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Magnetorheological fluids span an astounding range of applications. Investigating such
systems provides insight into the relationships between the rheological properties and the
imposed flow and magnetic conditions, thus aiding in the processing of the magnetorheo-
logical fluids. In this study, we apply an in-house Stokesian dynamics code to investigate
the dynamics, microstructures, and rheological properties of magnetorheological fluids
under constant magnetic fields with different directions and magnitudes. A spectral Ewald
method is applied to improve the computational capability. Constrained two-dimensional
and fully three-dimensional simulations are conducted, and the results are compared. A
magnetic-thickening phenomenon is observed in both the constrained two-dimensional and
fully three-dimensional simulations, when the magnetic field is in the shear-flow-gradient
direction. However, a magnetic-thickening phenomenon is observed in the constrained
two-dimensional simulation while a magnetic-thinning phenomenon is observed in the
fully three-dimensional simulation when the field is in the shear-flow direction.
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I. INTRODUCTION

Magnetorheological (MR) fluids and electrorheological (ER) fluids are composed of param-
agnetic or dielectric particles and a solvent. They have drawn extensive interest since the first
introduction by Rabinow [1] (MR fluid) and Winslow [2] (ER fluid). Upon an application of an
external field, the interactions between the induced dipoles of the particles cause clusterings of
particles. Formations of structures that are subject to external fields result in changes of apparent
viscosity over several orders of magnitude, and these changes are often rapid and reversible. This
intriguing property causes MR and ER fluids to be great candidates for applications that require con-
trollable mechanical strength, such as shock absorbers and dampers. External magnetic or electric
fields can also control the crystal structures as well as the resulting transport and optical properties,
which makes such suspensions appealing for fabrications of composites by self-assemblies of parti-
cles. Examples include one-dimensional assembly into microwires [3,4], two-dimensional assembly
into hexagonal sheets [5–7] and asters [8], and three-dimensional assembly into superlattices [9].
The active response of a particle to an external field also makes particle assembly appealing for
artificial microswimmers [10–12].

Properties of suspensions of paramagnetic particles at equilibrium, such as particle distribution,
permeability or conductivity, and optical responses, depend on the balance among external forces,
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interparticle forces, and Brownian effects. Thus, a theoretical and numerical prediction of the
equilibrium properties depends largely on the description of the magnetic interactions between
particles. An exact calculation of the magnetic forces of particles requires a solution to the Laplace
equation of potential with appropriate boundary conditions [13]. The field is formulated by taking
the gradient of the potential and is utilized to construct the Maxwell stress tensor. The magnetic force
is then calculated as an integration of the Maxwell stress tensor over the surface of the particle. This
method includes both many-body interactions and multipoles, but it bears the cumbersomeness that
is not suitable for simulations of a large number of particles. In fact, analytic expressions only exist
for a small number of particles with highly symmetric configurations [14,15]. As an alternative,
only dipolar interactions are considered in most theoretical and numerical studies. Among those
studies, the fixed-dipole model is the most widely used one because of its simplicity [16–25]. In
the fixed-dipole model, the particles are considered to only be induced by an external field; thus,
the dipoles are treated as constants, independent of the configurations of particles. The fixed-dipole
model neglects many-body interactions, and it is only accurate at large particle separations or low
volume fraction of particle suspensions.

A more accurate model, the mutual-dipole model [26], assumes that a particle is not only
induced by an external field but also by its neighboring particles. A disturbance to the magnetic
field is generated by a distribution of dipoles, and each dipole is affected by the magnetic field.
The dipole and magnetic field are therefore obtained simultaneously by solving a linear system
that involves matrix inversion. The high computational cost of the mutual-dipole model prohibits
its extensive use, but algorithms can be modified to improve the computational efficiency, and a
modified algorithm will be discussed later in this work.

The mutual-dipole model has shown better accuracy than the fixed-dipole model at closer
particle-particle separations [15], and the predictions of phase behavior of crystal structures of
particles at equilibrium have shown very different results when comparing these two models.
The phase behavior that is modeled by the fixed-dipole model is predicted to be identical for
particles with different susceptibilities [27,28]. But, the mutual-dipole model predicts different
phase behavior for particles with different susceptibilities [29].

Beside the models that are introduced above, Keaveny and Maxey [15] introduced a finite-dipole
model by replacing the point dipole with a Gaussian kernel, Klingenberg et al. [30] combined the
fixed-dipole model with an ad hoc pairwise additive magnetic force as a correction for closely
separated particles, and Bonnecaze and Brady [31,32] constructed a capacitance tensor that includes
both a far-field part that accounts for many-body interactions and a near-field part that accounts for
higher multipoles. The algorithm by Bonnecaze and Brady [31,32] is similar to the hydrodynamic
model of Stokesian dynamics [33–36], which will be discussed in detail later.

Nonequilibrium properties, such as dynamical and rheological properties, depend not only
on the interactions that are caused by external forces, interparticle forces, and Brownian effects
but also on hydrodynamic interactions. An accurate description of the hydrodynamic interactions
becomes crucial in predicting the dynamical and rheological properties of suspensions of magnetic
particles. Among many numerical techniques, such as the lattice Boltzmann method (LBM) [37],
the boundary element method (BEM) [38], the direct numerical simulations (DNS) [39], and so
on, Stokesian dynamics [35] has been successfully implemented in many numerical studies of
rheological properties of colloidal suspensions on account of its accuracy and efficiency. Stokesian
dynamics is a molecular-dynamics-like method that does not require resolving discretization of a
fluid domain or the boundaries of the particles. In Stokesian dynamics, many-body interactions are
calculated by constructing a far-field mobility tensor, while two-body interactions that account for
near-field couplings are added in a pair-wise manner [33]. Although Stokesian dynamics bears the
complexity of manipulations of large dense matrices, this complexity can be alleviated by using
iterative schemes, such as the Krylov subspace method [40], that are combined with particle-mesh
techniques in later works by Brady and his coworkers [41–43].

