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Downslope granular flow through a forest of obstacles
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We investigate the effect of a forest of pillars on a granular layer steadily flowing over
a rough inclined plane. We quantify experimentally how the steady flow rate of grains
is affected by the interpillars distance for different layer thicknesses and slope angles.
We then propose a model based on a depth-average approximation associated with μ(I )
rheology that considers the additional force exerted by the pillars on the granular layer. This
model succeeds in accounting for most of the observed results when taking into account
some inertia due to the nonvanishing Froude number of the flow.
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I. INTRODUCTION

The inclined plane is a classical configuration to investigate the rheological properties of a
flowing material. In steady conditions, it gives access to the unknown bottom friction that balances
the known gravity force. This configuration has been proved to be suitable for studying the
rheology of yield stress fluids [1], dense suspensions [2], and dry granular materials [3,4]. For dry
granular matter, experiments on an incline show that steady flows only develop between two critical
inclination angles θ1 and θ2 [4,5]. For a slope less than θ1 there is no flow, and for a slope greater
than θ2 the flow is accelerated. Between these two limits, steady flows are well described by the
μ(I ) rheology [6] which relates the local friction coefficient μ to the local velocity gradient taking
into account the local pressure through the inertial number I [7,8]. Even if this rheological model
suffers from some weaknesses [9], this local rheology succeeds in explaining most of the observed
results in different geometries and complex flow configurations such as the collapse of a granular
column [10,11] or the flow around a cylinder [12]. The knowledge of the rheological behavior of
granular matter is crucial for both industrial [13,14] and natural [15] situations. In particular, the
understanding of granular flows is a first step towards a better prediction of snow avalanches as
well as other hazardous geophysical granular flows such as debris flows, lahars, and pyroclastic
flows. The presence of natural or artificial obstacles is known to reduce the destructive power of
these events [16–20]. Thus, the physical description of the interaction between granular avalanches
and obstacles is a key input for mitigation of various geophysical phenomena. In order to develop
a precise understanding of the avalanche-obstacles interaction, several experimental and numerical
works have investigated configurations where obstacles are placed in the path of a noncohesive
granular flow on an inclined plane. Faug et al. have inspected numerically the case of grains flowing
down an incline and impacting a wall normal to the incoming flow [21]. They showed that the wall
generates a triangular stagnant zone upstream that sharply increases the mean force experienced by
the wall at low inertial numbers. Cui and Gray investigated the gravity-driven granular flow around
a circular cylinder in the supercritical regime [22]. In this situation, they observed that a very sharp
bow shock wave is generated in front of the cylinder and a grain-free region forms on the lee side.
They studied the position of the bow shock and the granular vacuum as a function of the flow
properties and they proposed a simple two-parameters depth-averaged avalanche model to capture
their observations.
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FIG. 1. (a) Sketch of the experimental setup and notations used. (b) Top view of the inclined plane with the
organization of the forest of pillars along a centered square lattice. (c) Picture of the granular medium flowing
through a pillar array of separating distance � = 20 mm.

Other studies have moved beyond the case of a single obstacle and considered the effect of
multiple obstacles. Benito et al. have investigated the role of a forest of cylindrical pillars on the
stability of a granular layer on an incline [23]. They revealed that the presence of pillars increases
the stability of the granular layer towards larger slope angles. They succeeded in rationalizing this
effect by a model that takes into account the additional friction force exerted by the pillar forest onto
the granular layer. More recently, Luong et al. have studied the spreading of a mass of grains on
a slope through a regular array of pillars [24]. They found that the presence of pillars slows down
the spreading of the granular mass and enhances its lateral dispersion. Luong et al. proposed an
empirical model to capture the slowdown of the granular mass using an effective friction coefficient
that depends on interpillars distance. However, the stationary flow of grains through a forest of
obstacles has not been considered yet while it is of interest to better understand the coupling between
granular flows and multiple obstacles, and to test the ability of a continuum rheological model to
account for the observed results.

