loses its chirality, and

U0 = −1

2

[
as[K0(as)2 − K1(as)2]

asK0(as)2 + 2K1(as)K0(as) − asK1(as)2

]
cε2, (27)

with ε = kzb and c = ω/kz; U0 � 0, as seen for the Taylor sheet [2] [see Fig. 3(a)]. In the as → ∞
limit, U0 approaches UT = ωkzb2/2, the speed of the Taylor sheet having the wave number kz, since
a cylinder with an infinitely large radius is just like a flat sheet. For as � 1,

U0 � − 1

4[ln(as/2) + γ ]
cε2, (28)

where γ = 0.5772 is the Euler-Mascheroni constant; U0 → 0 as as → 0.
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FIG. 4. The efficiency of the cylinder Em scaled by its value at m = 1 and as = 0 as the function as for
m = 0, 1, 2, and 3.

When the surface wave is purely azimuthal, that is, kz = 0, the cylinder does not perform any
translational motion, namely, Um = 0. In this case, Ω0 = 0, and

Ωm>0(kz = 0) = m − 2

2m2
ε2ω = m − 2

2a2
b2ω. (29)

Interestingly, Ω1(kz = 0) < 0, i.e., the cylinder spins in the same direction as the direc-
tion of the surface wave for m = 1. Up to the second order in ε, the cylinder with
the second mode (m = 2) of a purely azinuthal surface wave does not spin because
Ω2(kz = 0) = 0.

Figure 3(a) illustrates how Um varies with as for various values of m; U0/UT increases mono-
tonically with as, whereas for m � 1, Um/UT attains its minimum value at a value amin

s of as.
As shown in the inset of Fig. 3(a), amin

s increases almost linearly with m. In the as → 0 limit,
U0/UT → 0 and Um>1/UT → 1. In the large as limit, Um/UT � 1, so the cylinder swims with
the speed of the Taylor sheet for all m. For given as, the swimming speed Um is enhanced with
increasing m. As Um � UT, the cylinder cannot swim faster than the Taylor sheet having the wave
number kz.

Figure 3(b) shows that Ωm scaled by |Ω1(as = 0)| grows with as for all values of m; Ω1 remains
negative below as � 1.33. As as → ∞, Ωm/|Ω1(as = 0)| saturates to m. Again, for given as,
increasing m boosts the angular speed of the cylinder.

We now estimate the mechanical efficiency of the cylinder. The time-averaged velocity of a
surface point of the cylinder at (φ, z) is Us = −Ωmaφ̂ − Umẑ, so the thrust force per area on the
cylinder would be proportional to ηk|Us| [5]. Therefore, one can define the mechanical efficiency
of the cylinder as follows:

Em � η
|Us|2
W (0)

k � η
U 2

m + Ω2
ma2

W (0)
k, (30)

where W (0) is the leading-order term of the rate of the work performed by the cylinder per area on
the fluid (see Appendix C). Note that W (0) ∼ ε2. Therefore, Em ∼ ε2, as |Us| ∼ ε2. For kz = 0 case:
E0 = 0 and

Em>0(kz = 0) = (m − 2)2

4m2
ε2 = (m − 2)2

4a2
b2, (31)

so E2(kz = 0) is also zero. This is because both translational and angular velocities are zero when
m = 2 and kz = 0. The efficiency Em is a monotonically rising function of as for all m, excluding
the m = 1 case; see Fig. 4. For m = 1, the magnitude of the angular velocity is minimum at
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as = 1.33, thus E1 is not a monotonic function of as. In the as → ∞ limit, Em achieves its largest
value,

Em(as → ∞) = 1
4 b2k2

z , (32)

which is the same as the efficiency of the Taylor sheet [1] of the wave number kz. There-
fore, the cylinder is always less efficient as compared to the Taylor sheet. One can also see
from Fig. 4 that, if the m = 1 case ignored, the higher the value of m, the more efficient the
cylinder is.