Either computational studies of MR fluids utilize simplified electromagnetic and/or hydrody-
namic models [16–22] that cannot capture the nonequilibrium structures accurately, or they utilize
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accurate models that are limited to small-scale simulations [32,44]. In this work, we use the
mutual-dipole model [15,29] and the Stokesian dynamics [35,41] method to simulate the dynamics
of magnetic suspensions that neglect Brownian motions and to calculate the rheological properties
of such suspensions. The spectral-Ewald (SE) method is utilized in calculating both magnetic
interactions and far-field hydrodynamic interactions in this work. The spectral Ewald method
has been successfully implemented in hydrodynamics [43,45], and unlike other particle-mesh
techniques such as particle mesh Ewald (PME) [46], particle-particle-particle-mesh (P3M) [47],
and smooth particle mesh Ewald (SPME) [48], SE is spectrally accurate, and it can separate the
error of truncation of the wave-space sum from the error of meshing. The remainder of this paper is
organized as follows. Section II introduces the mutual-dipole model and the spectral-Ewald method
that solves the magnetic interactions, Sec. III introduces the Stokesian dynamics and the dynamical
system of this study, Sec. IV presents the results of a numerical simulation, and Sec. V summarizes
this work and outlines future directions.

II. MUTUAL-DIPOLE MODEL AND SPECTRAL EWALD

A disturbance to the magnetic field B′ that is caused by a distribution of N point dipoles can be
expressed as

B′(x) = μ0

4π

N∑
i=1

G(x − xi ) · mi, (1)

where μ0 is the free-space permeability, x is the position in space, xi is the position of the
point dipole mi, and G(x − xi ) is the propagator of the dipole when the solution to the Maxwell
equations is written as a multipole expansion [49] such that

G(x − xi ) = ∇∇ 1

|x − xi| = 3(x − xi )(x − xi )

|x − xi|5 − I
|x − xi|3 , (2)

where I is the identity matrix.
The dipole of a particle is induced by both the external magnetic field B∞ and the disturbance

magnetic field B′ such that

mi = 4πa3 χ

μ0

⎛⎝B∞ + μ0

4π

N∑
j=1

′
G(xi − x j ) · m j

⎞⎠, (3)

where a is radius of the particle, χ is the effective susceptibility, and the prime sign beside the
summation means that j = i is excluded from the summation. The effective susceptibility is given
by

χ = μ/μ0 − 1

μ/μ0 + 2
, (4)

where μ is the permeability of the particle. To obtain the dipole of a particle requires that Eq. (1)
and Eq. (3) are to be solved simultaneously. After combining Eq. (1) and Eq. (3) and rearranging
(putting B∞ to one side of the equation), the relation between mi and B∞ becomes

B∞ = �∞ · m, (5)

where B = [(B∞)T , (B∞)T , . . .]T , m = [mT
1 , . . . , mT

N ]T , and �∞ is the potential tensor such that

�∞ =
{

μ0

4πa3χ
I i = j

− μ0

4π
G(xi − x j ) i �= j

. (6)

The infinity sign on �∞ means that the particles are treated as point particles, and only the far-field
interactions are considered here. The potential tensor is to be inverted every time step in a dynamic
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simulation, and it is the source of the complexity [O(N3)] of the mutual-dipole model. The inversion
of the potential tensor is equivalent to an infinite summation of the reflections for the disturbance
field between particles, so the mutual-dipole model accounts for many-body interactions. The same
statement is justified in Stokesian dynamics [33]. Iterative schemes such as the Krylov subspace
method (e.g., conjugate gradient, GMRES, etc.) can be utilized to replace the direct inversion, and
the computational complexity is reduced to O(N2), which is still superlinear. The remainder of this
section discusses the technique that is implemented to further reduce the computational complexity.

When calculating the macroscopic properties of a suspension, virtual boundaries may introduce
the problem of interfacial effects. To overcome these effects, periodic boundary conditions are often
implemented so that the space is occupied by infinite self-replications of an orthorhombic lattice.
Thus, a particle inside the lattice does not only interact with other particles in the same lattice, but
it also interacts with particles, including the particle itself, in image lattices. In a periodic domain,
the magnetic field [Eq. (5)] can be rewritten as

B∞ = μ0

4πa3χ
mi − μ0

4π

∑
p

N∑
j=1

′
G(xi − x j + p) · m j, (7)

where p is the vector of the lattice position {(ILx, JLy, KLz ), (I, J, K ) ∈ Z}, (Lx, Ly, Lz ) are the
dimensions of the lattice, and the prime sign beside the second summation indicates that i = j
is excluded when p = 0. The long-range nature of G precludes a choice of short cut-off distance
and makes the direct summation cumbersome [O(N2)]. Ewald summation, originally introduced
to calculate Coulombic interactions, is a standard technique of treating long-range interactions in
periodic boundary conditions by splitting a periodic G into a short-range part that converges quickly
in real space and a long-range part that converges quickly in wave space. After the application of
Ewald summation by Beenakker’s decomposition [50], the magnetic field [Eq. (7)] is decomposed
into three superposable parts, a self part B∞,0, a real-space part B∞,r , and a wave-space part B∞,k ,
such that

B∞,0 =
(

μ0

4πa3χ
− μ0α

3

3π3/2

)
mi(xi ), (8a)

B∞,r = − μ0

4π

∑
p

N∑
j=1

[(
3yy
r5

− I
r3

)
erfc(αr)

+
(

3yy
r4

− I
r2

+ 2α2 yy
r2

)
2ξ√
π

e−α2r2

]
· m j (x j ), (8b)

B∞,k = μ0

�

∑
k �=0

e−ik·xi e− k2

4α2
kk
k2

·
N∑

j=1

eik·x j m j (x j ), (8c)

where � is the volume of the lattice, k is the wave vector {(2Iπ/Lx, 2Jπ/Ly, 2Kπ/Lz ), (I, J, K ) ∈
Z}, y = xi − x j + p, r = |y|, and α is the Ewald splitting parameter [45]. The details of the
derivation of Eq. (8) can be found in Appendix A.