This paper presents experimental results and modeling of the stationary granular flow that
establishes down an inclined plane where a forest of obstacles is present. Section II details the setup
used to study this steady gravity-driven granular flow and presents the experimental results for the
flow rate as a function of pillar density, layer thickness, and slope angle. In Sec. III, a modeling
based on a depth-average approach associated with a μ(I ) rheology that accounts for the additional
resistive force exerted by the pillar forest is shown to succeed in explaining the experimental results.
A final discussion is then proposed in Sec. IV.

II. EXPERIMENTS

A. Setup

The experimental setup sketched in Fig. 1(a) consists of a plane of length L = 50 cm and width
W = 37 cm that can be inclined by an angle θ from the horizontal up to 45◦. The peculiarity of this
setup is to include a forest of cylindrical pillars positioned regularly (according to a centered square
lattice) perpendicular to the plane surface with a separating distance denoted � [Fig. 1(b)]. The
diameter of the pillars is D = 2 mm and their height (35 mm) is always larger than the thickness
of the flowing granular layer. Three different forests have been built with � = 20, 14, and 10 mm
corresponding to three pillar densities χ = 1/�2 equal to 0.25, 0.51, and 1.00 cm−2, respectively.
The null pillar density (χ = 0) corresponds to a plane without any pillars. The surface fraction
occupied by the pillars, φs = (π/4)(D/�)2, is equal to about 0.8, 1.6, and 3.1%, respectively,
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for the three different forests, far from the maximal value φs = π/4 � 78.5% corresponding to
the limit case � = D. The particles used in the experiments are sieved glass beads (density
ρg = 2520 kg m−3) of diameter d = 450 µm with a relative dispersion in diameter of order 10%.
The same glass beads have been used to cover the bottom of the inclined plane to ensure a no-slip
condition. The cylinder-grain size ratio D/d equals 4.4 and the number of grains between two pillars
(� − D)/d is always larger than 17, which prevents clogging [25].

An experiment consists in filling with grains the reservoir placed at the top of the incline and
opening the gate with an aperture H at the bottom of the reservoir. Using the scale placed at the
end of the incline, we measure the mass of grains M falling from the plane as a function of time
t from which we derive the instantaneous mass flow rate Q = dM/dt . A low-incident laser sheet
and a camera are used to estimate the mean thickness h of the flowing layer with an accuracy of
0.1 mm. The thickness of the layer is measured at the center of the slope, away from the proximity
of the pillars, and averaged over the longitudinal extent of the laser sheet, which is about 5 cm. It
is observed that the thickness of the layer remains constant for the duration of the steady state. We
first realize a set of 60 experiments where the slope is constant θ = 29.5◦ and where the mean layer
thickness is varied between 5 and 22 times the grain diameter. Then, we realize 45 experiments
where the inclination is varied between 24.5◦ and 32.5◦ by steps of 0.5◦ and the layer thickness
is maintained approximately constant around ten grain diameters. In order to maintain a constant
thickness, we manually adjust the gate opening for each inclination angle to compensate for the fact
that the average thickness of the layer decreases as the slope increases. For all the experiments, no
significant variation of the flowing layer thickness along the transverse and lateral directions of the
plane has been observed during the steady regime (within experimental uncertainties) as long as
the measurements were not made in the vicinity of the gate or the exit of the inclined plane where
entry and exit effects occur. We also measure the velocity of the grains at the surface of the flowing
layer and we do not observe any significant variation along the transverse direction, except in a thin
layer near the sidewalls (≈3 mm wide). Neglecting the presence of this layer on the estimate of
the flow velocity averaged over the layer thickness, U = Q/(ρW L), leads to a relative error less
than 1%, where ρ = φ ρg = 1510 kg m−3 is the bulk density of the flowing material and φ the grain
packing fraction. The volume fraction φ is estimated by weighting the grains contained on a given
surface averaged on the thickness of the flowing layer h. We find that the averaged volume fraction
is constant, φ = 0.60 ± 0.01, and does not show a clear dependency on the slope inclination or on
the thickness of the flowing layer in agreement with the observations of Benito et al. [23].

