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Rapid wetting of shear-thinning fluids
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Using experiments and numerical simulations, we investigate the spontaneous spread-
ing of droplets of aqueous glycerol (Newtonian) and aqueous polymer (shear-thinning)
solutions on smooth surfaces. We find that in the first millisecond the spreading of the
shear-thinning solutions is identical to the spreading of water, regardless of the polymer
concentration. In contrast, aqueous glycerol solutions show a different behavior, namely,
a significantly slower spreading rate than water. In the initial rapid spreading phase, the
dominating forces that can resist the wetting are inertial forces and contact-line friction.
For the glycerol solutions, an increase in glycerol concentration effectively increases
the contact-line friction, resulting in increased resistance to wetting. For the polymeric
solutions, however, an increase in polymer concentration does not modify contact-line
friction. As a consequence, the energy dissipation at the contact line cannot be controlled
by varying the amount of additives for shear-thinning fluids. The reduction of the spreading
rate of shear-thinning fluids on smooth surfaces in the rapid-wetting regime can only be
achieved by increasing solvent viscosity. Our results have implications for phase-change
applications where the control of the rapid spreading rate is central, such as anti-icing and
soldering.

DOI: 10.1103/PhysRevFluids.8.043302

I. INTRODUCTION

The motion of a fluid-fluid interface over a solid surface is a challenging problem since the
macroscopic behavior of the system depends on the atomistic details of the surface and the fluids.
Compared to Newtonian fluids, non-Newtonian liquids have a more complex molecular structure
that may influence the triple-phase contact line physics. For example, self-assembly of particles [1]
and molecular migration from a high-shear region [2,3] are features that modify wetting dynamics.
To accurately predict and control complex fluids, it is necessary to understand their wetting and
spreading on surfaces. For many processes such as inkjet printing, coating, additive manufactur-
ing [1], and deposition processes [4], the wetting dynamics of non-Newtonian fluids is central.

Experimental observations have revealed that both shear-thinning and elastic effects of non-
Newtonian fluids modify the wetting dynamics. The high shear rate near the moving contact line
results in a small viscous force of shear-thinning liquids, which reduces the viscous bending of
the liquid-vapor interface compared to Newtonian fluids [5,6]. On the other hand, it has been
reported that the fluid elasticity of a Boger fluid enhances the viscous bending of the liquid-vapor
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interface near the contact line [7]. A reduced (enhanced) bending of the interface results in a weaker
(stronger) dependence of the apparent contact angle on the contact line speed. Indeed, both an
increase and a decrease in contact line speeds have been reported for non-Newtonian fluids. Wei
et al. [8] reported that 0.15 wt% Xanthan gum solution spreads significantly faster than Newtonian
polydimethylsiloxane solution. On the other hand, Rafaï et al. [9] reported slower spreading of
a shear-thinning droplet than the pure Newtonian solvent. These findings are also in qualitative
agreement with the numerical investigation by Wang et al. [10] using Giesekus droplets which
include the elastic effect and shear-thinning effect. The majority of experimental [5,6,9,11–13] and
modeling [14–16] investigations involving wetting of non-Newtonian fluids have focused on the
wetting regime where viscous resistance dominates, i.e., a droplet slowly approaching equilibrium
or steady meniscus on moving plates.

In contrast, the rapid-wetting regime of non-Newtonian liquids, which involves nonequilibrium
wetting phenomena at small timescales (∼milliseconds), has been studied much less. The rapid
initial spreading of non-Newtonian droplets is of particular importance in applications where phase
change occurs, such as anti-icing and soldering. For example, de Ruiter et al. [17] recently reported
that a drop stops spreading on a cold surface when the contact line reaches the critical temperature
to freeze, in a timescale of a few milliseconds. In such situations, the rapid wetting alone determines
the final shape of the droplet.

The initial stage of spreading is much faster than the rate predicted by Tanner’s law [18], which
is based on spreading resistance from viscous forces only. In rapid wetting, liquid inertia and
contact-line friction also influence the spreading rate [19]. The resistance to spreading contributed
by the contact-line friction is related to energy dissipation at the contact line. It depends both on
the surface properties (such as adsorption/desorption) and on the liquid properties, in particular
viscosity [20]. We refer the reader to the reviews of [21,22] for further details. The contact-line
dissipation can effectively be represented by an appropriate finite slip length at the contact line [23].
A more explicit representation is based on the contact-line friction parameter μ f . This parameter
can be directly measured [24–27] or estimated by parameter fitting numerical simulations to ex-
periments [28,29]. The precise relationship between μ f and liquid viscosity is not fully established
even for Newtonian liquids. In molecular kinetic theory (MKT), where wetting is described as a
thermally activated process of molecular events, a linear relationship has been suggested between
contact-line friction and viscosity [20,30]. However, studies of rapid wetting based on continuum
simulations and experiments have observed a sublinear relationship between contact-line friction
and viscosity [25–28].

