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Predicting mean profiles in compressible turbulent channel and pipe flows
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A modified iterative method is proposed to predict the mean profiles in compressible
channel and pipe turbulence by solving a nonlinear system, which is constituted by
the perfect gas assumption, the Sutherland’s viscosity law, the variable-property scaling
models for compressible wall turbulence, the incompressible velocity law of the wall and
the relationship between the mean temperature and velocity. Systematic parametric studies
display that the proposed iterative method is robust and does not depend on the initial
guess of the undetermined parameters. The results also indicate that the present method
works very well in both channel and pipe flows at various Reynolds and Mach numbers,
and the relative errors of mean temperature profiles and velocity profiles, as compared with
the available direct numerical simulation databases, in most cases are within 2% and 5%,
respectively.
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I. INTRODUCTION

Canonical compressible wall-bounded turbulent flows, including flat plate flows, channel flows
and pipe flows, are the typical problems to study the flow physics of compressible turbulence due
to its simple geometry. Compared with the incompressible wall-bounded turbulence, where the
fluid properties are assumed constant and the classical logarithmic law of the mean velocity has
been reported in the canonical flows, the fluid properties in compressible turbulence are no longer
constant, but varying spatially and temporally due to coupling of the velocity and temperature
fields through the compressible Navier-Stokes equations. The variations of flow properties will
complicate the mean velocity profiles in compressible wall-bounded turbulence. Nevertheless, the
well-known Morkovin’s hypothesis, which was restated by Bradshaw [1] that “the direct effects
of density fluctuations on turbulence are small if the root-mean-square density fluctuation is small
compared with the absolute density,” allows the community to handle the turbulent structures of
boundary layers and wakes with Ma < 5, which are closely the same as those in the corresponding
constant-density flows. The validity of the Morkovin’s hypothesis has been verified in several
canonical flows with varying Ma < 5 [2-4]. Nowadays, some studies further showed that for
compressible turbulent boundary layers the Morkovin’s hypothesis can hold even in the hypersonic
range at Ma = 12 [5] and Ma = 20 [6] when neglecting thermochemical effects.

At the same time, accounting for mean property variations in compressible turbulent wall-
bounded flows, i.e. transforming the mean profiles of a compressible state to a corresponding
incompressible state, is “state-of-the-art” [7], and various transformation methods [7—11] had been
proposed in the past since the pioneer work by Van Driest [12]. Following the unified expression
summarized by Modesti and Pirozzoli [13], most of the existed transformations (except Griffin
etal. [11]) can be expressed in terms of mapping functions fj; and g,, for wall distance y, and mean
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velocity u;, which are the equivalent incompressible distributions obtained from the transformation
‘SM,?’

y u
VI =/ Sudy, u; =/ gmdu. (D
0 0

Here, fi; and g, are functions of R = p/p,,, the ratio of local density to its value at the wall, and
M = 11/, the ratio of local dynamics viscosity to its value at the wall. Here and thereafter, (.) is
the Reynolds averaging operator, y is the wall distance, u is the velocity, p is the density, p,, is the
density at the wall, u the dynamic viscosity and 1z, the viscosity at the wall. In the above unified
expression, the mapping functions of the so-called “van Driest” (VD) transformation [12] are

fip=1, gvp=R"? 2

and the mapping functions of the transformation proposed by Trettel and Larsson [7] (denoted as
the TL transformation) are

d (yR'? d (yR'?
fTL=E<yM ), gTL=M5<yM ) €))

Previous investigations indicated that the “VD” transformation is appropriate for the heating wall as
well as the adiabatic wall [14], whereas it works bad for cooling walls [14,15]. The TL transforma-
tion showed a good collapse for compressible channels and pipes [7,13,16]. For a compressible flat
plate, there is an upward shift in the log-layer [17].

A recently total-stress-based transformation proposed by Griffin e al. [11] successfully collapsed
the velocity distributions for fully developed channel flows, pipe flows, and boundary layers with or
without heat transfer. In the total-stress-based transformation, distinct effects of the compressibility
on the viscous stress and turbulent shear stress were considered, where it treated the viscous stress by
accounting for the mean property variations with the semi-local nondimensionalization, whereas it
treated the Reynolds shear stress to maintain the approximate equilibrium of turbulence production
and dissipation. The transformed velocity of the simplified constant-stress-layer model is defined as
follows:

S+
Utly* =/S+d oS = — A
b7l N I
1 out out
Sty = ——, SH D 1=p"—, 4
eq[y ] /,L+ ay* TL[y ] n 8y+ ( )

where y* = y/I is the semilocal wall-normal coordinate, uy; = /7, /ply] and Iy = V[y]/uy are,
respectively, the semilocal velocity and length scales. The superscript T means a nondimensional-
ization by the classical wall units, i.e. the friction velocity u, = /1, /p,,, the viscous length scale
8y = Wy /(u;p,) and p,,. For examples, y© = y/8,, and ut = u/u.. In the following sections, the
TL transformation as well as the total-stress-based transformation will be used.

