
PHYSICAL REVIEW FLUIDS 8, 034501 (2023)

Numerical modeling of dispersion of swimming bacteria in a Poiseuille flow
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This paper reports a numerical study of the dispersion of bacteria modeled as ac-
tive Brownian ellipsoids placed in a plane Poiseuille flow. The longitudinal (along the
flow direction) and transverse (along the direction perpendicular to the plane of flow)
macroscopic dispersion coefficients are determined from the analysis of a large number
of trajectories and their scaling is studied as function of the Péclet number Pe. Three
different regimes are observed. (i) At low shear rate, rotational diffusion associated to
the swimming activity of the bacteria dominates and classical Taylor dispersion regime is
observed. In this regime, the longitudinal dispersion coefficient scales like Péclet square.
(ii) An intermediate active regime, where the shear induces a reorientation of the bacteria.
This increases the longitudinal dispersion that scales as Pe2+κ , with κ ranging between 1.5
and 2 for aspect ratio between 10 and 1. In this regime, the dispersion coefficient in the
direction perpendicular to the plane of the flow decreases like log(1/Pe). (iii) A final new
Taylor regime, where the diffusivity in the gap is set by the molecular diffusion coefficient.
We also show that the active regime originates from the enhancement in the time taken by
particles to diffuse across the channel gap. We further show that, decreasing the channel
height delayed the transition to the active regime.

DOI: 10.1103/PhysRevFluids.8.034501

I. INTRODUCTION

Dispersion of bacteria by a flow in confined environment influences many processes such as
the spreading and contamination of soils by harmful microorganisms or their ability to find and
colonize new niches in natural environments. One of the key questions is the characterization of the
bias introduced by a flow on their swimming trajectories and its influence on the macroscopic hy-
drodynamic transport. By allowing us to track bacteria under various flow conditions, microfluidics
has proven to be a remarkable tool to learn more about the coupling between bacteria and flow [1].
Since bacteria have a tendency to accumulate on surfaces, many studies have largely focused on
the motion of swimming bacteria on surfaces [2–7]. A wide range of behaviors such as upstream
motions [3,5], transverse motion [6], or oscillations on the surface induced by the rheotactic torque
on the flagella [8] are observed by these studies. Away from the surfaces, bacteria are observed
to perform helicoidal trajectories [9–11] similar to the trajectories obtained analytically by Jeffery
[12] for an elongated particle immersed in a sheared viscous fluid. In confined geometry, the bacteria
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also have the possibility to explore the flow profile across the channel gap and are thus exposed to
a gradient of shear rates while swimming. This is particularly true in microfluidic devices, and this
results in the migration of the bacteria towards high shear regions [11]. This phenomenon, known
as high shear trapping increases the presence of the bacteria close to surfaces, where shear is the
highest [11,13,14]. The reverse has also been predicted numerically, i.e., the trapping of bacteria
in low shear regions [15]. The trapping of the bacteria in flow regions will have significant effect
on their macroscopic transport. One of the key focuses of the present work is to study the effect of
trapping on the macroscopic scale viz the influence of the competition between convection by the
flow along Jeffery orbits and mixing between the flow lines on macroscopic longitudinal dispersion.
To understand the physics at play, we considered a situation where bacteria are transported in a
Poiseuille flow, such as characterizing flow in fractured media.

In a fluid at rest, flagellated bacteria such as Escherichia coli alternate between two phases of
motion [16]: run (motion in essentially straight paths performed at a constant swimming velocity
Vs) and tumble (random change in orientation). This behavior leads to a three-dimensional (3D)
diffusive motion with a diffusion coefficient D0. The same diffusive behavior is obtained with
particles that gradually change their swimming direction by rotational diffusion with an angular

diffusivity DR [17]. Such particles diffuse with a diffusion coefficient D0 = V 2
s

6DR
+ Dm, where Dm

is the molecular diffusion coefficient. This Dm would be the diffusion coefficient measured if
the bacteria were to lose their swimming ability. Based on this analogy, Langevin models that
incorporate the convection, the reorientation and the rotation by the flow can be derived [11,18,19].
In those approaches, the bacteria are usually modeled as self-propelling elongated ellipsoid of aspect
ratio q that move and rotate according to the following equations [18]:

ẋ = Vs p + u +
√

2Dm

τ
ξx (1)

ṗ = [I − pp].

[(
q2 − 1

q2 + 1

)
E − W

]
.p − 2DR p −

√
2DR

τ
p ∧ ξp, (2)

where x and p are the particle position and orientation. In the above equations, the particle is con-
vected by the local flow velocity u characterized by its local strain rate tensor E = [∇u + ∇uT ]/2
and its local vorticity tensor W = [∇u − ∇uT ]/2. The Gaussian white noise ξ has zero mean
and unit variance. In this work, Eq. (2) is interpreted in the Ito sense. It should be kept in mind
that the model neglects the finite size of the particles and therefore neglects the hydrodynamic
perturbation of the swimming activity on the fluid and is inaccurate very close to the walls, where
steric interaction occurs. As shown in Raible and Engel [20], this formulation describes motion on
the unit sphere, which implies that the norm of p is conserved and equal to 1. In Eq. (1), molecular
diffusion coefficient Dm is included, such contribution is often assumed negligible [11,18] but was
found to have an important effect on the asymptotic regime [13] and is considered in our study.
In the absence of coupling between the particle reorientation and the flow (referred as decoupled
case), the particle gets convected at the local flow velocity. Its influence is balanced by diffusion
across the gap. This results in a macroscopic Fickian dispersion parallel to the flow characterized
by the equation [21,22]:

D‖
D0

= 1 + 4

210
Pe2, (3)

where Péclet number Pe = UH
D0

represents the ratio between the diffusion time in the gap τtaylor =
H2/2D0 and the convective time 2H/U . The objective of this work is to study how Eq. (3) is
modified when the effect of shear and vorticity on the orientation of the particles is taken into
account.

