
PHYSICAL REVIEW FLUIDS 8, 033904 (2023)

Input-output analysis of the stochastic Navier-Stokes equations:
Application to turbulent channel flow

Gilles Tissot ,1,* André V. G. Cavalieri ,2 and Étienne Mémin1

1INRIA Rennes Bretagne Atlantique, IRMAR–UMR CNRS 6625, 35042 Rennes, France
2Department of Aerospace Engineering, Instituto Tecnológico de Aeronáutica, Vila das Acácias,

12228-900, São José dos Campos, Brazil

(Received 15 June 2022; accepted 9 March 2023; published 23 March 2023)

Stochastic linear modeling proposed in Tissot, Mémin, and Cavalieri [J. Fluid Mech.
912, A51 (2021)] is based on classical conservation laws subject to a stochastic transport.
Once linearized around the mean flow and expressed in the Fourier domain, the model
has proven its efficiency to predict the structure of the streaks of streamwise velocity in
turbulent channel flows. It has been in particular demonstrated that the stochastic transport
by unresolved incoherent turbulence allows us to better reproduce the streaks through
lift-up mechanism. In the present paper, we focus on the study of streamwise-elongated
structures, energetic in the buffer and logarithmic layers. In the buffer layer, elongated
streamwise vortices, named rolls, are seen to result from coherent wave-wave nonlinear
interactions, which have been neglected in the stochastic linear framework. We propose a
way to account for the effect of these interactions in the stochastic model by introducing
a stochastic forcing, which replaces the missing nonlinear terms. In addition, we propose
an iterative strategy in order to ensure that the stochastic noise is decorrelated from the
solution, as prescribed by the modeling hypotheses. We explore the prediction abilities
of this more complete model in the buffer and logarithmic layers of channel flows at
Reτ = 180, Reτ = 550, and Reτ = 1000. We show an improvement of predictions com-
pared to resolvent analysis with eddy viscosity, especially in the logarithmic layer.

DOI: 10.1103/PhysRevFluids.8.033904

I. INTRODUCTION

Coherent structures of the near-wall turbulence is an extensively explored topic. In the buffer
layer, very close to the wall, the flow organizes into streamwise vortices, or rolls, and elongated
patterns of high or low streamwise velocity denoted as streaks [1–3]. These structures develop,
break and are regenerated in a quasicyclical process [4]. A scenario explaining their behavior [5]
considers the cycle where the streaks intensify by the lift-up mechanism [6,7] and destabilize by
spanwise meandering, leading to nonlinear interactions which give finally birth to new streamwise
vortices. This final step allows us to start a new cycle.

In the logarithmic layer, the flow organizes as well along streaks [8,9]. These structures are of
larger size with a more disorganized motion due to the higher Reynolds number based on the wall
distance (the wall distance in viscous units y+ = yuτ

ν
is a Reynolds number based on the friction

velocity uτ , the kinematic viscosity ν, and the wall distance in outer units y, the typical length scale
of the largest structure [10]). Understanding their dynamical behavior is still an active research area.
Smaller scales appear to be unnecessary to sustain these structures [11], suggesting the presence of
a self-sustaining mechanism at large scale. Evidence indicates that this mechanism is similar to
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the one active in the buffer layer [12,13]. As noted in Cossu and Hwang [12], these large-scale
coherent structures exist in the sense of (ensemble) averaging or filtering as associated to large eddy
simulation. Even if they do not need the small scales to survive, they still interact with them. As a
consequence, to predict their dynamical behavior, it is crucial to include the effect of small scales on
these large scales through Reynolds stress models for instance or, as we propose here, by stochastic
modeling. As a practical example in Bae et al. [14], resolvent analysis has been used to extract
these large coherent structures in view of performing diagnostics of their action in removing their
contributions in a numerical simulation. This procedure yields a drastic reduction of the turbulence
intensity. The reduction is significant in the buffer layer and slightly less so in the logarithmic
layer, highlighting the requirement of modeling improvements in this region. Besides, practical
control strategies require an accurate prediction of these structures, and providing simplified models
predicting coherent structures at a given scale with a high fidelity is still challenging.