While the above transformations were concentrated on a “forward” problem, i.e., collapsing the
transformed velocity profiles of compressible wall-bounded turbulent flows at different Reynolds
numbers, Mach numbers, and wall temperatures with the corresponding incompressible ones, the
mean profiles of the compressible wall-bounded turbulence themselves, i.e., the profiles before
the transformation, are of more importance and interest in practice, since they are essential for the
aerospace design. Predicting these mean profiles as well as the related skin friction and heat flux at
the wall at very low cost is in urgent need in the design process [18]. Thanks to the successful works
of various transformations mentioned above and the well-studied incompressible wall-bounded
turbulent scaling laws, an inverse problem, i.e., obtaining the mean profiles of compressible
wall-bounded turbulence from the above-mentioned transformations and the known incompressible
wall-bounded profiles, provides one possible approach. In the past few years, researchers have found
that one can obtain the mean profiles (velocity, temperature, density, and viscosity) by solving the
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closed system formed by the perfect gas assumption, the viscosity law, the variable-property scaling
models (transformations) for compressible wall turbulence, the incompressible velocity law of the
wall, and the mean temperature-mean velocity relationship [18-21]. Huang et al. [19] proposed a
general approach to get mean velocity and temperature profiles at desired Mach number and 7, /7;
(T, and T, are the wall temperature and recovery temperature) for compressible turbulent boundary
layers based on a density-weighted transformation. They also proposed a self-consistent skin friction
law from the proposed velocity profile, which was at least as good as those obtained by using the Van
Driest II transformation. Zhang [20] also studied the quantitative predictions of the mean profiles in
compressible turbulent boundary layers based on the generalized mean temperature-mean velocity
relationship and a series of Mach number invariants and wall-temperature invariants in his Ph.D.
thesis. He proposed three different iterative approaches to predict the mean profiles in adiabatic com-
pressible turbulent boundary layers, and the first two could further predict the profiles of Reynolds
stresses and temperature variance if the Mach number invariance property of the Reynolds stresses
as well as the generalized Reynolds analogy theory between the streamwise velocity fluctuations and
the temperature fluctuations were used. For the diabatic compressible boundary layers, he suggested
combining the wall temperature invariance property and the predictions of adiabatic cases. In his
thesis, he showed the prediction results and found that the proposed approaches can well predict the
profiles for the adiabatic and quasi-adiabatic cases, while the predictions on the diabatic cases are
rather poor. Recently, Kumar and Larsson [18] formed a modular method by extending the approach
by Huang et al. [19] to estimate the velocity and temperature profiles in high-speed boundary layers.
The recent improvements on the transformation as well as the temperature-velocity relationship
were used and tested. The results showed that by using the more accurate relations the errors of
the skin friction and wall heat flux could be reduced from 16% to 8% and from 13% to 11%,
respectively, as compared to the Van Driest II method.

Although a lot of research has studied the inverse problem in compressible turbulent boundary
layers (external flows), the studies in internal flows (compressible channel and pipe flows) are
still relatively rare. Griffin et al. [21] mentioned that the centerline temperature can be iteratively
determined with the condition dT /dy = 0 (T is the mean temperature) at the centerline for channel
flows. However, neither the detailed process nor the predicted results were shown in their paper.
In this paper, we proposed a modified iterative method for channel and pipe flows according to
the approach by Huang et al. [19]. Different from the original iterative method, which is a straight
extension of the approach by Huang et al. [19], we propose to replace the condition d7 /dy = 0
(or du/dy = 0) at the centerline by the semiempirical central mean temperature scaling recently
proposed by Song et al. [22]. The proposed iterative method was validated against several direct
numerical simulation (DNS) databases at various Reynolds and Mach numbers, and the results
showed that the proposed method is stable and of good accuracy.

II. ITERATIVE METHOD FOR MEAN PROFILES IN CHANNEL AND PIPE FLOWS

Following the approach in compressible turbulent boundary layers [18-21], the nonlinear system
constituted by the perfect gas assumption, the viscosity law, the variable-property scaling models
(transformations) for compressible wall turbulence, the incompressible velocity law of the wall,
and the mean temperature—mean velocity relationship will be used to estimate the mean profiles
in compressible turbulent channel and pipe flows in this section. The above equations are modular
and each of them can be easily replaced for a better one in the future. The scaling law and the
iterative method used in this paper will be presented in detail in the following. All variables
are nondimensionalized with the bulk-averaged density p,, the bulk velocity up, the reference
temperature T, the reference viscosity pres at Trer and the reference length L, which is the channel
half-height £ for channel flows and the pipe radius R for pipe flows.