Note that our experimental device may be reminiscent of the “Galton board” that has been used
to study transverse dispersion of grains along their falling path through a forest of obstacles [26,27].
However, our setup presents several differences with the Galton board: a continuous injection of
grains over the whole width of the plane, a large interobstacles distance, and a significant friction of
the grains with the walls.

B. Results

In order to characterize our system, we first measure the thickness hstop at which the granular
flow stops as a function of θ for different pillar densities, following the procedure described by
Pouliquen [4]. This critical thickness is the thickness below which no steady flow can be observed.
Figure 2 shows the stopping curves hstop(θ ) for the different pillar densities χ considered in this
paper. We observe that the presence of pillars shifts the curve towards larger slope angles for larger
χ , in agreement with the observations of Benito et al. [23]. According to [23], these results can be
fitted by the equation

hstop(θ, χ )

d
= λ

tan θ2 − tan θ

tan θ − tan θ1(χ )
, (1)

where θ1 and θ2 correspond to the characteristic stopping angles of the granular layer of infinite
height (h → ∞) and vanishing layer thickness (h → 0), respectively, and λ is a numerical prefactor

034303-3



DARBOIS TEXIER, BERTHO, AND GONDRET

0

5

10

15

20

h s
to

p
 /

 d

22 24 26 28 30 32 34 36
θ   (deg)

0.40

0.42

0.44

0.46

0.50

0.48

ta
n
 θ

1

0 0.005 0.010
Dd

FIG. 2. Normalized thickness hstop/d of the remaining layer after an avalanche as a function of the slope
angle θ for different pillar densities (◦) χ = 0 cm−2, (�) χ = 0.25 cm−2, (�) χ = 0.51 cm−2, and (�)
χ = 1.00 cm−2. The solid lines are the best fits of the data by Eq. (1) with λ = 1.55, θ2 = 36.6◦, and
θ1 = 22.2◦, 22.4◦, 25.0◦, and 26.2◦. Inset: Variation of tan θ1 with the pillar density χ . The solid line is the
best linear fit through the data of equation tan θ1 = 0.404 + 10.2 χDd .

characterizing the influence of the rough bottom surface on the stopping height. Note that in Eq. (1),
the dependence of tan θ1 with χ results from the additional friction of the granular layer on pillars
and does not correspond to a change in the bulk properties of the medium. For the case without
pillars (χ = 0), the best fit of the data is found for θ1 = 22.2◦, θ2 = 36.6◦, and λ = 1.55. For the
cases with pillars (χ 	= 0), we keep θ2 and λ unchanged following the findings of Benito et al. who
show that only θ1 depends significantly on χ [23]. The best fits of the curves for the three pillar
densities χ = 0.25, 0.51, and 1.00 cm−2 are found for θ1 = 22.4◦, 25.0◦, and 26.2◦, respectively.
These fits appear as solid lines in Fig. 2 and pass quite well through the data. As expected, increasing
χ increases θ1 as shown in the inset of Fig. 2. A linear fit of the form tan θ1(χ ) = tan θ1(0) +
αχDd , with α � 10, passes rather well through the data and is in relatively good agreement with
the previous findings of Benito et al. [23].

Thereafter, we focus on the granular flow that establishes during a discharge of the reservoir.
Figure 3(a) presents typical evolution of the mass of grains M as a function of time t after opening of
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FIG. 3. (a) Mass of grains M as a function of time t after opening the reservoir at a given gate aperture
(H = 5.5 mm), a pillar density (χ = 0.51 cm−2), and nine different slope angles from 28.0◦ to 32.0◦ by steps
of 0.5◦. Inset: Derived mass flow rate Q = dM/dt as a function of time. (b) Normalized steady flow rate
Q̃ = 〈Q〉/ρW g1/2d3/2 as a function of the normalized layer thickness h/d at slope angle θ = 29.5◦, for different
pillar densities (◦) χ = 0 cm−2, (�) χ = 0.25 cm−2, (�) χ = 0.51 cm−2, and (�) χ = 1.00 cm−2.
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FIG. 4. (a) Normalized steady flow rate Q̃ = 〈Q〉/ρW g1/2d3/2 and (b) normalized layer thickness h/d , as
a function of the slope angle θ for different pillar densities (◦) χ = 0 cm−2, (�) χ = 0.25 cm−2, (�) χ =
0.51 cm−2, and (�) χ = 1.00 cm−2.

