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Understanding extreme events and their probability is key for the study of climate change
impacts, risk assessment, adaptation, and the protection of living beings. Extreme heat-
waves are, and likely will be in the future, among the deadliest weather events. Forecasting
their occurrence probability a few days, weeks, or months in advance is a primary challenge
for risk assessment and attribution but also for fundamental studies about processes, dataset
and model validation, and climate change studies. In this work we develop a methodology
to build forecasting models which are based on convolutional neural networks, trained
on extremely long 8000-year climate model outputs. This approach is parallel to weather
model forecasting and has complementary scopes. Because the relation between extreme
events is intrinsically probabilistic, we emphasize probabilistic forecast and validation. We
demonstrate that neural networks have positive predictive skills, with respect to random
climatological forecasts, for the occurrence of long-lasting 14-day heatwaves over France,
up to 15 days ahead of time for fast dynamical drivers (500 hPa geopotential height
fields), and also at much longer lead times for slow physical drivers (soil moisture). This
forecast is made seamlessly in time and space, for fast hemispheric and slow local drivers.
The method is easily implemented and versatile. We find that the neural network selects
extreme heatwaves associated with a north hemisphere wave-number 3 pattern. We argue
that this machine learning approach should be key in the future for quantitative process
studies, model intercomparisons, and dataset studies. For instance, we find that the 2 meter
temperature field does not contain any new useful statistical information for heatwave
forecast, when added to the 500 hPa geopotential height and soil moisture fields. The
main scientific message is that most of the times, training neural networks for predicting
extreme heatwaves occurs in a regime of lack of data. We suggest that this is likely to
be the case for most other applications to large-scale atmosphere and climate phenomena.
Depending on the information to be learned, training might require dataset lengths as long
as several thousands of years, or even more, for optimal forecasting skill. For instance,
using 100-year-long training sets, a regime of drastic lack of data, leads to severely lower
predictive skills and general inability to extract useful information available in the 500 hPa
geopotential height field at a hemispheric scale in contrast to the dataset of several thousand
years long. Even with several-thousand-year-long datasets, no convergence is observed
in the predictive skills coming from hemispheric geopotential height fields. We discuss
perspectives for dealing with the lack of data regime, for instance, rare event simulations
and how transfer learning may play a role in this latter task.
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I. INTRODUCTION

A. Context: The need for probabilistic forecast of extreme climate events
1. Lack of data for the most impactful climate extremes

Climate change is one of the major challenges of modern societies [1] and will significantly affect
humans and other living beings. Its most severe impacts are caused by rare and extreme events [2].
For instance, since 1998, most of the deaths which were caused by major related disasters have been
linked to only three climate events [3]: the Western European extreme heatwave during the summer
of 2003 [4], the storm surge related to cyclone Nargis in Myanmar in 2008 [5], and the extreme
heatwave in Russia during the summer of 2010 [6,7], with death tolls of about 70 000, 150 000, and
100 000, respectively. Each of the physical events causing these impacts where unprecedented in the
historical record, in their category, as was the case for 2021 northwestern North America heatwave
[8].

These examples illustrate the need to study very rare events, most of them unprecedented. Faced
with this scientific challenge, given the drastic lack of historical data, any statistical approach based
solely on observation data is bound to fail. The only sensible approach is thus to use climate or
weather model data, whose biases are properly characterized [9] through process studies. We choose
extreme heatwaves as our topic because they will be among the most impactful climate extreme
events in the future [2] and because climate models are known to reproduce better their dynamics
than other extreme events, because they are large-scale phenomena less affected by small-scale
physics. In the present study, we will use 8000-year-long PlaSim (planet simulator [10]) climate
model simulations to devise a forecast tool for extreme heatwaves in midlatitude dynamics. We will
use modern machine learning techniques, as well as tune and develop them to specifically study
very rare events.

2. The compound effects of geostrophic turbulence and slow drivers for extreme heatwaves

From a fluid dynamics point of view, studying midlatitude extreme heatwaves amounts to
quantifying the probabilities of rare fluctuations of the dynamics of the turbulent Earth troposphere.
Midlatitude atmospheric flow is turbulent and characterized by balance between the Coriolis force
and pressure gradient (geostrophic turbulence), and whose dynamics is dominated by large-scale
unstable patterns. The main large-scale features are the two jet streams (one per hemisphere). These
are strong and narrow eastward air currents, located at midlatitudes with maximum velocity of
the order of 40ms~! close to the tropopause [see Fig. 1(a)]. The climatological position of the
northern hemisphere jet stream in the PlaSim model is seen in Fig. 1(b), that represents the time
average of the kinetic energy due to the horizontal component of the velocity field at 500 hPa
pressure surfaces. The jet stream’s meandering dynamics, due to nonlinear Rossby waves, is related
to the succession of anticyclonic and cyclonic anomalies which characterize weather at midlatitudes.
It is well known that midlatitude heatwaves, like the 2003 Western European heatwave or the
2010 Russian heatwaves, are due to rare and persistent anticyclonic anomalies (or fluctuations),
that arise as either blocking situations [11,12] (omega shape quasi-stationary patterns) or Rossby
wave breaking or shifts of the jet stream, or more complex dynamical events leading to some
quasi-stationary patterns of the jet stream. Studying extreme heatwaves then amounts to studying
the nonlinear and turbulent dynamics of the atmosphere, or the consequences thereof.

Studying extreme heatwaves is however not just a problem in fluid mechanics pertaining to the
extremes of turbulent fluctuations. While there is a clear connection between the physical hazard (the
temperature) and the fast dynamical drivers through the fluid dynamics of midlatitude troposphere
(jet stream, Rossby waves dynamics and blocking situations), it is also well known that slow drivers,
sometimes also called modulators, influence the frequency and the probability of the fast dynamical
drivers [13,14]. For instance, deficit of soil moisture acts as a positive feedback on heatwave
situations [15-27]. Indeed, in normal conditions, evaporation of soil moisture cools the ground and
partition the heat flux from the heated soil to the low altitude air masses into latent and sensible heat.
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FIG. 1. (a) Snapshot of wind-speed velocity at the top of the troposphere, showing the jet stream over North
America (from NASA). (b) Averaged horizontal kinetic energy at 500 hPa (midtroposphere) in the PlaSim
model [28], showing the averaged northern hemisphere jet stream.

This effectively cools the lowest part of the atmosphere. The related produced cloud covers might
also in complement affect the radiative balance. By contrast, lack or low values of soil moisture
will thus favor hotter heatwaves, while persistent heatwaves themselves or precipitation deficit
might favor low soil moisture values (see Refs. [13,26] for a more precise discussion of the related
physical phenomena). This leads to a strong soil-moisture deficit/heatwave positive feedback. Soil
moisture is called a slow driver, or modulator, because the typical timescales of its variations,
from weeks to seasons, is much longer than the synoptic timescales associated with midlatitude
turbulent dynamics, of a few days up to a week. Beyond these land/atmosphere couplings through
soil moisture, other slow drivers for midlatitude heatwaves are classically studied in the climate
literature [13,14], for instance, sea surface temperature at ocean scales, tropical or stratospheric
forcing related to low modes of variability of the climate system (ENSO, QBO, and so on). It has
been identified for a very long time that most extreme events are compound events of several drivers,
and a recent work proposes a qualitative classification of compound types [29].

Understanding the relative effect of fast dynamical drivers and slow physical drivers is very
interesting from the fundamental fluid mechanics perspective: it amounts to understanding the effect
of slow varying and weak boundary condition changes on turbulent statistics. It is also critical to
predict the impact of climate change on future heatwave probabilities [30,31]. The topic of physical
mechanisms behind extreme heat events [32-35], and how these mechanisms may change with
climate change, is an emergent area of research, with much evidence still required. For instance,
the dependence between temperature and precipitation is projected to increase in many land areas,
particularly in the northern hemisphere, leading to a doubling in probability of extremely hot and
dry summers on top of long-term climate trends [36]. Diagnosis of heat event mechanisms is critical
to understanding the potential for nonlinear responses in extreme heat beyond those expected from
global mean warming alone [13].

3. The need for probabilistic forecast for rare events

The main aim of this work is to develop a setup for probabilistic forecast of extreme heatwaves,
based on machine learning. Forecasting extreme events may be crucial for the sake of preven-
tion and information dissemination for limiting risks through anticipated action, which is one of
our main motivations. Another important complementary goal is the understanding of the fluid
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mechanics and physical processes leading to heatwaves. As just explained, a scientific challenge is to
disentangle the effect of fast dynamical drivers, for instance, atmospheric dynamics and geostrophic
turbulence, and slow physical drivers, for instance, soil moisture feedbacks. There is a need for a
new methodology to achieve this goal. A very common approach in the climate literature is to plot
maps of dynamical or physical variables, conditioned on the outcome of the extreme events, called
composite maps. While interesting, such composite maps inform only on the state of the system
once it is known that the event actually occurred (a posteriori conditioning on the event). A much
more important question is to understand which states of the systems are more likely to lead to
the extreme events (a priori conditioning on the state of the system). While these two properties are
related through Bayes law, composite maps alone are not useful to study the more important a priori
conditioning on the state of the system. To predict the probability of a future extreme conditioned
on the state of the system, the so-called committor function, one actually has to build a forecasting
tool able to estimate this probability.

However, this forecast task is often considered as extremely difficult because of the very large
amount of data needed and some methodological difficulties. A review of quantification method-
ologies to disentangle preconditions of high-impact events [37] describes regression techniques
and event compositing, and stress the needed long dataset. The probability that an extreme event
occurs, conditioned on the state of the system, is a function of the system state and is called a
committor function [38,39]. This is the proper tool to disentangle the mechanisms that lead to
extreme events in a fully nonlinear setup, beyond usual restrictive assumptions. One of the main
conclusions of this work will be that machine learning and neural networks provide a way to
compute committor functions, by solving a probabilistic forecast problem. This, however, requires
to understand predictions using neural network in a probabilistic framework, as is further explained
in the following sections.

Another reason why the forecast should be probabilistic is because for turbulent flows, like the
atmosphere, the relation between between meteorological fields (predictors) and extreme events is
probabilistic. This is for three reasons. First, as originally understood by Lorenz in his 1969 paper
[40], for many chaotic dynamical systems with many degrees of freedom and a hierarchy of spatial
and temporal scales, the memory of the initial condition is lost after a finite amount of time and the
dynamics behave in an intrinsically stochastic way. In the case of Earth’s atmosphere, the prediction
of synoptic scales is intrinsically stochastic after a few days to a week [40]. Second, because
for practical reason we have an incomplete knowledge of the initial conditions, then the initial
condition should be considered as stochastic. Third, because the predictors we use do not describe
the complete set of initial conditions. This means that assuming a one-to-one relation between the
predictors (physical fields) and prediction (extreme heatwave after a 7-day delay) does not make
sense, even in principle. The relation between predictors and prediction should be probabilistic. Our
task will actually consist in predicting the occurrence of extreme heatwaves starting T days ahead,
given the knowledge of some physical fields that characterize the state of the atmosphere and soil
moisture today. This is actually a classification task: given some images, or data stored in a vector,
one seeks to associate a class among two: either the heatwave occurs (class one) or not (class two).
From the point of view of machine learning this is very similar to image recognition. However,
when recognizing the presence of a cat in an image, a one-to-one relation between the image and
the class actually exists: either a cat is present on the image or not. The machine learning tool can
then associate a probability to the prediction, which can be interpreted as the level of confidence
of the tool due to its practical limitations, associated, for instance, with incomplete training or lack
of data. By contrast, when predicting extreme events for a chaotic dynamical system, the relation
between the predictors and the classes is intrinsically probabilistic. Then the probability given by
the forecasting tool should be interpreted as intrinsic, and reflect both intrinsic uncertainty due to
the unknown real probability, and practical uncertainty due to the limitations of the learning tool.
We will see the consequence of this remark on the machine learning implementation and testing.
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B. State of the art for machine learning approaches for forecasting climate extremes

Extreme event prediction and, more broadly, weather forecast, have recently attracted numerous
studies which exploit machine learning techniques. This is contrasted with the mainstream approach
which involves running expensive numerical weather prediction models. This dichotomy between
physics-based and pattern-based prediction is well documented in the review articles [41,42].
Notably there are some studies which attempt to bridge the gap by combining the approaches [43].
Overall pattern-based techniques such as neural networks or analog method may do relatively well
in seasonal/subseasonal forecasting [44], at timescales longer than Lyapunov time.

As an example, a forecast tool of the El Nino southern oscillation (ENSO) index has been built
using a convolution neural network (CNN) [45]. A model pretrained on CMIP ensemble was then
trained on historical reanalysis. Other developments include [46] where 500 hPa geopotential height
was predicted using gridded reanalysis data.