Firstly, we consider the boundary layer assumption that the pressure is invariant with wall-normal
direction, i.e., P[y] ~ P[y = 0]. By considering the Morkovin’s assumption and the perfect gas
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assumption, we obtain

_ Pulw

oyl =——.
Tyl

Similarly, based on the Morkovin’s assumption and the Sutherland’s viscosity law, the mean
viscosity can expressed as

(&)

)3/2 1 + S/’I;’ef

J— — T — ,
ulyl = Tyl Tol+ 5/ T

(6)
where S is the Sutherland temperature.

As discussed earlier, multiple transformations have been proposed in the literature to produce an
excellent collapse of the mean velocity profiles by taking into account the mean thermodynamic
variables. In the present work, we mainly use the TL transformation proposed by Trettel and
Larsson [7], i.e., Eq. (3). This is another equation that we need in the iterative process. With the
transformation, the transformed velocity profile at Re = ppupL/[ter is consistent with the incom-
pressible velocity profile at friction Reynolds number Re, = u,L/v (v is the kinematic viscosity) if
the transformed friction Reynolds number Re? = Re[(ﬁcﬁw)l/ 2u1 /It.] equals to Re;. That is, we
need the incompressible velocity profile:

— .

Uincomp = f(y;r’ Rer)' (7)
The incompressible velocity profiles can be obtained by two means. One of them is from the open
source DNS databases (see Ref. [23]), and the other is from the published analytical expressions
[24,25]. The analytical mean velocity profile proposed by She et al. [24] will be mainly used in this
work and it is

+

y
Ut = /0 Stdyt, ST =(—1+/1+4t1:2)/(2113),
£\ 32 INPARYL A [ pm o 174
It = l()(yT) 1+ <yT> 1+ (%) — <1 + (r”“’) ) ,
Ysub Ysub Youf m(l —r)Z. r

+2
Y 1/4
o= k20 5 N 9.7,y A AL rege 2 0.27, Ze = (14 12,) %,
buf
k ~ 0.45,r = (Re; —y")/Re,, (8)

where m = 4 for channel and m = 5 for pipe, T is the total stress, and it is T+ =1 — y*/Re,
for channel and pipe flows. She et al. [24] have demonstrated in their paper that their analytical
expression was quite accurate for both channel and pipe flows at Re, = 940. We also obtained the
profiles for incompressible turbulent channel and pipe flows at various Re; (180 < Re; < 6000)
by using the above analytical expression, and compared the results with the recent DNS data for
channel (Lee and Moser [26]) and pipe flows (Pirozzoli et al. [27]). The results showed (not shown
here for brevity) that the relative errors across the wall-normal direction are within 4%, documenting
the accuracy of the above analytical expression.

Finally, to close these equations, we should add the relationship between the mean temperature
TT[y] and the mean velocity u[y]. Many algebraic relationships between the mean temperature and
the mean velocity were proposed in the past [12,28-30]. In the present work, the latest formula by
Zhang et al. [30] was chosen, and it is

R N N
Lo Tu-tud Do Tn (-i) 7 ©)
Ts Ts Us Ts Us

T
T;
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where T,g =T+ rgﬁ§ /(2C,) is the generalized recovery temperature, 71, = (T, —
T(s)/ [ﬁg/ (2C,)]1 — [2Pr/us] - [ﬁyw /Ty] is the generalized recovery factor, Ts (T.) and us; (@)
are the mean temperature and velocity at channel or pipe center, Pr is the Prandtl number, C, is
the specific heat at constant pressure, y is the specific heat ratio, Ma = u;,/+/y RTr is the Mach
number (R is the gas constant), Gy and T,, are the mean heat flux and skin friction at the wall,
respectively. For fully developed turbulent channel and pipe flows, g, = —us|T,| holds due to
the global energy conservation [31,32]. Therefore, Eq. (9) can be further rewritten as with the
equation C,Trer /u = 1/[Ma*(y — 1)],

