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Surfactants can have a detrimental effect on the drag reduction in shear flow over
superhydrophobic surfaces in Cassie state. While surfactant-free gas-liquid interfaces are
often well approximated as shear-free, surfactants can impede the flow by stacking up
in front of obstacles. We study shear-flow along an array of narrow gas-filled grooves
of finite length embedded in an otherwise planar surface, with the gas-liquid interface
protruding slightly above or below the plane. Assuming immiscible surfactants forming an
incompressible, inviscid surfactant phase at the gas-liquid interfaces we employ a recently
proposed model [J. Fluid Mech. 949, A34 (2022)] for addressing this situation. Using a
domain perturbation technique together with the Lorentz reciprocal theorem we obtain
the slip length characterizing the flow over such surfaces to second order in the maximal
interface deflection as a small parameter. We find that within the range of moderate inter-
face deflections studied, the slip length for flow over such surfaces is negative (positive)
for surfaces protruding above (below) the surface and is much smaller than for flow over
a corresponding surfactant-free interface. Thus, contrary to expectations of reduced drag
in flow over superhydrophobic surfaces in Cassie state, surfactant covered interfaces can
even be detrimental for drag reduction in the limit where surfactants act as an effectively
incompressible surface-fluid. This has important implications for the appropriate design of
superhydrophobic surfaces for reducing flow resistance.

DOI: 10.1103/PhysRevFluids.8.044002

I. INTRODUCTION

Superhydrophobic surfaces containing gas-filled cavities are a prototypical example for surfaces
promising the reduction of drag in near-wall flow of liquids [1,2]. This promise is supported when
the gas-liquid interface can be considered nearly stress-free due to the low gas viscosity compared
with the viscosity of the liquid. An illustrative example is an array of gas filled grooves embedded
in a planar surface as sketched in Fig. 1(a) over which a liquid is forced to flow by the motion of a
plate moving at some distance in parallel with the structured surface. For a flat gas-liquid interface
an analytical description is known [3,4], which was later extended to account for deformations of
the interface [5–11] or for describing liquid infused surfaces, where the gas is replaced by a liquid
immiscible with the main liquid [12,13]. Experimentally, the drag reduction is readily characterized
using a viscosimeter by measuring the stress in a shear flow over such surfaces in setups similar
to the one sketched in Fig. 1(a) and it is customary to introduce an effective slip length as a more
tangible measure for drag reduction than stress itself [1].

It has long been known that even small amounts of surfactants can influence the flow at gas-liquid
interfaces by stacking up in front of obstacles [14,15] or aggregating at the downstream hemisphere
of bubbles rising in a liquid [16], to give just two examples. For this reason they have been
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FIG. 1. (a) Sketch of the configuration under investigation with a liquid in the gap between two parallel
plates separated by a distance d . The lower surface contains an evenly spaced array of parallel long, narrow
gas-filled cavities of width 2a and length � (with � � d, a) at a pitch of 2b. The upper plate moves at velocity
w = γ̇ d in the z direction, driving a Couette flow along the grooves. The planar region of interest, indicated
by the dashed rectangle, is sufficiently far away from the ends of the grooves such that the deflection h(x) of
the gas-liquid interface can be considered independent of z. (b) Region of interest in the x-y plane, straddling
a single groove. The gas-liquid interface S is assumed to have the shape of a circular arc and is laden with an
insoluble, incompressible surfactant. The lower walls L± are no-slip surfaces while the upper wall T moves
at velocity w = γ̇ d in the direction normal to the plane of the figure. By symmetry, the sides �± are no-shear
surfaces.