This paper aims to increase our understanding of how viscoelastic effects influence rapid wetting.
The paper is organized as follows. In Sec. II, we describe the experimental configuration and obser-
vations. Section III describes the mathematical model of non-Newtonian fluids and the numerical
method based on the phase-field method. The section also presents a parametric study of droplet
spreading for different total viscosity, line-friction parameter and relaxation time of polymers. Sec-
tion IV combines experiments and numerical results to establish the relative importance of inertia,
viscosity, and contact-line friction in the wetting dynamics. Section V discusses our interpretation
of why the rapid spreading of polymer solutions is independent of polymer concentration. Finally,
concluding remarks are provided in Sec. VI.

II. EXPERIMENTAL OBSERVATIONS

The fluids in this study are dilute solutions of rigid polymer (Xanthan gum, G1253, Sigma
Aldrich), anionic polyacrylamide-based flexible polymer (FLOPAM, AN934SH, SNF), and PEO
(molecular weight 4 × 106, 189464, Sigma Aldrich) in deionized water. In addition, aqueous
glycerol and deionized water are studied as Newtonian fluids. Figure 1 shows the shear viscosity
of the investigated liquids as a function of the shear rate. We observe that Xanthan gum (green
symbols), FLOPAM (red), and PEO (orange) solutions exhibit shear-thinning viscosity, while water

043302-2



RAPID WETTING OF SHEAR-THINNING FLUIDS

FIG. 1. Shear viscosity as function of the shear rate γ̇ . The solid black line represents the Giesekus
viscosity based on Eq. (6) with μ0 = 0.01 Pa s (Gi:7, see Table II).

(black) and aqueous glycerol (blue) have constant viscosity over the full range of shear rates. The
shear viscosity was measured with Kinexus pro+(NETZSCH).

Table I lists five dimensional quantities of the droplets; the surface tension (σ ), static contact
angle (θe), zero-rate viscosity (μ0), the high-shear-rate viscosity (μ∞), and the contact-line friction
(μ f ). The static contact angle of all liquids is similar, ranging from 49◦ to 58◦. Also, the surface
tension stays relatively constant for all solutions, ranging from 60 to 72 mN/m. The surface

TABLE I. Surface tension σ , static contact angle θe, zero-shear and high-shear viscosity μ0, μ∞, the line
friction parameter μ f , the conventional Ohnesorge number based on μ, and the friction Ohnesorge number
Oh f . The line friction parameter of water and aqueous glycerol solutions are estimated by matching the
spreading curves in the numerical simulations to the rapid spreading experiments [28,31]. The line friction
parameters of polymer solutions are assumed to be identical to water.

σ θe μ0 μ∞ μ f

(mN/m) (deg) (Pa s) (Pa s) (Pa s) Oh Oh f

Water 72 52 – 1.0 × 10−3 0.12 5.3 × 10−3 0.63
FP 500 ppm 72 58 2.8 1.1 × 10−2 0.12 5.8 × 10−2 0.63
FP 2000 ppm 72 55 3.9 × 101 3.2 × 10−2 0.12 1.7 × 10−1 0.63
FP 5000 ppm 71 58 9.9 × 101 6.3 × 10−2 0.12 3.3 × 10−1 0.64
XG 500 ppm 70 57 1.1 × 10−1 5.8 × 10−3 0.12 3.1 × 10−2 0.64
XG 2000 ppm 65 55 2.1 1.2 × 10−2 0.12 6.7 × 10−2 0.67
XG 5000 ppm 60 58 7.3 × 101 1.8 × 10−2 0.12 1.0 × 10−1 0.69
PEO 500 ppm 61 49 4.4 × 10−2 1.1 × 10−3 0.12 6.3 × 10−3 0.69
PEO 2000 ppm 61 49 5.1 × 10−2 6.2 × 10−3 0.12 3.6 × 10−2 0.69
PEO 5000 ppm 61 49 5.3 × 10−2 1.8 × 10−2 0.12 1.0 × 10−1 0.69
40% aq. glycerol 65 57 – 4.0 × 10−3 0.21 2.2 × 10−2 1.1
60% aq. glycerol 64 55 – 1.1 × 10−2 0.33 6.2 × 10−2 1.7
80% aq. glycerol 63 57 – 6.0 × 10−2 0.80 3.2 × 10−1 4.1
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FIG. 2. Selected serial snapshots of droplet spreading of water, FLOPAM solutions, and aqueous glycerol
solutions.

tension was measured using TD 2 tensiometer (LAUDA). The tensiometer measures a force acting
on a perturbing ring at the liquid/air interface. The measured surface tension is constant over
repeated measurements, which take at least several minutes. The zero-rate shear viscosity μ0 varies
significantly for different polymer solutions, whereas the variation of the high-shear rate viscosity
μ∞ is smaller.

