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Transition from granular to Brownian suspension:
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We experimentally revisit the flow down an inclined plane of dense granular suspen-
sions, with particles of sizes in the micron range, for which thermal fluctuations cannot be
ignored. Using confocal microscopy on a miniaturized setup, we observe that, in contrast
with standard granular rheology, the flow profiles strongly depend on the particle size.
Also, suspensions composed of small enough particles flow at infinitesimal inclinations.
From the velocity measurements, an effective rheology is extracted in terms of a friction
coefficient as a function of the dimensionless shear rate (the viscous number), and of the
particle pressure normalized by the thermal pressure. A phenomenological model based
on the sum of a thermal contribution describing the glass transition and an athermal
contribution capturing the jamming transition is developed, which reproduces well the
experimental observations. The model predicts the existence of a glassy friction angle
lower than the granular athermal friction angle, a signature of the glass transition in the
framework of a pressure-imposed rheology.
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I. INTRODUCTION

Suspensions composed of large enough particles so that thermal fluctuations can be ignored are
called granular suspensions. When flowing at constant packing fraction φ, and as long as inertia
is neglected and the particles interact only via hydrodynamic forces and simple Coulombian solids
contacts, they obey a Newtonian rheology. The shear stress σ and the normal granular stress �

are proportional to the shear rate γ̇ (the only timescale in the problem), and the shear and normal
viscosities ηs(φ) and ηn(φ) are functions of the volume fraction, which diverge at the jamming
transition, when φ approaches the maximum volume fraction φJ [1–4]. An alternative description
consists of considering the rheology at constant imposed granular pressure �, φ being free to adjust
[5,6], a situation typically encountered in avalanche flows under gravity. Within this framework,
the constitutive laws are given by the friction coefficient μ = σ/� and the volume fraction φ as
unique functions of the so-called viscous number J = ηsγ̇ /� [7], where ηs is the viscosity of the
suspending fluid [3,4]. The jamming transition occurs in the limit of vanishing J , where the packing
fraction reaches φJ and μ converges to a finite value μJ . The latter denotes the existence of an angle
of repose θJ = tan−1(μJ ), below which the suspension does not flow under gravity. For frictionless
spherical particles, as those considered in this paper, the jamming packing fraction is φJ � 0.64
while the jamming friction coefficient is μJ � 0.1, corresponding to a pile angle θJ � 5◦–6◦ [8].

Suspensions composed of small particles, the dynamics of which is sensitive to thermal fluc-
tuations, are called Brownian suspensions. Thermal fluctuations introduce an additional timescale,
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whose comparison with the shear rate defines the Péclet number and therefore modifies the di-
mensional analysis underlying the above description [9,10]. Dense Brownian suspensions exhibit a
glass transition at a packing fraction φ ∼ φG [11], which is marked by a divergence, or if not, a very
sharp increase of the structural relaxation time of the suspension. This induces a divergence of the
viscosity of the suspension and the emergence of a thermal yield stress when φ is greater than φG

[12,13].
Despite the similarity of the flowing properties of granular and Brownian suspensions, it has been

shown that both the glass and jamming physics impact the flow curves over distinct stress scales and
time scales [14]. Eventually, a simple additive model, where the shear stress is the sum of the glass
and jamming contributions, was shown to capture both numerical and experimental data of a variety
of dense suspensions flowing at imposed volume fraction in the thermal crossover [14,15].

However, we are still lacking a complete description of the flow of Brownian suspensions when
the granular pressure is imposed rather than the packing fraction, a situation of significant interest
for flow and transport of colloids or agitated particles under gravity [16–19]. The presence of
thermal agitation introduces an additional dimensionless number �̃ = �d3/kBT comparing the
confining pressure to a thermal pressure, with d the particle diameter, kB the Boltzmann constant,
and T the absolute temperature. The rheology is then expected to be described by a friction
coefficient μ = μ(J, �̃) and a volume fraction φ = φ(J, �̃) function of both J and �̃. Numerically,
Trulsson et al. [9] used discrete element simulations to study the pressure-imposed rheology of
thermal suspensions and have shown that it is analogous to soft athermal particles, in which a
soft repulsive interaction mimics the random thermal force, except at low Péclet number. Using
Brownian particle simulation, Wang and Brady [10] have studied in detail the pressure-imposed
rheology and measured the μ(J, �̃) and φ(J, �̃) laws. They have shown that the critical friction
coefficient in the quasi-static regime is affected by the thermal agitation and drops to zero for strong
agitation. Experimentally, avalanche flows of micrometer sized particles in rotating drums have been
studied [18], showing that for small enough grains the avalanche does not stop at a finite repose
angle, as it does for granular suspensions, but slowly creeps until the pile free surface becomes
horizontal. This transition towards a vanishingly small pile angle remains largely unexplored and
the possible link between the observed creep and the glassy dynamics remains elusive.