Deep learning has been applied to the spatial and temporal detection of extreme weather events
such as hurricanes [47,48], tropical cyclones [49], droughts [50,51], storm surges [52] and wind
power generation [53], and heatwaves [54,55]. For further reference see Ref. [56] and the citations
therein. Recently, for predicting extreme heat events globally, neural networks trained on reanalysis
data [57] have given positive skill compared to the ECMWF subseasonal-to-seasonal control
forecast after two weeks. Neural networks, where the 500 hPa geopotential height and surface
temperature were used as predictors, were able to predict both short duration [54] or long-lasting
[55] heatwaves, when trained on climate model data. In these works, the performance was evaluated
and tuned to metrics related to confusion matrix such as Matthew’s correlation coefficient, which
are well suited for one-to-one or deterministic relation between predictors and prediction. However,
making and testing probabilistic forecast is very important, as stressed in Sec. I A. Changing this
paradigm requires to test probabilistic forecasts using probabilistic scores. Such probabilistic scores
have been used for a long time in evaluation of weather model forecast, for instance, the logarithmic
score which is an objective and proper score [58]. Another proper score, although less applicable
to rare events, a Brier score, was used in a recent study [59] where subseasonal forecast was
made for high temperatures in western and central Europe using random forest approach applied
to ERAS reanalysis. In general, traditional techniques such as random forest are quite competitive
with neural network approaches when dealing with smaller dataset sizes. Finally, we stress the work
by Ref. [60] that produces state-dependent probabilistic Madden-Julian oscillation forecast with
neural networks.

One of the aims of this work will be to perform and test probabilistic forecasts for the first time
to the best of our knowledge, using neural networks, for extreme climate events or atmospheric
dynamics phenomena. Probabilistic forecast will be performed through a natural interpretation
of Softmax probabilities. When working with rare events, because of learning difficulties with
class imbalance, it might be useful and efficient to undersample the majority class. Using such
undersampling at the same time as making a probabilistic forecast however requires an interpre-
tation of Softmax probabilities that takes into account the undersampling rate [61,62], as will be
explained.

In a recent work [55], neural networks have been used to forecast extreme heatwaves. One of the
key originality of this first work was to consider for the first time the forecast of long-lasting extreme
heatwaves, with durations of several weeks. This is a key point as most of the extreme heatwaves
with the largest impact, for instance, the Western European one in 2003, the Russian one in 2010,
or the North American Pacific coast one in 2021, lasted long, from two to five weeks. The lack of
comprehensive studies of the statistics of long-lasting events has actually been stressed in the last
IPCC report [1]. We refer to the Introduction and Sec. 2.1 of Ref. [55] for a thorough discussion of
this crucial point about the definition of extreme heatwaves. Other key achievements of Ref. [55]
were to demonstrate the efficiency of neural network to predict long-lasting events, to implement
and assess the interest of large-class undersampling and transfer learning. From the point of view
of machine learning methodology, this new paper builds on the previous one [55], but with several
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crucial methodological improvements: probabilistic forecasts and tests, implementation of large
class undersampling in a probabilistic setup, and use of both fast and slow physical and dynamical
drivers. Another distinction in this new paper is that we work with fields in the physical space
rather than in the Fourier space. This proves more efficient from the point of view of the forecast
skills, and especially so when studying the importance of local versus global information for best
performance. We also use a much longer, 8000-year dataset, which represents the climate of the
decade 1990-2000 with a more realistic daily cycle, and which allows for a detailed study of the
lack of data regime and a more comprehensive analysis of the various drivers.

C. Goals, contributions, and outline

Section I A discusses the importance of forecasting long-lasting extreme heatwaves because of
their impact. We have also reviewed the large interest in the climate literature for understanding the
respective effects of fast dynamical drivers, related to troposphere dynamics, geopotential height
and temperature maps, and slow physical drivers, for instance, soil moisture. We have stressed that
it is crucial that this forecast should be probabilistic and that it has to be performed in a regime of
lack of data.

To build a machine learning forecast setup that will be able to address these goals, several new
methodological contributions are proposed in this work. To devise and use neural networks that
predict probabilistic forecasts will be our first methodological goal. The neural network output
will be the probability of the extreme event, as a function of the state of the system, also called
a committor function. As a second methodological goal, this probabilistic forecast will be validated
using a probabilistic score. Because of the regime of lack of data and large class-imbalance, we will
propose and test a large class undersampling strategy adapted to probabilistic forecast, as a third
methodological goal. We will demonstrate the efficiency of these three methodological contributions
for predicting long-lasting extreme heatwaves using climate model outputs.

Using this neural network technique, adapted and validated in a probabilistic framework, the
following fluid mechanics and climate goals will be addressed. First the prediction capabilities of
the neural network when changing the predictor fields will be investigated. We will demonstrate that
the network is able to make best predictions when combining fast and slow drivers, with a relatively
stronger contribution of fast drivers for shorter lead times and stronger contribution of slow drivers
for longer lead times. Second, the effects of dataset lengths will be studied, a very important question
in a regime of lack of data. We will actually conclude that the dataset length has to be extremely
long for proper convergence of the learning, and that in such a regime, the optimal learning results in
a tradeoff between the size of the physical domain and data availability. For instance, for predicting
extreme heatwaves over France, it is optimal to use local data (North Atlantic and Europe) with
one hundred-year long datasets, while it is optimal to use global data for few thousand-year long
datasets. Finally, to make a connection with fluid-mechanics, we will study the interpretability of
the learned committor function by computing composite maps conditioned on high extreme event
probabilities.

Those goals will be studied using long datasets from the PlaSim climate model [10,63]. This
model has a very realistic fluid dynamics component, similar to the climate models used for CMIP
experiment described in IPCC reports. However, its physical parametrizations are simpler than such
models, for instance, the ones used for CMIP6 experiments. This significantly reduces PlaSim’s
computation time by about a factor 100. It is thus suitable for methodological development and first
studies, using extremely long datasets. It is ideal for studying learning convergence in the lack of
data regime. Section II gives a more detailed introduction to the PlaSim model, its output fields, and
the dataset size, resolution, quality and richness. It also discusses better the physical interest and
limitations of this dataset. In Sec. II, heatwaves, predictor fields, and the probabilistic prediction
problem studied in this work are also defined precisely.

Section III formalizes the problem of probabilistic forecast using neural networks, and discusses
proper probabilistic scores and their relationship with cross-entropy and machine learning loss
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functions. We also introduce a very useful normalized logarithmic score (NLS) which is positively
oriented (the larger the better), and takes value zero for prediction according to the climatological
frequency and one for perfect prediction. In addition, the relation of these scores to the Brier score,
another classical probabilistic score, is discussed.

Section IV first describes the convolutional neural network architecture used here and its learning
conditions. It further explains the promoted probabilistic strategy: to train the architecture as a
classifier and to use it as a conditional probability predictor. The detailed training protocol using
a classical cross-validation procedure, to assess confidence and reproducibility in performance,
is presented. Finally, it explains the methodology for large class undersampling in a probabilistic
framework.

Section V presents the fluid mechanics and climate science results. It first demonstrates which
combination of physical predictors, among slow and fast drivers, give the best prediction skill. This
stresses the potential of machine learning for dealing adequately with separating their respective
effects. We then discuss the importance of the dataset length, the convergence of the learning
skill when the dataset length is changed, and the tradeoff between dataset length and spatial
extension of the physical fields. We verified that our neural network has a better performance than
traditional approaches, for instance, logistic regression using empirical orthogonal function (EOF)
decomposition (or PCA), although the details of this analysis are not reported in this paper. We also
test the continuity and consistency of the committor function prediction when the time lag is varied.

Finally, Sec. VI discusses conclusions and perspectives.

II. LONG-LASTING HEATWAVES AND PLANET SIMULATOR DATA

Using weather maps, we aim at predicting the probability of occurrence of extreme long-lasting
heatwave that starts T days later. In the remainder we will refer to this parameter as lead time
or sometimes lag time. We first define long-lasting heatwaves in Sec. Il A, describe the possible
predictors in Sec. II B. In Sec. II C, we explain that our approach is actually a way to compute the
committor function, a key function in the field of rare event analysis and simulations. The actual
weather maps we use are outputs of the PlaSim climate model, which is described in details in
Sec. IID.

A. What are long-lasting heatwaves?

Several indices have been used in the meteorology, climate, and impact literature, to define
heatwaves, for different purposes [14]. However, long-lasting heatwaves are the most detrimental to
health [6] and other living beings. Moreover, many of the extreme heatwaves with the largest impact,
for instance, the Western European one in 2003, the Russian one in 2010, or the North American
Pacific coast one in 2021, lasted long, from two to five weeks. They were often composed of several
subevents with the classical definitions [14]. We want to use a definition of heatwaves that actually
involves a measure related to both the persistence and the amplitude of air temperature close to the
ground.

We thus define heatwave as time and area average of daily 2 meter (2 m) temperature. Seminal
studies [6,64,65] of the 2003 and 2010 heatwaves already considered averaged temperature over
variable long time periods (7 days, 15 days, 1 month, 3 months). Several recent works [27,28,66—69]
have studied heatwaves based on time and space average of either the 2 m temperature or of the
surface temperature. This viewpoint is expected to be complementary with the classical definitions
[14], and quite relevant to events with the most severe impacts. Such definitions have the advantage
to define events at a synoptic scale which are geographically located and which begin at a specific
date. This is well suited for a forecast perspective.

The daily 2 m temperature T>,, (7, t) is a spatial field that depends on the location 7 and calendar
day ¢ (also called time). We use daily averages. Statistics of 1>, (7, ¢) are affected by the seasonal
cycle. We compute anomalies (i.e., fluctuations) by subtracting the statistical average E (75, )(7, t) at

040501-7



GEORGE MILOSHEVICH et al.

FIG. 2. For all fields, we will use gridded data on the mid and high latitude northern hemisphere as
represented by red meshlines. The figure also features in purple the area D (France). The North Atlantic Europe
sector is represented in blue.

each point 7 and each time . We compute the space and time averaged 2 m temperature anomalies:

t+T 1 . . ,
Am:F/, HA[TZH,—MTM)](r,t)drdt, (1

where T is the length of the time average, i.e., heatwave duration, and D is the spatial area for
the heatwave of interest. The heatwave duration 7' and area D should be understood as parameters
that can be changed from one study to another, depending on the kind of heatwave of interest.
T ranges typically from one-day (short duration) to three months (a season). D is typically of
the size of the synoptic scale. The synoptic scale, of about 1000 km at midlatitude, is the order
of magnitude of correlation length for troposphere dynamics, and corresponds to the typical size
of anticyclones, cyclones and the jet stream meanders. In the present work, mainly aimed at
methodological developments, we set 7 = 14 days (two-week heatwaves), and D to be the France
area: the set of grid-points corresponding to France area is visible on Fig. 2.

We consider summer statistics, during the months of June, July, and August. More precisely
we consider A(¢) for ¢ between June 1 and August 16 (inclusive), such that the time average in
Eq. (1) involves only days during the months of June, July, and August. In PlaSim each month
spans 30 days, thus the total length of the period of interest is 77 days. The statistics of A is
considered as approximately stationary during the summer, although there is actually some very
small nonstationarity. For instance, monthly breakdown for standard deviation is o4 = 1.58 K in
June, 04 = 1.49 K in July, and o4 = 1.32 K in August. We see that the variations of the standard
deviations from one month to another are much smaller than the standard deviations themselves,
and much smaller than the variations of the time averaged temperature from one month to another.
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Extreme heatwaves are defined as rare large values of the time and space average A(¢). Following
the previous works [55], we define an extreme heatwave as an event (a day) for which the time
and space averaged 2 m temperature anomaly exceeds the threshold «: A(¢) > «. We introduce
an indicator variable Y () which is equal to 1 when A(¢) > « and O otherwise. We have K = 2
classes of events: heatwaves when ¥ = 1 and no heatwave when ¥ = 0. Y (¢) is sampled daily.
When Y (¢) = 1, ¢ is the day for the start of the heatwave and the heatwave lasts for 7' days, by
definition. The threshold « can be changed depending on the heatwaves of interest. The number of
classes K could also be changed. For this methodological study, we use K = 2 and « such that the
heatwave class contains 5% of the total number of summer days (excluding the last two weeks for
the reasons explained). For the PlaSim model data described below, this corresponds to « = 2.7 K.

B. Predictors for heatwaves

Our objective is to develop a prediction tool for extreme heatwaves. From the knowledge of
observed weather fields (predictors), we want to predict the probability of the event t days later.
We will vary the parameter t to understand how the predictability potential changes with this lead
time 7.

The choice of good predictors, among all possible weather fields, is a key practical and physical
question. From the common knowledge among weather and climate scientists, it is known that
maps of the 2 m temperature 75, and of the geopotential height Z (in meters), for instance, on
the 500 hPa isopressure surfaces (the 500 hPa geopotential height) are relevant variables. The
geopotential height at 500 hPa (close to the middle of the troposphere) is considered an excellent
representation of the dynamical state of the atmosphere. Indeed, it is closely related to pressure
variations at a fixed altitude, to anticyclones (positive values), and to cyclones (negative values),
in the lower troposphere. Moreover, on those surfaces the wind flows along the isolines of the
geopotential height, to a good approximation. The 2 m temperature 75, used as a predictor is
directly related to the kernel of the integral [Eq. (1)] whose fluctuations we seek to predict, and gives
further information on lower atmosphere dynamical processes compared to the 500 hPa geopotential
height. We stress that A(r + 7) involves the time average over T days of Ty, (7). The knowledge of
Tom(t) thus provides only partial estimate of A(t 4+ t), just by virtue of persistence prediction or
low-tropospheric advection. However, given that the correlation time is of order of a few days, to
be compared to T = 14 days, this information gives a relatively small predictive power by itself
even for t = 0, which quickly diminishes for t larger than a few days. In the following, we never
use directly the 2 m temperature or 500 hPa geopotential height fields, but rather their anomalies
by subtracting their seasonal average. Representative examples of snapshots of 2 m temperature or
500 hPa geopotential height fields is shown on Fig. 3.

