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Towards quantum turbulence theory: A simple model
with interaction of vortex loops
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This paper investigates quantized thin vortex rings with an internal structure. The
quantization scheme of this dynamical system is based on an earlier approach proposed by
the author. Both energy spectrum and circulation spectrum are calculated. Examples show
that the set of permissible circulation values has a fractal structure. The suggested model
allows us to describe the system of isolated vortex rings as well as the vortex rings with
interaction. Furthermore, the application to the quantum turbulence theory is discussed.
The general expression for the partition function of a turbulent flow is suggested.

DOI: 10.1103/PhysRevFluids.8.034607

I. INTRODUCTION

The complexity of such a phenomenon as turbulence leads to the emergence of different ap-
proaches to its description. For example, any attempts to describe turbulent motion of a fluid using
the Navier-Stokes equations lead to significant difficulties, even at the classical level. This fact, in
particular, stimulates the search for other approaches to the description of this phenomenon. The
description of such motion at the quantum level presents an even more complex problem. It is now
an established fact that vortex structures play a primary role in the formation of turbulent flows of
quantum fluids. A large number of works are devoted to this issue. Without reviewing the literature
on this topic, we will mention some of the works [1–6]. It can be assumed that investigation of
simplified models of quantum turbulence will be no less useful than, for example, simplified models
in the quantum field theory. For example, such models could provide some progress in calculating
the thermodynamic characteristics of a turbulent flow (entropy, Gibbs free energy, etc.)

In this paper, we propose a simple model of quantized vortices that demonstrates the following
properties:

(1) Scale and Galilean invariance of the theory.
(2) A broad spectrum of energy and circulation values. In particular, the set of circulation values

found has a fractal structure. In our opinion, this result is quite suitable for describing the random
distribution of circulation in turbulent flows.

(3) The ability to describe the interaction of vortex loops, as well as the reconnecting of such a
loop and resizing it.

Of course, the phenomenon of quantum turbulence is too complicated to be described completely
in one paper. Here we consider a simple model that allows us to calculate the permissible values
of energy, circulation, and certain other variables. For example, the suggested approach gives
explicit formulas for quantized fluid velocity in some points of the fluid flow. We also describe the
interaction of quantized vortex rings, creation and annihilation of the vortices included. Within the
framework of our assumptions, the proposed theory makes it possible to write a general expression
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for the partition function of a turbulent flow. The author hopes that the subsequent development of
the model, including the refinement of the resulting expression for the partition function, will be
useful for some thermodynamic calculations.

As a starting point of our research, we consider the special configurations of the closed vortex
filaments with an internal core structure. We suppose that the dynamics of such objects is restricted
by the local induction approximation. Under certain assumptions [7], a vortex filament r(t, s) with
a nonzero flow inside the core is described by the equation

∂t r(t, s) = A ∂sr(t, s) × ∂ 2
s r(t, s) + B

(
∂ 3

s r(t, s) + 3
2

∣∣ ∂ 2
s r(t, s)

∣∣ 2
∂sr(t, s)

)
. (1)

We use notations t and s for the time and the natural curve parameter correspondingly. Coeffi-
cients A and B are some dimensional coefficients which depend on circulation �, the radius a of the
vortex core, and the components of the flow velocity in the core. Regarding the value a, we consider
it finite and small enough. In general, all these values can vary from vortex to vortex in a turbulent
flow.

The theory has three natural dimensional constants that are relevant to the physical system being
described. These constants are the fluid’s density ρ0, the speed of sound in this fluid v0, and the
natural scale length R0,

R0 ∈ {R:R = | r1 − r2|, r1, r2 ∈ V },
where symbol V denotes the domain where the investigated objects evolve. For example, the
constant R0 may be the radius of the pipe in which the fluid in question flows. Despite the fact
that value μ̃0 = πρ0R3

0 is a natural parameter that determines the scale of the masses, we will also
use the additional mass parameter μ0. In our theory, this parameter denotes the central charge
for central extension of the Galilei group G̃3 (the appearance of the extended Galilei group in
the considered approach was discussed in the author’s work [8] in detail). Therefore, we have an
additional dimensionless parameter here: αph = μ0/μ̃0. We will clarify its role in our theory later.
Along with constants ρ0, v0, R0, we will use the auxiliary constants t0 = R0/v0 and E0 = μ0v

2
0 .