Figure 2 shows a sequence of snapshots from the experiments for different Newtonian and
non-Newtonian liquids. The droplets with an initial radius of 0.5 ± 0.02 mm spread on a smooth
hydrophilic off-stoichiometry-thiol-ene (Ostemer 220, Mercene Labs, Sweden) [32] surface. We
have used a high-speed camera (speedsense, Dantec Dynamics) with 25 000 frames per second
and a spatial resolution of 8 µm. The liquid droplet grows from a needle with an outer diameter of
0.31 mm (Hamilton, gauge 30, point style 3) pumped by a syringe pump (Cetoni, neMESYS 1000N)
at a flow rate of 0.04 µl/s. The flow rate is so small that a quasi-static state is assumed before the
droplet touches the surface. The droplet starts to spread immediately after it makes contact with the
substrate at t = 0 ms. Note that we observe a finite apparent contact radius even before the contacts
due to the limited spatial resolution. The first four columns of Fig. 2 show the spreading in the rapid
regime. After this initial phase, the spreading toward equilibrium shapes is much slower. Focusing
on the rapid regime, we note that the droplet shape of water is similar to the droplet shapes of the
two FLOPAM solutions. The glycerol solutions, on the other hand, spread slower; the solution with
80% glycerol (bottom row in the figure) has retained much of its spherical shape, while water and
polymer solutions have an inverted vase shape.

Note that, since we view the droplet from the side, three-dimensional instabilities are not
observable. However, we do not expect the type of capillary instabilities of the moving contact
line that is often observed in forced wetting situations [33–35]. Moreover, contact line irregularities
with the presence of surfactants [36] are not expected, since the polymers in this study exhibit weak
dependence of surface tension on polymer concentration.

A more quantitative picture is provided in Fig. 3. The figure shows the time evolution of
the spreading radius with different polymer/glycerol concentrations in the rapid spreading phase.
The 500 and 2000 ppm solutions of FLOPAM and Xanthan gum spread similarly to water, while
the 5000 ppm solutions spread slightly slower than water [the red and green triangles in Figs. 3(a)
and 3(b)]. PEO solutions spread very similarly to water, regardless of the concentrations [Fig. 3(c)].
Figure 3(d) shows how glycerol solutions (blue markers) exhibit a reduced spreading rate as the
glycerol concentration increases.
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FIG. 3. Spreading curves of FLOPAM(“FP,” red), Xanthan gum(“XG,” green), polyethylene oxide (“PEO,”
orange) solutions and aq. glycerol (blue). The black marks represent water.

III. VISCOELASTIC EFFECTS AND CONTACT-LINE FRICTION

The spontaneous spreading of a droplet toward equilibrium is driven by surface tension, and its
speed is set by the resistance from inertial forces, viscoelastic stresses, and contact-line friction.
The resistive force that dominates depends on the fluid and surface properties and droplet size.
To determine the contributions of different sources of resistance, we have performed numerical
simulations of water, glycerol, and Giesekus droplets. The latter include both shear-thinning and
elastic effects.

A. Diffusive interface model of droplets

The employed model uses a phase-field variable φ ranging from 1 in the liquid to −1 in the vapor
phase. The variable is governed by the Cahn-Hilliard equation,

∂φ

∂t
+ u · ∇φ = ∇ · [M∇G(φ)], (1)

where M is a mobility parameter and G is the chemical potential. The latter is defined by

G(φ) = 3ση

2
√

2
[� ′(φ) − ∇2φ], (2)

where σ and η are surface tension and the diffuse interface thickness, respectively. The function
�(φ) in Eq. (2) represents the standard double-well function, i.e., �(φ) = (φ + 1)2(φ − 1)2/η2.
The derivation of Eqs. (1) and (2) can be found in Refs. [37,38]. The fluid velocity u of the two
phases is governed by the incompressible Navier-Stokes equations,

ρ(φ)
Du
Dt

+ J · ∇u = −∇p + ∇ ·
(

(1 + φ)

2
τ

)
+ ∇ · μ(φ)(∇u + ∇uT ) + G(φ)∇φ, (3)

∇ · u = 0. (4)

In Eq. (3), τ is a extra stress tensor due to the non-Newtonian rheology and G(φ)∇φ represents
the surface tension force. The second term in the left-hand side represents the mass flux due to
diffusion, given by J = −(ρ1 − ρ2)M∇G/2, where ρ1 and ρ2 are the densities of the liquid and gas
phases [39].