In the present work we bring experimental and theoretical evidences for the transition between
thermal and athermal suspensions. To do so, we experimentally study the flow of a layer of
micrometer-sized particles down an inclined plane, a classical configuration investigated in the
granular regime [2,20,21]. The main advantage of this configuration is that steady uniform flows
are easily achieved, where the friction coefficient and the granular pressure distribution are known,
enabling extraction of the rheology. We use confocal microscopy to access the velocity profiles in a
steady flow regime. By changing the size of the particles, we investigate the role of thermal agitation
on the velocity profile and rheology, showing that the friction coefficient vanishes for sufficiently
small grains. To describe the results, a generalized granular rheology in the presence of thermal
fluctuations is derived in terms of the two laws μ(J, �̃) and φ(J, �̃), by extending to the normal
stress the additive model proposed for the shear stress by Ikeda et al. [15]. The prediction of the
model is compared to the experiments and previous numerical simulations [10].

II. MATERIALS AND METHODS

The experimental setup and protocol are sketched in Fig. 1. To study the role of thermal
fluctuations, different silica beads (Microparticles GmbH, density ρp = 1,850 kg m−3) are used
with a mean diameter d varying between 0.91 and 4.3 μm. To prevent crystallization, for each mean
size d , we use a suspension made of an equal mixture of two batches of particles with slightly
different sizes, as indicated in Table I. To enable confocal imaging, the particles are immersed in an
index-matched liquid composed of water, dimethylsylfoxide, and fluorescein (water mass content
14–40 wt%, depending on the sample), giving a suspending fluid’s density ρs = 1,100 kg m−3,
viscosity ηs = 3.1–3.7 mPa s, and refractive index n = 1.42–1.46. It is important to emphasize that
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TABLE I. Particle sizes, dimensionless weight �̃0 = δρgd4/(kBT ), with δρ = ρp − ρs = 750 kg m−3, g =
9.81 m s−2 the intensity of gravity, kBT = 4×10−21 J K−1, and symbol for the four suspension samples used.
The mean diameter d for the bidisperse mixture is defined such that �̃0(d ) = 1

2 [�̃0(d1) + �̃0(d2)].

Sample d1(μm) d2(μm) d = (
d4

1 +d4
2

2 )
1/4

(μm) �̃0 Symbol

1 0.83 0.98 0.91 1.26 �
2 1.53 1.76 1.66 13.9 �
3 2.12 2.36 2.25 47.7 ♦
4 3.97 4.62 4.33 649 ©

FIG. 1. Experimental protocol. (a) Experimental setup: The bidisperse suspension (see Table I) is intro-
duced in a cell, made of a PDMS sheet (gray) sealed between a glass slide and a cover slip (blue). The cell is
fixed to a translation stage and a rotation stage on an inclined confocal microscope, taking images a distance
w = 10d from the cover slip. (b) Preparation: After mixing, the particles sediment and form a uniform layer of
height H (t ); inset shows H/d as a function of the time rescaled by the Stokes time (see text). (c) Inclination:
At t = 0 the cell is inclined at an angle θ and velocity profiles are obtained using PIV (picture obtained for
d = 2.25 μm at θ = 15◦).
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the silica beads in water behave like frictionless particles [18,22] due to the presence of a short-range
repulsion force of electrostatic origin between the negatively charged surfaces of the particles, which
is large enough to sustain the typical weight of the layer of particles investigated in this study.