The model under consideration allows us to consider a separate vortex ring as a particle with
an internal degree of freedom. As a consequence, it becomes possible to use the standard tools of
quantum many body theory to describe the interaction of such rings. For example, processes of
creation and annihilation of the vortices in a fluid flow can be described. Note that the suggested
approach is much simpler than using field string theory which is usually discussed in this context.

II. CLASSICAL DYNAMICS OF A SINGLE VORTEX

Let the symbol R denotes the arbitrary positive constant with the dimension of length. Along with
the physical vectors r, we will use a projective vector r/R, denoting it with the same symbol. Further,
to describe the considered vortex filament, we introduce the dimensionless parameters τ = t/t0 and
ξ = s/R. As a consequence, Eq. (1) will be rewritten as

∂τ r(τ, ξ ) = β1
(
∂ξ r(τ, ξ ) × ∂ 2

ξ r(τ, ξ )
) + β2

(
2 ∂ 3

ξ r(τ, ξ ) + 3
∣∣ ∂ 2

ξ r(τ, ξ )
∣∣ 2

∂ξ r(τ, ξ )
)
. (2)

The values β1 and β2 are dimensionless constants here.
Equation (2) has a certain solution that is of interest to the proposed model. This solution is

r(τ, ξ ) =
(

qx

R
+ cos(ξ + φ0 + β2τ ),

qy

R
+ sin(ξ + φ0 + β2τ ),

qz

R
+ β1τ

)
, (3)

where the angle φ0 ∈ [0, 2π ) and the coordinates qx, qy, qz are some (time-independent) variables.
This solution describes the vortex filament in the shape of a circle with a radius R. The filament
moves along the axis e = ez with velocity |uv| = β1R/t0 and rotates with the frequency β2/t0. The
rotation simulates here the flow � inside the filament core. This flow is

� = β2πρ0a2v0(R/R0).
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We will further consider only such solutions of Eq. (2). Thus, the set of possible vortex loops is
reduced to the rings of an arbitrary radius and some fluid flow in the core here.

In addition to Eq. (2) that describes the evolution of the curve r(·, ξ ), we postulate the standard
hydrodynamic formula [9] for the momentum p̃:

p̃ = ρ0

2

∫
r × ω(r) dV. (4)

The vector ω(r) stands for vorticity. In our model,

ω(r) = ω1(r) + ω2(r),

where the vorticity ω1(r) is due to the fluid rotation around the filament and the vorticity ω2(r) is
due to the fluid flow in the filament core. Let us consider these summands separately. In cylindrical
coordinates (ρ, ϕ, z), the fluid flow velosity u in the filament core is described by the formula

u(r) = const × δ(ρ − R)δ(z)eϕ (ϕ).

Therefore,

r × ω2(r) = r × (∇ × u(r)) = C(ρ, z)eϕ (ϕ).

Because the equality
∫ 2π

0 eϕ (ϕ)dϕ = 0 holds, the value ω2(r) does not contribute to the integral
Eq. (4). Regarding the first summand ω1(r), the vorticity of the closed vortex filament is calculated
by means of the formula (see, for example, Ref. [7])

ω1(r) = �

∫ 2π

0
δ(r − r(ξ ))∂ξ r(ξ )dξ, (5)

where the symbol � stands for circulation.
Taking into account the formulas Eqs. (4) and (5), we deduce the following expression for the

canonical momentum:

p̃ = ρ0�R 2

2

∫∫ 2π

0
[ξ − η] ∂ηr(τ, η) × ∂ξ r(τ, ξ )dξdη. (6)

The notation [x] means the integer part of the number x/2π here.
For our solution Eq. (3), the integral on the right-hand side of the formula Eq. (6) is easily

calculated. Therefore,

p̃ = πρ0R2�e, |e| = 1, (7)

where constant unit vector e defines the axis of the rotating ring Eq. (3).
Earlier, a new approach to the Hamiltonian description and quantization of a single vortex loop

was proposed by the author [8]. In this paper, we modify the suggested approach for our purposes.
Moreover we perform the reduction of the considered dynamical system to the finite number of
degrees of freedom.

As can be seen from the formulas Eqs. (3) and (4), the natural variables that parametrize our
dynamical system are variables

q = (qx, qy, qz ), R, φ = φ(τ ) = φ0 + β2τ, �, e, (8)

where |e| = 1. It must be noted that we describe the vortex ring as an abstract closed curve which
evolves in accordance with Eq. (2). The variable as velocity of the fluid will not be needed for this
purpose, and still we intend to take into account the dynamics of the surrounding fluid in a minimal
way: we declare the value � as a dynamic variable, in addition to variables q, R, φ, and e.