aptly described as “hidden variables” influencing fluid flow [17]. Correspondingly, their impact
was also observed in flow over superhydrophobic surfaces [18–23], where surfactants stack up at
downstream edges of gas-filled cavities or upstream of pillars piercing the interface. Attempts to
describe such flows have focused mostly on rectangular gas-filled cavities parallel or tangential to
the flow direction [24–27] or their counterparts for liquid infused surfaces [28]. Sufficient surfactant
coverage can drastically reduce the drag-reduction properties of superhydrophobic surfaces when
Marangoni stresses within the interface due to gradients in surface tension become of the same
order of magnitude as viscous stress applied to the surface. For large Marangoni number, Langmuir
monolayers of insoluble surfactant molecules can even become effectively incompressible [17],
when the surface pressure within in the surface film effectively inhibits compression. In this case
the gas-liquid interface can become partially or completely immobilized [21,26,29] in case of flat
interfaces. However, generally the pressure in the liquid and the gas trapped in the cavities are not
necessarily the same, implying a curved interphase between them. In such situations recirculation
zones have been observed experimentally at the curved gas-liquid interface when covered by a
nearly incompressible surfactant film [22,23]. Recently, we have proposed a model describing
the flow over a long, narrow cavity covered by an incompressible surfactant phase [30], which
compares favorably with the flow pattern observed in the experiments by Song et al. [22]. The
nonvanishing interface velocity observed in this case naturally raises the question whether such
surfaces are still suitable for drag reduction despite the presence of surfactants. Here we therefore
extend the theoretical analysis of flow over a single gas-filled groove covered by an incompressible
surfactant phase to flow over an array of such grooves in order to investigate the effective slip
expected in this situation. Note that in the limit of large groove separation this was recently also
investigated by Rodriguez-Broadbent and Crowdy [31] using a superposition of the velocity fields
for flow over single grooves to obtain the shear stress far from an interface with a dilute array of
grooves covered by incompressible surfactant. In the present analysis no restriction is made for
the separation between grooves, allowing interaction between the velocity fields at neighboring
grooves.

We will proceed as in Baier and Hardt [30] by using a domain perturbation technique to obtain
the velocity field as an expansion in the interface-deflection as a small parameter. However, here we
shall mainly be interested in integral properties such as the stress on a moving surface driving the
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forcing shear flow or the effective slip length for shear flow over a surface containing such grooves.
As we will see, the Lorentz reciprocal theorem allows us to obtain these quantities to second order in
the interface deflection when the velocity field is obtained to first order only. The analytical results
are complemented by numerical calculations.

II. MODELING AN INCOMPRESSIBLE SURFACE FLUID

A sketch of the investigated configuration is shown in Fig. 1(a). An incompressible Newtonian
liquid of viscosity μ fills the gap between two parallel plates separated by a distance d . The lower
plate lies in the x-z plane and contains a periodic array of long, narrow gas-filled grooves of width 2a
and length � at a center-to-center separation of 2b. The lower plate is at rest, while the unstructured
upper plate moves at a constant velocity w = γ̇ d in the z direction parallel to the grooves, driving
a Couette flow between the plates. We assume a small difference in pressure between the gas in the
groove and in the fluid, such that the gas-liquid interface is deflected slightly above or below the x-z
plane. For � � d and considering a region far from the ends of the grooves, the deflection, y = h(x),
of the gas-liquid interface has the form of a circular arc and can be considered independent of the
position z along the grooves such that the flow velocity w = w(x, y)ez becomes uni-directional and
translationally invariant along the grooves. We can then pick a region of interest � as one unit
cell with width 2b perpendicular to and straddling one of the grooves, indicated by the dashed
line in Fig. 1(a) and shown in the x-y plane in Fig. 1(b). Under these conditions the Navier-Stokes
equation governing the velocity field reduces to the Laplace equation

∇2w(x, y) = 0 in �, (1)

with periodic boundary conditions

∂xw(±b, y) = 0 on �± (2)

on the sidewalls and no-slip Dirichlet conditions

w(x, 0) = 0 on L±, (3)

w(x, d ) = γ̇ d on T (4)

on the solid sections of the stationary lower wall and the translating upper wall. The gas-liquid
interface S is assumed to have the form of a circular arc and covered by an incompressible inviscid
surface fluid. Since the grooves are of finite extent, there is no net flow of the surface fluid along the
groove such that conservation of its mass demands∫

S
w(x, y)ds = 0, (5)

where the integral is along the arc of the interface lying in the domain of interest. Thus, when the
fluid follows the main flow direction on some parts of the gas-liquid interface, the flow direction
must be in the opposite direction on other parts of the interface. The driving force of this flow
reversal is the surface pressure (or Marangoni stress) in the surface fluid opposing compression. In
Ref. [30] it was shown that the tangential stress balance on the interface becomes

n · (μ∇w) = ∂z� = c on S, (6)

with a constant gradient in surface pressure ∂z�(z) = c opposing compression of the surface fluid
by the viscous stress from the liquid, while neglecting the influence of the gas in the groove due
to its low viscosity compared with the liquid. The so-far undetermined stress c in (6) is fixed by
the integral mass conservation condition (5) on the interface and similar to the pressure acting
as a Lagrange multiplier for the incompressibility condition of stationary Stokes flow derived
from minimizing energy dissipation [32], it can be viewed as a Lagrange multiplier ensuring
incompressibility of the surface fluid [30]. For further justification of this model and a discussion
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of it limits of applicability we refer the reader to the Appendix of Ref. [30]. Briefly, the response of
the interfacial surfactant concentration � to an applied tangential shear stress τ along the interface
can be characterized by the Gibbs elastic modulus E = �(∂�/∂�) = −�(∂γ /∂�), indicating the
change in interfacial pressure � or surface tension γ with interfacial surfactant concentration �

[17]. At equilibrium, an applied shear stress τ along a groove of length � is compensated by a
corresponding Marangoni stress 
�/� � (E/�)(
�/�) due to a variation 
� in surfactant density
over a length scale �. Thus, for large Marangoni number, Ma = E/(τ�), the interfacial surfactant
phase becomes virtually incompressible, 
�/� � 1. Additionally, since concentration gradients
are small, interfacial diffusion can be neglected and surfactant transport is dominated by convection
(provided the corresponding Péclet numbers are not too small), such that equation (5) is an integral
statement of the equation of continuity for surfactant transport in the limit of large Marangoni
numbers, while equation (6) reflects the balance between Marangoni stress and viscous stress.

It is easy to find a solution to the above flow for vanishing deflection h(x) = 0 of the interface.
We note that Couette flow between parallel plates,

w0(x, y) = γ̇ y, (7)

has a constant shear rate γ̇ throughout and therefore solves (1) with boundary conditions (2)–(6)
at an interfacial shear stress c = γ̇ /μ. The interface thus becomes completely immobilized in this
case. As edge cases in the limit of large surfactant coverage, this situation was already studied
previously, [21,26,29], and we recognize the incompressibility condition used here as the limiting
case for flow at large Marangoni number [30].

A. Dimensionless formulation and domain perturbation

Using the scale a for length and u = aγ̇ for velocity, we introduce the dimensionless coordinates
(X,Y ) = (x/a, y/a) and a dimensionless velocity W (X,Y ) = w(aX, aY )/(aγ̇ ) which obeys the
Laplace equation (1)

∇̃2W (X,Y ) = 0, (8)

where ∇̃ is the gradient in the dimensionless coordinates (X,Y ). With B = b/a and D = d/a, the
periodic boundary conditions (2) and Dirichlet conditions (3), (4) on the solid wall sections become

W (X, 0) = 0, 1 � |X | � B, (9)

W (X, D) = D, 0 � |X | � B, (10)

∂XW (±B,Y ) = 0, 0 � Y � D. (11)

Parametrizing the interface S by Y = H (X ) = h(aX )/a, the integral mass conservation of the
surface fluid (5) and stress condition (6) at the interface become

0 =
∫ 1

−1
W (X, H (X ))

√
1 + [H ′(X )]2dX, |X | < 1, (12)

C = [−∂X H (X )]∂XW (X,Y ) + ∂Y W (X,Y )√
1 + [∂X H (X )]2

∣∣∣∣
Y =H (X )

, |X | < 1, (13)

where C = c/(μγ̇ ) is the dimensionless stress along the interface.
We characterize the interface by its maximal protrusion ε = H (0) = h(0)/a above the x axis,

such that it is described as a segment of a circle of radius r/a = |ε + ε−1|/2 and center at Y =
y/a = (ε − ε−1)/2 on the y axis. For small deflections, the interface is then described, up to second
order in ε, by

H (X ) = εH1(X ), H1(X ) = 1 − X 2. (14)
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To obtain the velocity field we proceed as in Baier and Hardt [30] by performing a domain
perturbation [33] in the dimensionless deflection ε with an expansion of the velocity field W and
tangential shear stress C around the solution (7) for a flat interface to second order in ε:

W (X,Y ) = Y + εW1(X,Y ) + ε2W2(X,Y ), C = 1 + εC1 + ε2C2. (15)

Inserting the expansions (14) and (15) into the boundary conditions (12) and (13) on S leads to their
projection onto the segment L0 of the real axis up to second order in ε as

0 =
∫ 1

−1

{
ε[W1(X, 0) + H1(X )] + ε2[W2(X, 0) + H1(X )∂Y W1(X, 0)]

}
dX, (16)

and

εC1 + ε2C2 = ε∂Y W1(X, 0) + ε2
{
∂Y W2(X, 0) − ∂X (H1(X )∂XW1(X, 0)) − 1

2 [∂X H1(X )]2
}
. (17)

The domain perturbation thus considers a projection of the boundary conditions on S onto the
segment L0 of the x axis and the velocity field can be obtained order by order in ε by solving the
Laplace equation (8) for each Wi(X,Y ) in the rectangle �0 = {(X,Y )| − B � X � B, 0 � Y � D}
using the projected boundary conditions on L0.