The 2 m temperature T>;,, and the 500 hPa geopotential height Z are fields that evolve through
the chaotic dynamics of the atmosphere with a typical time called the synoptic timescale, of order
of a few days. It is known that both temperature and geopotential lose the memory of the initial
condition of the atmosphere, and that their auto- and cross-correlations decay, after times of order
one to two weeks. This is the predictability margin for weather. As a consequence, we expect these
fast dynamical fields to lose their predictive power after times of order 15 days at most. Those fields
have actually been used as predictors for machine learning approaches in past studies, either for
5-day [54] or 14-day [55] heatwaves. Those works have indeed demonstrated the predictive value
of these fields for time delays 7 up to about 15 days.

One of the aims of this work is to combine predictors based on fast dynamical weather fields, just
discussed, with other drivers with a much slower typical evolution. As explained in the introduction,
soil moisture deficits and heatwaves are coupled through positive feedback loops and reinforce each
other on various timescales [15-23,25-27]. Because soil moisture is the stock of all water in the
soil, it evolves on rather long timescales. Its value is correlated over weeks to months [22,70]. Ata
specific time, the effect of soil moisture on dynamical variables which directly cause heatwaves, is
rather weak. It is basically only able to modulate the energy budget and temperature. For this reason,
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FIG. 3. Snapshot of 2 m temperature anomaly and 500 hPa geopotential height anomalies. Temperature
colormap is shown on the colorbar. The geopotential height anomalies are plotted via contour lines, colored
green for positive and purple for negative with a separation of 20 m between the lines. The lowest level also
corresponds to 20 m. This map displays a synoptic situation (daily averaged) on the first day of the strongest
heatwave in the dataset.
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we expect the soil moisture predictor to have a much smaller predictive value than fast dynamical
fields in the short run, but by contrast it should provide extended memory effect. One of the aims of
this paper will be to test these simple qualitative ideas and to make them precise and quantitative,
using the machine learning tool.

Other slow evolving drivers might be considered as good predictors for heatwaves, i.e., sea
surface temperature, or slow modes of variability of the atmosphere, ice and snow cover, and so
on [59]. However, as explained in the next section, the dataset we use is not suited for this, and such
studies will be postponed for future works.

For simplicity, in the following, we denote Z the 500 mbar geopotential height, T5,, the 2 m
temperature and S the soil moisture fields.

A second question pertaining to the predictors is to decide whether to use either all their values in
the northern hemisphere mid and high latitudes, or rather to use their values on a restricted area close
to the heatwave region or some intermediate scale area. Because the soil moisture feedbacks are
local processes, soil moisture is expected to be relevant locally, for instance, around the area where
the heatwave occurs, while geopotential height is expected to play a role on a more hemispheric
scale. For instance, for many past studies of weather and climate phenomena over Europe, values
of predictors over the North Atlantic and European area were typically used for the geopotential
height. As examples, several very interesting studies, using analogs as a learning tool, have shown
that the North Atlantic and Europe sector might be the best choice [71,72], with the interpretation
that this area carries the most relevant information. For temperature, it is less straightforward to
assert a priori whether just local or hemispheric information matter for heatwave prediction.

We will use the machine learning tool to assess the question of such optimal predictors. We will
use either the northern hemisphere mid and high latitude fields, corresponding to the values of the
fields above 30N, spanning a 22 x 128 grid points, or to a restricted area, corresponding to a 18x42
grid points, referred as the North Atlantic and European sector, or to the France area (see Fig. 2).
On these restricted areas, the 500 hPa geopotential fields Z, the 2 m temperature 75y, and the soil
moisture S are denoted, respectively, Zny, Tnu, Sng for the northern hemisphere, Znag, TNAE, SNAE
for the North Atlantic and European sector, and Zg, Tr, S for France (see also Sec. IV B).

These data can be stacked, as different input features, for the learning procedure. It was shown in
Ref. [55] that stacking was the best approach for combination in this context, as it allows to capture
interaction between learned features.

More abstractly, the set of predictors (one of the combinations of Zny, Tnu, SN,
ZNAE,> INAE, SNAE, OF Zf, Tr, Sk), is globally called X e R<. From the value of the vector X (f — 7)
at some time ¢t — t, we aim to predict the probability p(x), that Y (¢) is equal to one (to observe an
heatwave at time ¢), given that X = x. This is a probabilistic classification task, conditioned on the
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state x. In the context of stochastic processes p(x) is called a committor function, as we will explain
below.

C. Committor functions for extreme heatwaves

We note that in the theory of rare events for stochastic processes, the probability p(x) to observe
a rare event conditioned on the state of the system x, is called a committor function [73,74]. The
committor function is the probability of hitting the target set B before the set A: P[r5(x) < 77 (x)],
where 77 and 3 are the first hitting times of the sets .4 and B, given that the trajectory started at x.
It is possible to extend this definition to time-dependent sets A and B with an extended dynamical
system; see Ref. [39]. For example in our case, the set A is simply the set of the model fields (x)
such that we have a heat wave which starts at time 7, and the set B is the complementary set to .A.
For each value of 7, the probability p that we seek to predict is then a committor function.

Committor functions are extremely useful in the simulation and prediction of rare events. Several
computations of committor functions have been performed with applications in either geophysical
fluid dynamics or in climate sciences [38,39,75-78], using either direct or involved approaches.
However, computing or sampling a committor function is a very difficult task, especially in large
dimensional spaces, because it requires to gather a very large amount of statistics about rare events.

Many interesting methods have been or are currently being devised to learn committor functions:
based on direct machine learning [79], or using approximations of the stochastic dynamics, for
instance, using the analog approach [77], or Galerkin approximations of the Koopman operator
[80,81]. The present work, by successfully implementing a neural network that efficiently forecasts
p(x) the probability of extreme heatwaves conditioned on the state of the system x, demonstrates
that neural networks are useful and efficient to compute committor functions for extreme heatwaves,
for a dynamics that takes place in a state space with about 10° degrees of freedom.

D. Data from the planet simulator model

In this work, we will use a very long 8000-year dataset obtained as the output of the PlaSim
climate model. In this section we briefly describe the model and its specific implementation and
climate for producing this dataset. We also compare it to other climate models and explain its
potential limitations and why it is suited for the present study.

PlaSim climate model [10,63] solves the global dynamics of the Earth atmosphere, coupled
to ocean, ice, and land surface components. Its atmosphere dynamical core solves the primitive
equations for vorticity, divergence, temperature, and pressure. The governing equations are solved
using a spectral method. Unresolved processes, such as radiation, interactive clouds, moist and
dry convection, large-scale precipitation, boundary layer fluxes of latent and sensible heat, and
vertical and horizontal diffusion, are parametrized. The land component of the model deals with the
dynamics of soil moisture, which is a key physical component of the land-atmosphere feedbacks, as
long as heatwaves are concerned. It is modeled by a single-layer bucket model [82]. Soil water
is replenished by precipitation and snow melt and is depleted by the surface evaporation. Soil
water is limited by a field capacity with prescribed geographical distribution. If the field capacity is
exceeded, then the runoff is provided to the river transport scheme.

For computing this specific dataset, the model is set up to run with fixed greenhouse gases
concentrations and boundary conditions (incoming solar radiation, sea surface temperature and sea
ice cover distributions) cyclically repeated every year, to generate a stationary state reproducing a
climate close to the one of the 1990s [10,63]. For instance, the sea surface temperature is seasonally
varying along the year, a cycle which is repeated each year. The horizontal resolution is T42
in spectral space, corresponding to a spatial resolution of about 2.8 degrees in both latitude and
longitude. In practice, the horizontal fields of data have a spatial size of 64 x 128 pixels, covering
the entire globe. The vertical resolution corresponds to 10 vertical layers. Moreover, each field is
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sampled in time at §t = 3 h sampling period, and daily averages are taken in the analysis stage. The
8000-year dataset is obtained by 80 runs with independent initial conditions, each 100 years long.

We have already used a similar setup in previous works [28,55]. In the new 8000-year dataset
used in this work, the setup is slightly different compared to our previous 1000-year dataset. We
use a diurnal cycle, which is more realistic compared to the previous studies with diurnal variation
of the solar forcing and we predict 2 m temperature rather than surface temperature, which is more
relevant for impacts and a bit more difficult to predict. We note that in this paper we use daily
rather than 3 h average for prediction in contrast to [55]. In an ablative study, we have trained neural
networks with the 1000-year datasets and concluded that the predictive skills are similar with or
without daily cycles, and independent of whether 3 h long samples or daily averages were used for
the prediction.

The PlaSim model has physical parametrizations that are of a lesser quality compared to up-to-
date climate models which are used for CMIP experiment, analyzed in many studies documented
in the IPCC reports. Its advantage, however, is that it runs about 100 times faster and is specif-
ically suited for producing extremely long datasets. No other statistically stationary dataset with
8000 years of fixed present-day climate simulation is available using climate models for CMIP
experiments. The atmosphere dynamics component of the PlaSim model is equivalent to many
of the CMIP models, although the forcings and couplings are slightly degraded. The obtained
large-scale fields and patterns are of an excellent quality [10,63]. In the work in preparation, we
show that the composite statistics of the large-scale 500 hPa geopotential height fields, conditioned
on heatwaves, leads to very similar patterns for this PlaSim model dataset, for CESM model outputs
for a 1000-year similar climate, and for the ERA reanalysis dataset [83]. CESM is one of the best
models used for CMIP experiments. Because of the physical setup, for instance, the lack of an
active ocean in the model simulation, given PlaSim dataset is not suited for other process studies,
for instance, the impact of sea surface temperature fluctuations. For the study of other slow physical
drivers than soil moisture, other climate model outputs might be needed.

For all of these reasons, and because having a very long dataset was key, this PlaSim model
dataset was suited for this study. This allowed us to emphasize the methodological development and
the study of the training convergence with the dataset length, in the lack of data regime.

III. PREDICTION OF PROBABILITY FOR RARE EVENTS

In this section we discuss how to make a probabilistic forecast using a neural network, for a clas-
sification task, using Softmax probabilities. We also define and discuss the scores for probabilistic
forecast and their relation with the neural network score functions.

A. Softmax Regression for the inference of the probabilities of rare events
1. Setting

The task we consider is the inference of probabilities of having events ¥ € {(0, 1)}* from a set of
physical observables (or features) globally called X € R¢. If one event is in the class k, then ¥; = 1
and for [ # k, ¥; = 0O (the classes are exclusive, and each event belongs to one and only one class).

As explained in Sec. IT A, for the specific application in this paper, K =2, Y =1 when a
heatwave occurs at time ¢ and ¥ = 0 otherwise, and X represents all the relevant dynamical and
physical predictors of the state of the atmosphere at time ¢ — 7. However, the following discussion
is general for any probabilistic classification and is independent on a specific dataset or network
architecture.

Let us consider the pairs (X, Y) as random variables, having a ground truth joint probability
distribution P(X =x and ¥ =y) = P(x,y) = P(Y = y]X =x)P(X = x). The objective is the
soft assignments of features into the event types, in the sense that we want to estimate a probability
that a given realized state x will conduct to the different possible classes.
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Hence, the task is the inference of the probability density p = {p«(x)}o<k<k—1 Where pi(x) =
P (Y, = 1|X = x) is the probability that ¥;, = 1, given that X = x. Because the classes are exclusive,
we have Y, pr(x) = 1.

We classically formulate the inference of p (the estimated values of p) as a soft classification
problem, relying on using a softmax function at the end of the proposed learning architecture (see
the detailed architecture in Sec. IV A). Softmax probability offers a convenient way to output, for
each input x, an output having the meaning of the probability instead of only a class of events.

2. The Softmax probabilities

Softmax parametrization is a way to output probabilities associated with a discrete variable. If
taking directly the features that pass through a single (not hidden) layer as input, then it is equivalent
to what is known as logistic regression. For a detailed explanation, please see Ref. [84] for a review
for physicist, or Ref. [85] for a textbook in machine learning. The output probability has to be a
positive function that should sum up to 1 over all the K classes. To force that, in logistic regression,
the probability associated with the features x is modeled by first computing a vector in RX written
as o(x, #) = Wx + b, where § = (W, b), and then taking the normalized exponential (also known
as Softmax function) of this vector to model the probabilities:

e—ok(x,e)
Zj:OI e—0i0)

The quantity o, which is the nonnormalized log probability, is also called the logit. Here, oy is the
output associated with the discrete variable Y;, and in this situation of logistic regression, it would
be simply the linear form o, = wix 4+ b. More generally when using neural networks (see later in
Sec. IV A), the logit is a nonlinear function o(x, @), involving several layers with parameters @),
where the original features are input of the first layer. In that situation, the softmax function is the
last layer of the neural network.