T i (T T. N NS

— =1+ Pru.(y — 1)Ma (ﬁ_> + 7 - 1 — Pru.(y — 1)Ma <ﬁ_) . (10)

w c w c

Equations (5), (6), (3), (7), and (10) constitute a nonlinear closed system that can be used to solve
the mean profiles for turbulent channel and pipe flows. The above system requires several input
parameters, including Re, Ma, Ty, T, Pr, and y. In addition to the above input parameters, there
are several parameters to be determined, including T. /Tu,, U, ur and p,,. The four undetermined
parameters require four additional conditions for the iteration to proceed. Similar to the direct
numerical simulation of the channel and pipe flows, the conservation of the mass and the momentum
flux are two critical conditions. Besides these, dT /dy = 0 and d#/dy = 0 at the centerline are the
other two restrictions, which are based on the symmetry of the temperature and velocity profiles.
However, it should be noted that dT /dy = 0 and du/dy = 0 at the centerline are redundant, since
the condition dT /dy = 0 at the centerline is nearly equivalent to du/dy = 0 at the centerline.
If these two conditions were used together to perform the iteration, the results depended largely
on the initial guess of the four undetermined parameters (not shown), i.e., TC/T,U, Uq, Uy, and
0, Therefore, the above nonlinear system is not completely closed, and one of the above two
conditions at the centerline should be replaced with proper constraint. Here, we propose to use the
semiempirical central mean temperature scaling recently proposed by Song et al. [22], where the
central mean temperature can be estimated from the central mean velocity as

7. =

1
=1+ 1.034Pri, Ma?. (11)

It has shown by Song et al. [22] that most of the relative errors in turbulent channel flows with Re
ranging from 3000 to 34 000 and Ma ranging from 0.5 to 4.0 are below 1.5% compared with direct
numerical simulation data. It should be noted that the above relation can guarantee the equivalence
of dT /dy = 0 and du/dy = 0 at the centerline. Therefore, the number of undetermined parameters
reduces to three, and we only need three conditions to close the above nonlinear system. Besides the
conservation of mass and momentum flux, either dT /dy = 0 or d#i/dy = 0 at the centerline could
be chosen. With this semiempirical scaling of 7. and d7 /dy = 0 at the centerline, we propose
the modified iterative method, and the corresponding flowchart is shown in Fig. 1. The one with
du/dy = 0 at the centerline can be proposed similarly, and the results are very close to those with
the constraint dT /dy = 0 at the centerline according to our validations.

To test the above proposed iterative method, a case at Ma = 1.5, Re = 7667, T..f = 288.15K,
T,, = 1 (Please note that T, is already normalized by T;.f), Pr = 0.72 and y = 1.4 is chosen, and
the DNS data is available by Modesti and Pirozzoli [13]. Three sets of initial guesses of the un-
determined parameters are chosen, including guessl: u. = 1.30, u, = 0.03, p,, = 1.4355, guess2:
. = 1.137, u, = 0.03,5,, = 1.372, and guess3: &, = 1.137, u, = 0.0480, p,, = 1.367. T./T, is
calculated by using Eq. (11). It should be noted that guess3 is the same as those values from DNS.
With a uniform grid N, = 4001 in the wall-normal direction, a preset tolerance ¢ = 10~° and the
incompressible velocity profile from She er al. [24], the predicted mean velocity, temperature,
viscosity, and density profiles are shown in Fig. 2. It is evident that the predicted mean velocity
profiles, as well as the mean temperature, viscosity, and density profiles, with the three different
initial guesses converge to the same results, which are very close to the reference DNS data. Table I
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Inputs: Outputs:
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The incompressible Calculate Re; and obtain the |
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Uincomp = fi Re) prolﬁle I
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> dy @ h

models (transformations) for of , T, p, 1 (using the deviation between

; = 1 h— —
compressible wall turbulence the transformed velocity and U, ;mmp) fu= *fo prudy—1

h
The perfect gas . . The Sutherland’s
assumplion — TT;Z;:;::?? P — viscosity_ law
(p-T) ’ E®-T)

FIG. 1. Flowchart of the proposed iterative method with d7 /dy = 0 at the centerline. Boxes with solid red
boundaries represent the required scaling law to choose.

lists the estimated results of 7., @, iy, Puws He/My, and 0./p,,, as well as the relative errors, with
the three different initial guesses, and the results indicated that the relative errors reduced a lot for
guessl and guess2, as compared with those estimates by using the original iterative method (not
shown for simplicity). Here, the relative error for a quantity f at a location y is defined as

Erslyl = —fDN; —Jal 1009, (12)

DNS

with fpns and f.y being the DNS value and the predicted value at the location y, respectively. For
guess|, the relative error of T can be reduced to approximate one order, i.e., from 9.33% to 1.24%.
However, for guess3, the predicted results seem slightly worse than those obtained by the original
method. Since the only difference between the original method and the proposed modified method
is to use the semiempirical scaling for the central mean temperature, i.e., Eq. (11), we therefore
attribute the weaker performance of the proposed modified method with the correct initialization of
the undetermined parameters to the error of the semiempirical scaling. It should be emphasized that
a uniform grid was used in the present study. This is just for convenience. We have also tried to use
a stretched grid, and the same results were obtained with much fewer points. We believe that the
stretched grid is preferable, especially for high Re cases.