We note that the integral boundary condition (16) fixes the average velocity at order ε2 on the
real axis once the velocity at order ε1 is known. As we will see in Sec. II C, this is enough for
determining the average shear rate on the moving wall to order ε2, allowing us to restrict evaluating
the velocity field to order ε1.

B. Velocity field

The Laplace equation (8), the condition of periodicity (11) and the Dirichlet boundary condition
(9) at the lower wall apply to all Wi(X,Y ). Since W (X, D) and W0(W, D) fulfill the Dirichlet
boundary condition (10) at the upper wall, the corresponding condition for W1 becomes

W1(X, D) = 0, 0 � |X | � B. (18)

These conditions are accompanied by the stress condition (17) on L0 at order ε1,

∂Y W1(X, 0) = C1, |X | < 1. (19)

The solution to this boundary-value problem was expressed by Philip [3] as the imaginary part of a
holomorphic function fP(Z ):

W1(X,Y ) = −C1WP(X,Y ) = −C1Im[ fP(X + iY )]. (20)

With the Jacobi elliptic functions cn(u, k), cd(u, k) and the complete elliptic integrals of the first
kind

K (k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

,

K ′(k) = K[(1 − k2)1/2], the desired function reads [see Eqs. (8.2) and (8.7) of Ref. [3]]

fP(Z ) = D

K ′(k1)
cn−1

[
cn

(
B−1K (k)Z, k

)
cn(B−1K (k), k)

, k1

]
− Z, (21)

where the elliptic moduli k and k1 are such that

K ′(k)/K (k) = D/B, (22)

k1 = k cd(B−1K (k), k). (23)
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The contribution C1 to the dimensionless stress along the gas-liquid interface is obtained from the
mass conservation condition (16), for which we need the integral of W1 on the x axis. With

B1 = D K (k1)/K ′(k1), (24)

one obtains [see Eq. (3.16) of Ref. [34]]

WP(B, D) = 1

2B

∫ 1

−1
Im[ fP(X )]dX = D(1 − B1/B). (25)

Thus, from (16) with (14), the first-order contribution to the interfacial shear stress becomes

C1(B, D) = 4

3

1

2BWP(B, D)
= 2

3

1

DB(1 − B1/B)
. (26)

We note that in the limiting case where the flow is driven by constant shear stress far from the
interface

lim
D→∞

fP(Z ) = 1

α
arccos

(
cos (αZ )

cos α

)
− Z, α = π

2B
, (27)

and correspondingly for a single groove in the lower plane,

lim
B,D→∞

fP(Z ) =
√

Z2 − 1 − Z, (28)

which agrees with the result obtained in Ref. [30]. The corresponding contributions to the shear
stress on the gas-liquid interface are

lim
D→∞

C1(B, D) = 4

3π

α2

ln (sec α)
, lim

B,D→∞
C1(B, D) = 8

3π
. (29)

Note that C1 > 0 for all B and D.

C. Stress and effective slip: Lorentz reciprocal theorem

The average stress necessary for moving the upper wall at a given velocity with respect to the
lower wall can be obtained by use of the Lorentz reciprocal theorem [35],∫

∂V
n · τ · û dA =

∫
∂V

n · τ̂ · u dA, (30)

where n is a unit normal pointing into the domain, relating stresses and velocities in an integral
over the boundary ∂V of the domain V . Here τ = p1 − μ[∇u + (∇u)T ] is the stress tensor in
an incompressible Newtonian fluid with velocity u and pressure p obeying the Stokes equation
∇ · τ = 0 in some domain V subject to certain conditions on its boundary ∂V . The reference flow
of velocity û and stress τ̂ obeys the same conditions inside V but solves for different conditions on
the boundary.