Analytical solution of the set of equations (1) exists for Couette flow (i.e., constant shear rate
γ̇ ) and for Dm = 0 [11]. Those studies revealed that the probability distribution of the orientation
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FIG. 1. Schematic representation of a population of swimming bacteria placed in Poiseuille flow. x is the
transverse direction, y is the direction of flow, and z is the direction of height (vertical). Individual bacteria
modeled as active Brownian ellipsoid swimming with an orientation p. The aspect ratio of the particles is
q = a

b where a is the particle length and b the particle width.

of the particles depends on a single dimensionless number that compares the time scale of the flow
γ̇ and the time scale for bacteria to reorient due to their swimming activity DR. For small flow
Péclet number Pe f = γ̇

DR
all orientations are equally probable but an emergence of a preferential

orientation, increasingly aligned with the flow direction, is observed with increase in Pe f [23,24].
For Poiseuille flows, a second dimensionless number, the swimming Péclet number Pes, equivalent
to the Knudsen number for gas that compares the reorientation time scale of the swimmer 1/DR

and the time 2H/Vs for the bacteria to swim across the gap of size 2H was introduced [13]. For
wide channels such as Pes = Vs/2HDR � 1, bacteria are found to migrate either to the surfaces
[11,13] or towards the center of the channel [15] depending on the aspect ratio of the particles and
the flow Péclet number. At larger values of Vs/2HDR the rheotactic effects of the surface becomes
predominant and greatly affects the dispersion of particles [13,25]. The question we address in
the present study concerns the consequence of the coupling between particle orientation and flow
on the emergence of these low and high shear trapping mechanisms as well as on the macroscopic
longitudinal (direction of flow) and transverse (perpendicular to the plane of flow) dispersion. We
also study its effect on the relaxation time scale (time scale needed to reach the asymptotic regime
across the channel gap).

We performed 3D Langevin simulations on the equations of motion [cf. Eqs. (1) and (2)] to obtain
the macroscopic dispersion coefficients in presence of coupling between the particle orientation and
flow. The details of the simulations is presented in Sec. II. In Sec. III, the macroscopic longitudinal
dispersion coefficient obtained, D‖, is studied as function of the Péclet number and bacteria aspect
ratio. This section allows us to identify an active dispersion regime characterized by a dispersion
coefficient increasing as a power law of the Péclet number with an exponent larger than 2. We will
show that this new exponent mainly reflects the dependence of the relaxation time scale with the
shear rate. We will also demonstrate the distribution profile of the bacteria in the gap in this active
dispersion regime. In Sec. III B, we will further show that the increase of the dispersion in the flow
direction is associated with a reduction of the dispersion in the direction perpendicular to the plane
of the flow. In Sec. III C and III D, the effect of the molecular diffusion of the bacteria and the
aperture on the domain of existence of the active dispersion will be addressed. Finally, conclusions
and some perspectives are provided in Secs. IV and V, respectively.

II. MATERIALS AND METHODS

The swimming bacteria were modeled as elongated ellipsoids of aspect ratio q located in a
Cartesian system of reference coordinates by their positions xi(t ) (x, y, z) and orientation pi(t )
(px, py, pz) where i is associated to particle index. The particles were subjected to a Poiseuille flow
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(see Fig. 1) whose velocity profile is given by:

u(z) = 3U

2

[
1 −

( z

H

)2
]
, (4)

where U is the average flow velocity. The local shear rate is: γ̇ (z) = du(z)
dz = − 3Uz

H2 and is maximal
on the surface, i.e., for z = ±H with γ̇m = 3U

H . This characteristic value of the shear rate is used in
the definition of the flow Péclet number.

All particles in the system were assumed to be identical. They have the same aspect ratio q, the
same swimming velocity Vs, the same rotational diffusion coefficient DR and the same molecular
diffusion coefficients Dm. For q >1, the long axis of the particle and its swimming direction are
aligned. The case of q = 1 corresponds to a spherical swimmer. Finally, q < 1 corresponds to a
particle, which swims along the direction of its minor axis. A value of q � 1 is typical of natural
microswimmers like bacteria. For instance, recent studies found that E. coli bacteria trajectories can
be well adjusted by an active rod of an aspect ratio q � 10 [11,18]. Any other value of q could be
characteristic of an artificial microswimmer.

Their positions and orientations were tracked by integrating Eq. (1) and (2) with a time step τ and
by drawing at each time step and for each particle random numbers from a Gaussian distribution
of zero mean and unit variance. The discrete version of these equations is given in Appendix B.
The choice of the integration time step τ is detailed in Appendix C. The equations of motions were
simultaneously solved for 105 trajectories. The particles were initially uniformly distributed in x
and z directions and were situated at y = 0. The particles were confined in the x and z directions
between parallel surfaces located at x = −W and x = W and at z = −H and z = H , respectively.
W was fixed at 3 cm and H was varied such that W/H � 1 always.

Surfaces are considered steric boundaries [26,27], that is, when a particle arrives at a boundary
it moves along the surface until it undergoes a reorientation away from the surface and swims back
into the bulk. These conditions (named SBC for steric boundary conditions) allow us to reproduce
the large residence times and the persistence of bacteria swimming along the surfaces as observed
experimentally [7,28]. Some simulations were done with reflective boundary conditions (RBC) to
examine the effect of swimming persistence along surfaces on the results and allow comparison
with published studies [14].

At each time step, the first moment m1k (t ) and the variance σ 2
k (t ) of the distribution of the

population of particles were estimated in all three directions k : x, y, z as:

m1k (t ) = 〈k(t ) − k(0)〉, (5)

σ 2
k (t ) = 〈[k(t ) − k(0) − m1k (t )]2〉, (6)

where 〈·〉 is the average over all particles.
Figure 2(a) shows the variation of the rate of change σ 2

y (t ) as function of t for three flow
conditions. The following trend was observed for all the cases: a first linear regime followed by
a plateau. With this representation, the plateau regime corresponds to the diffusive regime. The
relaxation time τc to transit to the diffusive regime was observed to be affected by the flow conditions
used. Increasing the flow Péclet number clearly delays the transition to diffusive regime. Practically,
the two values D‖ and τc were obtained by adjusting the data by the function:

dσ 2
y (t )

dt
= 2D‖(1 − e−t/τc ). (7)

In Fig. 2(b) the variation of the variance in the gap σ 2
z (t ) scaled with H2 is shown as function of

time for the same flow conditions as in Fig. 2(a). The variance initially increases with time indicating
that the particle explores the gap, which corresponds to the linear regime observed on Fig. 2(a). At
t > τc, σ 2

z (t ) plateaus to a constant value indicating that the particles have explored the entirety of
the gap. This corresponds to the asymptotic diffusive regime described before.
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FIG. 2. (a) Rate of change of the second moment in the flow direction
dσ 2

y (t )

dt plotted as function of time
for different flow Péclet Pe f . The black line corresponds to a fit performed using Eq. (7). (b) Scaled second
moment in z direction plotted as function of time scaled with Taylor time scale for different Pe f . �, •, and �
are, respectively, for Pe f = 10, 50, and 100, which corresponds to Péclet numbers of, respectively, Pe = 125,
625, and 1250. Dashed line fit with Eq. (7) of the Pe f = 100 case. For all three cases: q = 2, 2H = 100 µm,
Dm = 1 µm2s−1.