IV. DISCUSSION

It should be noted that the dynamics of the cylinder is anomalous for the m = 1 case, for which,
to first order in ε, the cylinder with kz = 0 displays an orbital motion due to the first-order flow
profile, whereas, for kz �= 0, the first-order torque normal to the axis of the cylinder is nonzero.
Moreover, below as � 1.33, Ω1 < 0, namely, the cylinder (with m = 1) rotates along the direction
of the azimuthal projection of the wave vector. It can be understood as follows: time averaging the
azimuthal component of Eq. (10) yields

〈
u(2)

φ (ρ = a)
〉 = − 1

2k

du(10)
φ

dρ

∣∣∣∣∣
a

. (33)

As 〈u(2)
φ 〉 = H2ρ [see Appendix (B 5)],

H2 = − 1

2ak

du(10)
φ

dρ

∣∣∣∣∣
a

. (34)

Then, from the condition (7a),

Ωm = H2 = − 1

2ak

du(10)
φ

dρ

∣∣∣∣∣
a

. (35)

So, mathematically, the angular motion of the cylinder is due to the nonzero value of the derivative
of u(10)

φ at ρ = a; for m > 1, it is negative, so Ωm > 0. For m = 1, it becomes positive below as = ac
s .

From Eq. (12b), ac
s is given by the solution of

3K1(as) − asK2(as) = 0, (36)

that is, ac
s � 1.33158. Hence Ω1 < 0 for as < ac

s � 1.33158. Note that u(10)
φ = 0 at as = ac

s .
As mentioned earlier, the microswimmer models with chirality have already been explored

[3,28], although with the goal to understand the translational motion. Taylor [3] considered a
cylinder in a Newtonian fluid whose centerline is subject to a spiral propagating wave. When the
wave amplitude is much smaller than the radius of the cylinder, the shape of the Taylor cylinder
is similar to that of our cylinder with m = 1 (see Appendix A). A subtle difference between the
two models appears at the level of the surface dynamics; in our model, the velocity of a surface
point has no azimuthal component, unlike the Taylor model. Taylor saw an increment in the tran-
slational speed due to the chirality, and the same trend is observed here as well: one can see from
Fig. 3 that the speed Um>0 of chiral cylinders is always greater than the speed U0 of the achiral
cylinder.

The Taylor model is appropriate for the microorganisms having helical flagella, e.g., E. coli,
whereas our model is suitable for ciliated microorganisms with metachronal waves, e.g., Pleu-
robrachia, Opalina, and Paramecium [33]. The typical values of m and kz for Paramecia are
4–8 and 105 m−1, respectively [34,35]. This paper primarily focuses on chiral microswimmers,
but we also investigate the special case of our model with no chirality, namely, the m = 0
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FIG. 5. (a) Schematic diagram of the spiral cylinder modeled by Taylor [3]. In contrast to our model,
the centerline of the cylinder is not straight here. (b) Cross section of the cylinder in the xy plane. Here s =
−kzz + ωt , a is the radius of the cylinder, and b represents the radial coordinate of its center A. The position of
a surface point P in terms of ψ and z is given by R = a(cos ψ x̂ + sin ψ ŷ) + b(cos sx̂ + sin sŷ) + zẑ. Note that
b � a, although the figure does not reflect so.

case; metachronal waves of Pleurobrachia and Opalina are not helical and thus belong to this
case.

V. CONCLUSION

We calculated the linear and angular velocities of an infinite cylinder with a propagating, helical
surface wave in a Newtonian fluid. Assuming that the amplitude b of the wave is much smaller than
its wavelength λ, we use the series expansion method to solve the Stokes equations for the fluid.
To the first order in ε ≡ 2πb/λ, the cylinder with the first mode of a purely azimuthal wave (i.e.,
m = 1 case) exhibits an orbital motion on a circular path normal to its axis. To the second order
in ε, the azimuthal component of the wave vector gives rise to the angular dynamics, whereas the
axial component does to the translational dynamics. With the same wave, the Taylor sheet is always
faster and more efficient than the cylinder.

APPENDIX A: TAYLOR’S MODEL FOR HELICAL FLAGELLA

Here we provide a brief discussion of the model presented by Taylor [3] that explains the
swimming dynamics of helical flagella. He considered a cylinder whose centerline is subject to
a spiral wave, as illustrated in Fig. 5(a). In terms of the angle ψ shown in Fig. 5(b), the position of
a surface point P on the cylinder is given by

R = a(cos ψ x̂ + sin ψ ŷ) + b(cos sx̂ + sin sŷ) + zẑ, (A1)

where s = −kzz + ωt is the angular coordinate of the center A of the cylinder, which varies with
time t as well as z. So, for given z, the center of cylinder moves on a circular path of radius b. In the
b � a limit, the radial coordinate of P in terms of its angular coordinate φ is given by

r � a + b cos(φ − s) � a + b cos(φ + kzz − ωt ). (A2)