Here, we would like to mention that the proposed modified iterative method is also modular in
the sense that it works with multiple incompressible velocity law of the wall, variable-property scal-
ing models, equations-of-state, velocity-temperature relations, and viscosity-temperature relations,
which are shown in solid red boundaries in Fig. 1. More accurate profiles can be predicted if more
accurate formulas were used.

III. FURTHER VALIDATION OF THE PROPOSED MODIFIED METHOD IN CHANNEL FLOWS
A. Validations in various Reynolds and Mach numbers

In this subsection, we will focus on our proposed modified iterative method, which is robust
and has no concern with the initial guess of the undetermined parameters. The proposed method
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FIG. 2. (a) Mean velocity, (b) mean temperature, (c) mean viscosity, and (d) mean density profiles predicted
by the proposed iterative method with three different sets of initial guesses in compressible turbulent channel
flows. guessl: u, = 1.30, u, = 0.03, p,, = 1.4355; guess2: u, = 1.137, u, = 0.03, p,, = 1.372; and guess3:
i, = 1.137, u, = 0.0480, p,, = 1.367. T./T,, is calculated by using Eq. (11). The reference DNS data at
Re = 7667 and Ma = 1.5 is from Modesti and Pirozzoli [13].

will be further validated by comparing with several available DNS databases of compressible
turbulent channel flows [13,33,34], where Re ranges from 3000 to 34 000, and Ma varies in
{0.5,0.8, 1.5, 3.0}. Besides Re and Ma, other input parameters are fixed and the same as before,
ie., Tt =288.15K, T, = 1,Pr=0.72,y = 1.4.

Figure 3 shows the predicted mean velocity and temperature profiles, as well as the corresponding
relative errors, across the channel at fixed Ma = 1.5 and various Re. The reference DNS data are
from Yao and Hussain [33]. Hereafter, the cases will be denoted as “XX — YY”, where Re = XX
and Ma = YY. For the mean velocity profiles, it is seen from Fig. 3(a) that the proposed modified
iterative method works pretty well, and the predicted mean velocity profiles match very well with
the corresponding DNS data, except for the low-Reynolds-number case at Re = 3000, where some
deviations can be observed in the range 15 <yt < 100. Figure 3(b) further indicates that the
relative errors of the predictions of mean velocity are pretty small for most of the cases across
the channel, less than 4%, except that the case “3000-1.5” has a relative error up to 6.5%. For the
mean temperature profiles as shown in Figs. 3(c) and 3(d), on the other hand, the predicted ones are
in excellent agreement with the corresponding DNS data, and the relative errors are all within 2%.
Nevertheless, due to the small error of the semiempirical scaling for the central mean temperature,
the error of the predicted mean temperature will be inevitable near the channel center. From Fig. 3,
we can conclude that at fixed Ma, the performance of the proposed modified iterative method at very
low Re is not as good as that at higher Re, especially for the prediction of mean velocity profiles.
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FIG. 3. Predicted mean profiles and the relative errors for channel flows at various Re and fixed Ma = 1.5:
(a) velocity; (b) the relative error of velocity; (c) temperature, and (d) the relative error of temperature. The
black lines represent the DNS results from Yao and Hussain [33]. The three profiles at higher Re in (a) and
(c) are vertically shifted up step-by-step by 3 units and 0.1 units, respectively, for better visualizations.

Now we turn our attention to the low Reynolds number cases, and three DNS data at Re =
3000, Ma = 0.8, 1.5 from Yao and Hussain [33], and Re = 4880, Ma = 3.0 from Modesti and
Pirozzoli [13] will be used as reference. Figure 4 shows the predicted mean velocity and temper-
ature profiles, as well as the relative errors, across the channel for the three cases. Again, more
obvious deviations exist for the velocity predictions at lower Reynolds numbers with various Ma.
Nevertheless, the predictions of mean velocity at Re = 3000, Ma = 0.8 are better than that at
Re = 3000, Ma = 1.5, and we may conclude that the max relative error of the velocity profiles
increases with Ma. For the deviations in the predicted mean velocity at the low Reynolds cases, we
believe that the reason is twofold. On the one hand, there are some errors for the TL transformation
at low Reynolds numbers, which can be depicted in Fig. 5 where the TL transformed mean velocity
profiles at Re = 3000, Ma = 1.5 and Re = 4880, Ma = 3.0 deviate from the incompressible DNS
profiles at Re; = 140 for y* > 10 (see also Fig. 8(a) in Modesti and Pirozzoli [13]). On the other
hand, the analytical expression proposed by She et al. [24] at Re, = 140 further deviates from
the incompressible DNS results at the same friction Reynolds number, resulting in more obvious
deviation between the TL transformed velocity and the analytical profile at the same friction
Reynolds number, as also shown in Fig. 5. If more accurate incompressible mean velocity profile
or/and more accurate velocity transformation method were used, better predictions on the mean
velocity profiles can be arrived (see Fig. 7).
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FIG. 4. Predicted mean profiles and the relative error for channel flows at different Ma. (a) velocity; (b) the
relative error of velocity; (c) temperature, and (d) the relative error of temperature. The black lines represent
the DNS results at Re = 4880, Ma = 3.0 from Modesti and Pirozzoli [13], Re = 3000, Ma = 1.5 and Re =
3000, Ma = 0.8 from Yao and Hussain [33]. The two profiles at higher Ma in (a) are vertically shifted up by 3
and 6 units for better visualizations.