By the knowledge of the time-averaged velocity field and possibly of some higher-order statistics,
predicting coherent structures in a turbulent flow without resolving the whole multiscale space-
time dependent solution has become an important research direction toward which many groups
have devoted strong efforts. Considering a linearization of the Navier-Stokes operator around a
suitably chosen flow—often taken as the time-averaged flow [15]—it is natural to search for wave
solutions in the Fourier domain, which beyond a natural physical meaning gives access to efficient
linear-algebra techniques. Since turbulence interacts with these wavy coherent structures, linearized
solutions are often insufficient, and a closure is required.

Resolvent analysis [16–18] has become widely used to model coherent structures in turbulent
flows since it considers the response of the linearized system to a forcing interpreted as the unknown
nonlinear term [19]. By singular value decomposition (SVD) of the resolvent operator, optimal
harmonic forcing modes and associated responses are found. Resolvent analysis is used for the
modeling of dominant coherent structures in turbulent flows [14,19], data assimilation [20–25], as
well as flow control [26]. The comparison between resolvent analysis and spectral proper orthogonal
decomposition (SPOD) has been performed in turbulent channel flows at Reτ = 180 and 550 in
Abreu et al. [27], where good agreement has been observed for elongated near-wall structures where
the lift-up mechanism is active, associated with a dominance of the first SPOD mode. The main
limitation of the method lies in the fact that coherent structures are well predicted if the nonlinear
term can be approximated as a Gaussian white noise or if there is dominance of the first resolvent
amplification gain (singular value) [28]. These conditions are often not verified.

In the context of a triple decomposition, where the velocity field is split into a time average,
a coherent-structure component, and an inchoherent turbulent field, an eddy viscosity can be
introduced to the generalized Reynolds stresses induced by the incoherent part [29]. For streaky
structures in turbulent channel flows Cess’s eddy viscosity model [30] has proven its prediction
efficiency to some extent [24,31–33], with a particular need in the logarithmic layer. In Morra
et al. [34], it has been shown that the cross-spectral density (CSD) matrix of the nonlinear forcing
in the DNS projects similarly onto resolvent forcing modes with eddy viscosity, thus explaining
the improvement by adding an eddy viscosity. In Amaral et al. [24], resolvent-based estimations
have been performed in turbulent channel flows at Reτ = 180, 550, and 1000. It has been shown
that in the buffer layer, both resolvent with and without eddy viscosity lead to good estimations.
However, in the logarithmic layer, adding eddy viscosity becomes necessary. Further improvement
of estimation is possible if forcing statistics are used, without eddy viscosity, to build an optimal
estimator. This allows estimating flow fluctuations from wall measurements at various wall-normal
locations. Although using the CSD of the forcing terms is an interesting method to construct
estimators, this is not a viable approach to predict dominant coherent structures in turbulent flows,
as it requires extensive use of flow data.

Resolvent analysis with Cess’s eddy viscosity will thus constitute our comparison model and
will be referred to as νt -resolvent analysis, in contrast with ν-resolvent analysis when no eddy
viscosity is considered. This works well for coherent structures, or waves, where strong production
occurs. However, as argued by Symon et al. [35], since eddy viscosity is mainly diffusive (up to
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eddy-diffusion gradients [36]), it breaks the energy conservation over the whole spectrum. Then,
it is not well adapted for waves receiving energy from other scales by backscattering. A detailed
study of the discrepancy of ν and νt -resolvent analysis for a turbulent channel flow in terms of
low-rank property, projection onto SPOD modes and energy transfers can be found in Symon et al.
[36]. Other attempts to improve the modeling have been proposed. The embedding of covariance
informations of the forcing has been for instance proposed in Refs. [34,37]. However, this strategy
was considered for diagnostic purposes only and has not been considered for predictions since a fine
knowledge of the nonlinear term is in that case required. An estimator has been proposed by Gupta
et al. [38] considering together eddy diffusion and a model of stochastic forcing. As an alternative
in the temporal domain, Zare et al. [39,40] have devised a stochastic modeling based on control
theory, which incorporates a coloured-in-time noise.

In Tissot et al. [41], a modeling strategy based on stochastic transport, so-called stochastic
linear modes (SLM), has been proposed and will be considered in the present paper. It starts from
a stochastic version of the Navier-Stokes equations, originally introduced by Mémin [42], which
is based on the stochastic transport of conserved quantities. The formalism has been successfully
employed to perform large eddy simulations [43], geophysical flow modeling [44–49], near-wall
flow modeling [50], data assimilation [51–53], and reduced-order modeling [54,55]. An advantage
of the approach is the formulation of closure by defining statistics of a stochastic unresolved
time-decorrelated (with respect to the timescales of the contribution resolved by the model) velocity
field. The associated random perturbation ensues then from a stochastic transport operator. This
stochastic transport involves in addition a stochastic diffusion, and an effective drift velocity similar
to the turbophoresis effect [56]. An exact energy balance is obtained between the stochastic diffusion
and the energy backscattering induced by the stochastic transport [44]. Linearizing this model and
expressing it in the Fourier domain leads to what we refer to as SLM.