The variables Eqs. (8), for example, enable us to determine the core radius a in our model. Indeed,
if a � 0, the following formula for the vortex ring velocity uv takes place [10]:

|uv| � �

4πR
ln

8R

a
.
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In our model, |uv| = β1R/t0; therefore, the following expression is true for the value a:

a � 8R exp

(
−4πβ1R2

t0�

)
. (9)

As the next step, we replace the natural set of variables Eqs. (8) by another one which is more
convenient. Let us define the variables

� = R

R0
cos(φ0 + β2τ ), χ = R

R0
sin(φ0 + β2τ ).

Dynamical equations for these variables are canonical Hamiltonian equations for a harmonic
oscillator:

∂τ� = −β2χ,

∂τχ = β2�.

Next, we introduce a vector p = αphp̃ instead the canonical momentum p̃. The formula Eq. (7) is
than rewritten as follows:

p = παphρ0R0
2�(� 2 + χ2)e, |e| = 1. (10)

Apparently, the set of the variables p, q, � , and χ adequately describes our dynamical system
Eq. (3) as a structured 3D particle with an internal degree of the freedom. The formula Eqs. (10)
together with the definition of the variables � and χ provides one-to-one correspondence between
the set Eqs. (8) and the new set (p, q, � , χ ). Note that the variables � and χ are invariants under
Galilean and scale transformations of space E3. It might be appropriate to remember Lord Kelvin’s
old idea [11] about interpretation of vortices as some structured particles. This idea is still being
discussed [12].

The next step in the development of our model is the Hamiltonian description of the considered
dynamical system. Pursuant to the Dirac’s prescriptions about the primacy of the Hamiltonian
structure, we define such structure axiomatically here. The relevant definitions are given below.

(1) Phase space H = Hpq × Hb. The space Hpq is the phase space of a 3D free structureless
particle. It is parametrized by the variables q and p. The space Hb is a phase space for one-
dimensional harmonic oscillators.

(2) Poisson structure:

{pi, q j} = δi j (i, j = x, y, z), {�,χ} = 1

E0t0
. (11)

All other brackets vanish.
(3) Hamiltonian:

H = p2

2μ0
+ β2E0

2
(� 2 + χ2). (12)

One of the main questions here is how we can describe the energy of the vortex rings under
consideration. It is a well-known fact that the canonical formula [10]

E = 1

8π

∫∫
ω(r)ω(r′)
| r − r′| dV dV ′ = � 2

8π

∫∫
∂ξ r(ξ )∂ξ r(ξ ′)
| r(ξ ) − r(ξ ′)| dξdξ ′

leads to the unsatisfactory result for thin filaments. Indeed, the integral in this formula diverges for
the filament with the core radius a → 0. The standard approach to solving this problem is to use
various regularization methods. In our case, where the value a depends on dynamic variables of the
theory [see Eq. (9)], such a procedure would look somewhat ambiguous. There exists yet another
method proposed in Ref. [8]: the energy of an arbitrary closed vortex filament is considered from a
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group-theoretic point of view there. This approach is based on the fact that Lee algebra of the group
G̃3 has three Cazimir functions:

Ĉ1 = μ0 Î, Ĉ2 =
⎛⎝M̂i −

∑
k, j=x,y,z

εi jk P̂j B̂k

⎞⎠2

Ĉ3 = Ĥ − 1

2μ0

∑
i=x,y,z

P̂ 2
i ,

where Î is the unit operator, M̂i, Ĥ , P̂i, and B̂i (i = x, y, z) are the respective generators of rotations,
time and space translations, and Galilean boosts. Traditionally, the function Ĉ3 can be interpreted as
an internal energy of the particle. In our case, it is a natural postulate that

C3 = β2E0| b |2, b = χ + i�√
2

.