The constitutive model for a Giesekus fluid is

τ + λ

(
∂τ

∂t
+ u · ∇τ − τ∇u − ∇uT τ

)
+ αλ

μp
(τ · τ ) = μp(∇u + ∇uT ), (5)

where λ, α, μp are the relaxation time, the anisotropic factor, and the polymeric viscosity, respec-
tively. In the single mode Giesekus model [40], the following analytical expression of shear viscosity
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can be derived,

μ = μ0
(1 − f )2

1 + (1 − 2α) f
+ μs. (6)

Here, f , κ1, and κ2 are functions of λ, α, and the shear rate γ̇ . Their explicit expressions can be
found in the Appendix [Eqs. (A2)–(A4)]. The total viscosity or zero-shear-rate viscosity in Eq. (6)
is given by

μ0 = μs + μp,

where μs is the solvent viscosity of the liquid phase. For all the performed simulations α and μs are
set to 0.4955 and 0.1μ0, respectively. An example of the shear viscosity given by Eq. (6) is shown
in Fig. 1 (solid black line), where the shear-thinning effect is clearly observed (μ0 = 1 × 10−2 Pa
s and μ∞ ≈ 10−3 Pa s). The phase-field mobility M in Eq. (1) is set using an equivalent definition
M = 2ηαd/σ , where αd = 5.7 × 10−6 is the mass diffusion constant in the literature [37]. Cahn
number Cn = η/R0 represents the ratio between the diffuse interface width and the characteristic
length scale and is set to Cn = 0.008. The equations are discretized using a finite difference method.
The detailed numerical scheme and the validation of the numerical method can be found in Ref. [41].

B. Model of contact-line dissipation

Contact-line motion can be modelled by imposing a variety of boundary conditions on the
velocity field and the phase-field variable. See Refs. [42,43] for a thorough comparison between
different boundary conditions. We impose a no-slip condition for u on the solid wall, and a
nonequilibrium boundary condition [44,45] for φ at the contact line. The latter is given by the
expression

−ημ f
∂φ

∂t
= ησ∇φ · n − σcos(θe)g′(φ). (7)

Here, θe is the static contact angle and μ f is the contact-line friction parameter, discussed earlier.
The static contact angle θe is fixed to 52◦ to match to the experiments for all cases. The polynomial
g(φ) = 0.5 + 0.75φ − 0.25φ3 rapidly shifts from 0 (in vapor phase φ = −1) to 1 (in liquid phase
φ = 1).

Note that the contact line motion is also influenced by the diffusion in (1), which depends on
the interface thickness (η) and the mobility (M ) parameter. Here, both η and M are constant and
treated as numerical parameters [42,43]. The contact-line friction is used to account for the local
energy dissipation at the contact line. In Eq. (7), this dissipative force is modeled by a linear friction
law, i.e., the left-hand side of (7) is ∼μ f Ucl . The right-hand side of Eq. (7) is related to Young’s
force [∼σ (cos θe − cos θ )] that drives the wetting (θ being the dynamic contact angle). We note
that a zero μ f yields θ = θe. On the other hand, rapid wetting of a droplet on a hydrophilic surface
(θ 	 θe) results in a large friction force and contact-line dissipation. The line friction parameter μ f

for water on the OSTE substrate is identified to 0.12 Pa s by fitting the numerical spreading curve
to the experimental spreading curve [31]. This is explained in detail in Appendix B.

C. Resistance from viscoelastic stress and contact-line friction

We conduct a parametric study by varying the total viscosity μ0, the line friction parameter
μ f , and the relaxation time of the polymers λ. The simulation cases and input parameters are
summarized in Table II. The relaxation time is listed using the Deborah number:

De = λUref

R0
.

Here, Uref = √
σ/ρR0 is the capillary-inertial velocity scale. The configuration denoted by “W”

models a water droplet, where both the viscosity and friction factor has been matched with
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TABLE II. List of simulation input parameters. Cn = η/R0 = 0.008 and Pe = UrefR0/αd = 33.3 are fixed
for all cases. The anisotropic factor α and μs are set to 0.4955 and 0.1μ0 for all cases.

μ0 μ f De
(Pa s) (Pa s) (λUref/R0)

W Newtonian 1.0 × 10−3 0.12 –
Gi:1 Giesekus 1.0 × 10−3 0.12 20
Gi:2 Giesekus 1.0 × 10−3 0.06 20
Gi:3 Giesekus 1.0 × 10−3 0.24 20
Gi:4 Giesekus 1.0 × 10−3 0.36 20
Gi:5 Giesekus 2.0 × 10−3 0.12 20
Gi:6 Giesekus 5.0 × 10−3 0.12 20
Gi:7 Giesekus 1.0 × 10−2 0.12 20
Gi:8 Giesekus 1.0 × 10−3 0.12 5
Gi:9 Giesekus 1.0 × 10−3 0.12 50
N:1 Newtonian 1.0 × 10−3 0.06 –
N:2 Newtonian 1.0 × 10−3 0.24 –
N:3 Newtonian 1.0 × 10−3 0.36 –
N:4 Newtonian 2.0 × 10−3 0.12 –
N:5 Newtonian 5.0 × 10−3 0.12 –
N:6 Newtonian 1.0 × 10−2 0.12 –

experiments (see Appendix B). The configurations denoted by Gi:1 to Gi:9 are Giesekus droplets
with varying μ0, μ f , and λ. Finally, the configurations from N:1 to N:6 model Newtonian droplets
with varying μ0 and μ f . All the simulations are two-dimensional and initialized with a droplet
in contact with the solid surface as shown in the first column of Fig. 4. The radius of the droplet
R0 is set to 0.5 mm to match to the experiments. Surface tension σ and the liquid density ρ are
0.072 N/m, 1 ×103kg/m3, respectively. The air viscosity and density are set to 1.6 ×10−5 Pa s and
1.2 kg/m3, respectively.