In SLM, the nonlinear term, interpreted as the wave-wave interactions, has been neglected,
relying on the stochastic transport of the solution by the incoherent turbulence to obtain a physically
relevant model. In the present paper, we come back to this strong assumption. The generation of
streamwise vortices likely involves nonlinear interactions between large-scale coherent structures.
As will be detailed further, a close analysis of SLM for these elongated structures shows a poor
prediction of the rolls, despite a good prediction of the streamwise velocity fluctuations. This
is consistent with the fact that coherent wave-wave interactions are neglected in SLM. In order
to recover the right roll properties, we propose in this paper to study the response of SLM to a
“nonlinear” forcing similarly to what is done in resolvent analysis for modeling nonlinear effects
through an input-output formalism. We name this enhanced solution forced stochastic linear modes
(FSLM).

In addition to adding the aforementioned forcing, we propose some enhancements of the noise
definition compared to Tissot et al. [41]. We propose an iterative procedure enforcing the noise to
be incoherent with the solution. Moreover, the stochastic diffusion tensor is defined by root-mean-
square velocity profiles in order to ensure an approximated consistency between stochastic diffusion
and noise expressed in the Fourier domain. We propose as well a decorrelation time definition based
on an inertial range scaling. Finally, SLM and FSLM numerical computation is improved by the
reformulation of the equations as an SVD problem.

With this more complete model which incorporates the effect of time-decorrelated turbulence on
the coherent structures, we will explore the prediction abilities of stochastic modeling in the buffer
and logarithmic layer of three turbulent channel flows at friction Reynolds numbers Reτ = 180,
Reτ = 550, and Reτ = 1000. In particular, we will explore the ability of FSLM to predict coherent
structures in the logarithmic layer.

In Sec. II, notations used along the paper are introduced. In Sec. III, we present the stochastic
model. In Sec. IV we explore the ability of these models to predict buffer and logarithmic layer
structures in turbulent channel flows. Some modeling recommendations are given in Sec. V.
Conclusions are provided in Sec. VI. Presentation of the resolvent analysis, numerical details, and
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complementary results are given in Supplemental Material [57] in order to have a more complete
view by varying Reynolds number and sweeping the wave-number space.

II. NOTATIONS AND PRELIMINARIES

We consider three turbulent channel flows at the friction Reynolds numbers Reτ = 180, Reτ =
550, and Reτ = 1000 with the Cartesian coordinates x = (x, y, z) of the streamwise, wall-normal,
and spanwise directions of the domain �, respectively. The domain sizes (Lx, Ly, Lz ) in outer
units are respectively (4π, 2, 2π ), (2π, 2, π ), and (2π, 2, π ). Details and validations of the flow
simulations can be found in Ref. [24], and additional details at Reτ = 550 are present in Ref. [34].
The time-dependent (t) state variable q(x, y, z, t ) = (u, p)T is composed of the velocity vector
u = (u, v,w)T and the pressure p. The velocity field is decomposed in its time-average and
fluctuation u = ū + u′ with ū = (U (y), 0, 0)T . By periodicity in the streamwise (x) and spanwise
(z) directions, the space-time Fourier coefficient of the state variable with the sign convention
ei(αx+βz−ωt ) is noted q̂α,β,ω(y). Variables α, β, and ω refer respectively to streamwise wave number,
spanwise wave number, and angular frequency. In the wall-normal direction, we define a diagonal
matrix W of quadrature coefficients. Finally, we note ·H the transpose-conjugate operation.

III. STOCHASTIC LINEAR MODEL AND NONLINEAR FORCING

A. Stochastic linear modes

In Tissot et al. [41], a modeling strategy for coherent structures in turbulent flows has been
proposed. The formalism relies on the stochastic transport of conserved quantities by a time-
differentiable velocity component perturbed by the variation of a Brownian motion. Under these
assumptions a stochastic version of the Navier-Stokes equations under location uncertainty [42] can
be written. In this section, we recall how the stochastic model can be expressed in the frequency-
wave-number domain to predict coherent structures. More details can be found in Tissot et al. [41].