044201-9
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As the cylinder deforms with time, φ also changes due to the motion of its centerline. It implies
that the azimuthal component of the velocity of the surface point P is nonzero. A simple calculation
gives the following approximate velocity of P (in the frame moving with the cylinder):

V � ωb sin(φ − s)ρ̂ + ωb cos(φ − s)φ̂. (A3)

It should be noted that, with respect to its shape, the model being discussed exhibits similarities to
our model with m = 1 [see Eqs. (1) and (A2)]. However, unlike our model, the azimuthal component
of the surface velocity is nonzero. As previously mentioned, this is due to the dynamics of the
cylinder’s centerline.

APPENDIX B: SOLUTION OF THE EQUATIONS OF MOTION FOR THE FLUID

1. Equations of motion for the fluid

Recalling equations of motion for the Newtonian fluid [see Eq. (5)],

η∇2u − ∇p = 0, (B1)

where p and u are the pressure and the velocity fields of the fluid, respectively. In order to eliminate
p, we take the curl of the above equation. This yields

∇2� = 0, (B2)

where

� = ∇ × u (B3)

is the verticity. Recalling the incompressibility condition (4),

∇ · u = 0. (B4)

2. Model

Consider an infinite cylinder of radius a in the fluid along the z axis whose surface is subject to
a propagating, helical wave of deformation. The radial coordinate of a surface point on the cylinder
at (φ, z), at time t , is given by R(φ, z, t ) = a + b sin(mφ + kzz − ωt ), where m is a positive integer,
kz is the z component of the wave vector, and ω and b are the angular frequency and the amplitude
of the wave, respectively. For simplicity, the units of length and time are chosen to be 1/kz and 1/ω,
respectively. Then

R(φ, z, t ) = as + ε
1√

1 + (m/as )2
sin(mφ + z − t ), (B5)

where as = akz, k = √
k2

z + (m/a)2 and ε = bk; k is the effective wave number of the wave.
Assuming that ε � 1. We solve Eq. (B2) in a cylindrical coordinate system comoving and corotating
with the cylinder. We consider no-slip boundary condition at the surface of the cylinder; then the
velocity of the fluid at a surface point rs = R(φ, z, t )ρ̂ + zẑ of the cylinder is equal to the velocity
of the surface point. So

u(ρ = R, φ, z) = drs

dt
= −ε

1√
1 + (m/as )2

cos(mφ + z − t )ρ̂. (B6)

As we are interested in ε � 1 regime, we can expand u and p in ε as follows:

u = εu(1) + ε2u(2) + · · · , (B7a)

p = εp(1) + ε2 p(2) + · · · . (B7b)
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The ε and ε2 terms of Eq. (B6) yield

u(1)(ρ = as ) = − 1√
1 + (m/as )2

cos(mφ + z − t )ρ̂, (B8)

u(2)(ρ = as ) = − 1√
1 + (m/as )2

∂u(1)

∂ρ

∣∣∣∣
as

sin(mφ + z − t ). (B9)

Equation (B2) is now expanded in ε and solved for u(1) and u(2) with the above boundary conditions.

3. The force and the torque exerted by the fluid on the cylinder

The force F and the torque τ on the cylinder in a Cartesian coordinate system are given by

F =
∫∫

T · σs · dA = lim
n→∞

∫ 2π

0
dφ

∫ nπ/kz

−nπ/kz

dzT · σs · n̂Det[g]1/2 (B10)

and

τ =
∫∫

T · [rs × σs · dA] = lim
n→∞

∫ 2π

0
dφ

∫ nπ/kz

−nπ/kz

dzT · [rs × σs · n̂]Det[g]1/2, (B11)

where n is a positive integer, σs ≡ σ(R, φ, z) [see Eq. (2)],

n̂(φ, z) =
[

1

|∇[ρ − R(φ, z, t )]|∇[ρ − R(φ, z, t )]

]
ρ=R

(B12)

is the direction of a surface element,

g =

⎡
⎢⎢⎣

∂rs

∂φ
· ∂rs

∂φ

∂rs

∂φ
· ∂rs

∂z
∂rs

∂φ
· ∂rs

∂z

∂rs

∂z
· ∂rs

∂z

⎤
⎥⎥⎦ (B13)

is the metric tensor for the surface and

T =
⎡
⎣cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎤
⎦ (B14)

is the transformation matrix from the cylindrical to the Cartesian coordinate system at (φ, z).