Figure 4 shows snapshots of a water droplet (W, first row), a Giesekus droplet (Gi:7, second row),
and two Newtonian droplets (N:2 and N:6, third and fourth rows). This figure can be compared
to the experimental snapshots in Fig. 2. We again observe that the droplet shapes of water and

FIG. 4. Snapshots from simulations. The black and gray phases indicate liquid and air phases, respectively.
Spatial coordinates are indicated in the top-left frame.
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FIG. 5. (a) Spreading radius with different line friction parameter with μ0 = 1 × 10−3 Pa s. (b) Comparison
between Newtonian (red curves) and Giesekus droplet (blue curves) with different zero-shear viscosity with

μ f = 0.12 Pa s. (c) Normalized shear rate distribution Tf γ̇ = Tf

√
(γ 2

xx + 2γ 2
xy + γ 2

yy )/2 for Gi:1 at t = 1 ms.

The white lines in (c) are the contour lines of φ = ±0.9. The interface is moving from left to right.

non-Newtonian liquid are very similar in the first millisecond. This is despite the fact that zero-
shear rate viscosity, μ0, is an order of magnitude larger for case Gi:7 compared to the viscosity of
water. Here, we have assumed that the energy dissipation at the contact line is not modified by the
polymers, and thus chosen μ f = 0.12 Pa s for both droplets. In contrast, when we increase the bulk
viscosity (N:6) or the contact-line friction (N:2) of a Newtonian droplet, we notice a different droplet
shape after one millisecond. By comparing these snapshots to their experimental counterparts in
Fig. 2, we can confirm that our numerical treatment captures the physics of Newtonian and non-
Newtonian droplets during spreading.

Our numerical model allows for independently varying the amount of viscous and contact-line
dissipation during rapid spreading for Newtonian and non-Newtonian droplets. Figure 5(a) shows
the spreading radius of Giesekus droplets (Gi:1 to Gi:4) with different line friction parameter and
fixed total viscosity (μ0 = 1 × 10−3 Pa s). The spreading rate of the water is shown with a black
solid line. We observe that the line friction critically determines the spreading radius. As the line
friction parameter is increased, the spreading rate slows down.

Figure 5(b) compares spreading of the Giesekus and Newtonian droplets with different total
viscosity μ0, but fixed contact-line friction (μ f = 0.12 Pa s). Giesekus droplets (Gi:1, Gi:5 to Gi:7)
are shown in blue color and the Newtonian (W, N:4 to N:6) in red color. The spreading of the
Giesekus droplet is insensitive to the total viscosity even when it is ten times higher (μ0 = 1 ×
10−2 Pa s). In contrast, viscosity influences spreading rate of Newtonian droplets (red curves). The
difference between the Newtonian and Giesekus droplets lies in the shear-thinning effect. As seen
in Fig. 5(c), the shear rate near the contact line is high compared to the interior part of the liquid.
The effective viscosity of the Giesekus droplets seems to be the viscosity at a high-shear rate, which
is much smaller than the total viscosity. In our numerical framework, the high-shear viscosity is set
to 0.1μ0.

The polymeric fluids in the numerical study are not only viscous but also elastic. The first normal
stress difference (τyy − τxx )/ρU 2

ref is shown in Fig. 6(a). The polymeric stress is concentrated in the
vicinity of the contact line. This agrees with earlier work [10,46]. The magnitude of the stress is
an order of magnitude smaller than the characteristic fluid pressure (∼ρU 2

ref = σ/R0) even near the
contact line and is negligible in the rest of the droplet. This implies that the fluid elasticity does
not contribute significantly to the spreading speed. Moreover, De indicates the degree of elasticity.
The spreading is insensitive to the Deborah number in the range of 5–50 [see Fig. 6(b)]. This also
implies that the effect of the elasticity is small.

Wang et al. [10] reported that a Giesekus droplet may spread faster than a Newtonian droplet
with the same total viscosity of the droplet μ0. This is not observed in our numerical simulations.
The apparent discrepancy is due to the different boundary conditions imposed at the contact line for
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FIG. 6. (a) The first normal stress difference (τyy − τxx )/ρU 2
ref of Gi:1 at t = 1 ms. The white lines in

(d), (e) are the contour lines of φ = ±0.9. The interface is moving from left to right. (b) Spreading radius with
different Deborah number with μ0 = 1 × 10−3 Pa s and μ f = 0.12 Pa s. (c) Comparison between Newtonian
(red) and Giesekus droplet (blue) with different line friction parameters μ0 = 1 × 10−3 Pa s.

the Cahn-Hilliard equation. Wang et al. [10] employed the equilibrium condition, i.e, μ f = 0 while
in this study the nonequilibrium boundary condition μ f > 0 is imposed. As seen in Fig. 6(c), for a
smaller μ f , we also observed a slightly faster spreading of the Giesekus droplet than a Newtonian
droplet with the same μ0. Particularly, for μ f = 0.06 Pa s, the Giesekus droplet spreads faster than
the Newtonian droplet. The difference between the Giesekus droplet and Newtonian droplet with
the same total viscosity becomes smaller as the contact line friction increases.