The displacement X (x, t ) of a particle is written in a differential form,

dX (x, t ) = u(x, t )dt + (σdBt )(x), (1)

where u is a time-differentiable velocity component and dBt is the increment of a Brownian motion.
It can be remarked that Eq. (1) has to be understood as a time integral over an infinitesimal time
increment dt . The operator σ is an integral operator which hides a spatial convolution in the domain
� with a user-defined kernel σ̌,

(σdBt )
i(x) =

∫
�

σ̌ i j (x, x′, t )dB j
t (x′) dx′, (2)

where the indices i and j refer to component indices. The vector x′ is composed of the integration
space coordinates.

Defined as such, σdBt is the displacement field induced by a velocity component that is smooth
in space but decorrelated in time. This term aims at representing a time decorrelated (with respect to
the timescale of the considered physical processes) turbulent velocity component. In the general
framework, σ can be smoothly time dependent, but for the application of the present paper in
statistically stationary turbulent flows, we will assume it constant in time.

Associated with σ, we define the variance tensor a such that

ai j (x)dt = E((σdBt )
i(x) (σdBt )

j (x)), (3)

with (σdBt )i(x) the ith component of σdBt at position x and E the expectation operator.
Using the Itō-Wentzell formula, conservation of mass and momentum subject to a stochastic

transport leads to a stochastic version of the incompressible Navier-Stokes equations [42,44],
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referred to as under location uncertainty:

dt u + (ud · ∇)u dt + (σdBt · ∇)u = −∇(pt dt + d pt ) + 1

Re
∇ · (∇u) dt

+ ∇ ·
(

1

2
a∇u

)
dt + 1

Re
∇ · (∇σdBt )

∇ · ud = 0; ∇ · σ = 0,

ud = u − 1

2
∇ · a. (4)

In system (4), Re is the Reynolds number. Compared to the deterministic case, the transport of
u by σdBt is introduced. This term brings energy (backscatter) to the system, which is exactly
compensated by the stochastic diffusion ∇ · ( 1

2 a∇u) dt [44]. The variable ud is called drift velocity.
It takes into account that, on average, particles tend to be transported from highly turbulent regions
toward low-turbulence regions (see Ref. [54] and references therein). Mass conservation leads to a
divergence-free condition on ud and on σ. Finally, a random pressure term d pt corresponding to the
small-scale velocity component is involved. This force balances the martingale part (proportional to
dBt ) of the system.

In Tissot et al. [41], system (4) is linearized around a mean velocity profile U (y) and written in
the Fourier domain (see details of the derivation in the latter reference), leading to

−iωûα,β,ω + iαUd ûα,β,ω + v̂α,β,ω

∂U

∂y
+ iα p̂α,β,ω + D̃(ûα,β,ω ) = −(ξ̇α,β,ω )y

∂U

∂y
+ 1

Re

(ξ̇α,β,ω )x

−iωv̂α,β,ω + iαUd v̂α,β,ω + ∂ p̂α,β,ω

∂y
+ D̃(v̂α,β,ω ) = 1

Re

(ξ̇α,β,ω )y

−iωŵα,β,ω + iαUdŵα,β,ω + iβ p̂α,β,ω + D̃(ŵα,β,ω ) = 1

Re

(ξ̇α,β,ω )z

iαûα,β,ω + ∂ v̂α,β,ω

∂y
+ iβŵα,β,ω = 0;

∂σxy

∂y
= ∂σyy

∂y
= ∂σzy

∂y
= 0, (5)

with the modified diffusion operator

D̃(·) = − 1

Re

(
−α2 + ∂2·

∂y2 − β2

)
− 1

2

[
− α2axx + iαaxy

∂·
∂y

− αβaxz + iα
∂ayx·
∂y

+ ∂

∂y

(
ayy

∂·
∂y

)

+ iβ
∂ayz·
∂y

− αβazx + iβazy
∂·
∂y

− β2azz

]
. (6)

The drift mean flow is Ud (y) = U (y) − 1
2∂axy/∂y. The Fourier transform of σdBt is noted dξα,β,ω,

and the associated velocity Fourier component ξ̇α,β,ω = dξα,β,ω/dt is a standard centered Gaussian
white noise convolved with the space-Fourier transform of σ. As the mean flow is parallel, the
random transport term of Eq. (4) reduces to −(ξ̇α,β,ω )y∂U/∂y in the right-hand side of Eq. (5),
which is the strain induced by extraction of energy of the mean flow by the turbulence. This term
is central in the lift-up mechanism [7] and it is the main actor in the role of incoherent turbulence
in the streaks of streamwise velocity u. The choices of stochastic parameters (σ, a) are detailed in
Sec. III D.