Therefore, the identification E = H is justified in our approach.
Finally, the proposed approach enables us to consider the vortex as a point particle with coordi-

nates q and momentum p. Each such particle has an internal degree of freedom which is described
by oscillator variables χ and � . These variables define the radius R of the vortex and the flow in the
vortex core. We assume that the coordinates q are the coordinates of the center of the vortex ring.
Therefore, taking into account the definition of circulation, the following expression for the fluid
velocity u f takes place in this point:

u f = uv + �

2πR
e =

(
β1R

t0
+ �

2πR

)
e, e = p

|p| . (13)

III. QUANTIZATION

The constructed Hamiltonian structure defines the way for quantization of the vortex ring being
studied. First, we must define a Hilbert space H1 of the quantum states of our dynamical system.
The structure of the phase space H leads to the following natural structure of the space H1,

H1 = Hpq ⊗ Hb, (14)

where the symbol Hpq denotes the Hilbert space of a free structureless 3D particle [space L2(R3),
for example] and the symbol Hb denotes the Hilbert space of the quantum states for the harmonic
oscillator. The creation and annihilation operators b̂+, b̂ as well as the standard orthonormal basis
| n〉 in the space Hb are defined by well-known formulas

[b̂, b̂+] = Îb, b̂| 0b〉 = 0, | n〉 = 1√
n!

(b̂+)n| 0b〉 | 0b〉 ∈ Hb,

where the operator Îb is a unit operator in the space Hb.
Let us quantize our theory. For certainty, we will consider the case when Hpq = L2(R3) and

Hb = L2(R). According to the classical quantization scheme, we must construct the function A → Â,
where symbol A denotes some classical variable and symbol Â denotes some operator in the space
H1. For fundamental Hamiltonian variables, the relation

[Â, B̂] = −ih̄̂{A, B}
must be satisfied. This equality can possess some anomalous terms if the observables A, B are the
functions of the fundamental variables. These terms depend on the ordering rule of noncommuting
operators. We will not discuss these issues here [13]. Thus, our postulate of quantization is as
follows:

qx,y,z → qx,y,z ⊗ Îb, px,y,z → −ih̄
∂

∂qx,y,z
⊗ Îb, b →

√
h̄

t0E0
(Îpq ⊗ b̂),
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where operator Îpq is a unit operator in the space Hpq. We will not subsequently write the construc-
tions (· · · ⊗ Îb) and (Îpq ⊗ . . . ) explicitly, hoping that this will not lead to misunderstandings. In
accordance with our quantization postulates, the Hamiltonian is defined by the operator

Ĥ = h̄2

2μ0
� + β2h̄

t0

(
b̂+b̂ + 1

2

)
. (15)

To find possible values of circulation �, let’s square the equality Eqs. (10). After quantization,
we have the following equation:(

h̄2� + π2α2
phρ

2
0�2R4

0

[
(b̂+)2b̂2 + 2b̂+b̂ + 1

4

])|�〉 = 0, |�〉 ∈ H. (16)

The eigenvalues E of the operator Ĥ and specific values of the quantity � depend on the domain
V in which the motion of the vortex ring in question occurs. Before considering a specific example,
we would like to say a few words about the possible values of quantized circulation � = �n in a
turbulent flow. In our opinion:

(1) The conventional formula

�n ≡
∮

γ

u(�)d� = nh̄

μ
n = 0, 1, 2, . . . (17)

can be refined for a turbulence. Apparently, the set of values of the quantized quantity �n is
significantly wider here than the natural series. Of course, in the simplest cases, the formula Eq. (17)
remains valid, possibly with some correcting terms (see author’s work [14]). Note that the known
experimental measurements of the magnitude of � were made for special single vortices and not
in a turbulent flow. An overview of the results on this issue is given Ref. [2]. In Ref. [6], the
formula Eq. (17) was confirmed by the results of numerical modeling in the framework of the
Gross-Pitaevskii model. Let us note that these works predict the large peaks in the integer values
and certain small peaks at the noninteger values, which was explained by errors. From the author’s
point of view, alternative models are quite appropriate for such a complex phenomenon as a quantum
turbulence.

(2) The rule Eq. (17) is usually postulated. As has been repeatedly stated in the literature, such
quantization rules are similar to the quantization rules in the old Bohr quantum theory. The author
believes that quantum values �n should be deduced from the general postulates of quantum theory
and not postulated separately.

(3) As for the arguments that rule Eq. (17) is a consequence of the unambiguity of the wave
function of certain quasiparticles (in a two-fluid model, which we are not considering here), we
will make the following remark. We consider the fluid medium where the closed vortex loops with
zero thickness are present. This medium can be considered as a realization of multiconnected space.
Thus, any quasiparticle here can possess the fractional statistics. In this case, the wave function
of a quasiparticle can receive a phase multiplier when moving along a closed path around a vortex
filament. Therefore, the condition Eq. (17) may not hold even for a single vortex in general. Here we
should mention Ref. [15], where the anyon superconductivity was investigated (as is well-known,
this phenomenon is similar to superfluidity).