IV. DROPLETS SPREADING QUANTIFIED IN TERMS OF Oh-Oh f MAP

The numerical results of the previous sections clarified how the spreading curves change with
respect to contact line friction [Fig. 5(a)], the total viscosity [Fig. 5(b)], and the relaxation times
[Fig. 6(b)]. We found that for shear-thinning fluids only the contact-line friction seems to modify
the spreading curves in the rapid regime. In other words, the relevant sources of wetting resistance
are either inertial forces, the contact line friction, or both. Moreover, the similar spreading curves
of water and shear-thinning fluids observed in experiments (Fig. 3) indicate that the contact-line
friction is not modified by addition of polymers. This means that we can assume μ f ≈ 0.12 Pa s for
all the non-Newtonian droplets. These insights can now be gathered in a parameter map spanned by
different Ohnesorge numbers.

Ohnesorge numbers

The Ohnesorge number Oh based on μ∞ is defined as

Oh = μ∞√
ρσR0

,

where ρ is the density of the solution and R0 is the initial radius of the droplet. The Ohnesorge num-
bers, Oh 
 1, reported in Table I indicate a small influence of high-shear-rate viscosity compared to
inertia near the contact line for all the investigated liquids. As shown in the previous section, μ∞ is
the relevant viscosity near the contact line where the shear rate is high. The conventional Ohnesorge
number remains significantly smaller than unity even if μ0 is increased because μ∞ remains small.

The convectional Oh alone does not determine the spreading rate, since line-friction may provide
additional resistance to wetting. For example, in Table I, we note that 60% glycerol solution has
Oh∞ = 6.2 × 10−2, which is very close to corresponding values for FP 500 ppm, PEO 500 ppm,
and XG 2000 ppm. However, Fig. 3 clearly demonstrates the slower spreading rate of the 60%
glycerol solution compared to the non-Newtonian liquids. The relative importance of the line friction
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FIG. 7. Oh f -Oh map for a droplet with the initial radius of 0.5 mm. The viscosity-line friction parameter
data on silanized surfaces [28] and glass surfaces [19,47]. The viscosity-line friction data of aqueous glycerol
from oscillatory droplet measurements [27] and electrowetting on dielectric layers(EWOD) [26] are also
plotted. The shear viscosity at the largest shear rate are employed for FLOPAM (FP), Xanthan gum (XG),
and PEO solutions (Table I).

parameter to inertia is given by the Ohnesorge number based on μ f :

Oh f = μ f√
ρσR0

.

As shown in Table I, the line friction Ohnesorge number is order one for a water droplet and
significantly larger than the conventional Ohnesorge number. This implies that the contact line
friction contributes to the energy dissipation of the droplet much more than the viscosity. A
significant contact-line dissipation also takes place in our polymeric solutions.

Based on our observations from Fig. 3 however, Oh f is independent of the polymer concentra-
tion. In other words, the polymer chains seem to not influence the energy dissipation at the contact
line for shear-thinning fluids. Table I also shows that the line friction parameter increases with
increasing glycerol concentration for 60% and 80% concentration and it exceeds Oh f > 1.

It is instructive to represent our results together with other existing data of Newtonian droplets
in a parameter space spanned by Oh and Oh f . This map has previously been used to cover different
spreading regimes in rapid wetting [19]. Figure 7 shows the parameter map and the regimes where
the spreading rate is primarily resisted by inertial forces, viscous forces, or the contact-line friction.
Note that the plots in Fig. 7 are from partial wetting cases (0◦ < θe < 90◦) on smooth substrates.
For the water droplet considered here (R0 = 0.5 mm, μ = 1 × 10−3 Pa s, and μ f = 0.12 Pa s),
we have Oh f = 0.63 and Oh = 5.3 × 10−3. The water droplet is thus in the inertial regime, but
since Oh f ≈ 1, one may expect a contribution also from the contact line friction. Glycerol droplets
are shown with blue symbols. As their concentration increases, both the line friction parameter
and the viscosity increase [19,25–27,48]. Therefore, the glycerol solutions are in the line friction
governed region Oh f > 1. Finally, polymers in pure water are shown in red, green, and yellow
colors. The additive polymers do not increase the line friction and the high-shear-rate viscosity
remains sufficiently small so that the spreading of the polymeric solutions is in the inertial regime.
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FIG. 8. Spreading curves over four time decades. Time is normalized with the capillary-inertial timescale
R0/Uref.