In the following sections, the variations of D‖ and τc are studied as function of the flow and
bacteria characteristics. They are often compared with the diffusion coefficient measured in absence
of flow, D0, and the corresponding Taylor’s diffusive time scale τtaylor = H2/2D0. Practically,
simulations without coupling with the flow vorticity and shear were achieved by setting E and W to
zero. These cases are referred to as decoupled cases. Unless explicitly mentioned, all the simulations
were done by setting DR = 1 rad2/s and Vs = 20 µm/s values typically observed for motile bacteria
[29]. The Péclet numbers range from 1–2500.

III. RESULTS

A. Effect of the particle aspect ratio on the longitudinal dispersion coefficient

In this section, we present results that focus on the effect of shear coupling on the longitudinal
dispersion D‖ and relaxation time scale τc. The molecular diffusion coefficient is neglected (Dm = 0)
for these cases. For this condition, the Péclet number and the flow Péclet number are related by

the relation: Pe = 2 D2
RH2

V 2
s

Pe f . We also set the distance between the two plates to 2H = 100 µm.
Therefore, we have Pe = 12.5Pe f .

The longitudinal dispersion coefficient D‖ obtained for different flow conditions and particle
aspect ratios are represented in Fig. 3. For the decoupled case (filled circles in Fig. 3), the results
of the simulation fall onto the theoretical prediction made by Taylor [21,22,30], that predicts an
increase of the longitudinal dispersion coefficient like the square of the Péclet. In the other cases,
the simulations first gave D‖ values very close to the values predicted by Taylor. However, for
Pe > 100 (viz Pe f > 10), a deviation from Taylor model is observed. The difference increases with
the Péclet number and D‖ increases faster than Pe2. We recover here the “giant active Taylor-Aris
dispersion regime” reported by Dehkharghani et al. [19]. To understand the origin of the deviation,
we determined separately the two terms that contribute to the dispersion: the velocity variance of
the particles σ 2

Up
and the relaxation time scale τc. These two terms are related to the dispersion
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FIG. 3. (a) Longitudinal dispersion coefficient D‖ normalized by the diffusion coefficient measured in
absence of flow D0 as function of the Péclet number Pe = UH

D0
. The solid line is the Taylor prediction 1 + 4

210 Pe2

[21,22]. (b) D‖/D0 scaled with respect to Pe2. • are for decoupled cases (blue: SBC and maroon: RBC). �, �,
�, �, �, and � are for particles of aspect ratios q = 0.5, 1, 1.5, 2, 4, and 10, respectively. Data obtained for
2H = 100 µm and Dm = 0.

coefficient by the relation D‖ ∼ σ 2
Up

τc [31]. Practically, the variance σ 2
Up

of the particle velocity
is calculated from the components of the particle velocities along the flow direction at the end of
the simulation. In this way, we have t � τc and the profiles have reached their asymptotic form.
In the situation considered by Taylor, the particles diffuse freely across the streamlines without
any effect of the local fluid shear or fluid vorticity and the particles are uniformly distributed in
the gap. In this case, the relaxation time is constant with τc ∼ τtaylor, the time to diffuse across
the gap, and is independent of Péclet number. In the limit of a negligible effect of diffusion (i.e.,
Pe � 1), the variance of the particle and fluid velocities are identical. For a Poiseuille flow, we have:
σ 2

Up
= σ 2

U = 1
5U 2.

Figures 4(a) and 4(b) shows that these predictions are well obtained in the decoupled case with
reflecting boundaries conditions (RBC): (i) σ 2

Up
/U 2 plateaus to a value close to 1/5 for Pe > 100

[see Fig. 4(a)] and (ii) τc/τtaylor is constant at all Péclet number [see Fig. 4(b)]. If the bacteria have
the option of swimming along the surfaces (blue circles in Fig. 4), they will spend more time in
regions of zero fluid velocity. This condition increases the normalized variance of the velocities, as
can be seen in Fig. 4(a). The blue circles plateau to a value close to 0.3. As for the relaxation time
[see Fig. 4(b)], it remains constant and independent of the Péclet number, as for the case of RBC,
but with a slightly higher value. The consequence is an increase of the dispersion coefficient, which,
however, still varies as Péclet squared as shown in Fig. 3.

We will now look at how these two terms are modified when the particles are coupled with shear.
Figure 4(a) shows the variation of σ 2

Up
normalized by U 2 to be first decreasing with increase in

Pe. This regime is where the transport of particles is dominated by diffusion. This is followed by
a transition regime between Pe ∼ 50–100 and then by a new regime for Pe > 100 (viz Pe f > 10)
where the transport of the particles is dominated by the imposed shear. In this regime, the values
of σ 2

Up
normalized by U 2 converge to values between 0.16 and 0.2. Now, let us take a look at

Fig 4(b), which shows the variation of the normalized relaxation time τc/τtaylor as function of Pe. For
Pe < 100 (viz Pe f < 10), we observe the relaxation time is constant. In this limit, the reorientation
by the diffusion due to swimming activity dominates and particles diffuse in the gap as they do
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FIG. 4. (a) Evolution of the normalized variance of of the particle velocity σ 2
Up

/U 2 as function of the Péclet

number Pe = UH
D0

. (b) Log-Log representation of the normalized relaxation time τc/τtaylor as function of Pe.
�, �, �, �, � and � are for particles of aspect ratios q = 0.5, 1, 1.5, 2, 4, and 10, respectively. • shows the
decoupled case [in (a) reflective BC case has also been included]. Solid line: fit by 1 + βPeκ of the q = 2 case.
The data were obtained with 2H = 100 µm, Dm = 0.

in absence of flow, and we have τc ∼ τtaylor. As the flow increases, shear increasingly aligns the
particles along the flow direction. This in turn reduces the diffusivity of the particles across the gap,
which results in the increase in relaxation time as shown in Fig. 4(b). In this new regime, we observe
that τc varies as a power law of the Péclet number with an exponent κ . Thus, D‖ increases as Pe2+κ

for these cases.
Dehkharghani et al. [19] report a Pe4 variation of D‖ and this would indicate κ = 2. To check this,

we first plotted τc/τtaylor normalized by Pe2 as shown in Fig. 5(a). We observe that the value initially
decreases for small Pe, which corresponds to the diffusion dominated regime where τc/τtaylor is
constant. At high Pe and for q < 4, we observe that τc/τtaylor normalized by Pe2 to reach an
asymptotic horizontal plateau [see the �, �, �, and � symbols in Fig. 5(a)]. This indicates that,
κ � 2 for these aspect ratios. However, for the case of q = 4 and 10, we observe that they are still
decreasing with Pe [see � and � symbols in Fig. 5(b)], implying that κ < 2. The κ estimated by
fitting τc/τtaylor vs Pe data points with 1 + βPeκ are shown in Fig. 5(b). We observe the κ values
to be very close to 2 for q = 0.5, 1, 1.5, and 2. This is followed by a decrease in κ and they are
∼1.7 and 1.5, respectively, for q = 4 and q = 10. This double variation, i.e., change in variance of
velocities as U 2 (which is the case of Taylor dispersion) with a prefactor as function of the aspect
ratio, as well as change in relaxation time as Peκ , where κ ∼ f (q) results in a overall deviation
of the macroscopic longitudinal dispersion D‖ from Taylor with D‖ ∼ Pe2+κ . The fact that this
effect is observed only in the case where the effect of local shear on the particle reorientation is
taken into account, underlines the importance of shear alignment on the increase of the macroscopic
longitudinal dispersion of bacteria.