4. The first-order solution

From the boundary condition (B8) and the incompressibility condition (B4) in the cylindrical
coordinate system,

1

ρ

∂ (ρuρ )

∂ρ
+ 1

ρ

∂uφ

∂φ
+ ∂uz

∂z
= 0, (B15)

we expect the following form of u(1):

u(1)
ρ = u(10)

ρ (ρ) cos(mφ + z − t ), (B16a)

u(1)
φ = u(10)

φ (ρ) sin(mφ + z − t ), (B16b)

u(1)
z = u(10)

z (ρ) sin(mφ + z − t ). (B16c)
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Then, solving Eq. (B2) for u(10)
ρ , u(10)

φ , and u(10)
z , we get

u(10)
ρ = 1

2
(−A1 + B1 + 2D1)Km+1(ρ) − 1

4ρ
{A1(m2 + ρ2) − B1[(m − 4)m + ρ2] + 4D1m}Km(ρ),

(B17a)

u(10)
φ = − m

4ρ
[A1(m + 4) − B1m − 4D1]Km(ρ) − 1

4
[A1(m + 2) − B1(m − 2)]Km−1(ρ), (B17b)

u(10)
z = 1

8
ρ(B1 − A1)[Km+1(ρ) + Km−1(ρ)] + D1Km(ρ), (B17c)

where Km is the modified Bessel functions of order m. We have ignored the terms having the
modified Bessel functions of the second kind Im to avoid the diverging velocity field at ρ → ∞. We
then calculate the constants A1, B1, and D1 by imposing the boundary condition (B8). Substituting
their values back into Eqs. (B17) yields

u(10)
ρ = a2

s [mKm(ρ )−ρKm+1(ρ )]Km+1(as )2+as{[ρ2−m(m+2)]Km(ρ )+2(m+1)ρKm+1(ρ )}Km+1(as )Km(as )

ρFm(as )
√

1+(m/as )2

− mρ[ρKm(ρ )+(m+2)Km+1(ρ )]Km(as )2

ρFm(as )
√

1+(m/as )2
, (B18a)

u(10)
φ = m[(m + 2)Km(as) − asKm+1(as)][asKm(ρ)Km+1(as) − ρKm+1(ρ)Km(as)]

ρFm(as)
√

1 + (m/as)2
, (B18b)

u(10)
z = [mKm(as) − asKm+1(as)][asKm(ρ)Km+1(as) − ρKm+1(ρ)Km(as)]

Fm(as)
√

1 + (m/as)2
, (B18c)

where

Fm(as) = [
2m(m + 2) − a2

s Km+1(as)Km(as)2 + a2
s Km+1(as)3 + masKm(as)3

−(3m + 2)asKm+1(as)2Km(as) . (B19)

Note that here the unit of velocity is ω/kz, so one needs to multiply the above expressions with ω/kz

to obtain u(10)
ρ , u(10)

φ , and u(10)
z in the original units (the units used in the main text).

We now calculate the first-order pressure p(1). Equation (B1) indicates that p(1) has the form
p(1) = p(10)(ρ) cos(mφ + z − t ). The z component of Eq. (B1) then reads

p(10) = −ηLmu(10)
z , (B20)

where

Lm ≡ 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− m2

ρ2
− 1. (B21)

Substitution of (B18c) into the above equation returns

p(10) = 2ηKm(ρ)Km(as)[asKm−1(as) + mKm(as)]

Fm(as)
√

1 + (m/as )2
. (B22)

The above expression is multiplied with ω to obtain p(10) in the units used in the main text.
Due to the periodicity of the cylinder, the ε terms of the net force and the torque on the cylinder,

F1 and τ1, turn out to be zero, except for the case when m = 1 and k �= 0; in this case, the force F1

is zero but the torque

τ1 = lim
n→∞ τ1[cos(t )x̂ + sin(t )ŷ] (B23)
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is not, where

τ1 = 4π2n(−1)nηa2
s K1(as)2K2(as)[(

a2
s + 2

)
K1(as)2K0(as) − a2

s K0(as)3 − asK1(as)K0(as)2 + asK1(as)3
]√

1 + (m/as )2
ε.