the reservoir at a given aperture of the gate (H = 5.5 mm), a given pillar density (χ = 0.51 cm−2),
and different slope angles (28◦ � θ � 32◦). The inset of Fig. 3(a) shows the instantaneous mass
flow rate Q(t ) = dM/dt derived from these measurements. After a transient regime, for t � 5 s, we
observe that the mass flow rate quickly increases up to a constant plateau value that is maintained
for most of the discharge duration before vanishing when the reservoir is empty. The flow rate from
the reservoir is kept approximately constant since the pressure at the outlet does not depend on the
height of grains in the reservoir due to Janssen effect [28]. In the following, we focus on the steady
flow rate 〈Q〉 developing in between these two starting and stopping transients and its dependency
with the granular layer thickness and the slope angle. Each experiment has been reproduced at
least three times in order to determine the average value of the steady flow rate and to estimate the
dispersion of the results. Figure 3(b) presents the mean normalized flow rate Q̃ = 〈Q〉/ρW g1/2d3/2

as a function of the normalized thickness of the flowing layer h/d for a given slope angle θ = 29.5◦.
In the absence of pillars (χ = 0), a supralinear increase of Q̃ with h/d is observed. The presence
of the pillar forest (χ 	= 0) reduces the granular flow rate and the trend is no longer supralinear but
rather sublinear. The reduction of the flow rate is more significant as the thickness of the granular
layer or the density of pillars increases. For the smallest pillar density (χ = 0.25 cm−2), the flow
rate is only significantly reduced for large enough layer thicknesses (h/d � 7), which is consistent
with the fact that the stopping layer hstop at a slope angle of θ = 29.5◦ is not significantly increased
by a pillar forest of such a low density. Interestingly, the addition of pillars not only reduces the
mass flow rate but also changes the dependence of Q̃ with the layer thickness in a nontrivial way.
In particular, for χ = 1.00 cm−2, the flow rate is almost constant and no longer depends on the
thickness of the granular layer [Fig. 3(b)].

Then we measure the steady flow rate 〈Q〉 as a function of the slope angle while keeping the
flowing layer thickness constant in the best possible way. Indeed, the layer thickness can hardly
be maintained strictly constant because the relation between the gate opening and the granular
layer thickness is nontrivial as pointed out by Cui and Gray [22]. Figures 4(a) and 4(b) show the
simultaneous measurements of Q̃ and h/d as a function of the slope angle θ . The normalized flow
rate is observed to increase with θ above a threshold angle which is about 24◦ in the absence of
pillars (χ = 0). This threshold value corresponds to the value θstop(h/d ) for the forced thickness
h/d � 10 that is kept approximately constant for different θ [Fig. 4(b)]. This observation is
consistent with Fig. 2 where the flow stops for h/d � 10 when θ = 24◦ and χ = 0. When the
pillar density is increased, it induces a shift of the threshold angle towards larger values up to about
30◦ for the highest density (χ = 1.00 cm−2). Note that this increase of the flow rate is mainly due to
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FIG. 5. Normalized steady flow rate Q̃ = 〈Q〉/ρW g1/2d3/2 as a function of the normalized thickness
(h/d )3/2 h/hstop(χ ) for different pillar densities (◦) χ = 0 cm−2, (�) χ = 0.25 cm−2, (�) χ = 0.51 cm−2,
and (�) χ = 1.00 cm−2. The solid line corresponds to the linear trend with the slope of 0.14 proposed by
Pouliquen [4] for glass beads flowing down a slope without pillars.

an increase in velocity as the thickness of the flowing layer is approximately constant in the whole
range of slope angle θ for each value of χ [Fig. 4(b)].