This softmax parametrization achieves probability regression, as will be described here. Note
that it can be used also for classification if a threshold for probability counting as a positive event
(heatwave) is chosen; that was the purpose of the previous work on the prediction of heatwaves
in Ref. [55], and the results were only discussed in terms of categorical prediction, with a focus
on recall (also called sensitivity in the binary case, i.e., the true-positive rate) and false-positive
rate (1 minus the specificity, i.e., the fraction of false positive among all true negative events) of
events. Here, we will study with more details the obtained probabilities on the different classes. A
discussion in terms of TP and FP rates, and of the commonly used Matthews correlation coefficient
(MCC) as a metrics to combine the two [86,87], as done in Ref. [55], while useful and sometimes
providing qualitatively similar results, it is not properly adapted to quantify the skill of the inference
of probabilities. For this purpose probabilistic score is requested.

PYr=1]x,0)= 2)

B. Proper probabilistic score, learning loss function, and normalized logarithmic score

In the meteorology and climate fields, a huge literature has been devoted to the definition of
good scores for probabilistic forecast validation. A good probabilistic score should be additive with
respect to new events, proper (it should be maximum when the forecasted probability is the ground
truth probability), and should not depend on unobserved events [88]. In the case of probabilistic
classification, of interest in this paper, we follow the analysis of Benedetti [58]. It concludes that
the only probabilistic score with these three natural properties is the logarithmic score, also often
referred to as the ignorance score (see Ref. [89] and references therein). We will thus use the
logarithmic score to validate the forecast skills of the neural network.

The aim of this section is to define the logarithmic score, to explain that it is nothing else than
the negative of the cross-entropy loss function minimized by the neural network during the learning
stage, and to define a normalized logarithmic score. The NLS is just a simple affine transformation
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of the logarithmic score that has the property of being equal to 0 when the forecasted probability is
the climatological frequency, and equal to 1 when the prediction is perfect.

We consider N actually observed events Y, with 1 < n < N, associated with the observed
features X,,. We suppose that the event Y, is observed pertaining to the class k,. This means
that Yy, = 1, and Y,); = 0, for I # k,. The couples (X, Y,)) are identically distributed, and
the probability that Y(,)x, = 1 given that X, = x is pr(x) = P(¥; = 11X =x).

The real probabilities py(x) are unknown. We consider a probabilistic forecast pi(x). In our case,
Pr(x) will be the output of the neural network after the learning stage. Our aim is to give a score
that quantifies the quality of the approximation of p by p. This score should be computed without
the actual knowledge of p, and be based only on the N observations, for instance, N samples of a
test dataset. The logarithmic score [58] is

l N
Sw(p) = —+ ;log [hr, ()] 3)

‘We note that in the simple case considered in Ref. [58], the probabilities do not depend on the state
of the system x, while they do in this paper. However, all the reasoning and conclusions in Ref. [58]
easily generalize to this new case. We note that with this sign convention, the minus sign in front
of the logarithm, the logarithmic score is positive (Sy > 0) and negatively oriented (the smaller the
score, the better the prediction).

We see that the logarithmic score is nothing more than the empirical cross-entropy loss function:

N K-1

1
CIPI = —~ D D Sk log prlxn), )

n=1 k=0

where dy, « is the Kronecker §. This is the loss function minimized during the learning stage of the
neural network.

It is easy to check that the score is proper, by noting that according to the law of large numbers
Jim Sy = E[Sy] = L[p. pl, with

K—-1

L[p.pl = — / dx P(x) Y pex)log [pr@)], 5)

k=0

and that the minimum of L[p, p] is obtained for p = p.

We note that L[p, p] > 0 and that L[p, p] = 0 only in the case when for any x, all the p;(x) are
equal to zero except one. This is the case of a deterministic relation between x and y, when a perfect
prediction is possible. In general, when the relation between x and y is stochastic, L[p, p] > 0, and
it measures the level of stochasticity between x and y.

It is important to compare the obtained score with the score of a prediction based on the
climatological frequency. We define the climatological frequency as the probability p, of observing
the class k, independently of the knowledge of the state of the system x. The climatological forecast
P = p provides a baseline: any skillful forecast should be better than the climatological one. We
note that E[Sy(p)] = L[p, pl = — D_, Px log P, [we have used (5), noting that the p; s do not depend
on x|.

Generalizing the discussion in Ref. [58] to the present case, we define the normalized logarithmic
score as

- Zk Dy log . — Sn(P)
— > « Dy logpy

We clearly see that for the climatological forecast E[NLS(p)] = 0. As — )", p; > 0, we see that
the score is positively oriented (the larger score, the better prediction).

NLS(p) =

(6)
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For a given p, the optimal value of E[NLS(P)] is (—) . p.logp, — Llp,pl)/
(— Y, Prlogp,) < 1. This optimal value is unknown, except if one would know p(x) and
P(x). Only in the case of a deterministic relation between x and y, when a perfect prediction is
possible, this optimal value is equal to 1, otherwise it is strictly smaller than one.

The normalized logarithmic score is a way to quantify the predictive skill of predictive power
of the models learned by the convolutional neural networks. We conclude that the normalized
logarithmic score is positively oriented (the larger the better), its average is equal to zero for the
climatological forecast, and is always smaller than 1. The unknown optimal value is strictly smaller
than 1, except when a deterministic relation between the predictor x and the predicted class y exists
and a perfect prediction is possible. These properties make it convenient.

In the climate and meteorology literature, other scores for probabilistic forecasts are commonly
used, for instance, the Brier Score [89,90]. The Brier score can be very useful. It however depends
on unobserved events (see Ref. [58]). Moreover, the relation between the logarithmic score and
the cross-entropy loss function makes the learning and the validation stage fully compatible. The
logarithmic score also appears to be more sensitive toward the measurements of small probabilities
or probabilities close to one, and is thus better suited for the study of rare events. The information
theoretic interpretation of the logarithmic score is also an appealing property.

IV. NEURAL NETWORK ARCHITECTURE AND LEARNING PROTOCOL
FOR THE PREDICTION OF RARE EVENT PROBABILITIES

As explained in Sec. II, the task is to predict the probability of occurrence of a heatwave at time
t, from the state of the system x. These variables are sets of physical fields which are observed at
time ¢ — 7. In this section, we present the neural network architecture, the training parameters and
protocols.

A. Neural network architecture and learning parameters
1. Neural network architecture

For the inference of probabilities, we will use a CNN architecture as sketched in Fig. 4 [85].

It consists of a three-layer architecture, combining convolutional filters, followed by ReLu
activations. For all layers, 3 x3 convolution kernels are used, while the number of filters is 32 for
the first and 64 for the two last ones. Two max-pool operations are inserted between the convolution
layers after the activation functions. The output of the third layer is flattened and used as input
of a dense layer with 64 neurons, a layer with two outputs corresponding to the heatwave labels,
and a softmax function which maps the outputs to (0,1) range, as detailed for the probabilistic
interpretation in Sec. III.

The probabilities obtained by softmax regression with cross-entropy loss function are not always
well calibrated. For instance, it has been discussed in Ref. [91] in very deep networks (e.g., ResNET)
that the calibration of the probabilities is not correct; in other words the network may be overly
confident about its probabilistic predictive capability. This is a reason why we prefer to use a neural
network that is not too deep. Also, this phenomenon can be worse when facing extremely rare events
because of the imbalance between the classes. We discuss in Sec. IV C how to avoid biases due to
overfitting.

2. Loss function

As discussed in Sec. III, we minimize the cross-entropy loss function, Eq. (4). Optimizing the
cross-entropy is done as a supervised task, using both the input data fields x and heatwave classes Y.
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FIG. 4. Schematics of the CNN architecture. The numbers axbxc inside the boxes for Conv2D indicate
the kernel sizes (a by b) and the number of filters ¢ in the convolutional layers. The box “Relu” actually consists
of a sequence: batch normalization-activation (ReLu), and spatial dropout. Relu stands for rectified linear unit,
it provides nonlinearity and is typically used to prevent vanishing gradients instead of sigmoid for the hidden
layers.

3. Learning tools and parameters

The CNN layers are implemented using Tensorflow 2 package, and CNN training is done with
Adam optimizer, with learning rate set to 2x 10~*. Network weights are initialized using a standard
Glorot distribution. The computer resources consisted of computers with dedicated graphics cards
such as GV100GL [Tesla V100 PCIe 16GB], TU102 [RTX 2080 Ti Rev. A], and TU104 [RTX 2080
SUPER].

B. Training protocol
1. Data normalization

The training set consists of 8000 independent and statistically equivalent years of simulated
climate (cf. Sec. II D). The season of interest is June-July-August (JJA, 90 days). When we consider
14-day time average, we have 77 days of JJA per year before the start of the heatwave (see Sec. IT A).
This gives 616 000 snapshots for each value of 7.

Data are normalized by grid point prior to application to the neural network: we add a constant
and scale each cell of each field such that the sample mean and variance are 0 and 1, respectively.

Note that each possible input field, Z, S, or T is considered as a separate input channel and they
are stacked in the CNN layers (e.g., like RGB channels in colors images). The input tensor is then
of size 22x 128 x the number of input fields (3 if using all of Z, S, and T') provided that the global
field corresponding to the north hemisphere above 30N is used. In this case we use the notation
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ZxH, Tnu, Snu- However, if the input consists of a smaller area corresponding to the North Atlantic
region and Europe, then we use the notation Znag, TNaE, SNaE, Which has dimensions of 18x42
(Fig. 2). Note that in both cases we could be interested in applying additional mask to the area of
France, i.e., setting to zero all values external to the area of a box around France. This operation is
not applied to geopotential, so the two resulting cases are Zny, Tr, Sk and Znag, Tf, Sk.

Sec. V will discuss in details which combination of these z, s and/or T fields, used either locally
or globally give the best predictions.

2. Stratified 10-fold cross-validation

To quantify confidence in achieved prediction performance, we use a classical stratified k-fold
cross-validation procedure [92]. The 8000 available years are randomly split into k = 10 subsets.
The splitting of the data set is performed on a per-year basis to avoid that any of the years is split into
a test and train set. The latter would blur validation consistency by spurious temporal correlations
between validation and train sets or seasonal effects. In addition, random splitting is performed to
maintain the same number of heatwaves per subset (stratification). Each resulting subset consists of
800 years.

3. Initialization, batch normalization, and dropout

The convolutional and ReLu activation layers are followed by batch normalization and subjected
to a dropout. Batch normalization is expected to accelerate learning. Dropout is considered a
regularization tool avoiding overfitting [91]. The dropout rate is set to 0.25.

C. Early stopping

Overfitting is a major problem of machine learning, especially in the case of deep neural
networks. This means that the model is trained to reproduce the training dataset too closely and
does not generalize well to the validation set or the test set. As a remedy an early-stopping strategy
is typically used, which implies stopping the training at an epoch when the appropriate metric on the
validation set starts getting worse. We have followed the same general outline, with a caveat. Since
we are performing 10-fold cross validation, we can rely on the performance metric as provided by
the NLS, Eq. (6). Each training set (fold) reaches its optimal performance on a validation set at
a certain epoch, after which it starts to over-fit. This epoch generally depends on the training set
although in most cases the variance is not vary large.

Nevertheless, we propose to select an epoch on which the fold-wise mean score is optimal. We
refer to this as collective early stopping. This approach is more conservative about the performance
of the network, and less dependent on the training/validation split.

D. Unbalanced classes and undersampling strategy for probabilistic forecast

Rare event prediction suffers by design from a severe class imbalance. To address this, we use a
majority class undersampling strategy, as opposed to a minority class oversampling. This means that
the training set uses all available positive events, but only a ratio 1/r of events of the majority events
are drawn with uniform probability, with » > 1 (undersampling). This data reduction procedure also
minimizes time and memory costs during training.

This undersampling changes the rate of positive events. We need to take account of this change
of measure, otherwise the predicted probability will not be correct [61,62].

Let po(x) and p;(x) = 1 — po(x) denote the probabilities that ¥ = 0 and ¥ = 1, respectively,
given that X = x, in the original set. Let pj,(x) and p}(x) = 1 — p;(x) denote the probabilities, that
Y =0and Y = 1, respectively, given X = x, in the undersampled training set. These probabilities
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are obviously related as

Po(x) rp1(x)
po(x) + r[1 — po(x)] 1 —pix)+rpi(x)

As an example, when py = 0.8 and p; = 0.2 and an undersampling ratio r = 4 is used, fully
balanced undersampled classes are obtained, with p;, = 0.5 and p} = 0.5. During training after
undersampling, the neural network actually gives an estimate p;,(x) and p}(x) of the probabilities
Pp(x) and pf (x) of the event that has been seen, and not of the true ones py(x) and p;(x).