The real-space part, B∞,r , decays exponentially in the real space as shown in Eq. (8). A cut-off
radius rc therefore can be chosen, and the associated cut-off error εr is calculated as εr ∼ e−α2r2

c .
Similarly, the wave-space part, B∞,k , also decays exponentially in the wave space, as shown in
Eq. (8c). Thus, a cut-off wave number kc can be chosen, and the associated cut-off error εk is
calculated as εk ∼ e−k2

c /4α2
.

The value of α can be chosen arbitrarily, and the overall result is independent of α, but α plays
a significant role in determining the computational load of each part. If α is chosen large, a particle
only interacts with a few neighboring particles, and the computational complexity of the real space
scales as O(N ). The particle-mesh technique implements this strategy to ease the computational load
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in the real-space sum while at the expense of the wave-space sum. This strategy is feasible because
a Fourier transform,

∑N
j=1 e−ik·x j , and an inverse Fourier transform,

∑
k �=0 eik·xi , are embedded in

the wave-space sum. Fast Fourier transform (FFT) can be applied to calculate the wave-space sum,
and the computational complexity can be reduced to O(N log N ). However, since FFT requires a
regularized mesh grid, and the center of the particles do not necessarily coincide with grid points,
some care needs to be taken before a direct implementation of FFT. The particle-mesh technique
utilizes an interpolation algorithm to represent the particles by regularized mesh grids. Lagrangian
interpolation is used in PME [46], B-spline interpolation is used in SPME [48], and a Gaussian
kernel is used in SE [45], which is implemented in this study and is discussed below.

A splitting parameter θ is introduced into the wave coefficient of the wave-space sum, such that

e− k2

4α2 = e− θk2

8α2 e− (1−θ )k2

4α2 e− θk2

8α2 . (9)

Substituting this wave coefficient back into the wave-space sum yields

B∞,k = μ0

�

∑
k �=0

e
θk2

8α2 e−ik·xi e− (1−θ )k2

4α2
kk
k2

· Ĥ (k), (10)

where

Ĥ (k) =
N∑

j=1

e− θk2

8α2 eik·x j m j, (11)

which is the distribution function in Fourier space, and it is the Fourier transform of H (x). Note that
exp[−θk2/(8α2)] is the Fourier transform of [2α2/(πθ )]2/3 exp(−2α2r2/θ ), and exp(ik · x j ) is the
Fourier transform of δ(x − x j ). By the convolution theorem, H (x) can be calculated by an inverse
Fourier transform that

H (x) =
N∑

j=1

(
2α2

πθ

)3/2

e− 2α2 |x−x j |
θ m j (x j ), (12)

which is the distribution function that distributes a dipole m j at x j to the adjacent grid points at x
with a Gaussian kernel. A scaled distribution function in Fourier space is defined as

̂̃H (k) ≡ e− (1−θ )k2

4α2
kk
k2

· Ĥ (k), (13)

which is the Fourier transform H̃ (x). The wave-space field becomes

B∞,k = μ0

�

∑
k �=0

e− θk2

8α2 e−ik·xi ̂̃H (k). (14)

The wave-space field is evaluated by applying the convolution theorem again, becoming

B∞,k = μ0

∫
H̃ (x)

(
2α2

πθ

)3/2

e− 2α2 |xi−x|2
θ dx. (15)

The integration can be completed by utilizing trapezoidal quadrature. This last step is the interpo-
lation of H̃ (x) from grid points to the center of the particle. Note that the dipole of the particle
is distributed to a number of grid points that are closest to the center of the particle and that the
distance between a grid point and the center of the particle |x − xi| is evaluated as the minimum
image distance.

Two sources of errors exist in evaluating the wave-space sum. One source of error is associated
with the cut-off wave number kc that determines the number of grid points in each direction of
the simulation box. The resolution of discretization dictates the accuracy of the FFT. The other
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source of error is associated with the distribution [Eq. (12)] or interpolation [Eq. (15)]. This error is
determined by the number of grid points, P, that are chosen for distribution. An implementation of a
standard FFT algorithm (FFTW package in this study) with a sufficient discretization resolution can
generate an accuracy at machine precision. Thus, the Gaussian kernel in distribution or interpolation
depends exclusively on the value of P, and the minimum wave space error scales as e−Pπ/2 [45].
Since it is exponentially decaying, the accuracy of the SE method increases rapidly by including a
larger value of P.

After the dipoles are evaluated, the total potential energy is [29]

U = −1

2

∑
i

mi · B∞ = −1

2

∑
j,k

(�∞)−1
jk : B∞

j B∞
k , (16)

and the magnetic force on particle i is

FM
i = −∇xiU = 1

2

∑
j,k

∇xi (�
∞)−1

jk : B∞
j B∞

k . (17)

The following property is applied to evaluate the gradient of a matrix inverse [29],

∇xi

(
�∞)−1 = −(∇xi�

∞)
: (�∞)−1(�∞)−1

. (18)

Thus, the magnetic force of particle i becomes

FM
i = −1

2

∑
j,k

(∇xi�
∞)

jk
: m jmk . (19)

Once the dipoles of particles are obtained, the magnetic force of each particle can be calculated by
Eq. (19). A benchmark of the calculation of the dipole using the aforementioned method is shown
in Appendix C.