The cell is a long rectangular cavity molded in PDMS (Polydiméthylsiloxane), with a length
52 mm (x direction), a height 14 mm (z direction) and a thickness 1.5 mm (y direction), sealed
between a glass slide and a glass coverslip [Fig. 1(a)]. The cell is fixed on a translation stage and
a rotation stage attached to an inclined confocal microscope, whose optical axis is perpendicular
to gravity. Once the cell is filled with the suspension, it is agitated to mix the suspension before
letting the particles sediment in a horizontal position [Fig. 1(b)]. The amount of particles in the
cell is chosen such that the final thickness of the deposit is approximately H � 30d . The time
evolution of the height of the deposit is recorded during the sedimentation [Fig. 1(b)], showing that
the sedimentation is finished after about twice the Stokes’ time tSt = δρgHcelld2/18ηs [23], where
Hcell = 14 mm is the height of the cell. Once the particles sedimented, we checked the horizontal
homogeneity of the deposit along the cell before each flow measurement (the local maximum slope
of the sediment is less than 1◦). The cell is then inclined at an angle θ [Fig. 1(c)] and the flow of
the suspension is observed by confocal imaging at a distance w = 10d from the side wall of the
cell. The flow is recorded at regular intervals and the velocity profiles U (z, t ) and the height of the
deposit H (t ) are obtained from a standart PIV (particle imaging velocimetry) analysis.

Note that the confocal images could in principle give access to the local volume fraction φ(z, t ).
However, getting reliable data for φ(z, t ) has not been possible. First, we do not scan the whole
sample and only acquire a slice of the three-dimensional (3D) packing, making a precise counting of
the particles difficult and noisy. Second, the light is inhomogeneous in space due to the absorption
of the laser sheet by the particles, but this absorption depends on the distribution of the volume
fraction itself, meaning that a calibration is difficult. Third, the light also varies over the long time
of the experiments (typically a few days). As a result, the uncertainties on the measured φ during a
single run, or from one run to another, turn out to be too large to provide information.

III. RESULTS

Once the flow starts, we monitor the height of the flowing layer H (t ) and the surface velocity
Us(t ) as a function of time [see Figs. 2(a) and 2(b)]. Both the height of the flowing layer and
the surface velocity initially slightly increase, before continuously decreasing. We also compute in
Fig. 2(c) the dimensionless depth averaged shear rate characterized by the effective viscous number
Jeff (t ) = 2 ηsUs

H�b
(defined as in Ref. [21]), where �b = 〈φ〉δρgH cos θ is the pressure at the bottom

of the layer estimated using 〈φ〉 = 0.6. We observed that a plateau is reached after an accelerating
phase, where Jeff is constant (t ∈ [103, 104]s), ensuring quasi-steady flows. In the following all the
measurements are taken and averaged in this regime (yellow region).

In the inclined plane configuration, the ratio of the shear stress to the normal stress, i.e., the
friction coefficient, is constant across the layer for steady uniform flows, being equal to the tangent
of the inclination μ = tan θ . We can then infer an effective rheology by plotting μ as the function of
the steady value of the effective viscous number Jeff = 〈Jeff (t )〉t∈[103,104] for all experimental runs. In
Fig. 3, we have systematically plotted μ(Jeff ) for different particle sizes and inclination angles vary-
ing from 20◦ to 1.5◦, the color encoding for the dimensionless bottom pressure �̃b = �bd3/kBT . A
large value of �̃b (dark blue) corresponds to the limit of athermal suspensions, whereas a small value
(red) corresponds to Brownian suspensions. In the limit of athermal suspensions, we expect the data
to collapse on a single curve μ(Jeff ), as the viscous number is the only relevant parameter. This is the
case for the two suspensions made of the largest particles, which collapse well on the athermal curve
obtained for much larger particles (d = 25μm) by Perrin et al. [21]. However, we note that for very
low values of Jeff , the friction coefficient measured with our particles is systematically smaller than
the athermal one, μJ ≈ 0.09. This means that even with our biggest particles d = 4.3μm, slow
flows take place for angles below the athermal granular angle of repose. The deviation becomes
more severe when considering the two suspensions composed of the smallest particles (green and
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FIG. 2. Dynamics of the flow: (a) evolution of the layer thickness H (t ), (b) the surface velocity Us(t ), and
(c) the effective viscous number Jeff (t ) for the suspension made of the largest particles (sample 4, d = 4.33μm)
at different inclination angles θ as indicated in the legend. The yellow region corresponds to the time slot where
measurements are taken to infer the rheology. The same plots for the other particle sizes are shown in Figs. 1–3
of the Supplemental Material [24].

yellow symbols). In that case, it is clear that the rheology departs from the athermal one over the
entire range of the viscous number. The friction coefficient seems to vanish when decreasing the
viscous number, indicating that the suspension flows even for infinitesimal angles, as reported for
avalanches in microdrums [18].