The 5000 ppm Xanthan gum/FLOPAM solutions show slightly slower spreading in the exper-
iments [see red/green triangles in Figs. 3(a) and 3(b)] since the solutions may reach the regime
Oh ≈ 0.1 where viscosity starts to play a role in the spreading.

The diagram provides insight into how the rapid spreading of shear-thinning liquids can be
controlled. When the Ohnesorge number based on the solvent viscosity is small (Oh 
 1), addi-
tional polymeric viscosity is not a critical factor to control a rapid spreading. Rather, modifying
the solid surface property is more effective when Oh 
 1 and Oh f ≈ 1. A possible way to
enhance the contact line friction is to introduce roughness. On a nonsmooth surface, an effective
line friction parameter μ f eff = Sμ f can be defined [29,48,49] where S is a measure of surface
roughness. This roughness would critically retard the spreading and the spreading speed scales as
∼σ/Sμ f [29,48,49].

V. DISCUSSION

Figure 8 shows the spreading radius over four time decades for aqueous glycerol solutions and
shear-thinning solutions. Here, the time is normalized with the capillary-inertial timescale R0/Uref.
Note that all fluids have similar static contact angles and therefore, the terminal spreading radius
is nearly the same. The solid and dash lines in the figure show r/R0 ∝ t1/2 and r/R0 ∝ t1/10. The
latter power-law follows Tanner’s law [18], where viscous dissipation is the dominating source
of resistance to capillary-driven wetting. In the late spreading, a difference with respect to polymer
concentrations is observed; solutions with higher concentration spread slower after t/(R0/Uref ) ≈ 2.
This agrees with the slower late spreading of shear-thinning fluids observed by Rafai et al. [9].
Moreover, it is reasonable that the first inertial spreading regime ends when the time is close to the
capillary-inertial time. In addition, we observe smaller exponents for the shear-thinning solutions
than Tanner’s law’s exponent 1/10. This is consistent with the observation by Rafai et al. [9].

We can again confirm from Fig. 8 that the shear-thinning solutions exhibit very similar spreading
curves to water regardless of the polymer concentration until t ≈ 10−3 s. In this inertial regime, the
spreading rate follows a timescale set by a balance between the rate of change of kinetic energy and
the driving surface tension, i.e. ti ∼ (ρR3

0/σ )1/2. This is in agreement with Bouillant et al. [50], who
very recently reported that the contact line speed is only slightly decelerated by the PEO polymers in
water up to 2.0wt%. The authors concluded that the rapid spreading behavior is “inertial” in nature
because of the spreading exponent ≈1/2.
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Figure 8 also reconfirms that the aqueous glycerol solutions spread slower than the water in the
initial regime and exhibit a longer rapid-wetting regime (up to t ≈ 10−2 s). As the glycerol solution
increases, the initial spreading is slowed down (marked by the blue arrow in Fig. 8). The increasingly
more concentrated glycerol solutions are in the “line-friction regime,” where the timescale is set by
t f = μ f R0/σ [19,28]. We also note that the spreading radius of the glycerol solutions all follow
r/R0 ∝ t−1/2, with a multiplicative prefactor that decreases with increasing concentration, i.e., the
line friction parameter. This confirms the scaling of spreading in the line friction regime, r/R0 ∼
(σ t/μ f R0)1/2, as proposed in Ref. [28].

Our interpretation is that two features are responsible for polymer solutions remaining in the
inertial regime regardless of the polymer concentration; (i) polymers do not modify the contact
line friction; (ii) the relevant high-shear-rate viscosity near the contact-line is small. The first point
means that Oh f is independent of polymer concentration, while the latter point means that Oh < 1.
Indeed, both these points need to be satisfied to explain the experimental result. If the second point
was a sufficient condition, then the addition of polymers would result in a side-ways (horizontal)
movement in the Oh f -Oh map, and thus—similar to glycerol solutions—a slower spreading rate in
the rapid-wetting regime.

Further studies are required to establish the reason for the independence of line-friction from
polymers. One plausible reason is that the polymers migrate from the contact line. As seen in
Fig. 5(c), the shear rate is very high near the contact line. Revisiting the molecular migration
theory [2,3], the polymer molecules subjected to strong shear move away from the contact line
region to the bulk, and the polymer concentration at the contact line is notably lower. Han et al. [3]
estimated that the depletion length for heavy polyisobutylene molecules (Mw ≈ 4.2 × 106) is a few
micrometers but lighter polyisobutylene molecules (Mw ≈ 5 × 104) exhibit thinner depletion layer
(
1 µm), based on the theory by Ma and Graham [2]. Fang et al. [51] observed a DNA-depleted
layer up to ≈2–3 µm on a glass substrate, which is about one-third of the contour length of the DNA
molecules. These studies suggest that polymer concentration is low near the contact line.