We take as the main flow the velocity field u = aγ̇W (X,Y )ez obtained by the domain per-
turbation method with expansion (15) and defined in the rectangular domain �0. As reference
flow we take the Couette flow û = γ̇∞yez between parallel plates separated by a distance d with
no-slip boundary conditions. We now apply (30) in �0 in order to obtain the average stress on the
upper wall due to the velocity field W (X,Y ). We note that there is no contribution to either side
of (30) from the symmetry boundaries �± because n · τ = 0 = n · τ̂ there. To the integral on the
left-hand side of (30) only the top wall contributes with − ∫ b

−b τzy(x, d )(γ̇ d )dx since û vanishes on
the lower wall. The right-hand integral has contributions from both the bottom and top wall with∫ a
−a(−μγ̇ )w(x, 0)dx − ∫ b

−b(−μγ̇ )(γ̇ d )dx. Introducing the dimensionless average velocity on the
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x axis,


(B, D) = 1

2B

∫ B

−B
W (X, 0)dX, (31)

and the dimensionless stress required to move the upper wall,

T (B, D) = 1

(−μγ̇ )

[
1

2b

∫ b

−b
τzy(x, d )dx

]
= 1

2B

∫ B

−B
∂yW (X, D)dX, (32)

we obtain from the Lorentz reciprocal theorem

T (B, D) = 1 − 
(B, D)

D
. (33)

Finally, using (16) and (17), we evaluate the average velocity on the x axis in the perturbation
expansion as


(B, D) = 1

2B

∫ B

−B
[εW1(X, 0) + ε2W2(X, 0)]dX

= 1

2B

∫ B

−B
{ε[−H1(X )] + ε2[−H1(X )∂Y W1(X, 0)]}dX

= − 1

2B

∫ B

−B
[εH1(X ) + ε2C1H1(X )]dX = − 2

3B
(ε + ε2C1). (34)

Note that since (16) constrains the average of W2(X, 0), we have obtained 
 at order ε2 without
needing to obtain the velocity field at this order.

Effective slip length

We define the nondimensional effective slip length � in the system with structured plates
separated at a distance D by setting the stress (33) necessary to move the upper plate equal to
the stress in a reference system of parallel flat no-slip plates separated at a distance D + �. Thus
T (B, D) = W (X,D)

D+�
= D

D+�
from which we obtain as definition for the effective slip length

�(B, D) = D

T (B, D)
− D. (35)

For the analytical calculation, using (33) and (34), this becomes

�(B, D) = 
(B, D)

1 − 
(B, D)/D
= −

(
1

D
+ 3B

2ε[1 + εC1(B, D)]

)−1

, (36)

which for large plate separation D simplifies to � � 
. Sufficiently far from the surface, at distances
y � 2b, the detailed influence of the structure at the lower wall becomes negligible and the flow
appears as a simple shear flow with shear rate γ̇ and velocity w ∼ γ̇ (y + a�), indicating that
this definition of the effective slip length is in agreement with the definition in case of unbounded
shear flow over a structured plate [1]. Note that, from (34), 
 = − 2

3B (ε + ε2C1), and hence � is
negative for positive deflection ε, corresponding to an increase in drag compared with a flow over
an unstructured no-slip plate. We will come back to this in the discussion below.

D. Numerical calculations

To go beyond the limitations of the domain perturbation method, the Laplace equation (8) is also
solved numerically with the commercial finite-element solver COMSOL Multiphysics (version 6.1,
COMSOL AB, Stockholm, Sweden), using the “coefficient form PDE” interface. Due to the mirror
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FIG. 2. Velocity W (X,Y ) for (a) ε = −0.1, (b) ε = 0.1 at plate separation D = 0.5 and domain width
B = 1.05. The gray line indicates the iso-contour W (X,Y ) = 0. (c) Velocity on the interface, W (X, H (X ))
(solid line), and analytical approximation, W̃ (X ) [Eq. (37), dashed line] for interface deflections ε = ±0.1.

symmetry with respect to reflection at the y axis, these calculations are performed in a rectangular
domain 0 < X < B, 0 < Y < D, with a circular-arc section, corresponding to the deflected gas-
liquid interface, added or removed above or below the X axis at X < 1, coinciding with the region
to the right of the y axis on Fig. 1(b). As was shown in Ref. [30], it suffices to prescribe the integral
conservation equation (5) as a constraint on the circular arc for modeling the incompressible surface
fluid, and a Dirichlet condition, W = 0, enforces the no-slip condition on the rest of the bottom
surface. A constant velocity W = D is applied on the top surface at Y = D, and a vanishing shear
rate, ∂XW = 0, is assumed on the left and right edges at X = 0 and D, corresponding to a symmetry
condition. We discretize the domain using quadratic Lagrange elements on a triangular mesh with
cells of size hB = 0.025 away from the surface and hS = hB/5 on the circular arc S and the solid
section L+ of the bottom wall, with a maximal element growth rate of 1.01. Using Richardson
extrapolation [36] to assess the grid dependence, it was verified that in the parameter range under
investigation the velocity at the center of the interface W (0, ε), the effective slip length � and the
interface shear rate C differ by at most 1% from the extrapolated results.