In addition to the effective rheology μ(Jeff , �̃b), we also plot in Fig. 4 of the Supplemental
Material [24] an estimate of the local rheology μ[J (z), �̃(z)], where the viscous number J (z) =
ηsγ̇ (z)/�(z) is computed at each vertical position from the measured shear rate γ̇ (z) and from
the approximated local pressure �(z) = 〈φ〉δρg(H − z) cos θ . Here, as we do not have access to
φ(z), the volume fraction is considered uniform equal to 〈φ〉 = 0.6. Although more noisy, the
local rheology follows the same trend as the effective one: the friction coefficient decreases when
increasing the agitation (see Sec. II of the Supplemental Material).

A closer examination of the flow profiles obtained with θ respectively above and below the
granular athermal angle of repose θJ � 5◦ confirms the above observations [Figs. 4(a) and 4(b)].
In these figures, the dimensionless velocity profile 2ηsU (z)/H�b is plotted as a function of z/H ,
a normalization that, for athermal systems, gives a velocity profile independent of particle size. In
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FIG. 3. Effective rheology: The μ(Jeff ) rheology curves with symbols as indicated in Table II and color
coding for �̃b. The black dashed line indicates the rheology of an athermal suspension obtained experimentally
by Perrin et al. [21]. The light-colored disks are the prediction of the additive model (see text for details); same
color code as for the experimental data.

contrast with this athermal prediction, we observe that for θ > θJ , the rescale profiles depend on
the particle size, with faster flow for smaller particles [Fig. 4(a)]. This influence of the size is even
more dramatic below the angle of repose θ < θJ [Fig. 4(b)], where large particles do not flow at all,
whereas small particles clearly flow over the whole thickness of the layer. For intermediate particle
size, one observes a flow localized at the top of the layer, where the pressure is weaker.

From the above experimental observation, we conclude that thermal effects promote flow by
substantially decreasing the friction coefficient compared to athermal suspensions. For small enough
particles, the critical friction coefficient in the quasi-static regime vanishes, meaning that particles
flow at any inclination. For intermediate sizes, the friction coefficient is below the athermal friction
coefficient but remains finite for the lowest viscous number reached in the experiments. In the
following, we develop a theoretical model to describe this phenomenology, based on an additivity
model that takes into account the crossover between the glass and jamming transition.

IV. MODEL RHEOLOGY

Our starting point is the additive model introduced in Ref. [14] for the shear stress, to which we
add an additive model for the granular pressure in order to get a complete rheological description
able to describe the flow down inclined planes. The shear stress and the granular pressure are written
as follows:

σ̃ (Pe, φ) = σ̃s(Pe, φ) +σ̃th(Pe, φ) + σ̃ath(Pe, φ), (1)

�̃(Pe, φ) = �̃th(Pe, φ) + �̃ath(Pe, φ), (2)

where the tilda denotes stresses made dimensionless by the thermal pressure σT = kBT/d3. The
shear stress [Eq. (1)] is composed of three terms [14]. The first term σ̃s(Pe, φ) = ηsγ̇ /σT = Pe/3π

is the stress stemming from the background solvent, where the Péclet number is defined as Pe =
γ̇ τT , with τT = 3πηsd3/kBT the thermal microscopic timescale obtained from the Stokes law. The
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FIG. 4. Velocity profiles: Experimental measurement for (a) θ = 12◦ and (b) for θ = 3◦ for the four
suspensions; (c and d) Corresponding predictions from the theoretical model. Insets show the corresponding
volume fraction profiles. [In (b) and (d) the x axis is split to zoom in the low-velocity range].

second term in Eq. (1) is the thermal contribution of the particles to the shear stress, which under
the assumption of infinitely hard particles can be expressed as the sum of a yield stress and a shear-
dependent stress:

σ̃th(Pe, φ)=σGY (φ)+ YG

[PeG(φ)]−1+(1+pGPeαG )−1 (3)

Below the glass transition, for φ < φG, there is no yield stress and σGY (φ) = 0. The function
G(φ) = hG(φG − φ)−γG controls the rapid growth of the relaxation time on approaching the glass
transition. For small shear rate, i.e., Pe 
 G(φ)−1, the suspension is a simple Newtonian fluid
with σ̃th = YGG(φ)Pe. At larger Pe, σ̃th = YG(1+pGPeαG ), with αG < 1, describing the onset of the
shear thinning plateau related to the slow glassy dynamics. Above the glass transition, for φ > φG,
the relaxation time, hence G(φ), is considered to be infinite, and σ̃th = YG + σGY (φ) + YG pGPeαG ,
revealing a yield stress σ̃Y = YG + σGY (φ), with σGY (φ � φG) = Y ′

G(φ − φG)βG (see Refs. [14,15]
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TABLE II. Parameters of the model.