Figure 6 shows the relative errors of the mean velocity, temperature, density and viscosity
profiles for the 14 different DNS cases, where Re ranges from 3000 to 34 000, and Ma varies
in {0.5, 0.8, 1.5, 3.0}. It is found that the relative errors of predicted mean temperature, density, and
viscosity profiles are within 2%, while those for the predicted mean velocity profiles in most cases
are less than 5%, except for those cases with lower transformed friction Reynolds number Re?. We
have also validated the present modified iterative method at Ma = 3.0, 4.0 and 7500 < Re < 24000,
and the predicted central mean velocity and temperature are listed in Table II. The corresponding

TABLE II. T, and %, from the available DNS data with various Re and Ma, where the subscript cal
represents the results from the proposed modified iteration method. The definitions of 7' eror and Zie. eror are
(Te = Teca)/Te x 100% and (i1, — U, cq)/U, x 100%, respectively.

Type Case Re Ma Tc 7 Tc,cal Ue,cal Tr,error(%) Ec,error(%)
Channel Trettel and Larsson [7], Trettel [35] 7500 3.0 2.487 1.156 2.542 1.184 —-2.21 —2.42
15000 3.0 2.486 1.156 2.507 1.157 —0.84 —0.09
24000 3.0 2.491 1.157 2491 1.144 0.00 1.12
10000 4.0 3.637 1.144 3.748 1.186 —3.05 —3.67
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FIG. 5. Mean velocity profiles in channel flows. The black solid lines with symbols represent TL-
transformed mean velocity profiles based on the DNS velocity profiles from Modesti and Pirozzoli [13], where
Re equals to 141, 142 for case “3000-1.5” and “4880-3.0”, respectively. The red solid lines represent the
corresponding incompressible profile obtained using the analytical expressions proposed by She et al. [24]
at the same Re. The blue dashed lines represent the incompressible DNS results at Re, = 140, which were
obtained from the figure in Modesti and Pirozzoli [13]. The profiles are shifted up for clarity.

DNS values from Trettel and Larsson [7] and Trettel [35] are also listed. It is again seen that the
accuracy of the present method is satisfactory, and that the relative errors for the center mean
velocity and temperature are all within 4%. It should be clarified that Eq. (11) only relates the
predicted center mean velocity and temperature, and it has nothing to do with their relative errors.
As listed in Table II, the relative errors of the predicted center mean velocity and temperature are
uncorrelated. For some cases, see Re = 15000, Ma = 3.0, the relative error of predicted center
mean velocity is smaller, whereas that of the predicted center mean temperature is smaller (see
other three cases). From the above results, we conclude that the proposed modified iterative method
can be used to predict the mean profiles in the compressible turbulent channel flows, especially for
those cases with higher Re.

B. Parametric studies

In this subsection, we will discuss the influences of the incompressible velocity profile and the
variable-property scaling models (transformations). In the following discussions, the cases Re =
7667, Ma = 1.5 and Re = 4880, Ma = 3.0 will be used to study the influence of the incompressible
velocity profile, and the cases Re = 7667, Ma = 1.5 and Re = 34000, Ma = 1.5 will be adopted to
investigate the influence of the variable-property scaling models at high Re. We want to emphasize
that Ny = 4001 and € = 107 used in this paper are accurate enough for these cases, and related
validations are not shown here for brevity.