III. STOKESIAN DYNAMICS AND DYNAMIC SYSTEM

At the low limit of Reynolds number (Re → 0), which is the assumption of this work due to the
small size of the particles, the disturbance velocity u′ is a solution to the Stokes’ equation, and it
can be expressed as an expansion of multipoles (analogous to the magnetic problem) such that

u′(x) = 1

8πη0

N∑
i=1

[(
1 + a2

6
∇2

)
J(x − xi ) · FH

i −
(

1 + a2

10
∇2

)
∇J(x − xi ) : DH

i + · · ·
]
, (20)

where η0 is the viscosity of the solvent, FH
i is the hydrodynamic force of particle i that is located

at position xi, DH
i is the hydrodynamic force dipole of particle i that includes an antisymmetric

component, torque, T H
i , a symmetric component, stresslet, SH

i , and an isotropic component, and
J(x − xi ) is the stokeslet such that

J(x − xi ) = (x − xi )(x − xi )

|x − xi|3 + I
|x − xi| . (21)

In this study and many other studies, the multipole is truncated at dipole level, except for the
isotropic components of the quadrupole and octupole [33,51]. The hydrodynamic forces and
forcedipoles of the particles can be directly related to the velocities and the velocitygradients of
the particles by using Faxén formulas [52], such that

U∞ − U i = FH
i

6πη0a
+

(
1 + a2

6
∇2

)
u′

i, (22a)

�∞ − �i = T H
i

8πη0a3
+ 1

2
∇ × u′

i, (22b)
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E∞ − E i = SH
i

20
3 πη0a3

+
(

1 + a2

10
∇2

)
1

2

(∇u′
i + (∇u′

i

)T )
, (22c)

where U∞, �∞, and E∞ are the translational velocity, angular velocity, and rate of strain of an
imposed flow, respectively; U i, �i, and E i are the translational velocity, angular velocity, and rate
of strain of the particle, respectively; and T H

i and SH
i are the hydrodynamic torque and stresslet of

the particle, respectively. The torque and the stresslet are the antisymmetric and the symmetric
component of the force-dipole DH, respectively. Note that E i is zero for a rigid particle. By
combining Eq. (20) and Eq. (22), a linear system can be written as[

UH

E∞

]
= M∞ ·

[
FH

SH

]
, (23)

where UH = [U∞ − U i,�
∞ − �i]T , FH = [FH, T H]T , and M∞ is called mobility tensor. The

infinity sign is introduced on the superscript because particles are treated as point particles, and
M∞ captures the far-field interactions. In Stokesian dynamics, near-field interactions are added in
a pair-wise fashion to the far-field interactions to construct a grand resistance tensor R, such that

R = (M∞)−1 + R2B − R∞
2B, (24)

where R2B is obtained by solving a two-particle system, and an exact solution exists for a two-sphere
problem [53]. The two-body far-field part R∞

2B is subtracted to avoid double counting, as it is already
included in (M∞)−1. The difference (R2B − R∞

2B) is also known as the lubrication interaction. As
mentioned before, R captures the far-field many-body interactions with a correction of near-field
interactions. The hydrodynamic force and force-dipole can be related to the velocity and the velocity
gradient, such that [

FH

SH

]
= R ·

[
UH

E∞

]
, (25)

where the grand resistance tensor R is made of four submatrices, such that

R =
[

RFU RFE

RSU RSE

]
, (26)

where RFU relates force to velocity, RFE relates force to rate of strain, RSU relates stresslet to
velocity, and RSE relates stresslet to rate of strain. The linear systems of Eq. (23) and Eq. (25)
can be manipulated and solved by using the Krylov subspace method. The details of the derivation
can be found in the work by Swan and Brady [54].

The evaluation of (R2B − R∞
2B) scales as O(N ), since a cut-off radius can be chosen for this

near-field interaction. The evaluation of the far-field interaction M∞ follows the same strategy
that is applied in evaluating �∞ in magnetics by using a periodic stokeslet [50,55]. The periodic
stokeslet is split into two parts: a real-space part that converges exponentially in real space and a
wave space part that is evaluated by using SE [43]. Benchmarks of calculations of hydrodynamic
interactions are shown in Appendix C.

After Eq. (25) is formulated, a balance between the magnetic and hydrodynamics can be built,
such that

FH + FM = 0. (27)

Note that Brownian effects are neglected in this study. The velocity of a particle is then calculated
to be

U = R−1
FU · (FM + RFE : E∞) + U∞, (28)

where RFU is a submatrix of R that relates force to velocity, and RFE relates force to rate of strain.
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Suppose that particles are suspended in a fluid upon which a shear flow, U∞ = (γ̇ y, 0, 0),
is imposed. The hydrodynamic force scales as 6πη0a2γ̇ , and the magnetic force scales as
χ2V 2B2/(μ0a4), where B is the magnitude of the magnetic field. Taking the ratio between the
hydrodynamic force and magnetic force gives a dimensionless parameter,

Ma = 27η0γ̇ μ0

8πχ2B2
, (29)

which is the so-called Mason number [56]. The dynamics of the magnetic suspensions are dictated
by Mason number and the direction of the magnetic field.

The total stress of the suspension is [35]

� = I.T. + 2η0E∞ + 1

V

N∑
i=1

(
SH

i + SM
i

)
, (30)

where I.T. is the isotropic part, η0 is the viscosity of the suspending medium, SH and SM are the
hydrodynamic stresslet and “elastic” stress due to the interparticle forces FM [57], respectively, and
they are given as

SH = RSU · (U∞ − U ) + RSE : E∞, (31a)

SM = −xFM. (31b)

Finally, the relative viscosity is calculated to be

η

η0
= 1 + 1

η0γ̇

1

V

N∑
i=1

(
SH

i + SM
i

)
yx, (32)

where the yx component of the hydrodynamic stresslet and the elastic stresslet are used to calculate
the shear viscosity when the shear flow is imposed in the xy plane, with x being the flow direction
and y being the flow-gradient direction.