To get an estimate py(x) and p; (x) of py(x) and p; (x), respectively, we need to invert the relation
(7) between the initial probabilities and the probabilities in the undersampled set. This gives

Phx) = and  pj(x) = 0

W O(X)A, and  p)= — XD 1) —
1 —(1—-r)pyx) r+{1—-rp)x)

The estimated probabilities pj(x) and p} (x) can then be tested using Eq. (6) on a validation set
or a test set, or used as the predicted probabilities for the physical discussion and for applications.
Please note that we do not undersample the validation set.

In this work, we use an undersampling rate » = 10, consistent with [55]. This reduces the RAM
memory usage approximately 10-fold and accelerates the training while not impacting the skill
significantly (see Fig. 11 in Sec. VE 1).

Po(x) = ®)

V. PROBABILISTIC FORECAST OF EXTREME HEATWAVES

The present section aims to quantify, using the NLS, Eq. (6), the quality of the prediction of
heatwave occurrence probabilities. These quantifications will be conducted as function of the lag t
between time at which data is available for prediction and heatwave occurrence. The impact of the
nature of the data used for prediction (soil moisture, geopotential, and/or 2 m temperature) will be
investigated together with the benefits of possible combinations of such inputs. Further, the impact
of the amount of available data on prediction performed will be studied.

A. Relevant climate fields for the probabilistic forecast of extreme heatwaves

A first key question is to assess which of the predictors, among the physical and dynamical
fields, have the best prediction capabilities. To this aim, we train the neural network with the large
8000-year dataset and test its skill by computing the normalized logarithmic score [cf. Eq. (6)] on a
validation set. From the values of NLS, we can compare the prediction skills for extreme heatwaves,
when different combinations of the fields are used: soil moisture S, geopotential height at 500 hPa
Z, and 2 m temperature T»y,, used either alone or combined.

In this section we always use the geopotential height at 500-hPa Zyy over the northern hemi-
sphere area, and the soil moisture Sg and 2 m temperature 7 over the France area. These choices of
regional masking will prove to be the optimal ones, as we will discuss in Sec. V B. We also consider
the 2 m temperature integrated over the France area, which is then a single real number denoted Try.
When only one local field (FI) is used, a simple scalar logistic regression is performed. For all the
other cases, we train the neural network as explained in Sec. II B.

Figure 5 reports the normalized logarithmic scores versus the lead time t, for different combina-
tions of fields.

1. Single-field prediction

Figure 5(a) first shows that soil moisture over France, Sg, conveys significant long-term ability
for the prediction of heatwave probabilities. In particular, it retains predictive value at large lead
time 7, hence can be considered a candidate slow physical driver. Those findings are consistent
with the important role of soil moisture through its two-way coupling with heatwaves as discussed
in Sec. II B. The main physical interpretation is that soil moisture deficit statistically increases the
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FIG. 5. Relevant climate fields for best prediction. All figures show the NLS [cf. Eq. (6)] vs the lead time
7, for different combinations of the predictor fields. Fields are either integrated over the area of France (FI),
masked over the France area (F) or over the northern hemisphere (NH). From k-fold cross-validation values,
we plot the averaged NLS, plus or minus one standard deviation (shaded area and error bars): (a) single-field
prediction: Ty (blue), Sk (orange), Zyy (green), and 7Tr (red); (b) fields combined pairwise for prediction:
(Zxu, Sk) (blue), (Tr, Sk) (orange), (Znu, Tr) (green); (c) all three fields combined for prediction: (7, Znu, Sv)
(orange).

temperature in the lower troposphere, through the impact of deficit of evapotranspiration or other
water exchanges at the surface on the lower troposphere energy cycle, and on cloud cover. We also
note that the predictive skill of soil moisture alone only weakly decays with lead time t, which
can be interpreted as a consequence of the long correlation time of soil moisture compared to
the maximum 30 days lag-times considered here, soil moisture being a stock. The soil moisture
predictability skill is nearly a constant versus 7. This constant could be directly related to the
conditional probability to have a heatwave given some soil moisture field Sg, and could be estimated
in a straightforward fashion based on a climatological prediction conditioned on the values of the
soil moisture fields, regardless of any other information about dynamics.

The curve Zyy in Fig. 5(a) shows that when using only the northern hemisphere 500 hPa
geopotential height for training, the neural network has better prediction skill for short times. This
skills decays roughly exponentially with 7 with the approximate rate of decay of 0.13 per day:
NLS,, ~ 0.26 exp(—0.13 7). This rate corresponds to a decay time of 7.7 days (after 7.7 days, the
prediction skill decreased by a factor ¢). The 500 hPa geopotential height field is considered as one
of physical fields which characterizes the best midlatitude troposphere dynamics, Rossby waves,
cyclonic and anticyclonic anomalies. The decay of the skill is interpreted as the progressive loss of
memory for the evolution of this dynamical field, due to the chaotic dynamics of the midlatitude
troposphere, over timescales of the order of the synoptic timescale, which corresponds to few days.

By comparing the NLS from Zyy and Sg, we confirm that in the short run soil moisture has
significantly smaller predictive value than the 500 hPa geopotential height, but, in contrast, it keeps
its predictive skill over much longer time lags 7, as expected based on the discussion in Sec. II B.
However, such qualitative statements are now precisely quantified, thanks to the neural network we
introduced here. We see, for instance, that for these PlaSim simulations, the geopotential height Zyy
alone has a NLS of 0.26 4= 0.01 compared to 0.18 £ 0.01 for soil moisture Sg at T = 0, and that the
predictive skill of soil moisture alone becomes larger than the one of 500 hPa geopotential height
for 7 larger than about 4 days.

The interest of looking at the predictive power of the temperature integrated over France, Tgy, is
to assess the predictability properties related to persistence and possibly low tropospheric advection.
T on Fig. 5(a) shows this prediction for t = 0. Although not visible on the Figure, the related skill
extends for t of order of a few days, subsequently the predictability power is lost. For larger values
of 7, T > 5 days, Ty reaches a weakly decreasing plateau.
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The information contained in 7 is the spatial average of the temperature field over France 7g.
As a consequence, Tr on Fig. 5(a) has a higher NLS. The fact that the predictive skill for Tr is
much better than the one for Ty shows that the details of the spatial pattern of temperatures over
France matter much for the prediction of extreme heatwaves defined globally over France. This is a
very interesting result. Anticipating the following discussion, we will interpret the predictive skills
of both 7g and Tg, for T > 5, to be due to their mutual information with the soil moisture. We
can then interpret the better predictive skill of the spatial field Ty, compared to the one of T, as
the consequence of the larger information content of the soil moisture on some specific areas. This
interpretation is consistent with past studies that argued that soil moisture matters more in areas
prone to its deficits, rather than areas where soil is unlikely to dry. This interpretation should be
studied further in future works.

The two plateaus with strictly positive skills for both 7 and T for large time lag 7 are striking.
We cannot expect those skills, that extend over timescales much longer than the synoptic times,
to be related to persistent properties or to free troposphere dynamics, because they extend over
timescales much longer than the mixing time of the uncoupled troposphere dynamics. This long-
term skills might be related to some correlations between Tg; and some slow physical drivers. We
might hypothesize that 7 and 7T contain statistical information related to the soil moisture. To
study this hypothesis, we will now study the predictive skills of combined fields.

2. Predictions using fields combined pairwise

We now study the predictability skills of the neural network when trained using combinations
of the two fields. The results, reported on Fig. 5(b), show that the best combination is the couple
(Znu, Sk). Compared to the results on Fig. 5(a), it is striking to see that the predictive skills of Zyy
and Sg seem to add up [93]. The curve can be approximated as 0.288 * exp(—0.144 t) + 0.155, with
a decay time of about 6.9 days relatively close to the one obtained for the geopotential height alone.
Using the couple (Zng, Sr), the neural network is able to conveniently retain the useful information
for prediction, from both the fast dynamical field Zyy and the slow physical driver S in a seamless
way.

The predictive skill of the couple (7, Sp) is the worst among the three couples for small lead
times t, and is not better than the skill of the field Sg alone for large lead times. For large lead times,
this means that all the useful predictive information lies in Sg. This remark supports the idea that
the plateau for 7r in Fig. 5(a) has to be interpreted as the predictive skill for the 2 m temperature,
as a consequence of its mutual information with the soil moisture. Moreover, for large lead times,
clearly, the flow of information is from the soil moisture to the 2 m temperature, as combining both
fields do not give improvements with respect to soil moisture alone. However, the 2 m temperature
actually provides new complementary information for small lead times, most probably because of
the skill associated with persistence or low-tropospheric advection.

It is interesting to note that the couple (Zyy, 7r) performs rather well, and that the information of
Zxny and Tr seems to add up too, just like the one for Zyy and Sk do. This is particularly striking for
small lead times t. Indeed, one might have expected that the information about the 2 m temperature
might have been contained in the dynamical field Zyy, for short lead times. This is however not the
case, the better skill when combining the two fields clearly proves that the temperature field value
contains relevant predictive information that was not included in the dynamical field Zxy, even for
small lead times. Where does this information come from? Is it related to slow physical drivers? To
answer this question, we will need to compare the result for (Zng, Sp) with the neural network skill
when all three fields are combined together for the training.

3. Predictions combining all three fields together

Figure 5(c) displays the prediction performance when using the three fields (7, Znu, Sg) to-
gether, and compares it to the results obtained with the best pair (Zyy, Sg). There is no improvement
for the predictive skill when adding the 2 m temperature field 7r to the geopotential height and soil
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FIG. 6. Prediction skills when training the network with extra fields. The normalized logarithmic
score NLS is on the y axis. (a) Addition of stacked fields at extra time steps: (7g, Znu, Sg)(t — ) (blue),
[(Tr, Znu, Se)(t — 1), (Tp, Znu, Se)(t — T — )] (orange),  [(Tg, Znu, Se)(t — T), (T, Znu, Se)(t — T — 1),
(Tg, Znu, Sp)( — © — 2)] (green). The NLS features a very small improvement when adding the
previous day information, but none if we add two previous days. (b) Addition of extra levels
of geopotential height [T, Zny (500 hPa), Sg]  (blue), [Tr, Zng (500 hPa), Zyg (300 hPa), Sg]
[Tr, Znu (850 mbar), Zyy (500 hPa), Zyy (300 hPa), Zyy (200 hPa), Sg] (green). The NLS features a
very small improvement, although not statistically significant, when adding more geopotential height fields.

moisture fields (Zng, Sgr), except maybe for very short lead time t < 5. The improvement for very
short lead time is not statistically significant as it is within error bars. If this was not the case, then
we could interpret it as the effect of properties of persistence or of low-tropospheric advection of
the 2 m temperature field over France. This lack of improvement means that all useful information
for prediction in the 2 m field, is actually already contained in the (Zny, Sr) fields.

Our first conclusion is that the best prediction is obtained when the neural network is trained
using the combined information from the northern hemisphere 500 hPa geopotential height field
and the soil moisture over the France area. The neural network is able to seamlessly combine the
information of the fast dynamical driver, the 500 hPa geopotential height field, and the slow physical
one, the soil moisture. The temperature field over France does not seem to convey complementary
information to these two fields, except perhaps at T = 0. But even for T = 0 the improvement is not
statistically significant given the dataset: 0.455 £ 0.012 versus 0.445 £ 0.010.

It is customary in other prediction studies for extreme heatwaves to use the local 2 m temperature
field. Given what we have observed this makes sense when the information about soil moisture is
not available.

4. Is it useful to consider more predictor fields?

We now ask wether it might be useful to consider more predictor fields. We will train the neural
network, first using the same fields but observed at more than one timestep, and second considering
the value of the geopotential height on other pressure isosurfaces. The two sets of results are visible
on Fig. 6.

We first train the neural network with the optimal set of fields (7, Zny, Sk), as in Fig. 5(c). But
during the training stage, rather than using the field values only at lead time t (at time t — 7) we also
use the field values at lead time 7 + 1 (previous day, at time t — ¢ — 1) and 7 + 2 (second previous
day). Those previous day fields are stacked with the fields at lead time 7. Figure 6(a) shows the skill
of the trained network adding the previous day fields (in orange), or the two previous day fields (in
green). Adding the fields at previous timesteps is similar to delay-embedding in dynamical system
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theory [94]: the information lost in taking only part of the initial conditions of the deterministic
dynamics can be recovered using fields at previous timesteps, in principle. The question we address
here is more a practical one: can a given neural network learn this missing information from the
fields at previous timesteps, given the dataset length and its other practical limitations.

The result in Fig. 6(a) shows a small statistically insignificant improvement when one adds the
field values at lead time 7 + 1, but no further improvement when one adds both the field values
at lead time 7 4 1 and 7 4 2. This is a very interesting result. One can interpret this incapacity
of given neural network to use the information at previous lead times in three different ways. The
first possible interpretation, intrinsic to heatwave dynamics, would be that the gain in information
content in the fields at previous lead times, to predict extreme heatwaves, is actually very small
and within the error bars of our experiments. The second possible interpretation, practical in nature,
would be that we have not found a network structure that could reliably recover this information.
The third interpretation, would be that the 8000-year-long dataset is too small for the neural network
to practically learn such detailed information. Although we cannot support precisely this claim
with the present dataset, the analysis in the next section, of a lack of data regime, makes the third
interpretation plausible.