A second reason can be the scale separation in both space and time between water molecules
(Mw = 18) and the polymer molecules (Mw > 106). The length scale of polymers may be con-
siderably larger than the scale of the wetting wedge that is formed between the interface and the
solid. Indeed, it is the fluid in this wedge that partially determines the local contact-line friction.
Moreover, the timescales related to adsorption and transport of polymers may be larger than the
rapid initial movement of the interface. As seen in Table I, the surface tension of Xantahn gum and
PEO solutions are weakly dependent on the concentration. This implies that the polymers might be
adsorbed at the liquid/air interface in a static condition. However, the effect of adsorption is likely to
be limited during the rapid spreading, since the adsorption time to the contact line region would be
much longer than the spreading timescale. The relevant nondimensional number is the Damköhler
number Da = R0/Urefτad, which relates the advection timescale to the adsorption timescale τad. For
example, a typical adsorption time for PEO molecules to a liquid/solid interface is a few minutes
(≈102 s) [52–54] and the adsorption time for PEO molecules to a liquid/air interface is order of
102–104 s [55,56]. These molecular adsorption times are significantly larger than the rapid-wetting
timescale, both to the liquid/solid and liquid/air interfaces and this leads to Da 
 1. Therefore, the
effect of adsorption is expected to be negligible during the rapid spreading.

VI. CONCLUDING REMARKS

In this work, we have investigated the rapid spreading of droplets of aqueous glycerol and
polymer solutions [dilute aqueous polyacrylamide, Xanthan gum, and polyethylene oxide (PEO)].
We demonstrated that polymer solutions initially spread similarly to solvent water, regardless of
the polymer concentration. In contrast, aqueous solutions show a significantly slower spreading rate
than water as the glycerol concentration is increased. This is the case even though the magnitude
of bulk internal stresses is comparable between the polymer solutions and very viscous aqueous
glycerol solutions. We have used numerical simulations to decouple the dissipation stemming from
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viscous forces and from contact-line friction forces. We showed that the behavior of experimental
spreading curves can be re-produced numerically if the contact-line friction of the non-Newtonian
solutions is equal to that of pure solvent (water). In other words, the dissipation at the contact line is
not modified by the presence of polymers, even at relatively high concentrations. We have extended
the regular Oh f -Oh map of Newtonian fluids with polymeric solutions. A change in polymer
concentration results in a vertical movement in the map. Substrate properties are thus the only
way to increase contact-line friction (and thus Oh f ), and thus a horizontal movement in the Oh f -Oh
map. This provides new insight into how one may control the rapid wetting of non-Newtonian fluids.
Finally, we have discussed possible reasons for the polymer-independent contact-line dissipation,
which remain to be more precisely characterized in future studies.
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APPENDIX A: CAHN-HILLIARD-NAVIER-STOKES EQUATIONS WITH GIESEKUS
CONSTITUTIVE MODEL

In the single-mode Giesekus model [40], the analytical expression of shear viscosity reads

μ = μ0
(1 − f )2

1 + (1 − 2α) f
+ μs, (A1)

where

f = 1 − √
(κ1 − 1)/κ2

1 + (1 − 2α
√

(κ1 − 1)/κ2)
, (A2)

κ1 =
√

1 + 16α(1 − α)(λγ̇ )2, (A3)

κ2 = 8α(1 − α)(λγ̇ )2. (A4)

APPENDIX B: FITTING OF THE CONTACT LINE FRICTION PARAMETER

The contact line friction parameter of water on a OSTE surface is estimated by fitting the
numerical spreading curves to the experiments. Equations (1), (3), (4), and (7) are solved with
finite element method, using in-house software “FemLego” in an axisymmetric geometry. FemLego
is an adaptive finite element toolbox where weak formulations of partial differential equations are
defined on a MAPLE worksheet [57]. The detailed methods are also found in Refs. [31,37] We
have employed the axisymmetric simulations to estimate the line friction parameter since the
axisymmetric geometry is closer to the experiments. The estimation of the line friction parameters
for aqueous glycerol solutions (Table I) follows this procedure as well.

Figure 9 shows the spreading curves of numerical simulations and experiments. The numerical
curve with μ f = 0 overestimates the spreading speed (gray curve in Fig. 9). The numerical curve
with μ f = 0.12 Pa s (black curve) is matched well with the experiments until 0.5 ms. The deviation
from experiments after 0.5 ms can be attributed to the presence of the needle in the experiments.
We also compared the axisymmetric simulations and two-dimensional geometry in this paper (W in
Table II). The spreading curve also collapses on the experiments until 0.4 ms and starts to deviate
due to the difference in the geometry.
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FIG. 9. Spreading curves of spontaneous spreading droplets. The numerical curves (black solid lines)
are fitted to the experimental spreading curves in order to estimate the friction parameters. The error bars
indicate the standard deviations in the experiments. The dotted lines represent ±20% deviations from the fitted
line friction parameter. The gray line indicate the numerical spreading curve with μ f = 0. The red curve is the
case W in Table II.
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