IV. RESULTS AND DISCUSSION

A. Simulations of monolayer of magnetic particles in constant fields

In a simulation of a monolayer of particles, the particles are initially placed in a two-dimensional
plane, and the particles remain in the plane through the simulation because of the symmetry
of the magnetic and hydrodynamic interactions (no external force is imposed to constrain the
particles). The interactions are still threedimensional, and a periodic cell replicates itself in the
three-dimensional space to represent an unbounded infinite domain. The monolayer sheets are
separated far away (a distance of 16 particle radii in this study) in the shear-flow-vorticity direction
so that the effect of the separation on the viscosity can be neglected. The viscosity is calculated by
taking an average over the particles, the time steps, and the initial realizations. In the constrained
two-dimensional simulations, a total of 25 particles, 20 strain units, and 20 initial realizations are
applied in the simulations. A constant magnetic field is applied in two directions: in the shear-flow
direction, b ‖ u, or in the shear-flow-gradient direction, b ‖ ∇u, where b is the dimensionless
magnetic field.

When the field is applied in the shear-flow-gradient direction, particles form linear structures
that are perpendicular to the flow direction [Fig. 1(a)] at first. At later times, the linear structures
further interact magnetically, and a more two-dimensional structure is formed [Fig. 1(b)], of which
the major axis points in the flow-gradient direction. The magnetic interactions between particles
give rise to an enhanced resistance to the flow, especially as the structure percolates in the flow-
gradient direction. As the Mason number decreases, i.e., an increase in the magnetic field, the
structures become stronger, and the energy that is required to disturb the structure by the shear flow
subsequently increases. Thus, a magnetic-thickening phenomenon with decreasing Mason number
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FIG. 1. Snapshots of the configurations at strain units γ = 0.25 and γ = 3.45 under different field direc-
tions at the area fraction of φA = 0.45 and Mason number of Ma = 0.05. (a) Snapshot of the configuration at
the strain unit γ = 0.25 when the field is in the shear-flow-gradient direction (b ‖∇u). (b) Snapshot of the
configuration at the strain unit γ = 3.45 when the field is in the shear-flow-gradient direction (b ‖∇u). (c)
Snapshot of the configuration at the strain unit γ = 0.25 when the field is in the shear-flow direction (b ‖ u).
(d) Snapshot of the configuration at the strain unit γ = 3.45 when the field is in the shear-flow direction (b ‖ u).

is observed (the red circular symbols in Fig. 2) when the field is applied in the shear-flow-gradient
direction. Although this result is reminiscent of a shear-thinning phenomenon, i.e., a decrease in the
viscosity as an increase in the Mason number, we choose not to utilize this terminology, which is
traditionally used to describe a reduction in viscosity that is caused by shear-induced orientation of
the structured fluid in the flow direction. In this case, the decrease in viscosity results from an actual
breakdown of the structure, not alignment; thus, we choose to focus on the role that increasing the
magnetic body force, which is typically the case in experimentation, has on the overall rheology of
the fluid.

When the field is applied in the shear-flow direction [Fig. 1(c)], particles form structures that
are parallel to the flow direction. Intuitively, the formed structures will travel along the flow and
slide passing each other, rendering less resistance to the flow. A magnetic-thinning phenomenon is
expected to happen. However, the magnetic interactions drive the columns to further accumulate into
thicker columns [Fig. 1(d)], and the accumulation happens across the shear-flow-gradient direction.
Thus, a magnetic-thickening phenomenon is also observed when the field is applied in the shear-flow
direction (the blue square symbols in Fig. 2).

The dependence of the relative viscosity, ηr (ηr = η/η0), on the Mason number at different area
fractions are shown in Fig. 2. The error bars in Fig. 2 reflect the difference of the viscosity because
of the different initial realizations. Since the motion of the particles is decreased by one degree
of freedom, a minor change in the configuration can cause a major difference in the dynamics
and viscosity. At a high Mason number, when the magnetic interactions are weak, no significant
structures are formed, as any formed structures are easily disrupted by the shear flow. Thus, the
distribution of the particles are more isotropic, and the dependence on the initial realization is weak
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FIG. 2. The dependence of the relative viscosity on the Mason number at different area fractions, (a) 0.075,
(b) 0.15, (c) 0.225, (d) 0.3, (e) 0.375, and (f) 0.45. The viscosity is averaged over the last strain unit. A constant
field b is applied in the shear-flow direction u (blue square symbol) or the shear-flow-gradient direction ∇u
(red circle symbol).

(smaller error bars in Fig. 2 at high Ma). At a low Mason number, however, structures are formed,
and the dependence on the initial realization is more pronounced. A variation in the initial realization
can cause a significant difference in the configuration at steady state and therefore a difference in
the viscosity. As shown in Fig. 3, a simulation of 24 particles in the same initial positions with one
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FIG. 3. A comparison of the configurations and the averaged relative viscosity with similar initial configu-
rations. In (a) and (b), the initial positions of the 24 particles are the same (blue solid line) except 1 particle (red
dash dotted line). The resulting configurations at steady state are shown in (c) and (d). The real-time viscosity
and running-average viscosity are shown in (e) and (f), where the running-average viscosity is calculated by
averaging over every strain unit. (a) Initial configuration No. 1. (b) Initial configuration No. 2. (c) Configuration
at steady state with initial configuration No. 1. (d) Configuration at steady state with initial configuration No.
2. (e) Averaged relative viscosity that starts with the initial configuration No. 1. (f) Averaged relative viscosity
that starts with the initial configuration No. 2.

particle being moved from the upper right to the lower left resulted in configurations that differ at
steady state. Further, at steady state, the viscosity of configuration No. 2 [Fig. 3(f)] is more than 18%
the viscosity of configuration No. 1 [Fig. 3(e)]. Therefore, cautious measures should be taken when
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conducting a constrained two-dimensional simulation, especially at a high area fraction and/or a
low Mason number.