Rather than complementing the predictor fields with the ones at previous lead times, we now add
other relevant dynamical fields at the same lead time 7. Atmospheric and climate scientists know
that the 500-hPa geopotential height field is rather relevant for dynamics, but that geopotential height
at other altitudes or pressure isosurfaces are also useful and provide complementary information,
for many phenomena. We now train the neural network with several sets of these fields, in addition
to the optimal set of fields (7r, Znu, Sr). The obtained skills are shown in Fig. 6(b).

The conclusion is that adding the geopotential height at 300 hPa (upper troposphere), orange
curve, slightly improves the network prediction skill compared to the reference blue curve. However,
this improvement is marginal, visible only for 7 = 0, and even for T = 0 it is within the error bar
and thus not statistically significant. Similarly, we observe a minute increase in the normalized
logarithmic score when adding further the geopotential height at 850 hPa (lower troposphere),
green curve. As for the case of delay embedding, the incapacity to improve the neural network
prediction by adding more fields can be interpreted as being either intrinsic, or due to improper
network architecture, or due to a lack of data for training. We suppose that the lack of data is the
most plausible explanation.

Our second conclusion is that the set (Tg, Zny, Sr) or (Znm, Sp) are the optimal ones, with
marginal difference in their predictive skills, for a dataset length of 8000 years. The addition of
any other extra fields including different lag-times prove to be superfluous.

B. Convergence of prediction skills with training dataset length and optimal areas for predictors:
A regime of lack of data

The reanalysis datasets [83] assimilate all available observations with the laws of physics
embedded in the weather models and thus offer the most precise available approximation of the real
state of the atmosphere. They are, however, only available during the last 70 years, at most. Is such
a short dataset long enough to make reliable prediction using neural networks? One of the key goals
of this work is to understand the effect of dataset lengths on the probabilistic predictions that can
be issued by neural networks. This is an important question, because many practical applications
of neural networks in atmosphere and climate sciences currently use reanalysis datasets for both
training and validation.

Within our PlaSim model, we now study the effect of reduction of the training set on the
prediction skill. We use the prediction skill with a neural network trained on 7200 years of data
presented in Sec. V A as a benchmark. From the PlaSim dataset, we extract two training subsets of
shorter year span: 100 years and 800 years. For both cases, we estimate the skill on a validation
set that contains the complement of the full 8000-year-long dataset [95]. For these experiments,
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FIG. 7. Prediction skills versus dataset lengths and optimal geographical area. Panels (a) and (c) show
PlaSim grid for the North Atlantic and Europe sector (NAE, a), and northern hemisphere mid and high latitude
sector (NH, c), respectively. (b) Normalized logarithmic score versus lead time 7, for neural networks trained
with (Tg, Znu, Sk) predictors (blue) and (7g, Znag, Sg) predictors (red), and with datasets of length 7200 years
(plain lines), 800 years (dashed lines) and 100 years (dashed-dotted lines). The results illustrate the lack of data
regime, with very slow convergence of the prediction skill with the dataset length, and with a clear tradeoff
between dataset length and size of optimal geographical area for best prediction.

we chose the predictors (T, Znu, Sp) which have been proven optimal in Sec. V A, when using a
7200-year training dataset.

The results are shown by the blue curves on Fig. 7(b). The conclusion is that reducing the dataset
up to 100 years has severe consequences for the prediction skill, with a NLS [see Eq. (6)] nearly
halved compared to the benchmark obtained with a 7200-year training set. We stress that for the
100-year training set, even the plateau skill, corresponding to the effect of soil moisture only, is
not correctly predicted. When using a 800-year training dataset, the prediction skill is still quite
significantly lower than when using a 7200-year one. However, the difference of NLS is now of the
order of about 10% at most. This suggests that the convergence of the skill with the dataset length
probably occurs on the order of a few thousands to a few tens of thousands of years, if one uses
only the three predictor fields (7r, Znu, Sr). We thus conclude that as long as the source for training
of neural network contains only few centuries or even millennia this results in the regime of lack of
data, which consequently implies a regime of drastic lack of data when using reanalysis datasets.

In such a regime it is customary for machine learning applications that there exists a tradeoff
between the dataset length and the complexity of the predictors. Indeed, the amount of requested
data for optimal training tends to increase when more features are included, in other words
greater variety of predictors may lead to overfitting. We now study this tradeoff, as another and
complementary manifestation of the regime of lack of data for neural networks applied to extreme
heatwaves.

To this end we train a neural network with the predictor set (T, Znag, Sr), where the 500 hPa
geopotential height information is used only on the North Atlantic and European area: Zyag. We
will compare its skill to the benchmark one (7r, Zny, Sr) that uses the 500 hPa geopotential height
on the whole northern hemisphere mid and high latitude. Dynamically, the information on the
North Atlantic and European sector is more important for France heatwave than the information
on the rest of the northern hemisphere (see, for instance, Refs. [71,72]). However, we have recently
demonstrated that extreme heatwaves are associated with hemispheric teleconnection patterns [28].
It is thus likely that the rest of the northern hemisphere should contain useful complementary
information which might be more difficult to learn. We then expect that if we have sufficiently long
training datasets, the neural network should have a better skill with the complete field (7¢, Znu, SF)-
Otherwise, the predictor will turn out to be too complex which would result in the degradation of
the normalized logarithmic score.
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FIG. 8. Prediction skills versus dataset lengths and optimal geographical area for the 2 m temperature
and soil moisture. Panels (a) and (c) show typical predictor fields, either masked over some restricted area
[panel (a)], or over the whole mid and high latitude northern hemisphere [panel (c)]. Panel (b) Normalized
logarithmic score versus lead time 7, for neural networks trained with (7, Znu, Sg) predictors (blue) and
(TxH, Znu, Snu) predictors (red), and with datasets of length 7200 years (plain lines), 800 years (dashed lines),
and 100 years (dashed-dotted lines). The results illustrate the lack of data regime, with very slow convergence
of the prediction skill with the dataset length, and with a clear tradeoff between dataset length and size of
optimal geographical area for best prediction. The optimal area for 2 m temperature and soil moisture is the
local one (France area).

The red curve on Fig. 7(b) presents the result for the predictor set (7g, ZNag, Sk), to be compared
with the benchmark curve with (Tg, Zng, Sp). Comparing the plain red and blue curve, we see that
with a 7200-year training dataset, the (7r, Zny, Sg) predictor set is indeed the optimal one. With a
7200-year training dataset the neural network is actually able to extract the supplementary informa-
tion beyond the one which is contained in the North Atlantic and European area. The improvement
is significant with increase of the normalized logarithmic score up to 10%, which is important.

Comparing now the dashed red and blue curves, for the case with 800-year-long training dataset,
one clearly sees the same pattern, although with a smaller improvement when comparing the
predictor for the complete field (7g, Zny, Sr) and the one with the incomplete one (7g, Znag, Sk)-
However, using only 100 years for training, the dashed-dotted line features an opposite conclusion.
The training experiment with the incomplete field, on the North-Atlantic Europe sector, gives a
better skill than the training with the complete field. The interpretation we give is that a 100-year-
long training set is not complete enough to deal with the complexity of the predictor defined on a
larger area. This is a manifestation of the tradeoff between dataset length and predictor complexity
in a regime of lack of data. This confirms our qualitative prediction and makes it quantitative.

We complement this study of the tradeoff between predictor complexity and dataset length in
a regime of lack of data, by discussing the cases of soil moisture and 2 m temperature. For those
fields, the situation is different because it might be clear on physical grounds that these two fields
are relevant mainly locally, close to the heatwave area. Figure 8(b) features the same benchmark
blue curve as the one on Fig. 7(b): the prediction skill for a neural network trained with the optimal
predictors (7g, Znu, Sg). It also shows the prediction skill for a neural network trained with the
predictors (7Txy, Znu, Snu ), Where now both the soil moisture and temperature fields are used on the
full northern hemisphere mid- and high-latitude sector. The results clearly show that this prediction
with hemispheric temperature and soil moisture is systematically worse than the one with local
predictors. This confirms that the optimal area is the local France one, for these two fields. Thus,
complexifying fields with parts that contain no relevant information and provide essentially noise
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might be manageable with neural networks trained on huge datasets, but it is a problem in a regime
of lack of data. Figure 7(b) also shows that the degradation of the score, in relative terms, is lower
when the amount of data is increased, in agreement with our interpretation.

Our third conclusion is that learning the probabilities of extreme heatwaves with neural networks
clearly takes place in a regime of drastic lack of data. Several hundreds or even thousands of years
would be needed for optimal prediction, even when using only two or three representative fields
as predictors. Trying to use more fields, for instance, more information about the vertical structure
of the geopotential height, or for example information related to the temporal development of the
dynamical fields, most probably requires even longer training datasets. Our results clearly show that
with a 7200-year training dataset, the skill is at best only very marginally improved when using
more fields. Moreover, in this regime of lack of data, there is a tradeoff between dataset length
and predictor complexity. For instance, for predicting extreme heatwaves over France, benefiting
from hemispheric information beyond the North Atlantic and Europe sector requires at least several
hundreds of years of learning datasets.

C. Physical insight, interpretability of neural network predictions,
and committor function composite maps

What has the neural network actually learned? The interpretability of neural network predictions
is a pervasive question when they are applied in physical sciences. In this section we propose a basic
approach for visualizing committor function. With this aim, we plot composite maps of the 500 hPa
geopotential height, conditioned on very large values of the committor function.

The neural network output is the probability p(x) to observe a heatwave t days from now, given
that we observe today the predictor field x. p(x) is a function over the set of all the possible predictor
states. This function, called a committor function, is therefore extremely complex and impossible to
visualize for high dimensional spaces, by contrast with committor functions for simple dynamical
systems [38]. To get insights about some very specific behaviors of this function, we will try to look
at a single property: how do the fields that give very large values of p(x) look like? Equivalently, we
will consider the fields that the neural network ranks as the most likely to produce a heatwave, and
look at the average of their corresponding 500 hPa geopotential height field.

To simplify the discussion, we consider a neural network trained on the hemispheric 500 hPa
geopotential height Zyy only. Once it has been optimized using the training set, the neural network
can associate to any other field, for instance, in the validation set, the estimated probability p that this
field will lead to a heatwave. We select all the events in each of the validation sets which are above
the 99.9 percentile in the distribution of the committor values. For example, for ¢ = 0 those are all
the events with p > 0.68. Notice that according to our protocol we have 10 folds of train-validation
split (Sec. IV B). This means that we can associate a committor value with each day of the full
8000-year-long set and no occasion are we evaluating the committor in the training set. We then
compute the average of the 500 hPa geopotential height maps, conditioned on having p values above
the 99.9 percentile, for the entire 8000-year-long set. The resulting composite maps displayed on
Fig. 9 reflect averaged properties of the fields which are most likely to lead to a heatwave, according
to the neural network prediction. This operation can be repeated for different values of lead times
7, which may have smaller values of p threshold, simply because the neural network becomes less
certain for larger values of ©

For 7 = 0, on Fig. 9(a), we observe a tripole structure for the geopotential height anomalies.
First of all, we see an anticyclonic anomaly over Europe, which is expected, given that heatwaves in
summer are associated with anticyclonic anomalies. We also see a cyclonic anomaly over Greenland
and the Arctic area and two other anticyclones over Eastern North America and Northern Siberia.
For this composite, the anticyclonic anomaly over Europe is extremely strong: the maximum value
of the composite average of the 500 hPa geopotential height anomaly has a maximum value of
151 m [see Fig. 9(a)], to be compared with a typical maximal 500 hPa geopotential height anomaly
over Europe of order of 120 m (see, for instance, the snapshot on Fig. 3) and a variance for
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FIG. 9. Composites of the 500 hPa geopotential height maps Zyy (in meters), conditioned on committor
values p above the 99.9 percentile, at different lead time t. Panels (a), (b), (c), and (d) with values of T = 0, 5,
10, and 15, respectively. The regions of positive anomalies are indicated in red, while the negative anomalies
are indicated in blue (we are using seismic colormap). The isolines are separated by a value of 20 m. The
maximum geopotential height anomaly is indicated with a number colored in blue, while the minimum value
is colored in red.

the climatology of the 500 hPa geopotential height anomalies at midlatitude of order of 60 m.
Obtaining such a large value for a composite average, means that all the fields in the composite
have a systematic stronger than usual anomaly over Europe with a coherent pattern. Similarly the
cyclonic anomaly over Greenland is very strong, with a minimum value of the averaged 500 hPa
geopotential height anomaly of —94 m, to be compared with typical minimal 500 hPa geopotential
height anomalies over the Greenland-Arctic area of order of —200 m (see, for instance, the snapshot
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on Fig. 3) and a variance for typical 500 hPa geopotential height anomalies of order of 90 m at
high latitudes. This also points to a very coherent and systematic pattern over Greenland. The two
other anticyclonic anomalies over Eastern North America and Northern Siberia have weaker values,
of order of 40 to 60 m, which are still comparable to the variance of the 500 hPa geopotential
height, thus showing a relatively strong coherence. The coherence of the overall pattern can also be
assessed by comparing those values to the standard deviations within the composite set itself, which
are of order of 40 m in midlatitudes and 60 to 90 m in the Arctic area. All those comparisons point
to fairly coherent and robust patterns superimposed with fluctuations of the order of the standard
deviation.