To identify the consequence of shear coupling on the localization of particles in the gap, we plot
the particle distribution for different aspect ratios and Péclet numbers as shown in Fig. 6. First, we
will focus on the profiles far from the surfaces, i.e., at normalized distances z/H between −0.9
and 0.9, and consider the evolution of the profiles with the Péclet number and with the aspect
ratio of the particles. At low Péclet, the particles are uniformly distributed in the gap. This regime
corresponds to the regime where the longitudinal dispersion of the particles coincides with Taylor
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FIG. 5. (a) Log-Log representation of τc/τtaylor scaled with Pe2 as function of Pe for different q. The
horizontal dashed line is a guide to mark the asymptotic regime reached by small q. (b) κ as function of
Bretherton constant q2−1

q2+1
. �, �, �, �, �, and � are for particles of aspect ratios q = 0.5, 1, 1.5, 2, 4, and 10,

respectively. The horizontal dashed line shows the value of κ obtained from the model proposed in Appendix E.
The data were obtained with 2H = 100 µm, Dm = 0.

dispersion (D‖/D0 ∼ Pe2). When Pe increases above 100 (which corresponds to Pe f > 10), we
observe a shift in the distribution of the particles across the gap. For instance, at an intermediate
Pe = 312.5 [Fig. 6(b)], we observe both q = 2 (yellow curve) and 10 (green curve) to exhibit high
shear trapping (bacteria accumulate in regions close to the surfaces). However, q = 10 particles
exhibit a stronger depletion at the center compared to q = 2 particles. As we increase the Pe to
about 937.5, particles with q = 2 exhibit low shear trapping (particles tend to accumulate in the
center of the channel) whereas bacteria with q = 10 (green curve) still exhibit high shear trapping.
High shear trapping can be differentiated from low shear trapping based on the slope of the particle
distribution close to the channel surfaces [14]. The change of the sign of the slope from negative to
positive when going from high shear trapping to low shear trapping allows us to establish a phase

FIG. 6. Particle distributions in the gap for (a) (Pe f = 0.5, Pe = 6.25), (b) (Pe f = 25, Pe = 312.5), and
(c) (Pe f = 75, Pe = 937.5) and for four aspect ratios : q = 0.5, 1, 2, and 10. Profiles obtained with RBC at
q = 2 (purple curves) are also shown. The data were obtained with 2H = 100 µm and Dm = 0.
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FIG. 7. Phase diagram depicting the different regimes in the steady-state concentration profiles across the
channel gap observed for different aspect ratios q as function of the flow Péclet number Pe f = γ̇M

DR
. (i) •:

Uniform distribution of particles across the channel gap with accumulation on the surface; (ii) �: Uniform
distribution across channel gap with slight depletion on the surface; (iii) �: High shear trapping; (iv) �: Low
shear trapping; and (v) �: coexistence of high and low shear trapping. Data obtained for 2H = 100 µm and
Dm = 0 with SBC and for Pes = 0.2. It is to be noted that Pe defined by Vennamneni et al. [15] corresponds to
Pe f /2.

diagram giving the type of trapping observed as a function of the flow Péclet number and the aspect
ratio of the particles. The phase diagram obtained by applying this criterion is shown in Fig. 7. It can
be compared to the diagram obtained by Vennamneni et al. [14] by solving the 1D Fokker-Planck
equation. At low Pe f , the concentration profile is constant in the aperture and the dispersion regime
is the same as the Taylor dispersion observed for passive tracers and for which κ = 0. This regime is
replaced by a high shear trapping regime when the flow Péclet number becomes greater than 10. The
value of the flow Péclet number, which characterizes the transition between uniform distribution (•)
to high shear trapping (�), is not observed to depend on the aspect ratio of the particles. However,
with increase in Pe f , we observe that the high shear trapping regime (�) evolves into a low shear
trapping regime (�). The threshold separating these two regimes increases with the aspect ratio of
the particles. It occurs for Pe f between 40 and 50 for aspect ratios of 1.5 or 2 and moves to larger
values of Pe f as q increases. The values for which the transition is observed are of the order of those
obtained by Vennamneni et al. [14]. For q = 10, we note a difference between our simulations and
those of Vennamneni et al. [14]. Our model predicts a transition between the two trapping modes
for a flow Péclet number of 300, while Vennamneni et al. [14] observes a transition for a flow Péclet
number between 120 and 200. This delay of the transition to larger flow Péclet numbers might come
from the confinement: the study of Vennamneni et al. [14] considered wide channels for which the
swimming Péclet is small, i.e., Pes � 1 whereas our model allows to change this parameter and
to explore its influence on dispersion. In the case of Fig. 7, we have Pes = 0.2. The influence of
confinement will be addressed in Sec. III D.

Vennamneni et al. [14] also showed that the particle depletion observed in the center of the
flow in the low shear trapping regime, evolves and finally collapses for particles with large q. This
depletion in the particle distribution is visible in Appendix D. However, in the range of Pe f explored
in this study, we do not observe a complete collapse of swimmer concentration at the centreline.
Accumulation in the center of the flow is, however, here, observed for particles with aspect ratios of
0.5 (blue curves in Fig. 6) when Pe f > 10. This regime then results in the coexistence of both low
and high shear trapping. This indicates that, these type of particles, exhibits jumps from the highest
to lowest shear region and spend little time in the other flow streamlines across the channel gap.
The case of spherical particles (q = 1) shows no trapping and the particles are uniformly distributed
across the channel gap. This observation is in agreement with the Langevin simulation performed
by Rusconi et al. [11].
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FIG. 8. (a) Normalized number of particles on the surface as function of the Péclet number. (b) Longitudi-
nal dispersion coefficient D‖ normalized by the diffusion coefficient measured in absence of flow D0 as function
of the Péclet number. The solid line is the Taylor prediction 1 + 4