φG hG αG pG βG γG YG Y ′
G φJ γJ μJ

0.575 0.03 0.3 7 0.6 2.2 0.38 0.17 0.64 2.85 0.0875

for a more detailed discussion). The last term in Eq. (1) corresponds to the athermal contribution
describing the divergence when approaching the jamming transition, and which is written in the
original work of Ikeda et al. [14] as σ̃ath(Pe, φ) = YJK (φ)Pe with ad hoc expression for K (φ). Here,
we rather use the known pressure-imposed rheology of athermal suspension [4] to relate K (φ) to
the friction coefficient μ = σ̃ /�̃ and the viscous number J = ηsγ̇ /� = Pe/3π�̃. We then obtain
for the athermal shear stress

σ̃ath(Pe, φ) = μath(φ)

Jath(φ)

Pe

3π
, (4)

with Jath(φ) = ( φJ−φ

φ
)γJ and μath(φ) = μJ + bJath(φ)1/γJ from the previous work on granular sus-

pensions [21,25].
To complete the rheological description, we must also propose an expression for the granular

pressure �̃ [Eq. (2)]. Phenomenological laws have been proposed in the literature for studying
particle migration of Brownian suspensions, where the granular pressure was also written as a
sum of a thermal and athermal contributions [26,27]. Here, we use a simplified expression for the
thermal pressure component, which assumes a local thermal equilibrium and neglects shear-rate
dependence. The thermal pressure is then described by the Carnahan-Starling equation of state for
hard spheres [28], modified to take into account the divergence at the jamming transition φJ [29]:

�̃th(Pe, φ) = 6

π

φJ

φJ − φ

1 + φ + φ2 − 7.5φ3

(1 − φ)2
. (5)

For the athermal contribution, we again rely on the known athermal rheology and derive �̃ath using
the definition of J [3]:

�̃ath(Pe, φ) = 1

Jath(φ)

Pe

3π
. (6)

Equations (1) and (2) with expressions (3)–(6) provide a phenomenological rheology of a
suspension in the thermal crossover, but are expressed considering the volume fraction φ and Péclet
number Pe as control parameters. In order to discuss the onset of thermal effects in avalanche flows,
it is useful to rewrite the rheology under the pressure-imposed condition, choosing �̃ and J as the
control parameters. To do so, one first inverts �̃(Pe, φ) into φ(Pe, �̃) and uses Pe = 3πJ�̃ to obtain
φ(J, �̃). Then, using these last two expressions in σ̃ (Pe, φ) and �̃(Pe, φ), one finds μ(J, �̃).

The two constitutive laws μ(J, �̃) and φ(J, �̃) hence obtained are plotted as 3D surfaces in
Figs. 5(a) and 5(b), using the model parameters given in Table II. The values of the parameters
controlling the athermal stress φJ , γJ , and μJ are chosen to match the known pressure-imposed
rheology of athermal frictionless particles [21,25]. The values related to the thermal stress, φG, hG,
αG, pG, βG, and γG, are fixed according to Ikeda et al. [14,15]. However, as discussed later in the
paper, the last parameters YG and Y ′

G in the thermal stress are poorly constrained by imposed volume
fraction measurements. As a result, we do not choose the values proposed in Refs. [14,15] but rather
determine YG and Y ′

G by fitting the pressure-imposed numerical data of Wang and Brady [10].
Figure 5(c) [resp. Fig. 5(d)] shows how the friction coefficient μ varies as a function of J for

different �̃ (resp. μ as a function of �̃ for different J). In the limit of large �̃, i.e., large confining
pressure or low temperature, one recovers the athermal behavior, and when J → 0, φ converges to
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FIG. 5. Pressure imposed rheology from the theoretical model: (a) φ(J, �̃) and (b) μ(J, �̃) color coded by
�̃. (c) μ as a function of J for different values of �̃; (d) μ as a function of �̃ for different J . The red curve is
μJ=0(�̃) (see text).