(B24)

The above expression is multiplied with ω/k3
z to obtain τ1 in the units used in the main text.

5. The second-order solution

The boundary condition on u(2) [see Eq. (D4)] and the form of u(1) [see Eqs. (B16)] imply that
u(2) has the following form:

u(2)
ρ = u(20)

ρ (ρ) + u(21)
ρ (ρ) sin[2(mφ + z − t )], (B25a)

u(2)
φ = u(20)

φ (ρ) + u(21)
φ (ρ) cos[2(mφ + z − t )], (B25b)

u(2)
z = u(20)

z (ρ) + u(21)
z (ρ) cos[2(mφ + z − t )]. (B25c)

We are interested in the flow profile far away from the cylinder. The harmonic terms in u(2)

vanish in the ρ → ∞ limit, as seen for u(1). Therefore, in the ρ → ∞ limit, u(2) is simply given by
its time-averaged value 〈u(2)〉. As 〈u(2)〉 is independent of φ and z, taking the time average of the
second-order terms of Eqs. (B2), (B3), and (B4), we find

d

dρ
ρ
〈
u(2)

ρ

〉 = 0, (B26a)

d

dρ

(
ρ

d2

dρ2

〈
u(2)

z

〉) − 1

ρ

d

dρ

〈
u(2)

z

〉 = 0, (B26b)

ρ3 d3

dρ3

〈
u(2)

φ

〉 + 2ρ2 d2

dρ2

〈
u(2)

φ

〉 − ρ
d

dρ

〈
u(2)

φ

〉 + 〈
u(2)

φ

〉 = 0. (B26c)

The solutions of these equations are〈
u(2)

ρ (ρ)
〉 = E1

ρ
, (B27a)

〈
u(2)

φ (ρ)
〉 = H1

ρ
+ H2ρ + H3ρ ln ρ, (B27b)

〈
u(2)

z (ρ)
〉 = G1ρ

2

2
+ G2lnρ + G3. (B27c)

For a cylinder spinning with a constant angular speed around z axis, 〈u(2)
φ (ρ)〉 ∝ ρ in the ρ → ∞

limit, so we cannot throw the H2ρ term in the expression of 〈u(2)
φ (ρ)〉. To avoid the divergence of

the velocity field in the laboratory frame, we set H3, G1, and G2 to zero:〈
u(2)

ρ (ρ)
〉 = E1

ρ
, (B28a)

〈
u(2)

φ (ρ)
〉 = H1

ρ
+ H2ρ, (B28b)

〈
u(2)

z (ρ)
〉 = G3. (B28c)

The second-order pressure has the form p(2) = p(20)(ρ) + p(21)(ρ) sin [2(mφ + z − t )], and there-
fore its time average is also independent of φ and z. Then the second-order terms of all the
components of τ and F vanish, except that of τz which turns out to be proportional to H1. So the
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zero-torque condition is enforced by setting H1 to 0. Evaluating E1, H2, and G3 using Eq. (D4) and
inserting them back into Eqs. (B28):〈

u(2)
ρ

〉 = 0, (B29a)

〈
u(2)

φ

〉 = −ρ
[asKm−1(as) + mKm(as)]Gm(as)

2Fm(as)[1 + (m/as)2]
, (B29b)

〈
u(2)

z

〉 = m[(2 − m)Km(as) − asKm−1(as)]Gm(as)

2a2
sFm(as)[1 + (m/as )2]

, (B29c)

where

Gm(as) = as[Km−1(as)2 − Km(as)2] + 2mKm(as)Km−1(as). (B30)

Again, one should multiply the above expressions with ω/kz to obtain the value of 〈u(2)〉 in the
original units.

APPENDIX C: CALCULATION OF W (0)

The work performed by the cylinder on the fluid (in the units used in the main text):

W = − kz

2π (2πa)

∫
u · σs · dA = − kz

2π (2πa)

∫ 2π

0

∫ π/kz

−π/kz

u · σs · n̂Det[g]1/2 dφ dz. (C1)

The leading-order term of W reads

W (0) = − kz

2π (2πa)
ε2

∫ 2π

0

∫ π/kz

−π/kz

[u(1) · σ (1) · ρ̂]a a dφ dz, (C2)

where

εσ (1) = ε
[
η
(∇u(1) + ∇u(1)T) − p(1)