In the past decades, many different analytical expressions were proposed for the incompressible
mean velocity profiles with different accuracy. Nevertheless, the DNS profiles should be the most
accurate ones. In the last section, we have shown that the analytical expression by She et al. [24]
may induce the error of the predictions on mean velocity at lower Reynolds numbers. Here, we will
compare the results with different incompressible velocity profiles to further verify our conjecture.
Figure 7 displays the predicted mean velocity and temperature profiles, as well as the relative errors,
at Re = 7667, Ma = 1.5 and Re = 4880, Ma = 3.0 by using different incompressible velocity
profiles, including the analytical results by She ef al. [24] and the incompressible velocity profiles
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FIG. 6. Relative errors [see the definition in Eq. (12)] of (a) mean velocity; (b) mean temperature; (c) the
mean density, and (d) mean viscosity. The 14 DNS results are from Zhang and Xia [34] (two cases), Modesti
and Pirozzoli [13] (four cases), Yao and Hussain [33] (eight cases), and the mean viscosity in Yao and Hussain
are calculated from mean temperature by using Eq. (6).

obtained by mapping the DNS data (denoted as "DNS-Mapping”). Here, since the incompressible
DNS mean velocity profile at Re, = 142 and 333 are not available, the DNS mean velocity profiles
at Re; = 150 [36] and 395 [37] are used to do the mapping for the cases Re = 4880, Ma = 3.0 and
Re = 7667, Ma = 1.5, respectively. For the higher Reynolds number case at Re = 7667, Ma = 1.5,
it is seen that both incompressible velocity profiles can arrive at almost the same mean velocity and
temperature profiles. The relative errors of velocity and temperature are all within 5% and 2%,
respectively, across the channel. For the lower Reynolds number case at Re = 4880, Ma = 3.0,
slight deviations can be observed for the mean temperature profiles in the center region, while more
obvious differences exist for the mean velocity predictions in the range 15 < y™ < 200. The max
relative error of velocity exceeds 5% with the “Analytical expression” and it is less than 5% with
the “DNS-Mapping”. For temperature, the relative errors are both within 2%. Compared with the
analytical expression by She et al. [24], the DNS profile provides a better prediction of the mean
velocity, although the predicted mean velocity still deviates from the reference DNS result, which
is due to the error of the TL transformation. Combing the results in Figs. 7 and 5, we arrive at the
conclusion that at higher Reynolds number cases, the analytical expression by She et al. [24] is
accurate enough to get good predictions on the mean velocity profiles, whereas at lower Reynolds
number cases, the analytical expression by She et al. [24] works relative poorly, and the DNS
profiles can be used to improve the predictions on mean profiles, especially on the mean velocity
profiles.
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FIG. 7. (a), (b) Mean velocity profiles and the relative errors and (c), (d) mean temperature profiles and the
relative errors of compressible channel flows with different incompressible mean velocity profiles. The black
solid and dashed lines represent the DNS results from Modesti and Pirozzoli [13] at Re = 7667, Ma = 1.5 and
Re = 4880, Ma = 3.0, respectively. The blue lines with square symbols denote the predicted mean profiles by
using the incompressible DNS mean velocity profiles at Re, = 150 (for Re = 4880, Ma = 3.0) [36] and 395
(for Re = 7667, Ma = 1.5) [37]. The red lines with triangle symbols denote the predicted results using the
analytical expressions by She et al. [24]. The profiles in (a, c¢) are vertically shifted for better visualizations.

Figure 8 shows the predicted mean velocity and temperature profiles, as well as the relative
errors, by using the recently proposed total-stress-based velocity transformation by Griffin et al.
[11] and the TL transformation at Re = 7667, Ma = 1.5 and Re = 34000, Ma = 1.5, where the
DNS results are available from Yao and Hussain [33]. It is seen that the differences of the predicted
mean profiles between these two transformations are relatively small, as shown in Figs. 8(b) and 8(d)
that the relative errors of velocity and temperature are all within 5% and 2%, respectively, across the
channel, indicating the good agreement with the reference DNS results. This means that as long as
the transformation works well, the proposed modified iterative method can obtain excellent results.

IV. VALIDATIONS IN PIPE FLOWS

In this section, the accuracy of the proposed modified iterative method is also validated in
compressible pipe flows. Four DNS results with different Re and Ma from Modesti and Pirozzoli
[16] are used as references. Figure 9 shows the predicted mean velocity and temperature profiles
as well as the relative errors from the four cases, and Fig. 10 displays the relative errors of the
predicted mean density and viscosity profiles. The results are quite similar to those in channel flows,
verifying the usability of the proposed modified iterative method in compressible pipe flows. That
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FIG. 8. (a), (b) Mean velocity profiles and the relative errors and (c), (d) mean temperature profiles and
the relative errors of compressible channel flows with different variable-property models. The black solid
and dashed lines represent the reference DNS results from Yao and Hussain [33] at Re = 7667, Ma = 1.5
and Re = 34000, Ma = 1.5, respectively. The blue lines with square symbols means the “Total-stress-based”
transformation proposed by Griffin et al. [11], while those red lines with triangle symbols mean the "TL
transformation” proposed by Trettel and Larsson [7]. The profiles in (a), (c) are vertically shifted for better
visualizations.