Let us consider the following example. We assume that the fluid moves in the domain V , which
is determined by the following boundary conditions ([in this case, Hpq = L2(V )]:

x2 + y2 � R 2
0 , z ∈ [0, 2πR1] (mod 2πR1), R1 = const.

This domain models a round tube with a radius R0 in the shape of a torus of radius R1 
 R0.
The effects on the boundaries of domain V can be modeled by conditions on the wave function

�(r) ∈ H pq on the surface x2 + y2 = R 2
0 . It is clear that �(r) = ψ (x, y)ψ (z) here. Therefore, we

can consider the following conditions:

c1
∂ψ (x, y)

∂n

∣∣∣
x,y∈S

+ c2ψ (x, y)
∣∣∣
x,y∈S

= 0,
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where n is the normal vector for the circle S : {x, y : x2 + y2 = R 2
0 }. Let us consider the simplest

case when c1 = 0 and c2 = const. It is known that eigenvalues −λ2 of the Laplace operator in this
case will be values λ2

n,k = (ζ (n)
k /R0)2, where quantities ζ

(n)
k , k = 1, 2, . . . stand for zeros of the

Bessel function Jn(ρ). Thus, the eigenvalues −λ2 of the Laplace operator � in the domain V take
the following values:

λ2
m,�,k =

(
m

2R1

)2

+
(

ζ
(�)
k

R0

)2

, m, � = 0, 1, 2, . . . k = 1, 2, . . . .

As a result, we find the following formulas for energy E and circulation �:

En,m,�,k = h̄2λ2
m,�,k

2μ0
+ β2h̄

t0

(
n + 1

2

)
, (18)

�n,m,�,k = ± 2h̄R0λm,�,k

μ0(2n + 1)
= ±2h̄

μ0(2n + 1)

√(
mR0

2R1

)2

+ (
ζ

(�)
k

)2
, (19)

where natural numbers n, m, � = 0, 1, 2, . . . and number k = 1, 2, . . . . As is well-known, the
asymptotic behavior of values ζ

(�)
k for large values � and k will be ζ

(�)
k � (3π/4) + (π/2)� + πk.

Therefore, any asymptotics s → ∞, where number s is the number m, � or k gives the formula
Eq. (17) for circulation �n,m,�,k if other quantum numbers are fixed.

Let’s establish the properties of the set {�n,m,�,k}.
(1) The set {�n,m,�,k} has a fractal structure. First, we verify the property of self-similarity. It is

more convenient to take the set

{�2} = {
� 2

n,m,�,k ; n, m, � = 0, 1, 2, . . . , k = 1, 2, . . .
}

for this purpose. Indeed,

{�2} =
⋃
n,m

D̂nT̂m{ϒ},

where the set {ϒ} is the set of points 2πζ
(�)
k R1/R0 on the real axis, symbol T̂m stands for translation

x → x + const × m2 and symbol D̂n stands for dilatation x → x · (h̄/μ0(2n + 1))2. To calculate the
fractal dimension, let’s write the set {�n,m,�,k} in the form

{�n,m,�,k} =
⋃

m,�,k

{Xm,�,k},

where the sets {Xm,�,k} are the sequences Xn = �n,m,�,k , n = 0, 1, 2, . . . , where numbers m, �, k are
fixed. These sequences have asymptotic behavior as const/n when n → ∞. Then, the distance
δ between neighboring elements Xn and Xn+1 at n → ∞ is equal to δ(n) = 1/n2. Applying the
standard formula for calculating the fractal dimension D , we find

DX = lim
n→∞

ln n

ln(1/δ(n))
= 1

2
.

This result is well-known for the fractal dimension of the natural series. Therefore, the set of the
circulation values in our model demonstrates fractal properties. In our opinion, such a structure of
the set {�n,m,�,k} is more suitable for describing a turbulent flow then the regular structure due to the
formula Eq. (17).