The main added-value of SLM in wall-bounded flows is to model the impact of time-decorrelated
turbulence on the lift-up mechanism and its associated momentum mixing by stochastic diffusion.
Due to stochastic transport, Eq. (5) is a stochastic equation for ûα,β,ω, Fourier transform of u′. As a
consequence, ûα,β,ω is a random variable, whose variability will allow us to extract purely coherent
components through the estimation of the CSD matrix E(ûα,β,ωû∗

α,β,ω ) and its eigenvectors. The
leading eigenvector is called SLM. Our objective is to extract the dominant coherent component by
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SLM, which is compared to the leading SPOD mode [58]. In Tissot et al. [41], ensemble method
is employed for the estimation and we present in Sec. III C a reformulation of the problem as a
singular value decomposition to improve computational efficiency.

B. Interactions between coherent structures

Equation (5) ensues from linearization of Eq. (4). Coming back to the ground assumptions in our
stochastic modeling, a triple decomposition is performed on the displacement,

dX (x, t ) = ū(x)dt + u′(x, t )dt + (σdBt )(x). (7)

The first term ū(x)dt = (U (y) 0 0)T dt is the time-average displacement. The fluctuation is split in
a time-differentiable component and an incoherent turbulent field, perceived as time decorrelated
compared to the timescale of the coherent structure and modelled by a Brownian motion. Even if
the time-average is nonambiguous, the splitting of the fluctuation is less obvious in general and is
often performed through a phase or ensemble average operator [29,59]. The formulation (7) is a way
to perform the triple decomposition in a unique manner through time differentiability of the variable
(more precisely this decomposition is unique through the Bichteler-Dellacherie decomposition of
stochastic processes [60]). Let us remark that the Brownian part σdBt is modelled, while the time-
differentiable part u′ is solution of the system. Moreover, contrary to a splitting based on phase
averaging, u′ contains coherent and incoherent contributions.

With this decomposition in mind, it can be seen that the stochastic diffusion can be interpreted
as a generalized eddy diffusion (since a full tensor a is involved) induced by the noise. In this case,
the diffusion comes directly from the time decorrelation assumption and stems from the Itō-Wentzel
formula, where Itō quadratic variations can be viewed as providing local averaging coefficients. The
diffusion does not come from a Boussinesq hypothesis. This diffusion term accounts for the effect
of time-decorrelated component and not for nonlinear interactions between time-differentiable
components.

In system (5), the neglected term (written as a right-hand-side term in the momentum equation)
is

F ((u′ · ∇)u′ − (u′ · ∇)u′), (8)

where F (·) stands for space-time Fourier transform. As in resolvent analysis (presented in Supple-
mental Material [57]), this term is a convolution over all frequencies and wave numbers, which
renders an explicit expression difficult to obtain. A major difference compared to ν-resolvent
analysis is that it represents nonlinear interactions between smooth-in-time structures carrying
coherent wave contributions and does not include time-decorrelated turbulent fluctuations. In that
sense, its interpretation is closer to the forcing term in νt -resolvent analysis. We call the term (8)
wave-wave interactions. The contribution of turbulent noise is already taken into account in the
stochastic formulation.

We propose to treat the term (8) similarly to resolvent analysis and to model it as a Gaussian
white noise forcing term. The addition of a forcing term to Eq. (5) leads to⎡⎢⎢⎢⎢⎢⎣

−iω + iαUd + D̃(·) ∂U
∂y 0 iα

0 −iω + iαUd + D̃(·) 0 ∂·
∂y

0 0 −iω + iαUd + D̃(·) iβ

iα ∂·
∂y iβ 0

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝

ûα,β,ω

v̂α,β,ω

ŵα,β,ω

p̂α,β,ω

⎞⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎣
−(ξ̇α,β,ω )y

∂U
∂y + 1

Re 
(ξ̇α,β,ω )x

1
Re 
(ξ̇α,β,ω )y
1

Re 
(ξ̇α,β,ω )z

0

⎤⎥⎥⎥⎥⎦ + b(y)