210 Pe2 [21,22]. The data were obtained with
q = 2, 2H = 100 µm, and Dm = 0. Blue triangles, SBC and red triangles, RBC.

The distribution of particles near the surfaces also evolves with the flow Péclet number. At very
low flow Péclet numbers, the SBC boundary conditions give rise to a very strong accumulation on
the surface [see Fig. 6(a)]. This accumulation not observed when RBC are used [purple curve in
Fig. 6(a)]. In this case, the same number of particles is observed on the surfaces vicinity and in the
fluid. When the flow Péclet number is increased, two effects are seen: (i) the number of bacteria on
the surface drops, and (ii) this is accompanied by a depletion zone of small extension that finally
joins the distribution profile in the fluid. The first effect is illustrated in Fig. 8(a) where we plot the
number of bacteria whose z positions are −H or H . We see a continuous drop of the number of
bacteria. These two effects leads, at the highest flow Péclet number [see Fig. 6(c)], to a situation
where the maximum of the particle distribution is no longer at the surface. The depletion zone in
the surface vicinity is observed for both boundaries conditions (RBC and SBC). As we will see in
Sec. III D, its dimension decreases with the flow Péclet number and is independent of the channel
aperture. Its presence is thus particularly identifiable on simulations done with small H . This is why
this depletion layer is not found in Vennamneni et al. [14] study which is restricted to wide channels.
Finally, we observe that at high Pe, the two boundaries conditions used have a weak influence on
the steady-state distribution [see collapse of yellow and purple curves in Figs. 6(b) and 6(c)] and
thus on the macrodispersion [see Fig. 8(b)].

B. Effect of the aspect ratio on the dispersion coefficient transverse to the plane of the flow

To determine the dispersion coefficient in the direction transverse to the plane of the flow, the
variation of the variance of the transverse position of the bacteria σ 2

x as function of time was studied.
The dispersion coefficient Dx was then obtained by fitting the rate of change of σ 2

x using the same
method as for obtaining D‖. Figure 9 shows Dx as function of Péclet number for swimmers with
different aspect ratios.

In the decoupled case (circles in Fig. 9), the dispersion coefficient remains very close to the
dispersion coefficient D0 as what we observe in the flow direction. When the coupling with the
flow is taken into account, we find the three regimes observed previously: (i) the flow is first not
strong enough to have a significant influence on the dispersion of the bacteria (Pe < 10), (ii) we
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FIG. 9. Normalized dispersion coefficient measured in the direction transverse to the plane of flow as
function of the Péclet number. • are for the decoupled case. � �, �, �, �, and � are for particles of aspect
ratios q = 0.5, 1, 1.5, 2, 4, and 10, respectively. 2H = 100 µm, Dm = 0.

then have a transition zone for Péclet between 10 and 100, and (iii) a domain in which the coupling
controls the dispersion. The latter domain is reached for a flow Péclet greater than 10. In contrast
to the longitudinal direction, we observe a reduction of the transverse dispersion coefficient. This
reduction is slow with Dx, which varies as log(1/Pe). We also observe that the reduction is more
important for bacteria with a large aspect ratio. This is due to the fact that, as we increase the shear,
the particle displaces longer in the longitudinal direction before reorientation. Even though there is
no flow imposed in x direction, there will be repercussions due to imposed flow on the diffusivity
because of the shear-coupling effect as well as the interdependence of the orientation of particles in
one direction with other two directions, i.e., px = f (γ̇ (z), py, pz ) [cf. Eq. (B4) in Appendix B].

C. Effect of molecular diffusion on the longitudinal dispersion coefficient

In the previous sections, the effect of molecular diffusion was neglected. In this section, we study
its influence on the relaxation time τc and longitudinal dispersion D‖ of the bacteria. In absence

of flow, the diffusion coefficient is now given by: D0 = V 2
s

6DR
+ Dm. In addition to τtaylor, we can

define a second time scale with respect to Dm: H2/2Dm. We make use of the latter to define a new
Péclet number: Pec = UH

Dm
. To get as close as possible to the conditions of bacteria, which have a

characteristic size of the order of a micron meter, simulations were carried out with a molecular
diffusion coefficient ranging from 0.05–20 µm2s−1, which corresponds to characteristic sizes of
bacteria between 0.01 and 4 µm.

In Figs. 10 and 11, the influence of Dm for a fixed aspect ratio q = 2 and a channel gap of
2H = 100 µm are presented. It can be seen from Fig. 11 that there is a decrease in relaxation time
with increase in Dm. A direct correlation is seen with the longitudinal dispersion coefficient of the
particles as well in Fig. 10(a). Three distinct regimes are observed. At low Pe, the longitudinal
dispersion exhibits a Taylor behavior where the diffusion is dominated by the effective diffusivity of
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FIG. 10. (a) Longitudinal dispersion coefficient normalized by the diffusion coefficient D0 measured in
absence of flow as function of the Péclet number Pe = UH

D0
. The solid line is the Taylor prediction

D‖
D0

= 1 +
4

210 Pe2 [21,22]. (b) Longitudinal dispersion coefficient normalized by Dm as function of the Péclet number

Pec = UH
Dm

. The solid line is the Taylor prediction
D‖
Dm

= 1 + 4
210 Pe2

c . For all plots (•: Dm = 0.05 µm2s−1, q =
2); (�: Dm = 1 µm2s−1, q = 2); (�: Dm = 10 µm2s−1, q = 2); (�: Dm = 10 µm2s−1, q = 10); and (�: Dm =
20 µm2s−1, q = 2).

FIG. 11. Evolution of the normalized relaxation time τtaylor/τc as function of the Péclet number Pe for (•:
Dm = 0.05 µm2s−1, q = 2); (�: Dm = 1 µm2s−1, q = 2); (�: Dm = 10 µm2s−1, q = 2); (�: Dm = 10 µm2s−1,
q = 10); and (�: Dm = 20 µm2s−1, q = 2).
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the particles D0. Then, there is an intermediate active regime where the longitudinal dispersion
deviates from the Taylor regime. Finally, as depicted in Fig. 10(b), the longitudinal dispersion
collapses back into a new passive Taylor regime where the diffusive time scale is defined by Dm

and the diffusion is controlled purely by the molecular diffusion coefficient. The transition from the
active intermediate regime to the final passive Taylor regime is a function of Dm, i.e., higher the Dm

the sooner the transition occurs. If the Dm is chosen to be of same order or of higher order than V 2
s

6DR

the effect of activity would fully be suppressed by Dm. This result corroborates one of the results
by Vennamneni et al. [14] where it was concluded by the author that the critical Pe at which the
transition from active regime to passive Taylor regime is inversely proportional to the magnitude
of Dm. As shown by Vennamneni et al. [14], we also observe that the presence of Dm shifts the
steady-state distribution of particles in the gap towards a uniform distribution from high/low shear
trapping at high shear rates. We also observe that this effect is in direct correspondence to the
limit of τtaylor/τc reaching a new asymptotic value corresponding to the final value at which the
longitudinal dispersion converges to the passive Taylor regime where the diffusion across the gap
becomes independent of the imposed shear rate.