φJ = 0.64 and μ to μJ = 0.0875 (see Table II). When introducing thermal effects by decreasing
�̃, the volume fraction φ simply decreases and for small values of �̃ reaches the limiting value
provided by the equilibrium equation of state in the absence of flow given by the relation �̃th(φ)
[Eq. (5)]. The role of thermal effects on the friction coefficient μ is more complex. In Fig. 5(c), we
observe that decreasing �̃ decreases the friction coefficient, but that the behavior of μ when J goes
to zero is nontrivial, with the emergence of an intermediate plateau below the athermal value μJ ,
and a sudden jump to zero when increasing thermal effects.

To better understand this transition, we focus on the behavior of the quasi-static friction co-
efficient μJ=0(�̃) plotted as a red curve in Fig. 5(d). This friction coefficient reduces to the
ratio of the thermal stresses only, σ̃th/�̃th, because in the limit J = 0, the Péclet number is null
(since Pe = 3πJ�̃) and athermal stresses vanishes [see Eqs. (4)–(6). Below the glass transition
corresponding to a critical pressure �̃G = �̃th(φG) = 28.72, the thermal shear stress for J = 0
is zero (no yield stress) while the pressure remains finite. Therefore, the quasi-static friction
coefficient is null, μJ=0(�̃) = 0, and the suspension flows under infinitesimal shear stress. Above
�̃G, an analytical expression can be derived for μJ=0(�̃). Approximating the thermal pressure
above the glass transition by �̃th � 2.6/(φJ − φ) (i.e., taking φ � 0.6 for the nondiverging term
in the Carnahan-Starling expression) and using σ̃th(Pe = 0, φ) = YG + Y ′

G(φ − φG)βG [Eq. (3)], one
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obtains

μJ=0(�̃) = YG

�̃
+ Y ′

G

2.6(1−βG )

(
1

�̃G
− 1

�̃

)
. (7)

This expression shows that for �̃ = �̃G, the friction coefficient jumps to a finite value given by
μG = μJ=0(�̃G) = YG/�̃G = 0.013, corresponding to a pile angle of 0.74◦. The jump is simply
related to the appearance of a finite yield stress above the glass transition while the pressure remains
continuous. Interestingly, the equilibrium pressure at the glass transition sets the characteristic of the
transition (�̃G, μG) between suspensions with and without a finite critical friction coefficient. When
further increasing �̃, the quasi-static friction coefficient increases and tends to a constant μ̂J =
μJ=0(�̃ → ∞) = Y ′

G/(2.6(1−βG )�̃G). Using the parameters of Table II, one gets μ̂J = 0.064, corre-
sponding to an angle θ̂J = tan−1(μ̂J ) = 3.7◦, lower than the athermal value θJ = tan−1(μJ ) = 5◦.
In other words, our model predicts that μJ = lim

J→0
μ(J, �̃ → ∞) and μ̂J = lim

�̃→∞
μ(J → 0, �̃)

differ: the athermal limit is singular, which reflects the existence of both a glass and a jamming
transition. At any given pressure above �̃G, the rheology predicts that a slow flow activated by
the thermal fluctuations takes place for μ̂J < μ < μJ but not for μ < μ̂J . The consequence of this
nontrivial prediction for avalanche flows is that a slow creep is expected to occur below the athermal
friction angle θJ = tan−1(μJ ), but that it will stop at a lower finite angle θ̂J .

We conclude this discussion of the model by discussing the role of the glass yield stress
parameters YG and Y ′

G. Whereas YG controls the value of the friction coefficient at the glass transition
μG, Y ′

G controls μ̂J . Depending on the choice of these parameters, situations where μ̂J or μG is
greater than μJ can a priori occur. However, this situation gives rise to nonmonotonic variation of
the friction law, with the appearance of thermally driven hysteresis not observed in our experiments,
in simulations [10], or in rotating drum experiments [18]. This shows that the choice of the yield
stress parameters considerably modifies the shape of the friction law μ(J, �̃), while it does not
qualitatively affect the shape of σ (Pe, φ) curves [15], as discussed in Sec. IV and shown in Fig. 6
of the Supplemental Material [24]. The pressure-imposed configuration thus provides an interesting
approach to access these key parameters of the glass transition.