B. Fully three-dimensional simulations of magnetic particles in constant fields

After the two-dimensional constraint is removed, the dynamics of the particles that are suspended
in a fully three-dimensional space are simulated. In most cases, 216 particles are included in a
cubic simulation cell at various volume fractions (from 0.05 to 0.30). As an additional dimension
is exploited, an additional magnetic field can be applied in the shear-flow-vorticity direction, i.e.,
b ‖ ∇ × u.

The dependence of the relative viscosity on the Mason number at different volume fractions are
shown in Fig. 4. At lower volume fractions [Figs. 4(a) and 4(b)], the magnetic interactions are feeble,
as the separations between the particles are large, and the effects of the magnetic interactions are
therefore insignificant or modest. When the field is in the shear-flow-gradient direction, a modest
magnetic-thickening phenomenon is seen, while the dependence on the Mason number is trivial
when the field is in the shear-flow direction or the shear-flow-vorticity direction. At higher volume
fractions, the strength of the magnetic interactions increases. Appreciable magnetic-thickening
phenomena are observed when the field is in the shear-flow-gradient direction (b ‖ ∇u, red circular
symbols in Fig. 4), which is similar to the constrained two-dimensional case. When the field is in the
shear-flow-vorticity direction (b ‖ ∇ × u), linear structures are formed that are perpendicular to the
plane of the shear flow and shear flow gradient. The columnar structures roll and translate along with
the shear flow like rolling rods. At a low Mason number, the strong magnetic interactions generate
fewer columnar structures with larger radial dimension, as shown in Fig. 5(a), where 1 cluster was
formed, while at a high Mason number, the weak magnetic interactions generate more columnar
structures with smaller radial dimension, as shown in Fig. 5(b), where 70 clusters were formed. The
resistance to the flow is larger when the fluid needs to flow around more smaller objects rather than
around a larger object under the same total volume condition. Therefore, under this circumstance,
a magnetic-thinning phenomenon is observed, as shown by the black triangular symbols in Fig. 4.
When the field is in the flow direction (b ∼ u), a magnetic-thinning phenomenon is observed in the
fully three-dimensional simulation, which is inconsistent to the magnetic-thickening phenomenon
in the constrained two-dimensional case. In the constrained two-dimensional simulations, since the
particles are only free to move in two dimensions, the columnar structures can only expand in
the flow-gradient direction, which cause more resistance because of the relative motion across the
flow-gradient direction. As shown in Fig. 1(d), the structure expands in the flow-gradient direction
that occupies half of that dimension. On the other hand, in the fully three-dimensional simulations,
the columnar structures can expand in both the flow-gradient direction and the flow-vorticity
direction [Figs. 5(c) and 5(d)]. The clustered particles in the flow-vorticity directions do not have
relative motions; thus, they have no lubrication interactions. Similar to the case where the field
is in the flow-vorticity direction, at a smaller Mason number, fewer larger structures are formed
[Fig. 1(c)], and at a larger Mason number, more smaller structures are formed, as shown in Fig. 5(d),
where 58 clusters were formed. Moreover, the difference in the size of the error bars between Figs. 2
and 4 should be noted, which is again the result from the difference in the degrees of freedom in
the movement. As the Mason number approaches infinity, the viscosity of the three field directions
converge to a single value, of which the magnetic field is turned off. This single value (η∞) can be
obtained theoretically by calculating a random suspension of force-free particles under a shear flow
with different volume fractions, which is benchmarked by the work of Sierou and Brady [41] (see
Appendix C, Fig. 10).

The green dash dotted lines in Fig. 4 draw the boundaries to the left at values of Ma = 0.05
to which the results have larger numerical errors, as at a low Mason number, the percolation of
particles across the simulation cell becomes noticeable. A small ratio between the dimension of the
simulation cell and the characteristic length scale of the columnar structure can introduce unwanted
artifacts that reduce the accuracy of the results. For instance, in Figs. 4(b) to 4(d), when the field

043701-12



DYNAMICS AND RHEOLOGICAL PROPERTIES OF …

FIG. 4. The dependence of the relative viscosity on the Mason number at different volume fractions,
(a) 0.05, (b) 0.10, (c) 0.15, (d) 0.20, (e) 0.25, and (f) 0.30. The viscosity is averaged over the last strain unit. A
constant field b is applied in the shear-flow direction u (blue square symbol), the shear-flow-gradient direction
∇u (red circular symbol), or the shear-flow-vorticity direction ∇ × u (black triangular symbol).
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FIG. 5. Snapshots of configurations at γ = 20 at volume fraction φ = 0.3 and Mason number Ma = 0.05
[(a) and (c)] and Ma = 0.5 [(b) and (d)], and the field in the flow-vorticity direction [b ‖ ∇ × u, (a) and (b)]
and in the flow direction [b ‖ u, (c) and (d)]. The magnetic field points in the direction that is perpendicular to
the plane of the view, and columnar structures are formed along the direction that is perpendicular to the plane
of the view. The particles in the same cluster are labeled in the same color, and the color shade indicates the
depth of the particles in the plane of view. (a) The snapshot of 1 cluster that is formed (Ma = 0.05, b ‖ ∇ ×
u, γ = 20). (b) The snapshot of 70 clusters that is formed (Ma = 0.5, b ‖ ∇ × u, γ = 20). (c) The snapshot
of 2 clusters that is formed (Ma = 0.05, b ‖ u, γ = 20). (d) The snapshot of 58 cluster that is formed (Ma =
0.5, b ‖ u, γ = 20).

is in the flow-gradient direction, the viscosity at Ma = 0.02 is expected to be larger than, not equal
to or less than, the viscosity at Ma = 0.03. The same observation can be made from the field in the
flow and flow-vorticity directions. A resolution is to increase the dimension of the simulation cell
by including more particles. In Fig. 6, the dependence of the viscosity on the Mason number with
different numbers of particles (keeping the same volume fraction value) is plotted. The viscosity
is normalized by the high-Mason-number viscosity, η∞. The number of the particles is increased
sequentially from N = 108 to N = 864. When the dimension of the simulation cell is increased,
the numerical error at low Mason number is correspondingly improved when the fields are in the
shear-flow and shear-flow-vorticity directions.