Now, let us focus on the effect of Dm on the dispersion of bacteria of different aspect ratio. We
fix Dm = 10 µm2s−1 and we consider q = 2 and q = 10. We observe in Figs. 10 and 11, that the
behaviors for the two aspect ratios are very similar. Thus, molecular diffusion suppresses the effect
of the aspect ratio on the dispersion of particles. This shows that the effect of molecular diffusion
is significant not only in the macroscopic dispersion of particles of a given aspect ratio, but also
mitigates the effect of shape on the longitudinal dispersion and relaxation time scales.

D. Influence of gap height on the longitudinal dispersion

This section focuses on the influence of channel gap height 2H on the dispersion of the particles
of a given aspect ratio q = 2 and in absence of molecular diffusion (Dm = 0). The simulations were
performed for 4 different swimming Péclet numbers ranging between 0.04 and 0.67. The different
values of Pes were obtained by changing the channel aperture from 30–500 µm without changing
the swimming characteristics of the bacteria. Figure 12 shows the change in longitudinal dispersion
with respect to Pe f . We observe that for Pe f > 10, the curves deviate from Taylor’s prediction to
reach the asymptotic power-law regime described in Sec. III A. The power-law fit of the data at
large Pe f gives the same value for all three apertures with κ � 1.96. We also see that D‖ is larger
for 2H = 500 µm at a given Pe f than for 2H = 30 µm. This is because for a given Pe f , the U is
larger for 2H = 500 µm case than for 2H = 30 µm.

From Fig. 13(a) where the normalized variance of particle velocity is plotted as function of Pe f ,
we observe that the normalized variance collapses to the asymptotic value in the same manner as in
Fig. 4(b). This indicates that the velocity variance scales as Pe2

f . We also observe that the transition
from the diffusive regime (at low Pe f ) to the active regime (at high Pe f ) occurs at a lower Pe f for
the wider channels [cf. Figs. 13(a) and 13(b)]. Decreasing the aperture, therefore, delays the onset
of the active regime. For Pe f < 10, we also observe in Fig. 13(b) that the plateau values of τc/τtaylor

decrease when 2H is increased. This is due to a decrease in the surface accumulation with increase in
channel height as shown in Fig. 14. This can be explained as follows. The swimming Péclet number,
Pes = Vs

2HDR
decreases with increase in 2H. Therefore the frequency at which a particle encounters

the surface is reduced leading to a decrease in the surface effect. At large 2H and small Pe f �
1, τc/τtaylor plateaus to a value close to the one observed in Fig. 4(b) for decoupled simulations
performed with RBC.

Let us now return to the depletion zone appearing near the surfaces. As we have seen in
Sec. III, this depletion is present for both boundary conditions used (RBC or SBC). To confirm
this a simulation was performed in a channel with a small height under both boundary conditions.
The concentration profiles obtained for the same flow Péclet are represented in Fig. 14(a) by the
blue and purple curves. Because of the accumulation on the surface, the purple curve is lower
than the blue curve. Apart from this difference already discussed in Sec. III, we observe the same
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FIG. 12. Longitudinal dispersion coefficient normalized by the diffusion coefficient D0 measured in ab-
sence of flow as function of the flow Péclet number Pe f = γ̇m

DR
. � �, �, and • are, respectively, for 2H =

30, 100, 200, and 500 µm. Data obtained for: q = 2 and Dm = 0. Solid lines of slope 2 + κ with κ = 1.96 are
also plotted to highlight the power-law variation D‖ ∝ Pe2+κ

f . Data obtained for: q = 2 and Dm = 0.

FIG. 13. (a) Normalized variance of particle velocity as function of flow Péclet number Pe f = γ̇m
DR

. Hor-

izontal solid line: value of σ 2
Up

/U 2 for a parabolic profile. (b) Evolution of the normalized relaxation time

τtaylor/τc as function of the flow Péclet number Pe f = γ̇m
DR

. � �, �, and • are, respectively, for 2H = 30, 100,
200, and 500 µm. Data obtained for: q = 2 and Dm = 0.
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FIG. 14. Concentration profiles in the channel gap for different flow Péclet number Pe f = γ̇m
DR

. (a) 2H =
30 µm (b) 2H = 500 µm. Data obtained for q = 2 and Dm = 0.

decrease near the surfaces, i.e., for a normalized distance z/H between −1 and −0.75 or between
0.75 and 1. This depletion zone narrows when the flow Péclet increases. This results in a depletion
zone for the green curve (obtained for Pe f = 50) being closer to the surfaces than the purple curve
(obtained with Pe f = 15). The size of the depletion layer extends over about 5 µm for Pe f = 15
and it will become difficult to detect its presence when the height H increases. For instance, its
presence is hardly discernible on the profiles shown in Fig. 14(a) obtained for 2H = 500 µm. We
believe that this zone results from the combined effect of the near-surface vorticity and the reflective
conditions, which influence the probability density function of the particle. The extension of this
zone is proportional to the persistence length V s/Dr of the swimmer and its size decreases with the
flow Péclet number. This is because the projection of the swimming velocity along the z direction
decreases with the shear rate.

IV. DISCUSSION AND CONCLUSIONS

Our study demonstrates that shear alignment of bacteria by flow increases the longitudinal
dispersion coefficient. The consequence of shear alignment on dispersion is observed when the flow
Péclet number Pe f is larger than 10. Below this critical value, diffusion due to the swimming activity
is strong enough to reduce the effect of shear alignment. Bacteria diffuse in the gap like passive
Brownian particles with a diffusive time scale given by the diffusion coefficient D0 associated to the
random swimming motion of the particle.