Additional calculations were performed in which the boundary condition on the circular arc S
was replaced by a no slip condition, W |S = 0, corresponding to solid protrusions, or a shear-free
condition, n · ∇W |S = 0, corresponding to uncontaminated gas-liquid interfaces.

III. RESULTS AND DISCUSSION

In Fig. 2 we show exemplary plots of the velocity W (X,Y ) for a small plate separation D = 0.5
and narrow pillars between grooves, B = 1.05, obtained by numerical calculation. Qualitatively,
the same picture presents itself for other values of the plate separation D and domain widths B. In
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Fig. 2(a) the interface is curved downward by a maximal deflection ε = −0.1, while in 2(b) the
deflection is upward with ε = 0.1. A striking feature in these graphs are the small values of the
velocity at the surfactant-laden interface, with a nearly linear rise of velocity towards the moving
upper wall. As mentioned, since the grooves have a finite length, surfactant that is transported along
the groove in the same direction as the movement of the upper plate must be transported in opposite
direction on other parts of the interface, as encapsulated in the integral mass conservation (5). To
highlight these regions of recirculating flow we show the isoline W (X,Y ) = 0 in gray with flow in
opposite direction of the movement of the upper plate below this line. This is more clearly seen in
Fig. 2(c) where the velocity W (X, H (X )) on the interface from the numerical calculation is shown
as solid lines for ε = ±0.1. An interface deflected towards the upper wall results in co-flow at
the center of the interface with the corresponding backflow towards the edges of the groove. The
opposite picture presents itself for a negative deflection of the interface.

To put the observed velocities into perspective, it should be noted that flow over a flat shear-free
interface can be expressed by the imaginary part of (21), giving velocities at the center of the groove
of order 1 for sufficiently large D (and of order D for very small plate separation). Flow over an
interface covered by an incompressible surfactant is thus much slower and therefore more akin to
flow over a solid surface with protrusions in or out of the plane of the surface. In particular, in the
case of a flat interface we already noted that the interface remains completely immobilised when an
incompressible surface fluid is present.

To compare with the analytic expression (15) for the velocity field on the interface, we expand
W (X, εH1(X )) to first order in ε as

W̃ (X ) = εH1(x) + εW1(X, 0), (37)

with H1(X ) from (14) and W1(X, 0) from (20). Not only is this expression to exactly the same
order in ε as W (X, εH1(X )) itself, but it is also more in line with the approximation (16) used
as the projected integral boundary condition on the interface. The velocities W̃ (X ) are shown as
dashed lines in Fig. 2(c) for the same configurations as in the numerical calculations. As can be
seen, while the order of magnitude for the velocity is captured by the analytical expression, there
is a noticeable difference between the numerical and analytical values even for this moderate value
of the deflection. This is also apparent in the fact that at this order in the expansion the analytical
approximation W̃ (X ) is symmetric in ε, while the numerical results show that this symmetry is only
approximate. This is to be expected, as we have only obtained the velocity as a linear approximation
around ε = 0. However, since our main interest is the average shear stress T , or equivalently the
apparent slip length �, which is known to second order in ε, better agreement is to be expected for
these quantities even at moderate deflections. Nevertheless, the analytic expression already predicts
a monotonic increase in the velocities at the interface with increasing deflection and the small values
compared with a shear-free interface.