(2) The set {�n,m,�,k} is bounded. Indeed, the following inequality takes place for the physical
reasons:

h̄2λ2
m,�,k

2μ0
< Emax,
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where the constant Emax is some maximal energy in the considered flow. Consequently,

� < 2πR0

√
2Emax

μ0
. (20)

The pure quantum states |n; m, �, k〉 ∈ H1 that correspond to the values Eqs. (18) and (19) are
written as follows:

|n; m, �, k〉 = |m, �, k〉|n〉, |m, �, k〉 ∈ Hpq, |n〉 ∈ Ha, (21)

where the notation |m, �, k〉 was used for the eigenvectors of Laplace operator.
Similarly, we can calculate the values of E and � in an arbitrary domain V . Indeed, let the

numbers −λ2
[s] be the eigenvalues of the Laplace operator in domain V , where the notation [s] means

some multi-index (such as the complex index {m, �, k} in example above). Corresponding formulas
for the values of E and � will be similar to the formulas Eqs. (18) and (19). Having excluded the
value −λ2

[s] from these formulas, we find a connection between energy and circulation:

E[s],n = μ0�
2
[s],n

2π2

(
n + 1/2

R0

)2

+ β2h̄ v0

(
n + 1/2

R0

)
. (22)

The radius R of considered vortices is also quantized. Indeed,

R2 → R̂2 = h̄R2
0

t0E0

(
b̂+b̂ + 1

2

)
.

Therefore, we have following values for the radius R = Rn:

Rn = σphR0

√
n + 1

2
, n = 0, 1, . . . , . (23)

The dimensionless constant σph = √
h̄/μ0v0R0 was introduced here. This constant, in addition to

the previously introduced dimensionless constant αph, naturally appears in the quantum version of
the considered dynamical system. These constants depend on both specific fluid and domain V . For
example, if the value μ0 equals the 4He mass, the value v0 � 3.4 m/c (the sound speed in the liquid
helium) and the pipe radius R0 � 0.03 m, we have values αph � 2 × 10−27 and σph � 10−3 for these
constants.

IV. DESCRIPTION OF THE MANY-VORTEX SYSTEMS

Here we describe the vortex loop as some pointlike particle with the internal degree of the
freedom. This approach gives possibilities for studying many-vortex flows. First, we consider the
fluid flow which contains N noninteracting vortices numbered by some multi-index [n]. For the sake
of clarity, we will assume that the fluid is in the volume V , which was introduced in the previous
section. We will also make the following assumptions:

(1) As is well-known, some space averaging is needed for the description of a turbulent flow in
a concrete physical system. We assume that the number of vortices N is sufficiently large, so the
space averaging volume δV contains a large number of the vortex loops with centers q[s].

(2) The unequalities Rn < la/2 take place for every vortex of radius Rn where the value
la � 3

√
V/N is average distance between the vortex centers.

(3) Let the value l1 be the distance in the fluid flow such that correlation for any parameters in
points q1 and q2 is absent if |q1 − q2| > l1. We suppose that the unequality la � l1 takes place.

As mentioned earlier, we suppose that coordinates q[k] of our structured particle coincide with
the center of the vortex ring. What is the quantized fluid velocity u[s] in the point q[s]? This value
can be calculated as follows:

u[s] = uv + �n,m,�,k

2πRn
e, |e| = 1,
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where the velocity uv = (β1R/t0)e of the vortex ring is defined in accordance with formula Eq. (3).
Therefore, the formulas Eqs. (13), (19), and (23) that were deduced earlier give the following
expression for the quantized fluid velocity in the point q[s]:

u[s] = σphv0

[
−β1

√
n + 1

2
+ 1

2(n + 1/2)3/2

√(
mR0

2πR1

)2

+ (
ζ

(�)
k

)2

]
e, (24)

where the numbers n, m, �, k are random natural numbers and the vector e is a random unit
vector. In accordance with the assumptions made, formula Eq. (24) models a quasirandom velocity
distribution in a turbulent flow.

The suggested theory allows us to calculate the partition function Z for any concrete domain V .
In the simplest case, when there is no interaction between vortices, the Z function can be written
out explicitly. Taking into account the example from the previous section, we can write the following
expression:

Z = N
∑

n,m,�,k

exp

(
−En,m,�,k

kBT

)
,

where value T is the temperature, the constant kB is Boltzmann constant, and the energy levels
En,m,�,k have been determined earlier by the formula Eq. (18).