⎛⎜⎜⎜⎜⎝
f̃ NL
x

f̃ NL
y

f̃ NL
z

0

⎞⎟⎟⎟⎟⎠. (9)
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The linear operator in the left-hand side of (9) can be written Ãα,β,q̄ − iωE. The parameter b(y) is
an amplitude parameter of the nonlinear forcings whose choice is based on the turbulent fluctuation
level observed in the data. Its choice is described in Sec. III D. The vector ( f̃ NL

x , f̃ NL
y , f̃ NL

z )T

carries independent standard centered Gaussian white noises. The above model will lead to forced
stochastic linear modes, referred to as FSLM.

In system (9), two stochastic right-hand-side terms come from distinct physical mechanisms: The
first term function of ξ̇α,β,ω is related to stochastic transport by incoherent small-scale turbulence,
while the second forcing term accounts for the nonlinear interactions between coherent structures.

C. Numerical computation of the forced stochastic linear modes formalism

In Tissot et al. [41], an ensemble of solutions are computed to obtain an empirical CSD matrix.
This procedure turns out to be more expensive than a SVD for small size problems (one-dimensional
in the y direction). We can note that for large-scale problems, advanced ensemble-based techniques
[61,62] or time-domain formulations [63] can be employed. We propose here to write FSLM as
an SVD problem. Starting from system (9) and similarly as in resolvent analysis (presented in the
Supplemental Material [57]), we define

L̃α,β,ω = H(Ãα,β,q̄ − iωE)−1B̃, (10)

with

H =

⎛⎜⎜⎝
I 0 0 0

0 I 0 0

0 0 I 0

⎞⎟⎟⎠, B̃ =

⎡⎢⎢⎢⎢⎣
−(Φσ )yDσ ∂U

∂y + 1
Re 
(Φσ )xDσ b(y)I 0 0

1
Re
(Φσ )yDσ 0 b(y)I 0
1

Re 
(Φσ )zDσ 0 0 b(y)I

0 0 0 0

⎤⎥⎥⎥⎥⎦,

(11)
with I the identity matrix. The output operator H specifies that the modes will be optimal in terms
of kinetic energy. The input operator B̃ maps the vector of random variables

f̃ = (η1, . . . , ηNσ
, f̃ NL

x , f̃ NL
y , f̃ NL

z )T

to the forcing space of the linearized system. The matrix (Φσ ) j , for j = {x, y, z}, gathers in columns
(�σ

k ) j for k ∈ [1, Nσ ], an expansion basis of the noise dξα,β,ω = ∑Nσ

k=1 ck �σ
k ηk which will be

specified in Sec. III D, with ηk standard centered Gaussian white noises. The diagonal matrix Dσ

contains the associated amplitude coefficients ck .
We perform the singular value decomposition

W
1
2 H(Ãα,β,q̄ − iωE)−1B̃W

− 1
2

f = UFSLM�FSLMV∗
FSLM, (12)

with

W f =
(
I 0

0 W

)
. (13)

As a final step, FSLM are defined by �FSLM
i = W− 1

2 V FSLM,i, where the first mode is the predicted
coherent structure and the higher-order modes are used to define the noise at the next iteration (see
Sec. III D). Moreover, as in resolvent analysis, an estimation of the CSD matrix can be obtained by
S = L̃α,β,ωL̃∗

α,β,ω.

D. Choice of parameters in FSLM

We recall that we focus on coherent structures perturbed by turbulent flows in the buffer and
logarithmic layers at scales where production exceeds dissipation, for which, therefore, a forward
energy cascade is expected [35]. In the logarithmic layer, we focus on energetic scales, and as
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highlighted in Jiménez [64], dissipation takes place at a smaller scale. We expect in this region
an energy cascade draining energy from large to small scales through an interscale energy flux.
For large energetic scales in the logarithmic layer, we expect as well a larger influence of incoherent
turbulence onto the wave compared to the buffer layer; we aim at modeling such influence by FSLM.

The two-point statistics of the noise, carried by σ, have to represent time decorrelated turbulent
velocity field fluctuations. Its definition is an open question and relies on a priori knowledge of the
fluctuating velocity field. Our strategy is to use few parameters, preferably with quantities available
in standard simulation data or well documented in the literature. Moreover, we need to respect the
ground hypothesis that the noise is decorrelated from resolved coherent field (at the large-scale
characteristic timescale).