The dependence of the interfacial velocity scale, encoded in W (0, ε) at the center of the meniscus,
on ε is shown in the first row of Fig. 3 for D = 25, 1 and 0.5, respectively, and for variable widths
B = 1.05, 1.5, and 4 of the unit cell. As extreme values for the interface deflection are unlikely to
become experimentally accessible, we restrict the analysis to deflections between ε = ±0.5 for D =
25 and 1, and ε = ±0.45 for D = 0.5. For comparison, the analytical expression W̃ (0) is plotted
with filled symbols between ε = ±0.3, while the numerical values are shown using open symbols. It
is apparent that there is some nonlinearity in the numerically obtained magnitude of the interfacial
velocity with the deflection, particularly pronounced at small plate separations D, explaining the
relatively poor performance of the analytical expression (37) even at moderate deflections under
these conditions. However, qualitatively the most striking feature, namely, the small magnitude of
the interfacial velocity scale, is still captured. Note that for positive deflections the velocity scale
increases with decreasing plate separation, but still remains much smaller than the velocity of the
upper plate even for the extremely small gap at D = 0.5 and ε = 0.45. Also note that there is little
difference between results obtained for wide spacing between the grooves, B = 1.5 and B = 4,
where the velocity curves lie practically on top of each other, indicating little influence between
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FIG. 3. Velocity at the center of the interface, W (0, ε), effective slip length � and interfacial shear rate C
for plate separations D = 25, 1 and 0.1. Open symbols correspond to numerical calculations with the values of
B listed in the legend, while filled symbols correspond to the analytical approximations (37) with (20), (26) for
W , (36) with (26) for �, and (26) for C.

neighboring grooves on the flow. Naturally, for small plate separation D this cross-talk is even
reduced.

The main property of interest in this investigation is the average stress at the upper plate,
as this is more directly accessible to experiments in a viscosimeter than the interfacial velocity.
More specifically, we are interested in the deviation between the necessary applied stress in this
configuration compared with the corresponding set-up with flow between unstructured plates at
the same separation D, and will therefore focus on the effective slip length � defined by (35).
For the same geometric configurations as for the interfacial velocities, the effective slip length is
shown in the second row of Fig. 3. Numerically, � is derived directly from the average shear
at the upper surface together with the definition (35), and the corresponding values are shown as
open symbols. The analytical approximation for � is obtained from (36) using (26) and shown as
filled symbols. As can be seen, there is excellent agreement between the numerical and analytical
values even up to |ε| = 0.3 for sufficiently large plate separation, with the analytical expression
nicely capturing the nonlinear behavior as function of ε. Nevertheless, as for the velocities, the
agreement is significantly poorer for small plate separation D = 0.5. It is interesting to note that
the numerically obtained effective slip lengths � are nearly independent of D within the range
of parameters investigated. However, the main take-away is that the slip lengths are negative for
positive interface deflection and positive for negative deflection. Thus, for ε > 0 the stress at the
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FIG. 4. Effective slip length �, derived from numerical calculations, for plate separation D = 25 and the
values of B listed in the legend corresponding to (a) interfaces S covered with incompressible surfactants (open
symbols), solid protrusions (solid lines) and (b) shear-free interfaces (dashed lines).

upper wall is larger than required for establishing the flow between unstructured plates at the same
separation D. Due to the small velocities at the interface this is to be expected and the conditions
are rather similar to flow over a wall with solid protrusions in and out of the domain. The situation
is thus very different from the expectation one may have from flow over a striped superhydrophobic
surface with clean interfaces. Obviously, a sufficient coverage of the interface with surfactants is
strongly adverse to the expected slip-enhancement of superhydrophobic surfaces when bounded
cavities are used, enforcing recirculation of surfactant on the interface.

Finally, we report the interfacial stress C in the third row of Fig. 3. As the interfacial stress derives
from the gradient in surface pressure, too large values may lead to breakdown of the interface layer
[37] and may in some situations limit the applicability of the simple model for the incompressible
surfactant layer used in the analysis. Numerically, C = ∂Y W (0, ε) is most easily evaluated at the
center of the interface, while the analytic results are derived from (26). Since in the present analysis
C is only evaluated to first order in the interface deflection ε, the corresponding expression is limited
to small deflection, but nevertheless captures the order of magnitude of the interfacial stresses.
Nevertheless, significantly larger stresses can occur for small gaps and large positive deflection. An
interesting feature is the nonmonotonicity of C as function of ε for large gaps D = 25 and B = 1.05
due to the interaction between velocity fields at neighboring cavities.