Of course, a system of noninteracting vortices is too unsatisfactory an approximation to describe
a turbulent flow. To get closer to reality, we must consider the interaction of vortices. The proposed
theory allows us to do this. Indeed, we can apply the standard formalism of the many-body systems
theory here. Let us introduce the N-vortex space HN :

HN = H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
N

≡ HN
pq ⊗ HN

b ,

where

HN
pq = Hpq ⊗ · · · ⊗ Hpq︸ ︷︷ ︸

N

, HN
b = Hb ⊗ · · · ⊗ Hb︸ ︷︷ ︸

N

.

In Dirac notation, any vector |�N 〉 ∈ HN takes the form (N � 1)

|�N 〉 =
∑

n1,...,nN

∫
· · ·

∫
dp1 . . . pN f N (p1, . . . , pN ) ϕN

n1,...,nN
|p1〉 . . . |pN 〉|n1〉 . . . |nN 〉, (25)

where the vectors |p j〉 are corresponding eigenvectors of the operators p̂ j .
The Fock space

H =
∞⊕

N=0

HN = Hpq ⊗ Hint, H0 = | 0pq〉 ⊗ | 0b〉 = C,

is defined in a standard way. Here we have introduced the notation

Hpq =
∞⊕

N=0

HN
pq, Hint =

∞⊕
N=0

HN
b .

The creation and annihilation operators â+
pq(p), âpq(p) and â+

int(n), âint(n) act in the space H as
â+

pq(p) ⊗ Iint and so on. They are defined in a standard way. For example, let us suppose that vectors
�b ∈ Hint take the form (vector in the form of a string):

�b = (
ϕ0, ϕ1

n1
, . . . , ϕN

n1,...,nN
, . . .

)
.
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Then the definition of operators âint(n) and â+
int(n) will be as follows (ϕ0 = 1):

(âint (n)ϕN )n1,...,nN−1 =
√

NϕN
n1,...,nN−1,n, (âint (n)ϕ0) = 0,

(â+
int (n)ϕN )n1,...,nN+1 = 1√

N + 1

N+1∑
j=1

δnn j ϕ
N
n1,...,�n j ,...nN+1

,

where the symbol �n j as well as the symbol n0 both mean the absence of the corresponding number.
In addition, the symbol n without any subscript is not a summation index in the formula Eq. (25).
As usual, the constructions (· · · ⊗ Ia) and (Ipq ⊗ . . . ) will not be explicitly written out. We will also
consider the operators

â+(p; n) = â+
pq(p) ⊗ â+

int(n), â(p; n) = âpq(p) ⊗ âint(n)

which act in the space H.
Thus, the suggested method allows us to describe the processes of creation and annihilation of

closed vortex rings of a variable radius. Indeed, let us consider the Hamiltonian

Ĥ = Ĥ0 + Û , (26)

where

Ĥ0 = 1

2μ0

∫
p2â+

pq(p)âpq(p) + β2h̄

t0

∞∑
n=0

(
n + 1

2

)
â+

int(n)âint(n). (27)

This operator has continuous spectrum,

Ĥ0�
N
E = E �N

E ,

where the eigenvalues E are positive numbers. Let’s find the eigenvectors �N
E ∈ HN of the operator

Ĥ0. Introducing the designation

�N = (
0, 0, . . . , f N (p1, . . . , pN )ϕN

n1,...,nN
, 0, . . .

)
and performing the direct calculations, we find for the vector �N :

Ĥ0�
N ≡ E (p1, . . . pN ; n1, . . . nN )�N , (28)

where

E (p1, . . . pN ; n1, . . . nN ) = 1

2μ0

N∑
j=1

p2
j + β2h̄

t0

N∑
j=1

(
n j + 1

2

)
. (29)

Therefore, ∣∣�N
E

〉 =
∑

n1,...,nN

∫
· · ·

∫
dp1 . . . pN f N

E (p1, . . . , pN ; n1, . . . nN )

×ϕN
n1,...,nN

|p1〉 . . . |pN 〉|n1〉 . . . |nN 〉, (30)

where the function f N
E is proportional to the Dirac δ function:

f N
E (p1, . . . , pN ; n1, . . . nN ) = const × δ(E − E (p1, . . . pN ; n1, . . . nN )).