In a suspension of force-free particles at the dilute limit, Einstein [58] made a correction to
the viscosity of the suspension, such that η/η0 = 1 + 2.5φ, where φ is the volume fraction. Later,
Batchelor [57] made a second-order correction to Einstein’s viscosity, such that η/η0 = 1 + 2.5φ +
5φ2. In a suspension of particles with external forces, the scaling can be significantly different,
depending on the nature and magnitude of the external force. In Fig. 7(a), the scaling between
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FIG. 6. A comparison of the dependence of the viscosity on the Mason number at different dimensions of
the simulation cell. The volume fraction is kept at φ = 0.15. The number of particles is changed from N = 108
to N = 864. (a) Shear-flow direction b ‖ u. (b) Shear-flow-gradient direction b ‖ u. (c) Shear-flow-vorticity
direction b ‖ ∇ × u.

the relative viscosity (η/η0) and the volume fraction (φ) is drawn. At low volume fraction, the
relative viscosity of the suspension of magnetic particles is close to the force-free particles, which
confirms the validity of the numerical results, since at low volume fraction, the magnetic interactions
are not as significant, and the particles are closer to the force-free particles. The scaling shows

043701-15



TAN, ADENIRAN, AND WALKER

FIG. 7. The scale of the relative viscosity to the volume fraction. The blue dashed line is the Einstein’s
correction [58] to the viscosity at dilute limit, and the black dot dashed line is the Batchelor’s correction [57]
to the Einstein’s viscosity. (a) Relative viscosity scaling. (b) Magnetic first-order correction.

that the viscosity is drastically increased by the introduction of the magnetic field. Figure 7(b)
demonstrates the scalings of relative viscosity with respect to the volume fraction at different Mason
numbers that are obtained from Fig. 7(a) when the volume fraction approaches zero. At high Mason
number, the scaling approaches 2.5 (Einstein’s correction), while at low Mason number, the scaling
is significantly increased by the strong magnetic interactions between particles.

A comparison between the constrained two-dimensional simulation and the fully three-
dimensional simulation has been made in the previous paragraphs. In Fig. 8, a direct comparison
of the viscosity is drawn and the area/volume fraction is normalized by the critical area/volume
fraction, φc, which is the highest possible volume fraction at the hexagonal close packing. The
viscosity is normalized by the high-Mason-number-limit viscosity, η∞. The result shows that
the two types of the simulations yield different magnetic-thickening behavior when the field is in the
shear-flow-gradient direction. A similar reason has been raised to explain the difference when the
field is in the shear-flow direction or the shear-flow-vorticity direction. In a fully three-dimensional

(a) (b)

FIG. 8. A comparison of the relative viscosity between the constrained two-dimensional and the fully three-
dimensional simulations. The magnetic field is in the shear-flow-gradient direction (b ‖ ∇u). The area (φA) or
volume (φ) fraction is normalized by the critical area/volume fraction at the hexagonal packing (φA

c ≈ 0.91 for
areal hexagonal close packing and φc ≈ 0.74 for volumetric hexagonal close packing.) (a) Two-dimensional
simulation result (φA = 0.3, b ‖∇u). (b) Three-dimensional simulation results (φ ∈ [0.05, 0.3], b ‖∇u).
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simulation, the columnar structures are free to expand in the shear-flow-vorticity direction, and no
relative motion is in this direction.

V. CONCLUSION AND OUTLOOK

In this study, the dynamics and rheological properties in terms of shear viscosity are calculated
from the simulations of the suspensions of particles under different constant magnetic fields by
using a in-house Stokesian dynamics code.

The constrained two-dimensional and the fully three-dimensional simulations are conducted, and
the results of the two types of simulations are compared. When the magnetic field is in the shear-
flow-gradient direction, the magnetic-thickening phenomenon is observed in both cases. When the
magnetic field is in the shear-flow-vorticity direction (only feasible in the fully three-dimensional
simulation), the magnetic-thinning phenomenon is observed. When the field is in the shear-flow
direction, the magnetic-thickening phenomenon is observed in the constrained two-dimensional
simulation while the magnetic-thinning phenomenon is observed in the fully three-dimensional sim-
ulation. The difference is rooted in the freedom of the movement of the particles. The comparison
also shows that, when the field is in shear-flow-gradient direction, the constrained two-dimensional
simulation over-predicts the viscosity. The numerical robustness of the simulation method is in-
vestigated by increasing the number of particles in the simulations. Simulating the constrained
two-dimensional cases should draw a caution that, since the movement of the particles miss one
degree of freedom, the structures that are formed can have a notable discrepancy from the real
physics. Based on the results of the fully three-dimensional simulations, a relation between the
volume fraction and the relative viscosity is built at different Mason numbers. The relation grows
stronger when the Mason number is smaller (stronger magnetic field), and it can provide information
for predicting the viscosity of a MR fluid at a given volume fraction of the suspended particles and
a Mason number.