For Pe f > 10, a transition from a Taylor-like dispersion regime to an active regime where the
longitudinal dispersion coefficient increases such as: D‖

D0
∝ Pe2+κ . The active regime is characterised

by a relaxation time scale τc/τtaylor that increases with the average flow velocity like U κ with
1.5 < κ < 2.1. The increase of relaxation time comes from the particles that get aligned in the
flow direction reducing in turn the diffusivity in the gap. The beginning of the active regime is
characterized by a depletion of the central part of the channel. Particles then accumulate in two
regions close to the surfaces where the shear is high. The existence of high shear trapping of the
bacteria and depletion at the center of the channel at high Pe f is in tandem with the experimental
results of Rusconi et al. [11] and the numerical study of Vennamneni et al. [14]. Like in Vennamneni
et al. [14], we also observed, for bacteria with small aspect ratio, that the high shear trapping regime
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is followed by a low shear trapping i.e., particles are trapped more at the vicinity of the center
with increase in shear rate and still the depletion at the center deepens. Vennamneni et al. [14] also
predicts a center line collapse of the particle distribution for q > 2. This final regime is not observed
in our study, most likely because it requires a flow Péclet number well above 300, which is the largest
value considered here. For the first time, the existence of both high shear and low shear trapping at
large Pe f for q = 0.5 was observed. In this case, the accumulation was either at the center of the
channel, where the shear was zero or on the surface, where the shear was maximum. This indicated
that these particles, due to their unique swimming mechanism, tend to make big jumps from the
highest to lowest shear regions across the flow lines in the channel gap. The anomalous exponent
κ was found to be very close to 2 for particle with aspect ratio less than 2. This value is consistent
with the value obtained by a physical model for spherical particles. For larger q, the exponent κ

decreases. Recently, Ref. [32] reports an asymptotic value of κ = 4/3 � 1.33 for q → ∞; this
value obtained using multiscale analysis is close to the value of κ � 1.5 obtained for the largest
aspect ratio (q = 10) considered in our study. Finally, we observe that reducing the aperture delays
the transition to the active regime.

An additional diffusion term puts an end to the Pe(2+κ ) behavior. A new regime is reached
when the apparent diffusion coefficient in the gap becomes similar to the extra diffusion term.
The distributions of the particles in the gap flatten again (like observed at small Pe) and the
longitudinal dispersion coefficient then scales again like Péclet to the square but with a new Péclet
number based on the diffusion coefficient, Dm, instead of the diffusion coefficient D0. We then have:
D‖
Dm

= 1 + αPe2
c or equivalently D‖

Dm
= 1 + α( D0

Dm
Pe)2.

V. PERSPECTIVES

This study is the first step to a more complete description of dispersion of swimming bacteria that
would include the heterogeneous and disordered structure of the flow observed in porous media. In
the present study, we assume that the suspension is diluted in the bulk and that the particles are small
in size such as there is no particle-particle interaction and the effect of particles on the flow field of
surrounding fluid is negligible. However, we know that when the number of bacteria increases new
phenomena such as collective motion emerges [33] with effect on the effective viscosity [34,35].
As a first step, this effect can be included in our model by introducing a local viscosity as function
of the local shear and of the local bacteria concentration. This could be the first step towards a
comprehension of the effect of bacterial number on the macroscopic dispersion that would include
hydrodynamic interactions between swimmers.
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APPENDIX A: LANGEVIN EQUATION FOR PARTICLE ORIENTATION

In this Appendix, we show that the Langevin equation (2) preserves the magnitude of p equal
unity. Furthermore, we show the equivalence of the Langevin model to the two-dimensional model
employed in the study by Rusconi et al. [11] by writing (2) in polar coordinates. First, we
demonstrate that the magnitude is conserved. To this end, we write the Langevin equation for
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p2(t ) = p(t ) · p(t ). Using the Ito rule, we obtain

d p2

dt
= 2p · (I − p ⊗ p)

(
q2 − 1

q2 + 1
E − W

)
p − 4DR p2

−
√

2DR p · p ∧ ξp + 4DR p2. (A1)

As p · p ∧ ξp = 0, we have

d p2

dt
= 2(p − p2 p)

(
q2 − 1

q2 + 1
E − W

)
p. (A2)

For p2(t = 0) = 1, the solution of this equation is constant p2(t ) = 1. Thus, the magnitude is unity
and conserved.

In order to see the equivalence to the model by Rusconi et al. [11], we first write Eq. (2) in two
dimensions,

d p
dt

= (I − p ⊗ p)

(
q2 − 1

q2 + 1
E − W

)
p − DR p

−
√

2DRρ� · ξp, (A3)

where ρ = (p2,−p1)�. We now set p1 = cos(θ ) and p2 = sin(θ ). The Langevin equation for the
angle can be written in general as

dθ

dt
= A(θ ) +

√
2B(θ )ξ . (A4)

We determine the drift and diffusion coefficients A and B by comparison with the equation for
p1 = cos(θ ). We can write

d p1

dt
= − sin(θ )

dθ

dt
− B(θ ) cos(θ ) = F (θ ) − DR cos(θ )

−
√

2DR sin(θ )ξ1, (A5)

where we defined

F (θ ) = e1 ·
[

(I − p ⊗ p)

(
q2 − 1

q2 + 1
E − W

)
p
]
. (A6)

with e1 the unit vector in one direction. We substitute (A4) into (A5) to obtain

− sin(θ )[A(θ ) +
√

2B(θ )ξ ] − B(θ ) cos(θ ) = F (θ ) − DR cos(θ ) −
√

2DR sin(θ )ξ1. (A7)

By comparison, we find that B(θ ) = DR and

A(θ ) = − F (θ )

sin(θ )
. (A8)

Thus, the Langevin equation for the angle θ is given by

dθ

dt
= − F (θ )

sin(θ )
+

√
2Dξ . (A9)

The strain rate tensor for two-dimensional Poiseuille flow is E11 = E22 = 0 and

E21 = E12 = σ = −u0y/a2 (A10)

and local vorticity is W11 = W22 = 0 and

W21 = −W12 = σ. (A11)
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Thus, we obtain for F

F = C12 p2 − p2
1 p2(C12 + C21), (A12)

where we defined C = q2−1
q2+1 E − W . And for A = −F/ sin(θ ) = −F/p2, we obtain

A = −C12 + p2
1(C12 + C21). (A13)

Now we note that

C12 = σ

(
q2 − 1

q2 + 1
+ 1

)
, C21 = σ

(
q2 − 1

q2 + 1
− 1

)
(A14)

and therefore

A = −σ

(
q2 − 1

q2 + 1
+ 1

)
+ 2p2

1σ
q2 − 1

q2 + 1

= u0y

a2

[
1 + 1 − q2

1 + q2
cos(2θ )

]
, (A15)

where we used that p1 = cos(θ ) and σ = u0y/a2. Thus, we obtain for the angle θ the Langevin
equation

dθ

dt
= u0y

a2

[
1 + 1 − q2

1 + q2
cos(2θ )

]
+

√
2DRξ, (A16)

which is equivalent to the Langevin equation considered by Rusconi et al. [11].