We propose to set the variance tensor, a, defined in Eq. (3), from root-mean-square (RMS)
velocity profiles, and variances of velocity fluctuations, which are quantities often available in
databases accompanying the mean flow profile:

a(y) = τs

⎡⎢⎣ 〈u′2(y)〉 〈u′(y)v′(y)〉 0

〈u′(y)v′(y)〉 〈v′2(y)〉 0

0 0 〈w′2(y)〉

⎤⎥⎦, (14)

where 〈·〉 denotes average in time and in the homogeneous directions. The underlying hypothesis
to use RMS profiles is that the contribution of the single coherent wave we are trying to predict is
small compared to the whole time-domain solution. Thus, the RMS, which contains all contributions
of the turbulent velocity field is a fair estimate of the turbulence which impacts the wave. The
decorrelation time τs, necessary for dimensional consistency, represents the timescale necessary
for the Brownian motion to perform mixing by stochastic diffusion. This parameter is crucial for
obtaining relevant results since it controls the level of diffusion. The timescale τs should represent,
at a given wavelength, the timescale necessary for the turbulence to affect the wave by a transport
mechanism. For this, we rely on an inertial scaling τs = τ0(l/l0)

2
3 proposed in Ref. [65], assuming

that the wavelength lies within the inertial range of an energy cascade under Kolmogorov hypotheses
and that this turbulent field is incoherent with the wave solution. The time τ0 = l0/U0 is the outer
timescale, l0 = 2 is the channel height, U0 is the velocity averaged over the wall-normal direction;
the scale of the wave is l = 2π/

√
k2

x + k2
z with kx = 2π/λx and kz = 2π/λz [10]. This scaling is

valid for scales such that l < l0. We do not expect our scaling to be valid for l larger than the channel
height leading to structures living in the outer region. It can be noticed that the structure of the model
allows a scale-dependent stochastic diffusion through the decorrelation time τs, which is set here by
a physical scaling. In Gupta et al. [38], a similar scale dependence of the eddy diffusion has been
observed to be necessary to produce accurate results.

The noise dξα,β,ω is the space-time Fourier transform of σdBt . It is white in time, and its
covariance is the CSD of σdBt . It should match the Fourier transform of the cross-correlation tensor
of σdBt , whose diagonal is the variance tensor a. Indeed, the cross-spectral density of σdBt is

E
(
dξi

α,β,ω

(
dξ

j
α,β,ω

)H) = F
(
E

(
(σdBt )

i
x(σdBt ′ ) j

x′
))

, (15)

and we recall the link with the variance tensor a in Eq. (3). As a consequence, defining the noise
based on an expansion onto SPOD modes �SPOD

k associated with the eigenvalues λSPOD
k ,

dξα,β,ω =
∞∑

k=1

√
λSPOD

k �SPOD
k ηk, (16)

with ηk standard centered Gaussian white noise variables, is consistent with the definition of a in
Eq. (14), since SPOD modes are eigenfunctions of the CSD matrix of the turbulent fluctuation. This
definition has two main issues. The first is the requirement of a fine description of the turbulent
velocity field, since SPOD modes are required. Instead, we aim at constructing a model with a
reduced quantity of data. The second issue is that in definition (16), the FSLM coherent structure
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Algorithm 1. Iterative procedure for FSLM.

Compute ν-resolvent: �→ (sν−resolvent,Φν−resolvent )

�
σ,(1)
k ← �ν−resolvent

k+1 , c(1)
k = sν−resolvent

k+1

√
λSPOD

1

sν−resolvent
1

, S(1) ← ∑Nσ

k=0

(
c(1)

k

)2
�

σ,(1)
k �

σ,(1)
k

∗
;

n ← 1;
while not converged do

Compute FSLM by SVD procedure (sec. III C): �→ (L̃α,β,ω, λFSLM,ΦFSLM);
S(n+1) ← L̃α,β,ωL̃∗

α,β,ω;

�
σ,(n+1)
k ← �FSLM

k+1 , c(n+1)
k ←

√
λFSLM

k+1 ;

if ‖S(n+1) − S(n)‖F /‖S(1)‖F < ε then
converged ← True;

end
end

would be necessarily correlated with a part of the noise, since it would be spanned by the full
SPOD basis. Ultimately, we would like to subtract it from the noise basis, but only at the considered
frequency-wave-number couple to not invalidate our definition (14).