As we have seen, in the case where the gas-liquid interfaces are covered by an incompress-
ible surfactant phase, the velocities at the interface remain far below the values expected at an
uncontaminated gas-liquid interface with a shear-free boundary condition. It is thus instructive to
compare the results for the effective slip length obtained for the surfactant covered interface with
results where the interface remains stationary, corresponding to solid no-slip protrusions, or where
the interface is shear-free, corresponding to uncontaminated gas-liquid interfaces. We focus here
on a large plate separation D = 25, but analogous results are obtained in the cases with D = 1
and 0.5 considered before. Figure 4(a) shows a direct comparison between the effective slip length
for flow over an array of interfaces covered by an incompressible surfactant phase and flow over
corresponding solid protrusions. As expected from the small interface velocities observed at the
surfactant covered interface, there is little difference between the slip length obtained in these cases.
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Nevertheless, the values for the slip length in the case of surfactant covered interfaces consistently lie
slightly above the corresponding values for the stationary interface, indicative of the mobile nature
of the interface in the former case. Note that these findings are in agreement with the observations
recently made by Rodriguez-Broadbent and Crowdy [31] for flow over such surfaces in the dilute
(large B) limit of large separation between cavities. For reference, the effective slip length in the
case of an uncontaminated interface, approximated by a shear-free surface, is shown in Fig. 4(b).
As expected, in particular for small B, the reduction in drag at the partially stress-free structured
plate leads to a consistently positive and significantly larger slip length than in the other two cases.
Nevertheless, we remark that in other cases such as flow over surfaces with an array of bubbles
or transverse gas-filled ridges, the effective slip length can even become negative for large enough
protrusions of the bubbles into the channel despite a shear-free gas-liquid interface [2,38–43].

IV. CONCLUSION AND OUTLOOK

We have investigated the influence of an incompressible surfactant phase at the gas-liquid
interface on the apparent slip in shear driven flow over a superhydrophobic surface containing a
regular array of gas-filled grooves. Since the gas-liquid interfaces are bounded by the edges of
the cavities and the surfactant is assumed to be insoluble in the liquid, mass conservation within
the surfactant phase demands that the net flow of surfactant along the grooves vanishes. For flat
gas-liquid interfaces this leads to complete immobilization of the interface, while in the case of
curved interfaces a recirculating flow pattern appears. For positive deflection of the interface into
the fluid region the flow is in the direction of the applied shear stress at the centerline of the groove
with recirculating flow at its edges, and vice versa for negative deflection below the plane of the
structured wall. In all cases the maximal velocity at the interface remains far below the velocity
one expects for a clean, approximately shear-free interface within the range of moderate interface
deflection studied. Indeed, compared with the case of a planar no-slip surface, a higher (or lower)
shear rate is necessary to drive the flow along the superhydrophobic surface with interfaces curving
into (or out of) the fluid domain due to the presence of the incompressible surfactant phase, and this
is reflected in a negative slip length. In this respect flow over the surfactant laden interfaces thus
rather resembles a situation of flow over a surface with corresponding no-slip protrusions extending
above or below its plane. For large enough plate separations D the derived analytic expression for
the effective slip length poses an excellent approximation for the numerically obtained values even
at moderate deflections ε.

Note that in an even stricter sense the argument for immobilization of the interface also extends
to flow in transverse direction over the array of superhydrophobic surfaces covered by a sufficient
amount of insoluble surfactant. For a flat interface this was investigated in Refs. [26–29]. In this case,
an explicit balance between the applied viscous shear stress and the Marangoni stress within the
surfactant film was performed to find the surfactant concentrations at the interface. At sufficiently
large Marangoni number, or correspondingly large surface coverage, and sufficiently large Péclet
number, the interface becomes effectively immobilized. The same also applies to transverse flow
over curved interfaces, where again the surfactant distribution adjusts such that Marangoni stress
balances the shear stress for flow over a corresponding immobilized surface. This requirement
is weaker than, but includes the limiting case of an effectively incompressible surfactant phase.
Thus, slow flow at any angle over a superhydrophobic surface containing an array of gas-filled
grooves with an interface covered by an incompressible surfactant phase, can be decomposed into
its tangential component investigated here and a corresponding transverse component of flow over
corresponding solid protrusions, and will have a tensorial character similar to anisotropic Poiseuille
flow between textured plates [44–46].

An important criterion for the design of surfaces aimed at near-wall drag reduction by incorpo-
rating gas-filled cavities can be derived from the present analysis, as surfactants are ubiquitous in
such applications. Since surfactants can stack up at the edges of bounded cavities it becomes advan-
tageous to design surfaces containing effectively unbounded interfaces, such as superhydrophobic
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arrays of posts or pillars in the partially wetted Cassie state. However, an unbounded gas film may
become more easily drained from the surface, leading to a collapse into the fully wetted Wenzel
state. An alternative approach may therefore be a surface design containing regions where surfactant
can stack up without affecting the flow and from where surfactants can be diverted, removing them
from the functional sections of the interface.
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