For granular flows down a rough incline without any pillar forest (χ = 0), the mean velocity
U normalized by (gh)1/2 has been observed to scale linearly with the thickness h normalized by
the stopping thickness hstop [4,8,29]. This implies that the dimensionless flow rate Q̃ should scale
as h5/2/(hstop d3/2). By testing this scaling with our data (Fig. 5), we notice that the different sets
of data obtained for χ = 0 follow well such a scaling with the numerical coefficient 0.14 obtained
by Pouliquen [4] for flowing glass beads on a bottom of glued glass beads. However, the data sets
corresponding to a pillar forest (χ 	= 0) do not follow such a scaling, or with a slope that decreases
significantly as χ increases. In the next section, we present a model that rationalizes these results.

III. MODEL

Let us now model the granular flow down the incline driven by the gravity g with a depth-average
approach by considering the μ(I ) rheology [7]. This rheology relates the friction coefficient of the
granular medium μ, defined as the ratio of the shear stress over the normal stress P, with the inertial
number defined as I = γ̇ d/

√
P/ρg, where γ̇ is the shear rate of the flow. Under the depth-average

approximation, a slice of the granular layer experiences its weight and a basal friction dictated by
the μ(I ) rheology, two forces that balance in a stationary regime [29]. In steady state, the force
balance on a slice of the granular layer of thickness h and of unit length and unit width reads

ρgh sin θ − μb(Ib)ρgh cos θ = 0, (2)

where the basal friction coefficient μb is a sole function of the inertial number Ib calculated at the
base of the granular layer. For a Bagnold velocity profile in the granular layer, the basal shear rate
γ̇b is related to the mean flow speed U = 〈Q〉/ρW h through the relation γ̇b = 5U/2h. Considering
that the pressure at the bottom of the granular layer is P = ρgh cos θ , we get that the inertial number
at this location is Ib(h,U ) = 5U d/2

√
φgh3 cos θ . Experimental results obtained in different flow

configurations have permitted the establishment of an expression for the dependency of the basal
friction coefficient with flow parameters:

μb(Ib) = tan θ1 + tan θ2 − tan θ1

1 + I0/Ib
, (3)
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FIG. 6. (a) Normalized steady flow rate Q̃ = 〈Q〉/ρW g1/2d3/2 as a function of the normalized layer
thickness h/d for a given slope angle θ = 29.5◦. (b) Normalized steady flow rate Q̃ divided by (h/d )5/2 as
a function of the slope angle θ . Same data as in Figs. 3(b) and 4. Dashed lines show the noninertial predictions
(Cd = 0) from Eq. (7) for each pillar density with I0 = 0.35 and β = 1.5. Solid lines present the inertial
numerical solutions of Eq. (6) with β = 1.5 and Cd = 3.

where I0 is the characteristic inertial number above which the friction coefficient increases from
tan θ1 to tan θ2 [8]. Note that I0 may be viewed as the inverse of a characteristic length scaled by the
grain diameter, and depends on the granular material and bed roughness [30]. Inserting the friction
law Eq. (3) in Eq. (2), we get a prediction for the normalized flow rate in the absence of pillars:

Q̃(h, θ ) = 2I0

5

tan θ − tan θ1

tan θ2 − tan θ

√
φ cos θ

(
h

d

)5/2

. (4)