is, the results are quite good for higher Reynolds number cases for the mean profiles of velocity,
temperature, density and viscosity, where the relative errors for the predicted mean velocity are
within 5%, and they are within 2% for the predicted mean temperature, density and viscosity.
However, if the transformed friction Reynolds number was low, the predictions may be not as good
as those at higher Reynolds number cases, especially for the mean velocity predictions, where the
largest relative errors could be up to 9.8%. From the comparison among the incompressible DN'S
data at Re, = 140, the analytical profile from She et al. [24] at Re, = 140, and the TL transformed
velocity profiles at Re = 3000, Ma = 1.5 and Re = 5150, Ma = 3.0 (not shown here), the same
results can be made to explain the poorer performance of the proposed modified iterative method at
lower Reynolds numbers, i.e., the errors of the analytical expression of She et al. [24] at low Re and
the error of the TL transformation at low Re.

V. FURTHER REMARKS

From the above discussions, it is easy to see that the present modified iterative method can well
predict the mean profiles, including the velocity, temperature, density, and viscosity, in compressible
turbulent channel and pipe flows, especially at higher Reynolds numbers. For the compressible
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FIG. 9. Predicted mean profiles and the relative error for pipe flows. (a) velocity; (b) the relative error of
velocity; (c) temperature, and (d) the relative error of temperature. The black lines represent the DNS results
from Modesti and Pirozzoli [16]. The profiles in (a), (c) are shifted up for better visualization.

turbulent channel and pipe flows at low Reynolds numbers, although our method performs relatively
poorer, DNS can provide more accurate profiles at an affordable cost. For the cases at extremely high
Re, such as Re O(10°), which are more relevant to the practical applications, DNS is impossible in
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FIG. 10. Relative errors [see the definition in Eq. (12)] of (a) mean density and (b) mean viscosity for pipe
flows. The reference DNS results are from Modesti and Pirozzoli [16].
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channel and Re = 7300, Ma = 1.5 for pipe flows from Modesti and Pirozzoli [13,16] are also shown for
comparison.

the near future, and the present iterative method can provide the mean profiles. Figure 11 shows the
predicted mean velocity and temperature profiles for channel and pipe flows at Re = 10°, Ma = 1.5.
The DNS results at two similar Re from Modesti and Pirozzoli [13,16], including Re = 7667, Ma =
1.5 for channel and Re = 7300, Ma = 1.5 for pipe, are also shown for comparison. There are two
interesting results. One is that for the mean velocity profiles at the same Re and Ma, the main
difference between the channel and pipe flows is mainly around the centerline. The other one is
that at the same Re and Ma, the mean temperatures in pipe flows are generally higher than those in
channel flows. However, it should be noted that the result related to the mean temperature conflicts
with those results reported by Ghosh et al. [32] in their DNS data at the same low Re.. Our predicted
mean profiles can provide useful data for compressible turbulent channel and pipe flows at higher
Re. Furthermore, the predicted mean profiles can also help to guide the grid resolution and time step
settings for DNS, as pointed out by Griffin et al. [21].

VI. CONCLUSION

In this paper, by combining the perfect gas assumption, the Sutherland’s viscosity law, the
variable-property scaling models for compressible wall turbulence, the incompressible velocity
law of the wall, the relationship between the temperature and the velocity, and the Morkovin’s
assumption, a nonlinear closed system can be constituted to solve the mean profiles by iterative
method in compressible turbulent channel and pipe flows. Based on the equivalence of dT /dy = 0
and du/dy = 0 at the centerline, a modified iterative method, which is modular in the sense that
it works with multiple incompressible velocity law of the wall, variable-property scaling models,
equations-of-state, velocity-temperature relations, and viscosity-temperature relations, is proposed
with the help of the semiempirical scaling for the central mean temperature in compressible
turbulent channel and pipe flows with symmetric isothermal walls. The results show that the
proposed modified iterative method, which is robust and has no concern with the initial guess of
the undetermined parameters, can predict the mean velocity, temperature, density, and viscosity
profiles very well at various Re and Ma. Comparing with available DNS databases, the relative
errors of mean temperature profiles and velocity profiles in most cases are within 2% and 5%,
respectively, in both channel and pipe flows. The present method can predict the mean profiles at
higher Re and Ma, which can be further validated in the future when the DNS data or experimental
measurements become available.
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Since the mean profiles of velocity, temperature, density and viscosity can be predicted by using
the present iterative method, the Reynolds stresses may also be predicted based on the collapse
behaviors in semilocal coordinates [33]. In the future, we are going to work on this, and we hope
that our method can provide the mean profiles, the Reynolds stresses profiles and the heat fluxes
profiles at higher Re (and/or Ma) cases, which can be used to develop machine learning assisted
Reynolds-averaged Navier-Stokes (RANS) models for compressible wall-bounded turbulence.

The code can be obtained in Ref. [38].
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