The overall pattern is a clear mode 3 pattern, with an overall shift of the cyclonic anomalies
poleward and of the anticyclonic anomalies equatorward. This structure is much reminiscent of
the wave-number 3 extreme teleconnection observed for European heatwaves [28] and has been
interpreted as related to Rossby waves with wave-number 3, and phase speed close to zero, leading
to a long-lasting quasistationary pattern. This result suggests that the recognition of this wave-
number quasistationary pattern might be key for the neural network prediction skill.

Let us now look at different values of the time lag r. The three other panels of Fig. 9 show the
composite 500 hPa geopotential height maps, conditioned on p values above the 99.9 percentile,
for T =5, 10, and 15, respectively. The four patterns look surprisingly similar, whatever the value
of 7, with a consistent wave-number 3 pattern, poleward shift of the anticyclonic anomalies and
equatorward shift of the cyclonic ones. This result suggests that the long-term prediction skill of
the neural network might also be associated with this quasistationary pattern. Following this remark
a natural hypothesis would be that the long-term skill of the neural network might be related to
the probability of this pattern to stay quasistationary for a long enough period. Testing this very
interesting hypothesis is however beyond the capabilities of the approach described in this paper
and will be considered in future works.

In addition to the strong analogies, we note that the four patterns are slightly modified when
changing 7. For t = 5 the anticyclonic anomaly over Northern Asia is stronger and larger, and the
anticyclone over Europe is less intense. This tendency is even more pronounced for t = 10. For
T = 15, the wave-number 3 pattern turns to a tripolar structure.

Plotting composite 500 hPa geopotential height maps, conditioned on very large values of the
committor function, gives most probably only a limited view of what the neural network might have
learned. Trying to interpret the neural network results with an averaged quantity (composite) only,
is very limited from the point of view of a stochastic interpretation of the prediction. However,
these composite averages already clearly show very interesting teleconnections associated with
previously discussed wave-number 3 patterns. This opens questions for more detailed future analysis
of the dynamical features which are important for prediction, their probabilities, and the capabilities
of the neural network to identify them. Those future analyses will also consider tools for physical
interpretability of machine learning forecasting.

D. How to ensure continuity of the committor function when the lead time
is changed and how to accelerate the training stage

The proposed neural network predicts the committor function: the probability p(x, T) to observe
a heatwave 7 days from now, given that we observe today the predictor field x. First, we display
in Fig. 10(a) a trace of this committor function (in green) at T = 0, for the summer of a randomly
chosen year, compared to the actual realization of temperature anomaly A. One sees that committor
function and actual events are correlated, yet not identical, as expected since the committor is only
a probability of having a heatwave and the neural network is only trained on discrete labels and is
not provided the full information A(z).

Up until now, we have studied some aspects of how the total prediction skill evaluated on
validation sets depended on t. In this subsection, we are rather interested in how committor function
varies along the trajectory (passage of ¢ physical time in the simulation) while fixing a specific event

040501-27



GEORGE MILOSHEVICH et al.

1.0

I Probability ls

—_— Alt)=«a

0.8
— Alt)>a [

o
o

Probability
o
~

0.0 -
0 10 20 30 40 50 60 70 80

Days of summer, year 493

(2)

0.7 trlaining performed.: —e— with transfer learning
—&— with transfer learning 0.14 4 without transfer learning
0.6 —8— without transfer learning .
. £ 0.12 4
=
2057 T 010
‘r.Bn Q
0.4 4 | ]
g 5 0.08
o +
0.3 1 + 0.06 1
S
0.2 4 0.04
0.1 0.02 4
0 2 4 6 8 10 12 14 0 10 20 30 40 50 60 70
T Day of summer, year 493
(b) (c)

FIG. 10. (a) Illustration of the A(#)(blue/red line) and p[X (¢), O] (in green) trajectories during summer of a
specific year; red line corresponds to moments where the actual A = A(z) > « [see Eq. (1)], above 95 percentile
threshold, while blue line denotes that A = A(#) < «. The filled green segments show the probability predicted
by the neural network trained on 7, Zyy, Sg. This plot illustrates the general correlation between A = A(f) < «
and T, Znu, Sk. (b) Evolution of the committor function along a trajectory p[X (#* — t), ] as a function of lead
time 7, for a prediction of a potential heatwave at a prescribed physical time ¢*. The orange points show the
committor learned independently for each t, while the blue ones are obtained with transfer learning from one
7 to the next. (c) Display of o, (¢), as defined in Eq. (10), for the same year as in panel (b), for the method with
transfer learning (in blue) and without (in orange). We see that the latter is almost always above. This illustrates
that variance between subsequent points is larger when transfer learning is not applied.

at time ¢*. Thus, we must vary simultaneously v = * — ¢. Of particular interest is a smoothness
property of the committor as we vary ¢ while fixing ¢*.

This smoothness property could be understood as a consistency of the prediction through time.
A lack of smoothness, in a risk prevention context, would mean that the prediction would highly
fluctuate from one day to another. Besides the fact that this would probably be the sign of some
deficiency in the prediction, this might also be detrimental from a communication point of view,
and create concerns and disbelief among the users of the information. On more scientific grounds,
if the prediction p is used as an input for another computation or algorithm, then the consistency
and smoothness properties might also be very important, both theoretically and practically.

We demonstrate in this section that transfer learning can be used to address this issue. Transfer
learning is used extensively in deep learning, where it allows dramatic reduction of the training time,
and improvement of the skill, by using networks pretrained on more general large datasets [96,97].
It has also been used for several climate and weather applications, for instance, for ENSO prediction
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[45], where the authors have pretrained the network on CMIP model outputs, prior to applying it to
reanalysis datasets. When looking for smoothness properties with respect to 7, an alternative could
be to train on several lag times at the same time, see, for instance, Ref. [98] and references therein.

To study the t dependence of p, one could either fix the state x or rather follow the evolution of
state x with time. In this section, we make the second choice. We thus fix a time #* corresponding to
the potential start of a heatwave, and we study how p[X (t* — 1), t] depends on 7. When t decreases,
the prediction is made closer in time to the start of a potential heatwave. We then expect the event to
be more predictable, as T decreases. There is no reason to expect a monotonic evolution. However, in
general, we expect p[X (t* — t), T] to be a smooth function of 7. Since we are working with discrete
daily data the highest resolution we can achieve is obviously At = 1 day. Thus, smoothness must be
understood in colloquial terms rather than a strict mathematical definition. Below we give a specific
example.

We first train the network in an independent way for different values of 7, with the reference
predictors (Tr, Zny, Sk). For illustration purposes, we choose a specific year and a value of #* such
that it corresponds to the strong heatwave at ¢*. The orange curve on Fig. 10(b) shows the evolution
of the prediction p[X (t* — t), r] with 7. One sees that the prediction is relatively consistent over
time, when t decreases. However, we observe some fluctuations, from one day to the next, of
the order of 10% to 30% of the predicted probability. The level of these fluctuations is higher for
intermediate values of t, between 2 to 10 days.

To reduce these fluctuations and to improve time consistency and smoothness of the prediction,
we adopt a transfer learning strategy. The main idea is to initialize the weights of the neural network
for the model at a given lead time 7, based on the trained model at a previous lead time 7 — 1. The
heuristic idea is that the corresponding change in X (7) is not so large and already contains very
good information for the prediction at the next time step. Note that this also allows to drastically
reduce the training time: early stopping of the training is typically necessary only after 5 epochs, as
opposed to 40 or more when starting from random initialization. The reference is the blue curve on
Fig. 10(c). In addition, we tested the effect of this transfer learning strategy on the overall prediction
skill but we have seen no significant improvement or degradation. This suggests a hypothesis that
we have reached the capacity of the network to learn the extreme events.

For quantifying the reduction in the fluctuations of p, we introduce a smoothness metric. From
the discrete series of p, we compute the forward difference of the committor at successive 7:

A@)=plXt—7t—-1),t+1]—p[X(t —1), 1], 9)

which is a function ¢. The smoothness metric consists in computing standard deviation of A, (¢) for
all T € {0, ..., 14} days:

ol(t) = (A2(1)), — (A (D)7, (10)

where the brackets (- - - ), denote the average over the subscript parameter 7. Figure 10(c) compares
o.(t) in cases with and without transfer learning; it clearly demonstrates that the former tends to
have smoother committor function w.r.t. 7. The level of fluctuations from one lead time to the
next one has been reduced by a large factor, when compared to the orange curve without transfer
learning. We can also apply this quantitative measure of smoothness to the sequence of all days
t in each validation set of which we have 10 folds, as described in Sec. IV B. Since the sequence
now also consists of all times #, we average on all # and 7, denoted as o, which is a scalar. This
results in the following values with transfer learning o, = 2.59 £ 0.07x 1072 and without o , =
3.82 £ 0.09x 1072, The difference is almost 50%. This quantitative measure allows us to conclude
that transfer learning improves dramatically the time consistency and the smoothness of the extreme
heatwave prediction, while, independently, reducing the training computational time.
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FIG. 11. Normalized logarithmic score versus lead time t for a neural network trained with the
(Tr, Znu, Sk) predictors, with undersampling with r = 10 (U10) (blue) and without undersampling (U1) (red).
The two skill curves are within error bars of the experiment.

E. Robustness of the learning protocol with respect to the undersampling strategy,
the level of rarity, and the neural network architecture

1. How does majority class undersampling affect the prediction skill?

In this section we discuss the effect of majority class undersampling strategies on the neural net-
work prediction skills. We train the neural network with the reference set of predictors (7g, Znu, Sg),
which was proven optimal in Sec. V A. We either train the network without undersampling, or
with the majority class undersampling taking into account the change of probability measure, as
discussed in Sec. IVD and using Eq. (8). For this second case, the undersampling rate is » = 10.
Figure 11 shows that the prediction skills are the same, within the error bars. This leads to a
conclusion that the prediction skill of the extreme heatwaves considered here is not influenced by
the undersampling strategy.

Majority class undersampling is however useful, to reduce the memory request and the training
time by about a factor 10. One may wonder if the similar conclusion can be reached for other types
of extremes, which could be the subject of future work.

2. Prediction skills for more extreme events

On Fig. 12 we present the comparison between predictions of 95 percentile heatwaves (consistent
with all the previous analysis) and 99 percentile heatwaves. This corresponds to definitions of
heatwaves for large deviations A(¢) > 2.75 K and much more extreme ones A(t) > 3.91K in the
latter case. In other words, the objective field used to make the prediction X is exactly the same
(Tr, Znu, Sk) as well as the architecture presented in Fig. 4 but the labels are defined based on two
different criteria discussed above. Undersampling rate was chosen as 10 for 95 percentile heatwaves
as usual and 20 for the 99 percentile case. The resulting scores are plotted on Fig. 12.

At a qualitative level, the normalized logarithmic scores behave similarly for the two cases, with
the same decrease of the skill over synoptic timescales, up to a plateau corresponding to the effect
of soil moisture. At a more quantitative level, we stress that the nearly equal values of the scores
for the two cases is an accident. There is no logical reason to compare directly the quantitative
values of the skills for the two experiments. The first reason why they are not comparable is that the
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FIG. 12. Benchmarks for the optimal normalized logarithmic score obtained by the proposed neural
network for 5 percent heatwaves (blue) and 1 percent heatwaves (red).

normalized logarithmic scores are normalized differently in each case, because of the different base
climatological probability. The second reason is that even with the same climatological probability,
there would be no reason to expect two events of different classes to have the same exact real
committor value, which is the intrinsic probability we would learn if the learning would be perfect.

It is interesting to note that in our previous study [55], majority class undersampling or transfer
learning among classes was improving the categorial (0 or 1) prediction of extreme heatwaves,
when we were assuming a deterministic relation between predictors and heatwaves. In this new
paper, neither majority class undersampling nor transfer learning affect the probabilistic prediction
skill, neither positively nor negatively, when we now actually consider the probabilistic nature of the
relation between predictors and the heat waves. One might be surprised by these different behaviors.
One possibility would be that our learning was not perfect, in one or the other case, either because of
lack of data or suboptimal learning protocol. However, we stress that even with a prefect learning,
there is no disagreement nor contradiction between these seemingly different results, as what is
actually tested for the prediction is of a different nature.

This rises a very interesting general question. In several previous studies, including ours [55], a
categorial test, for instance, the Matthews correlation coefficient, was used to test a relation between
predictors and events which is actually intrinsically probabilistic, and not deterministic. This was
logically problematic and should be avoided. Beyond the logical problem, might it be possible
that testing a probabilistic relation with a categorial test lead to some practical inconsistencies and
divergent conclusions? As we are interested by probabilistic forecast we do not consider further this
question.