In order to compare this classical prediction with our observations made in the absence of pillars
(χ = 0), we present the normalized flow rate Q̃ = 〈Q〉/ρW g1/2d3/2 as a function of h/d for θ =
29.5◦ in Fig. 6(a) and the normalized flow rate Q̃ divided by (h/d )5/2 as a function of θ in Fig. 6(b),
respectively. The blue lines in these plots indicate the best fits of the data with Eq. (4) considering
the values determined previously for the angles θ1 and θ2 (Sec. II B) and considering I0 as a free
parameter. The best fits are found for I0 = 0.35 in reasonable agreement with previous estimates
made for glass beads (I0 � 0.28–0.30) [6,7]. The model fits quite well the experimental data in
Fig. 6(a) which means that the dimensionless flow rate Q̃ follows the expected power scaling law
(h/d )5/2. The model also fits well the data in Fig. 6(b) for moderate slope angle θ but seems to
overestimate Q̃ for θ � 30◦. Note that for a given slope angle in between θ1 and θ2, this model
predicts a vanishing steady flow for a vanishing thickness h and fails to predict the stopping of the
flow at hstop. This is a known weakness of the μ(I ) rheology as the complex liquid-solid transition
of granular matter is not captured by this local approach [8].

Subsequently, we develop a model to rationalize the effect of pillars on granular flow. Note that
a satisfactory model cannot be achieved by considering different parameters of the μ(I ) rheology.
Indeed, such an approach would not capture the change in the dependence of the flow rate on
layer thickness and slope angle. For this reason, we consider a new ingredient in the model which
is the force applied by the pillars on the granular layer. The force experienced by a single pillar
immersed in a granular flow depends on the flow regime which is determined by the Froude number
Fr = U/

√
gh cos θ based on the mean flow speed U and the layer thickness h [31]. In the limit of

small Froude numbers (Fr 
 1), the drag force results from the hydrostaticlike pressure, ρgz cos θ ,
applying on the exposed surface of the pillar, h D, and expresses as fh = βρgh2D cos θ , where β is
a numerical prefactor [32]. In the opposite limit of large Froude numbers (Fr � 1), the drag force
results from inertia and expresses fi = Cd ρ hD U 2, where Cd is a dimensionless drag coefficient.
The variations of the Froude number Fr as a function of h/d and θ are shown in Figs. 7(a) and 7(b),
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FIG. 7. Froude number Fr as a function of (a) the normalized layer thickness h/d and (b) the slope angle
θ for four different pillar densities (◦) χ = 0 cm−2, (�) χ = 0.25 cm−2, (�) χ = 0.51 cm−2, and (�) χ =
1.00 cm−2.

respectively. Only a few Fr values are a little larger than 1 and all the Fr values corresponding to the
cases with a pillar forest (χ 	= 0) are smaller than 0.7. In this range, the drag force is expected to
correspond mainly to a quasistatic force term with a little inertia. This implies that both contributions
to the drag force have to be considered in our model. For simplicity, we will consider that the
resulting force in this transitional regime corresponds to the addition of the two limit terms fh + fi.
This crude modeling has been already used to reproduce quite well the variation of the force with Fr
[31], and correctly predicts the dynamics of an object impacting a granular material [33,34]. In order
to account for the presence of multiple pillars, we assume that there is no interaction between pillars
and that the sum of the individual forces exerted by the pillars on the granular layer results in a
global force per unit surface acting on the whole layer of grains which thus simply reads ( fh + fi )χ .
Indeed, the granular flow that establishes in the vicinity of a cylindrical obstacle has been studied
experimentally, revealing that the velocity perturbation vanishes on a distance that is roughly one
cylinder diameter [35]. In our experiments, the minimal distance between pillars (� = 10 mm) is
much larger than the pillar diameter (D = 2 mm) so that no interaction between pillars is expected.
Under these approximations, the force balance for a slice of the granular layer in the presence of
pillars becomes

ρgh sin θ − μb(U, h)ρgh cos θ − βρgχh2D cos θ − CdρχhD U 2 = 0, (5)

which can be written in a dimensionless form as

tan θ − μb(U, h) − βχhD − Cd
χD U 2

gcos θ
= 0. (6)

Solving Eq. (6) provides the dependency of the mean flow speed U (or equivalently the normalized
flow rate Q̃) with the relevant parameters of the problem (h, θ , χ , ...). Note that in the limit where
χ → 0, Eq. (5) leads to Eq. (2) and we recover the prediction of the standard μ(I ) rheology. In the
particular case where Cd = 0, a simple analytical solution of Eq. (6) can be found for the normalized
flow rate Q̃:

Q̃ = 2I0

5

tan θ − tan θ1 − βχhD

tan θ2 + βχhD − tan θ

√
φ cos θ

(
h

d

)5/2

. (7)

In this limit of vanishing inertial drag (Cd = 0) corresponding to low enough Fr, Eq. (7) predicts
that the presence of pillars changes the discharge flow curve Q̃(h, θ ) through a shift of both friction
coefficients μ1 = tan θ1 and μ2 = tan θ2 (associated to the inclined plane without pillars) by a
quantity βχhD that is directly proportional to the density χ of pillars and their surface hD exposed to
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the flow. At a given angle, this correction mitigates the increase of the flow rate with h in qualitative
agreement with the observations presented in Fig. 3. The shift of tan θ2 predicted by Eq. (7) in
the case of a flowing layer contrasts with the fact that no variation of tan θ2 with χ is observed in
the case of a stopping layer (as discussed in Sec. II B). This difference can be understood from the
competition between the friction of the granular layer with the bottom wall and with pillars: indeed,
when θ approaches θ2, the stopping granular layer necessarily has a negligible thickness and its
behavior is dominated by the friction with the bottom wall (βχhstopD 
 μb), whereas for a flowing
layer with a larger thickness the resistance of pillars can no longer be neglected (βχhD ∼ μb).
In order to compare quantitatively the predictions of Eq. (7) with our data, we used the values
determined in the absence of pillars for the parameters tan θ1, tan θ2, and I0, and we consider the
quasistatic force coefficient β as a free parameter. The best fits of our experimental data with the
predictions of Eq. (7) are found for β = 1.5 ± 0.1, and are shown with dashed lines in Figs. 6(a) and
6(b) for all the pillar densities investigated in this paper. The predictions of the noninertial model
capture the main trend in the data, i.e., the lowering of the granular flow with increasing pillar
density. Nonetheless, the assumption of null inertial drag (Cd = 0) is too strong to rationalize finely
our experimental observations, in particular the variation of the dimensionless flow rate Q̃ with the
slope angle θ as observed in Fig. 6(b).

Let us now consider the general case where the inertial contribution is taken into account (Cd 	=
0). For the sake of simplicity, we do not make explicit the analytical solution of Eq. (6) but we
present its numerical solutions. In order to compare these predictions with our observations, we
imposed the values determined in the absence of pillars for the parameters I0, tan θ1, and tan θ2 and
we consider the two force coefficients β and Cd as free parameters and adjust them to get the best fit
between experiments and theory. The best fits are found for β = 1.5 ± 0.1 and Cd = 3 ± 1, and are
presented with solid lines in Figs. 6(a) and 6(b). Accounting for the inertial contribution of the pillar
drag permits us to have a much better agreement between theory and experiments, especially for the
dependency of the normalized flow rate with the slope angle. Our value of the quasistatic coefficient,
β � 1.5, is rather close to the value β = 2.4 found by Albert et al. [32] in the limit where the
object size is large compared to grain diameter (D/d > 3). The difference between these two values
remains in the usual range of incertitude for force coefficients associated to quasistatic granular
flows [31]. Concerning the drag coefficient, our value Cd � 3 is in very good agreement with the
range Cd = 3 ± 2 reported by Faug [31]. The ratio of the inertial and the quasistatic drag forces on
pillars can be written as fi/ fh = (Cd/β ) Fr2. As Cd/β � 2, the transition between these two regimes
is expected to be around the critical Froude number Frc = (β/Cd )1/2 � 0.7. This confirms that our
data obtained with a pillar forest (χ 	= 0) correspond to a quasistatic regime with a little inertia.
Nonetheless, the model developed hereby has a major limitation as it predicts that the granular flow
of thick layers should be stopped by the largest pillar density for h/d � 12.5 at θ = 29.5 ◦ [see
the orange solid line in Fig. 6(a) corresponding to χ = 1.00 cm−2], a fact that is not observed in
our experiments. This discrepancy highlights the limitation of the spatial averaging assumption. In
practice, the pillars have a restricted zone of influence and cannot stop the flow away from their field
of action, a behavior that is not accounted for the averaging assumption.