]
(C3)

is the first-order term of the stress tensor given by Eq. (2). Then, from the boundary condition (9),

W (0) � ckz

(2π )2
ε2

∫ 2π

0

∫ π/kz

−π/kz

σ (1)
ρρ (ρ = a) cos(mφ + kzz − ωt ) dφ dz,

and using Eqs. (11) and p(1) = p(10)(ρ) cos(mφ + kzz − ωt ), we find

W (0) = cε2

2

[
2η

du(10)
ρ

dρ
− p(10)

]
a

. (C4)

Substituting (B18a) and (B22) into the above equation:

W (0) = ηε2cω

[(
24m2 − 3ma2

s + 32m − 16a2
s

)
Km+1(as )Km(as )2 + as

(−28m + a2
s − 16

)
Km+1(as )2Km(as )

8asFm(as )[1 + (m/as )2]

+ Km−1(as )
[(

4m − a2
s

)
Km+1(as ) + masKm(as )

]
Km(as ) + 8asKm+1(as )3 + 2m(m + 8)Km(as )3

8Fm(as )[1 + (m/as )2]

]
. (C5)

APPENDIX D: THE (m = 1, kz = 0) CASE

Here we present the calculation for m = 1 and kz = 0. In this case, the radial coordinate of a
surface point at (φ, z) is given by R(φ, t ) = a + b sin(φ − ωt ). We assume that b � a. Again, we
solve Eq. (B2) in a cylindrical coordinate system attached to the cylinder. The no-slip boundary
condition at the surface of the cylinder leads to

u(ρ = R, φ, z) = dR

dt
ρ̂ = −bω cos(φ − ωt )ρ̂. (D1)
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As we assume that b � a, expanding u and p in ε ≡ b/a:

u = εu(1) + ε2u(2) + · · · , (D2a)

p = εp(1) + ε2 p(2) + · · · . (D2b)

Then the leading-order terms of Eq. (D1) give

u(1)(ρ = a) = −ωa cos(φ − ωt )ρ̂, (D3)

u(2)(ρ = a) = −a
∂u(1)

∂ρ

∣∣∣∣
a

sin(φ − ωt ). (D4)

Here the velocity field does not depend on z, so the incompressibility condition, ∇ · u = 0, suggests
that the u(1) can be written as the curl of a stream function ẑ� (1)(ρ, φ):

u(1) = ∇ × [� (1)(ρ, φ)ẑ]. (D5)

Then Eq. (B2) reduces to

∇4� (1) = 0. (D6)

The boundary condition (D3) hints that the solution of the above equation has the following form:

� (1)(ρ, φ) = �
(1)
0 (ρ) cos(φ − ωt ). (D7)

Substituting the above into Eq. (D6) and solving the resulting equation for �
(1)
0 yields

�
(1)
0 (ρ) = L4ρ

3 + L2ρ + L1

ρ
+ L3ρ ln(ρ). (D8)

The components of u(1) are then given by

u(1)
ρ =

(
3L4ρ

2 − L1

ρ2
+ L3 ln(ρ) + L2 + L3

)
cos(φ − ωt ),

u(1)
φ = −

(
L4ρ

2 + L2 + L3 ln(ρ) + L1

ρ2

)
sin(φ − ωt ),

u(1)
z = 0.

To avoid the diverging behavior of velocity field at ρ → ∞, we set L4 and L3 to zero. That gives

u(1)
ρ =

(
− L1

ρ2
+ L2

)
cos(φ − ωt ), (D9)

u(1)
φ = −

(
L2 + L1

ρ2

)
sin(φ − ωt ), (D10)

u(1)
z = 0. (D11)

Using the boundary condition (D3), we find that L1 = a3ω/2 and L2 = −aω/2. So the final
expressions of the components of u(1) are

u(1)
ρ = −aω

2

(
a2

ρ2
+ 1

)
cos(φ − ωt ), (D12)

u(1)
φ = −aω

2

(
a2

ρ2
− 1

)
sin(φ − ωt ), (D13)

u(1)
z = 0. (D14)
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Therefore, in the laboratory frame, the leading-order velocity field at ρ → ∞ will be

− lim
ρ→∞ u(1)ε = bω

2
cos(φ − ωt )ρ̂ − bω

2
sin(φ − ωt )φ̂ = bω

2
cos(ωt )x̂ + bω

2
sin(ωt )ŷ. (D15)
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