In the future, we expect to change the properties of the magnetic fields, e.g., applying a rotating
magnetic field to see the dependence of the viscosity on the frequency of the field, to include the
Brownian effect in the simulation to see the dependence of the viscosity on the Péclet number, and
to increase the computational capability, e.g., using GPU calculations to simulate larger systems.
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APPENDIX A: EWALD SUMMATION

The propagator G(y) is split into two parts such that

G(y) = ∇∇
(

1

r

)
= ∇∇

(
erf(αr)

r

)
+ ∇∇

(
erfc(αr)

r

)
, (A1)

where the real-space sum, Gr (y), and the wave space sum, Gk (y), are given by

Gr (y) = ∇∇
(

erfc(αr)

r

)
, (A2)

Gk (y) = ∇∇
(

erf(αr)

r

)
. (A3)
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The real-space sum can be directly obtained from the derivatives,

Gr (y) = −
(

I
r3

− 3yy
r5

)
erfc(αr) +

[(
3yy
r4

− I
r2

)
+ 2α2 yy

r2

]
E, (A4)

where

E = 2α√
π

exp(−α2r2). (A5)

Thus, the real-part contribution to the field is

B∞,r = Gr · m j . (A6)

The wave part contribution to the field is given by

B∞,k = − μ0

4π

∑
p

N∑
j=1

Gk (y) · m j (x j ). (A7)

By Poisson’s summation formula, ∑
p

Gk (y) = 1

�

∑
k

Gk (k), (A8)

where Gk (k) is calculated by the Fourier transform

Gk (k) =
∫

eik·yGk (y)dy. (A9)

Thus, the wave part becomes

B∞,k = − μ0

4π

1

�

∑
k �=0

N∑
j=1

e−ik·(xi−x j )Gk (k) · m j (x j ). (A10)

The evaluation of Gk (k) becomes

Gk (k) =
∫

eik·y∇∇
(

erf(αr)

r

)
dy

= −kik j

∫
eik·y erf(αr)

r
dy

= −kik j

∫ ∞

0

[
4πr2 sin (kr)erf(αr)

kr2

]
dr

= −4π
kik j

k2
e− k2

4α2 . (A11)

The wave part of magnetic field is therefore

B∞,k = μ0

�

∑
k �=0

N∑
j=1

e−ik·(xi−x j )e− k2

4α2
kik j

k2
· m j (x j ). (A12)

APPENDIX B: IMPLEMENTATION OF THE ALGORITHM

The implementation of the algorithm is listed as follows.
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FIG. 9. A comparison of the dipole of a BCT lattice of particles between this work and Sherman et al. [29].
(a) Dipole of a BCT lattice of particles at a fixed aspect ratio Lx = Ly = (1/

√
2/3)Lz as a function of volume

fraction. (b) Dipole of a BCT lattice of particles at a fixed unit cell dimension in the field direction (Lz = 2a)
as a function of volume fraction.

Step 1. A simulation box with dimension, Lx, Ly, and Lz (Lz = 2a for mono-layer system) is
generated based on the number of particles N and the volume fraction φ.

Step 2. An initial placement of the particles is randomly generated inside the box.
Step 3. Based on the required accuracy and the value of α, the cut-off radius rc, the number of

grid points to represent a particle, P, and the number of total grid points for FFT are obtained. The
simulation box is discretized by the number of total grid points.

Step 4. The real-space part of the magnetic field, B∞,r , is calculated. From the current config-
uration of the particles, a linked list is generated to keep track of the neighboring particles of a
particular one if their separation is smaller than rc. The real-space part, B∞,r , is calculated based on
Eq. (8b) for a given dipole moment mi. Note that mi is the one that needs to be solved iteratively
later.

Step 5. The wave space part of the magnetic field, B∞
k , is calculated, and this procedure is

decomposed into the following steps.
Step 5a. From the current configuration of the grid points, the wave value, e−(1−θ )k2/4α2

kk/k2, of
each grid point is calculated.

Step 5b. For a given mi, the dipole moment mi is distributed to grid points based on Eq. (12).
Step 5c. An FFT of H (x) that was obtained from the last step is conducted to give Ĥ (k).

Step 5d. The wave value that was obtained from Step 5a is multiplied by Ĥ (k) to give ̂̃H (k)
[Eq. (13)].

Step 5e. An IFFT of ̂̃H (k) is conducted to obtain H̃ (x).
Step 5f. The magnetic fields in the wave space are interpolated from the grid points to the particles

[Eq. (15)] to obtain the value of B∞
k .

Step 6. Next, B∞,r and B∞
k are combined, and the self part B∞,0, is added to become B∞. Note

that B∞ is an imposed condition, so mi is solved iteratively by using GMRES.
Step 7. The calculation of the far-field hydrodynamic interactions follow the same algorithm

(Steps 4 to 6) but with Ewald summation of a different Green’s function [45].
Step 8. Lubrication interactions are calculated from R2B − R∞

2B. This calculation follows the same
procedure as Step 4 but with a different cut-off radius.

Step 9. The velocity of the particles (Eq. 28) and the stresslet (Eq. 31) are calculated iteratively
by using GMRES and the linear system built by Swan & Brady [54].
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FIG. 10. A calculation of viscosity as a function of volume fraction at random distributions of spheres and
a comparison with [41].

Step 10. The configuration of the particles is stepped forward in time based on the velocity that
was calculated from the last step. The grid points are deformed based on the shear rate and time step
size.

Steps 4 to 10 are repeated until a required strain unit is fulfilled.

APPENDIX C: BENCHMARK OF MAGNETIC CALCULATION
AND HYDRODYNAMIC CALCULATION

A calculation of dipoles of body-centered tetragonal (BCT) lattice of particles with a fixed aspect
ratio

√
2/3 [Fig. 1(a)] and fixed unit cell dimension in the field direction [Fig. 9(b)] is shown and

compared with Sherman et al. [29].
A calculation the viscosity as a function of the volume fraction of a random suspension of force-

free particles is calculated and compared with Sierou and Brady [41] as shown in Fig. 10.
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