APPENDIX B: NUMERICAL IMPLEMENTATION

x(t ) = x(t − τ ) + τVs px(t − τ ) +
√

2Dmτξx (B1)

y(t ) = y(t − τ ) + τVs py(t − τ ) + γ̇mHτ

2

[
1 −

[
z(t − τ )

H

]2]
+

√
2Dmτξy (B2)

z(t ) = z(t − τ ) + τVs pz(t − τ ) +
√

2Dmτξz (B3)

px(t ) = px(t − τ ) − γ̇mz(t − τ )τ

H
[Bpx(t − τ )py(t − τ )pz(t − τ )]

− 2DRτ px(t − τ ) −
√

2DRτ py(t − τ )ξpz +
√

2DRτ pz(t − τ )ξpy (B4)

py(t ) = py(t − τ ) + γ̇mz(t − τ )τ

2H
[pz(t − τ )

[
B
[
1 − 2p2

y(t − τ )
] + 1

]

− 2DRτ py(t − τ ) −
√

2DRτ pz(t − τ )ξpx +
√

2DRτ px(t − τ )ξpz (B5)

pz(t ) = pz(t − τ ) − γ̇mz(t − τ )τ

2H

[
py(t − τ )

[
B
[
2p2

z (t − τ ) − 1
] + 1

]]

− 2DRτ pz(t − τ ) −
√

2DRτ px(t − τ )ξpy +
√

2DRτ py(t − τ )ξpx. (B6)

The above equations (B1)–(B6) were coded in MATLAB. The channel height varies from z = −H
to z = H and the width varies from x = −W to x = W and we have chosen W � H .
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FIG. 15. Longitudinal dispersion coefficient D‖ normalized by the diffusion coefficient in absence of flow
D0 as function of the integration time τ in s. The flow rate is such that γ̇m = 50 s−1. (�) q = 1, (♦) q = 2, and
(•) q = 10. The dashed line represents the asymptotic value

The particles are initially uniformly distributed between −W and W in x direction, −H and H
in z direction, and all are situated at y = 0.The initial orientation angles θ and φ were uniformly
distributed between 0 to 2π and the initial orientations were given by:

px(0) = sin θ cos φ; py(0) = sin θ sin φ and pz(0) = cos θ .
The boundary condition is implemented as follows: if the position of particle crosses the

boundary it is restricted to stay at the boundary until it reorients itself and flows back into the
channel, i.e., if x(t ) > W or x(t ) < −W the particle is restricted to stay at x(t ) = W or −W until it
reorients and translates itself back into the channel. The same condition is used for z(t ) as well.

The above equations are for determining the position and orientation for one particle at any
instant time (t) provided its position and orientation of previous time step (t − τ ) is known. The
same equations are solved simultaneously for 105 particles and it is carried out for long times (in
order to obtain the steady state profile across the channel gap).

APPENDIX C: CONVERGENCE TEST

The choice of an integration time step τ is a key parameter for performing the simulations. We
chose the value of τ as function of period of rotation at a given γ̇m value. The period of rotation is
defined as:

T = 2π

γ̇m

(
q + 1

q

)
.

It can be seen that for any given value of γ̇m, q = 1 would have the lowest T value. Therefore the
choice of τ was with respect to T (q = 1). In order determine the best choice of τ , we performed
the simulations for different τ values for a high Pe case (γ̇m = 50) and checked for the convergence
of D‖/D0 values.
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FIG. 16. Bacteria concentration profiles obtained for the same γ̇m = 50 s−1 but for different integration
time τ . (a) q = 1, (b) q = 2, and (c) q = 10.

In Fig. 15, the choice of τ for q = 1 and 2 were T/50, T/100, T/200, T/350, and T/500. We
observe the convergence of D‖/D0 to an asymptotic value as we decrease the value of τ . We observe
the convergence to happen from τ = T/350 onwards for q = 1 and from τ = T/200 onwards for
q = 2. For the case of q = 10, since the values converged at a higher τ , we stopped the test for
convergence at T/200 itself. This convergence in the values of D‖/D0 is also corroborated with a
convergence of steady profiles of particles in the gap obtained for different integration time step
τ as shown by Fig. 16. Based on the results of the convergence test carried out (cf. Figs. 15 and
16), we chose τ = T/350 for q = 1 simulations, τ = T/200 for q = 2 simulations and τ = T/50
simulations.

APPENDIX D: BACTERIA CONCENTRATION PROFILES OBTAINED
FOR DIFFERENT FLOW PÉCLET

This Appendix presents the profiles obtained for different aspect ratio q for different flow Péclet
(see Fig. 17).
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FIG. 17. Concentration profiles for decoupled case and different aspect ratios with SBC conditions as
function of Pe f . (a) Decoupled case, (b) q = 1, (c) q = 2, (d) q = 4, (e) q = 10, and (f) q = 0.5. Data obtained
for 2H = 100 µm and Dm = 0.

APPENDIX E: PROPOSITION OF A PHYSICAL MODEL FOR OBSERVED POWER-LAW
VARIATION IN D‖

We propose the following model to estimate the value of κ . We know that D ∼ σ 2
Up

τc and that

σ 2
Up

scales with the average flow velocity like U 2. The prefactor between σ 2
Up

and U 2
p depends on

the asymptotic bacteria concentration profile in the gap. Our simulations validate this hypothesis.
Thus, the additional component apart from the quadratic varition in the power law obtained, comes
essentially from the relaxation time, which increases with Pe.

At high Pe, the rotation period of the bacteria is set by the flow and scales like T ∼ γ̇ −1
m [12].

During one period of rotation, the amplitude of the motion of the bacteria in the gap is then
l ∼ VsT . Since γ̇m = 3U

H , we have l ∼ H Vs
U . This means that increasing the flow velocity reduces

the amplitude of movement across the gap. The separation between time scales characterizing the
particle orientation dynamics of characteristic time τR = 1/DR and those that characterize the period
of rotation T along its helicoidal trajectory allow us to propose a model in which the particle diffuses
by jumping between helicoidal trajectories. In this model, the diffusive time is τR, and diffusion
permits jumps of length l . The diffusion coefficient across the channel gap and the time to diffuse
in the gap are then given by, Dz = 2l2

τR
and τc = 2H2

Dz
. We thus have, τc = H2τR

l2 . Since l ∼ H Vs
U , the

relaxation time is τc ∼ τR( U
Vs

)2.
From the above expression for the relaxation time τc, we can deduce the dispersion coefficient in

the direction of the flow using the relation D‖ ∼ σ 2
Up

τc. Using the observation that σ 2
Up

∼ U 2, we find

D‖ ∼ U 4. This model captures well the behavior of spherical particles (q = 1), but overestimates the
exponent κ measured for aspect ratios different from 1. The difference between the model and the
simulation can be explained by the strong assumptions on which the model is based. We implicitly
assumed that the jumps are independent without correlation with each other and that they follow
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a not too wide distribution. The observation of a preferential localization of particles across the
channel gap at large flow velocities suggests that the jumps between trajectories probably retain
some memory of previously occupied trajectories. The dependence of the relaxation time on the
flow velocity is then probably more complex than predicted by our model.
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