3. Robustness of the results with respect to the neural network architecture

Throughout the article, the architecture displayed in Fig. 4 was consistently used when we refer to
the CNN (or neural network) methodology. We have tried other architectures, changing the amount
of filters, using additional layers, and other changes for a better optimized network. None were
convincing in the present framework. Specifically, we found that deeper CNNs had slightly lower
skill, and this is the reason why they are not considered here.

While we exclusively show results pertaining to stacking the fields, we have also considered
combining the fields into separate CNNs which are then concatenated on a single dense layer.
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The latter approach does not work so well, as already reported in Ref. [55], and is more difficult
to implement. This suggests that stacked architecture is potentially benefiting from local cross-
correlations between temperature, soil moisture, and geopotential.

VI. CONCLUSIONS AND PERSPECTIVES

A. Probabilistic forecast with machine learning and other methodological contributions

In this paper we have advocated a probabilistic approach for the forecast of weather and
climate related problems, in particular extreme events, because for chaotic dynamical systems the
relation between predictors and the predicted phenomena is intrinsically probabilistic. For forecast
validation, logarithmic or ignorance score, occasionally used in weather forecast and climate, is
directly linked to the cross-entropy skill. The latter is used in many machine learning problems as
opposed to, say, Brier score. Through an affine transformation of the logarithmic score we defined
the normalized logarithmic score, which has convenient properties to be equal to zero for a forecast
based on the climatological frequency, to be positively oriented and to be always lower than one.

We have demonstrated the efficiency of this approach for forecasting long-lasting extreme
heatwaves, within a dataset consisting of PlaSim climate model outputs. Using geopotential height,
temperature, and soil moisture fields as predictors, we have trained a convolutional neural network
to forecasts extreme heatwaves on a validation set. Methodologically, this probabilistic approach
extends previous work using machine learning for categorical deterministic prediction of daily [54]
or long-lasting heatwaves [55].

At a methodological level, we have also demonstrated the interest of transfer learning to improve
the temporal consistency and smoothness with time of the prediction. This is a key issue for
practical applications related to risk forecast. We have also demonstrated the interest of majority
class undersampling and of transfer learning to lower the RAM, CPU, and computational time
usage during the learning stage of the network.

B. Key general scientific conclusions
1. The lack of data regime for machine learning in weather and climate studies

The main scientific message of this work is that training neural networks for predicting large-
scale features of weather or climate phenomena will most of the time operate in a regime of lack
of data. We have demonstrated this clearly in the case of extreme heatwaves. Using subsets of
8000-year climate output with a data reduction protocol leads to a significant drop in the prediction
skill. using three important fields, one at hemispheric scale (500 hPa geopotential height) and two
at a local scale (soil moisture and 2 m temperature). This points to the need of thousands or tens of
thousands of years of data for proper convergence, perhaps more if one would like to benefit from
the information available in more complementary fields.

The climate model output has some known biases with respect to real fields, but its structure
and complexity is most probably the same as the one for reanalysis datasets or real fields. It is
likely that obtaining a converged statistical model based on real or reanalysis dataset would require
a length of the same order of magnitude, although this cannot be tested directly. This is a drastic
constraint given the definitive limitation of historical data. A similar lack of data problem exists for
many applications of machine learning for physical and natural sciences, but the lack of observed
or reanalysis data is rather severe for studying large-scale weather and climate phenomena. To
circumvent this problem, one will have to find ways to combine model data and reanalysis datasets
as discussed in Sec. VID 1.

This problem is exacerbated when studying extreme events because of their rarity. This is indeed
a very important remark. The heatwaves we have studied in this paper, which were defined as the
5% percentile of summer data with a correlation time of a few days, are events with typical return
time of a few years in the studied climate. Many climate and weather phenomena have return times
of a few weeks to a few years, they will equally fall in this lack of data regime. From a point of view
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of extreme event impact, a return time of a few years is actually not so rare and risk management
specialists are interested in much rarer events.

We have clearly demonstrated that there exists a tradeoff between the length of the dataset and
the complexity of the used predictors. For instance, for forecasting extreme heatwaves over France,
we showed that the 500 hPa fields contain useful information for improving the prediction skill
at the hemispheric scale. However, to properly learn part of this information, the neural network
needs at least a few hundred years of data. To obtain a larger improvement using hemispheric fields,
compared to fields at the scale of North-Atlantic and Europe, actually require thousands of years
of data. This tradeoff predictor complexity/dataset length is very natural for machine learning in a
context of lack of data, and should be present in most applications of neural networks when studying
large-scale features of climate or weather data.

2. Neural networks seamlessly use the predictive power of fast dynamical fields and slow physical drivers

In many predictive statistical approaches aimed at studying weather and climate phenomena,
researchers discuss separately the effects of fast dynamical fields and slow physical drivers. For
extreme heatwaves, see, for instance, the interesting works using the analog method for understand-
ing the effect of fast dynamical drivers [71,72] and some complementary works on slow drivers
[59]. This dichotomy makes perfect sense given the timescale separation and the complexity of the
different approaches. There is however a need for methods that combine both at the same time. For
instance, if one wants to quantity the respective impacts of these two types of drivers, then one needs
a method able to compute predictability skills by dealing with the two types of fields together.

In this work, we have demonstrated that neural networks handle, without any practical or method-
ological difficulty, the 500 hPa geopotential height (fast dynamical field) and soil moisture (slow
physical driver). This is in contrast to a method that would explicitly build the effect of averaging
over fast drivers, conditioned on the slow drivers, which would require a lot of tricky computations.
Moreover, the predictive approach provides actual numbers that quantify the respective role of the
two types of fields.

3. Probabilistic forecast as a tool for physical analysis of drivers

Current weather models can also handle seamlessly the prediction of the effects of fast dynamical
fields and of slow physical drivers. They are actually certainly the most precise way to make such
studies. However, the objective of using neural network is different and complementary. Neural
networks with probabilistic forecast provide a statistical model, which associates to each set of
drivers a predictive skill. Alternatively suppressing the different predictors, is a way to estimate
the causal relation between any set of fields and the event of interest. This can be used for a
posteriori statistical studies, to perform fast and efficient process studies, and to analyze the impact
of different drivers. Making similar studies with weather or climate model would be extremely
difficult in practice and would require huge computations. We warn however, that any inference
about information content from machine learning experiments, assumes that the learning is of a
good quality.

We have analyzed, quantitatively, the relative potential of soil moisture and 500-hPa geopotential
height, in triggering extreme heatwaves. By adding or removing different fields, and comparing the
prediction skills, we can see which are the main drivers. For instance, we have demonstrated that the
2 m temperature carries part of the predictive information of both the soil moisture or the 500 hPa
geopotential height, however we conclude that it carries no new significant information by itself.
We have also demonstrated that geopotential height at other altitudes or isopressure levels, carry
nearly no new information that can be tapped with a 8000-year-long dataset with the given neural
network.

Those examples illustrate the potential use of neural network for other process studies in weather
and climate dynamics. The key point is the quantitative nature of the analysis.
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C. Conclusions for extreme heatwave drivers

The main conclusions for extreme heatwave prediction are as follows.The 500 hPa geopotential
height combined with soil moist contains the most useful information in the short run, with only a
very small improvement of the skill provided by adding the 2 m temperature. The prediction skill
associated to the 500 hPa geopotential height decays approximately exponentially with a decay time
of about 7 days. Soil moisture contains very important complementary information, with a plateau
skill that does not decay much on timescales of order of 15 days to a month. This corresponds to the
conditional probability to observe extreme heatwaves for some given soil moisture, independently
of the dynamics. These two sets of information seem to add up when the two fields are used together,
to make the best possible prediction.

We have also concluded that the set of 500-hPa geopotential fields which are selected by the
neural network as having a large probability to lead to long-lasting heatwaves, are consistently
distributed around a characteristic hemispheric pattern dominated by wave-number 3 Rossby waves
with a shift poleward of the cyclonic anomalies and a shift equatorward of the anticyclonic anoma-
lies. This pattern is also seen in composite maps, conditioned on extreme heatwaves, which are
plotted independently of the neural network. An analogous wave-number 3 pattern has already been
observed for European and Scandinavian long-lasting heatwaves [28]. This consistency shows that
the neural network is either able to recognize this pattern, or is able to recognize other characteristic
features of extreme heatwaves which correlate with this pattern. Understanding further those very
interesting observations, and the dynamical nature of this pattern, will require developing the
interpretability of machine learning approaches as further discussed in Sec. VID 1.

D. Key perspectives
1. Perspectives for the lack of data problem for machine learning for climate studies

We have concluded in the previous sections that the requested dataset length for convergence
of the training of statistical models based on deep architectures is much longer than reanalysis
datasets. Since the latter are so short, the use of model data is necessary. However, climate models
are more biased compared to reality than reanalysis datasets are. There is thus a need to couple the
use of climate model and reanalysis datasets to make the best of their complementary potential. A
natural way is to use transfer learning: first learning from extremely long climate model datasets
and then reusing the weights of the learned model as an initial condition for a new training for the
reanalysis dataset. Such a transfer learning approach has already been used in several past works in
atmospheric sciences and climate studies [45].

However, this approach (transfer learning) might not be sufficient, for instance, if the climate
model dataset itself does not contain enough characteristic events. This is probably the case for
studying rare or extremely rare events. To improve the prediction skill, it is natural to assume that the
rare extreme event samples are requested rather than data corresponding to the typical states of the
system. Testing this assumption motivates the case for importance sampling algorithms. Regarding
the difficulty of sampling exceptionally rare extreme events, e.g., unprecedented heatwaves, we
have recently developed rare event simulation techniques that are able to multiply by several orders
of magnitude the number of observed heatwaves with PlaSim model [28] and with CESM (the
NCAR model used for CMIP experiments) [69]. We are currently working on coupling these
rare event simulations with the machine learning forecast developed in this paper. The point is to
improve both rare event simulations using machine learning forecast, and machine learning forecast
using the unprecedented heatwave statistics obtained with rare event simulations. We have already
coupled machine learning simulations with rare event algorithms, for simple academic models
[77]. Coupling the rare event simulations with neural networks is a very interesting albeit complex
perspective to solve the key fundamental issue of lack of data in the science of climate extremes.

Another important perspective is to develop a new neural framework that would be suited
for a better physical interpretability of the prediction skills, to increase dynamical and physical
understanding.
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In weather and climate dynamics, ensemble forecast by a weather system (for instance, ECMWF)
is considered as the reference probabilistic medium range forecast. The ensemble members are
used to make probabilistic predictions, for instance, at medium range or subseasonal timescales.
An important question for the future will be to compare the skill of machine learning probabilistic
forecasts compared to ensemble forecast by weather systems, for instance, for predicting extreme
heatwaves.

A key point though is that the two methods, weather systems based on the equations of physics
and data assimilation, and learned statistical models, have completely different uses and perspec-
tives, and are highly complementary. On the one hand, machine learning alone is unable to learn
the current state of the atmosphere precisely and to incorporate the wealth of available observation
data dealt with by weather systems. A weather system does not make just a single prediction on a
specific event, but compute the full state of the system. On the other hand, a weather system needs
dedicated infrastructures and millions of computation hours, while an already trained statistical
model usually makes a forecast in less than a second on a laptop. A statistical model can be used
to assess the probability from any field, not just the ones in the historical records or the forecasted
ones. Then it is extremely likely that weather systems will remain the reference for actual real time
medium range forecasts, while statistical model can be used for process studies, driving rare event
simulations, statistical analysis, or cheap forecast for targeted scope, or possibly subseasonal to
seasonal forecasts.

2. Perspectives for extreme heatwaves

We have argued in Sec. VIB3 probabilistic forecast issued by neural networks provide a
way to estimate the relations between any sets of predictor fields and the event of interest. This
is then a tool to quantitatively study the role of each process, very efficiently and practically.
Moreover, the quantitative nature of the relation between the predictors and the prediction gives
also the opportunity to compare those relations for different models, different datasets, and different
climates.

Using this tool opens the door to hundreds of process studies. It could be used, for instance,
to further ascertain the impact of other slow drivers [59] on extreme heatwaves and other extreme
events, and how they combine with fast dynamical drivers to produce them. One could also use
this tool for the purpose of assessing model biases, to make climate change studies by comparing
different datasets with different climates, and finally to make much more precise impact studies
of extreme events. As an important example, it has been demonstrated that local thermodynamics
drives monthly midlatitude summertime temperature variance [24], and that CMIP model might
have some bias in reproducing this effect [24]. Then, training neural networks on different CMIP
models could be used for intercomparison, specifically studying the effect of local thermodynamics
on extreme events.

Given its very easy implementation and its scientific potential, we hope that the deep learning
methodology we developed will be used to address many key questions related to extreme events,
and other large-scale atmosphere and climate phenomena.

The coding resources for this work, such as the python and jupyter notebook files, are available
on a GitHub page [99] branch “noxarray” and “main” and is part of a larger project at ENS de Lyon
with multiple collaborators in the branch “subm?2.” We do not have the infrastructure to make the
8000 year PlaSim dataset available online at this time, but it might be shared to interested colleagues,
whenever feasible in practice.
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