IV. DISCUSSION

The model developed in the limit of vanishing inertia (Cd � 0 when Fr 
 1) shows that the
presence of pillars is accounted through the parameter βχhD for a steady flow of thickness h. This
parameter, which is proportional to h, induces a reduction of flow rate that is larger for larger h at a
given slope angle θ and for a pillar forest of given density χ . Note that the stopping thickness hstop

was found to depend on χ through the parameter αχDd [inset of Fig. 2(b)]. Combining the linear
variation of tan[θ1(χ )] with Eq. (6) for vanishing U leads to an estimate for the stopping thickness
hstop/d = α/β � 6 considering α � 10 and β � 1.5. This estimate is in rather good agreement
with our data as we do not observe any steady flow for h/d � 5 [Figs. 3(b) and 6(a)]. According
to Eq. (7), the influence of the array of pillars on the granular flow rate is significant when the
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parameter βχhD is of the same order as tan θ − tan θ1 or tan θ2 − tan θ . In the intermediate case
where θ = (θ1 + θ2)/2, we have tan θ − tan θ1 = tan θ2 − tan θ = 0.17 and the term resulting from
the presence of pillars is equal to one fifth of this value when the pillar density reaches a critical
value χc � 0.02/hD. Under these conditions, the presence of pillars is expected to reduce the mass
flow rate by a factor of two thirds according to Eq. (7). In the case of the setup studied previously,
where the pillar diameter is D = 2 mm and the layer thickness is about 5 mm, the critical pillar
density above which the presence of pillars impacts significantly the flow rate is χc = 0.2 cm−2.
Transposing the same considerations to an avalanche of granular material occurring through a tree
forest with typical values h ≈ 1 m and D ≈ 0.2 m, the critical obstacle density should be 0.1 m−2

corresponding to one tree every 3 m.
In this paper, we have explored the effect of a forest of cylindrical pillars on the steady

granular flow running down an incline. This experiment constitutes a paradigm for geophysical
flow mitigation by a forest of obstacles. In addition to reduce the granular flow rate, the presence of
pillars changes drastically the dependency of the flow rate with the thickness of the granular layer,
i.e., the discharge flow curve. We accounted for the nontrivial impact of the forest of pillars on the
granular flow with a model based on a depth-averaged approach and the μ(I ) rheology. This model
includes the effect of pillars through an averaged force applying on the granular layer and neglecting
interactions between pillars. This approach has been proved to predict quantitatively the reduction
of the granular flow rate induced by the presence of pillars. It can be used to determine the minimal
pillar density necessary to reduce significantly the energy carried by the granular flow. These
results prove that the μ(I ) rheology can be used to describe nonunidirectional granular flows as
the one studied here. Nonetheless, some discrepancies between model predictions and experiments
are remaining and should motivate future work to relax the averaging approximation and to study
the granular flow occurring in the interspace between pillars. Indeed, the velocity field of the grain
flow around a cylinder has been already characterized together with the granular temperature field
and both have been shown to be localized [35,36]. However, it would be interesting to investigate the
possible modification of these fields in the case of an incline plane with multiple obstacles. Finally,
this paper opens several questions such as the influence of the grain size in relation to the diameter
of pillars or the effect of pillar arrangement on the flow. Indeed, if it has already been confirmed
that the proposed scaling laws are valid for different grain sizes in the case of a pillar-free plane,
it could be interesting to confirm these results in the case of pillar forests. Moreover, it could be
useful to consider a random distribution of pillars on the inclined plane, perhaps closer to situations
encountered in nature, that should generate local clogging and preferred paths for the granular flow.
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