V. COMPARISON WITH NUMERICAL SIMULATIONS AND EXPERIMENTS

We now validate the model against numerical and experimental data. First, we compare in Fig. 6
our data with the discrete element Brownian simulations done by Wang and Brady (Fig. 2 in [10]).
Figures 6(a) and 6(c) [resp. Figs. 6(b) and 6(d)] shows μ(J ) [resp. μ(φ)] for different �̃ obtained
in simulation and predicted by our model. For the set of parameters of Table II, the agreement is
excellent.

We next used the phenomenological additive rheology to compute the steady uniform flow down
an inclined plane and compare with our experiments. To do so, we integrated the momentum
balance equations ∂σ̃ /∂ z̃ + �̃0φ sin θ = 0 and ∂�̃/∂ z̃ + �̃0φ cos θ = 0, where z̃ = z/d and �̃0 =
δρgd4/kBT , using the constitutive law Eqs. (1) and (2). This requires a nonstraightforward inversion
of the constitutive law, which is detailed in the Supplemental Material [24]. The predicted velocity
profiles using this procedure are plotted in Figs. 4(c) and 4(d). Qualitatively, the predicted behavior
is similar to the one observed experimentally. However, whereas the case below the athermal repose
angle θ = 3◦ < θJ [Figs. 4(b) and 4(d)] is quantitatively captured by the model, for θ = 12◦ > θJ

[Figs. 4(a) and 4(c)] a factor of two exists between the predicted velocity and the measured one.
This discrepancy may come from sidewall effects or nonlocal effects present in the experiments and
not taken into account in the model. The model also gives access to the packing fraction profile
[inset of Figs. 4(b) and 4(d)], showing that thermal effects induce a significant density gradient
close to the interface, an effect similar to the Perrin equilibrium density distribution [30]. Similar
qualitative trends are observed in the experiments, but as discussed in the Materials and Methods
section, we have not been able to perform quantitative volume fraction measurements. From the
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FIG. 6. Comparison of the model with simulations: (a) μ(J, �̃) and (b) μ(φ, �̃), Fig. 2 from Wang and
Brady paper [10], and (c) and (d) prediction of the model for the same values of �̃ as in (a) and (b); the color
codes for �a3/kBT = �̃/8, where a = d/2 is the particle radius.

computed velocity profiles, we can compute the effective viscous number Jeff as in the experiments
and compare the predicted (light-colored disks) and experimental (plain-colored symbols) effective
rheology μ(Jeff , �̃b) (Fig. 3). The agreement is remarkably good considering the assumptions made
in the additive model.

VI. CONCLUSION

In this paper, we have revisited the classical configuration of granular flows on an inclined plane
for microscopic particles, in a regime where thermal effects start to play a role. Using a confocal
inclined microscope combined with miniaturized setup, we were able to experimentally extract
an effective pressure-imposed rheology from the velocity profile measurements. By varying the
particles size, we were able experimentally to control the dimensionless parameter that controls
thermal agitation in this configuration, i.e., the ratio of the particle pressure due to gravity to the
thermal pressure: �̃ = �d3/kBT . At high agitation (low �̃), we found that the material flows for
infinitely small slopes, meaning that the macroscopic friction coefficient vanishes, whereas at small
agitation (high �̃), we recover the athermal behavior with a finite repose angle given by the friction
coefficient at the jamming transition μJ � 0.1 for athermal frictionless spheres. Inspired by Ikeda
et al. [14], we developed a phenomenological model based on the sum of a thermal contribution
describing the glass transition and an athermal contribution capturing the jamming transition, which
provides the pressure-imposed constitutive laws for thermally agitated granular media μ(J, �̃)
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and φ(J, �̃). The model reproduces well the experimental observations. A major prediction of the
model is that the quasi-static friction coefficient when decreasing the thermal activity (increasing
�̃) suddenly jumps from zero to a finite value when crossing the glass transition, and tends to a
value below the athermal angle of friction. Therefore, the signature of the glass transition in the
framework of a pressure-imposed rheology is the appearance of a glassy friction angle whose value
is distinct from the jamming friction angle. Characterizing experimentally this hypothetical glassy
friction angle is a challenge. A possibility would be to study the relaxation of weakly Brownian
heaps over very long periods of time and check whether the pile eventually stops at a finite angle
below the athermal angle. Beyond the question of the threshold, our model provides the rheology
of Brownian granular media in the full range of the viscous number and can thus be used to predict
flow in other configurations such as avalanches in rotating drums or flow in silos.
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