Thus, the vector |�N
E 〉 is some entangled state of states of N vortexes with momenta p1, . . . , pN and

radii Ri, i = 1, . . . , N which are defined by the numbers ni in accordance with the formula Eq. (23).
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TOWARDS QUANTUM TURBULENCE THEORY: A SIMPLE …

Let us discuss the term Û that is responsible for the interaction in the formula Eq. (26). In general,
operator Û has the following form:

Û =
∞∑

m,n=1

εm,nÛm↔n, (31)

where the sequence εm,n is some finite decreasing sequence. The constants εm,n are the coupling
constants which define the intensity of the vortex interaction. Operators Ûm↔n define the reconnec-
tion of the considered vortex filaments in the flow. Each such operator describes the transformation
of m vortex rings into n rings and vice versa, n → m. To fix the exact form of operators Ûm↔n,
additional assumptions are needed.

For example, let us consider the operator Û2↔2 in case of a paired interaction between our
structured particles. Thus, any two particles located in the points with coordinates q1 and q2 interact
by means of potential V̂ (q1 − q2). In this case,

Û2↔2 =
∑

n1,n2,n′
1,n

′
2

Û2↔2(n1, n2, n′
1, n′

2),

where (see Ref. [16], for instance)

Û2↔2(n1, n2, n′
1, n′

2) =
∫

· · ·
∫

dq1dq2â
+(q1; n1)â+(q2; n2)V (q1 − q2)â(q2; n′

2)â(q1; n′
1). (32)

The notations

â(q; n) =
∫

â(p; n)eiqpdp, â+(q; n) =
∫

â+(p; n)e−iqpdp

were introduced here. Note that the conjugation rules

Û +
2↔2(n1, n2, n′

1, n′
2) = Û2↔2(n′

1, n′
2, n1, n2)

are fulfilled so the operator Û2↔2 is self-adjoint operator.
Let us consider the δ interaction between the particles:

V (q1 − q2) = δ(q1 − q2).

In this case, and taking into account the conservation laws for the momentum and the energy, we
can write the following expression for the function Û2↔2(n1, n2, n′

1, n′
2):

Û2↔2(n1, n2, n′
1, n′

2) = δn1+n2,n′
1+n′

2

∫
· · ·

∫
dp1dp2dp′

1dp′
2

× δ(p1 + p2 − p′
1 − p′

2)â+(p1; n1)â+(p2; n2)â(p′
1; n′

1)â(p′
2; n′

2),

As it seems, some function Un1,n2 (p1, p2) should be added in the integrand expression for the
reasons of convergence of the integrals. For example, U = 1 for E (p1, p2; n1, n2) � Emax and U =
0 in the opposite case. The function E (p1, p2; n1, n2) is defined by the formula Eq. (29). Of course,
other methods of the ultraviolet cutoff procedure are also possible.

Taking into account the vortex nature of our structured particles, it also makes sense to consider
nonlocal interactions of a general kind. This can be done, for example, by replacing in the formula
Eq. (32)

â+(q1; n1)â+(q2; n2)V (q1 − q2)â(q2; n′
2)â(q1; n′

1)

−→
∫

· · ·
∫

dq′
1dq′

2â
+(q′

1; n1)â+(q′
2; n2)F (q1 − q′

1, q2 − q′
2)â(q′

2; n′
2)â(q′

1; n′
1),

where the function F (·, ·) is certain form-factor.
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Any summands Ûm↔n in the sum Eq. (31) can be constructed similarly. Definitely, the description
of a turbulent flow in the framework of the suggested method requires a large number of terms in
the sum Eq. (31).

In this paper, we consider the simplest case when interacting rings retain their shape. Of course,
the general case of interaction must take into account the change in the shape of the rings. The
shape change can be taken into account by replacing the Hb space to the Fock space HF , which is
introduced in the work [8]. The author hopes to return to this issue in subsequent works.

Finally, we have the following general expression for the partition function of the quantum
turbulent flow in our model:

Z = Tr exp

(
− Ĥ

kBT

)
. (33)

V. CONCLUDING REMARKS

In this paper, we have proposed the basics of the approach to the description of a quantum
turbulent flow as a system of interacting vortices. Specific calculations of any thermodynamic
quantities with a help of the formula Eq. (33) involve the refinement of the model. So, we have to
concretize the formula Eq. (31) in some way. In our opinion, the values εm,n together with the vortex
concentration V/N define the living time of the single vortex. Consequently, we can implement
Prandtl’s hypothesis about the length of the mixing path [17] in a turbulent flow within the
framework of our theory. The complexity of describing such a phenomenon as quantum turbulence
will require additional assumptions and subsequent investigations. The author hopes to return to this
issue in the future.
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