To address these issues, we propose to relax the strong consistency between Eq. (16) and the
diffusion tensor a Eq. (14). Instead, we ensure that the noise is decorrelated from the wave by
modifying the definition of the noise. First, we express it as an expansion onto an orthonormal basis

dξα,β,ω =
Nσ∑

k=1

ck �σ
k ηk . (17)

We then propose a first guess by defining �σ
k = �ν−resolvent

k+1 and ck =
√
λSPOD

1 sν−resolvent
k+1 /sν−resolvent

1 ,
with k ∈ [1, . . . , Nσ ], (sν−resolvent

k ,�ν−resolvent
k ) the kth singular value and optimal response mode of

ν-resolvent analysis and λSPOD
1 the first SPOD eigenvalue. This guess rescales the noise spanned by

ν-resolvent suboptimal modes in such a way that the energy of the first mode matches the first SPOD
mode. Doing this, we define an orthonormal family of vectors orthogonal to the dominant resolvent
mode. The amplitude rescaling aims at obtaining a rough approximate consistency between σ and
the definition of a by the RMS profiles. The use of resolvent modes as a first guess frees the modeling
from the data. Only the first SPOD eigenvalue is required, but this single parameter can be replaced
by a free parameter fixed by some physical knowledge to obtain a full model-based procedure, in
which no data is required.

In a second step, we correct the definition of (17) in order to ensure that the noise is decorrelated
from the first FSLM. Once expressed in the Fourier domain, the time decorrelation becomes a
decorrelation between ensemble realizations of the Fourier component. As explained in Towne et al.
[58] for the SPOD modes, since the CSD matrix has been diagonalized, the contribution of separate
eigenfunctions are decorrelated. We then construct a noise spanned by the eigenfunctions of the

CSD matrix excluding the first FSLM. For that, we choose �σ
k = �FSLM

k+1 and ck =
√
λFSLM

k+1 , with

k ∈ [1, . . . , Nσ ], where (λFSLM
k ,�FSLM

k ) are eigenelements of CSD matrix S of FSLM solutions.
The procedure is cyclic since high-order modes of FSLM are mandatory to predict the leading
FSLM mode, but it is possible to compute it iteratively through a fixed point procedure initialized
with the first guess, as summarized in Algorithm 1. In practice, calculations converge quickly in few
(less than 10) iterations with a relative tolerance on the Frobenius norm ‖ · ‖F of the CSD equal to
ε = 10−3. An example of convergence is shown in the Supplemental Material [57]. It can be noticed
in particular that it converges toward a solution where the energy decay of the spectrum is similar
to SPOD (see Sec. IV D), which does not invalidate the consistency between noise and stochastic
diffusion. Moreover, the decay in the singular values is moderately fast suggesting an incoherent
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TABLE I. Numerical parameters for the simulations.

Reτ Re Nx Ny Nz 
x+ 
y+
min 
y+

max 
z+ 
t+

180 (179) 2800 192 129 192 11.7 5.4 × 10−2 4.4 5.9 5.7
550 (543) 10 000 384 257 384 8.9 4.1 × 10−2 6.7 4.4 3.0
1000 (996) 20 000 484 385 484 12.9 3.3 × 10−2 8.2 6.5 2.5

(by construction) contribution that is sufficiently small to be considered as a noise but too large to
be neglected.

To summarize, the proposed procedure uses the RMS profiles to define the diffusion tensor
a, which is the one defined in the time-domain in Eq. (3). The noise dξα,β,ω, the space-time
Fourier transform of σdBt , is expanded on an orthonormal basis, which is estimated by an iterative
procedure ensuring decorrelation between the noise and the solution. An initial guess is defined by
resolvent modes rescaled using the first SPOD eigenvalue in order to obtain consistency with the
definition of a with a minimum of data.

Finally, in FSLM, the nonlinear forcing amplitude has to be given. In order to obtain
a physically relevant order of magnitude, the nonlinear forcing amplitude b(y) is chosen as
(
√
λSPOD

1 /sν−resolvent
1 )[TKE(y)/max(TKE)], with TKE(y) = 〈u′2〉 + 〈v′2〉 + 〈w′2〉 the turbulent ki-

netic energy. This scaling allows us to define a profile of nonlinear forcing in the wall-normal
direction consistent with the turbulent activity and such that the response of the deterministic
linearized system (without eddy viscosity) to this forcing has an amplitude comparable with SPOD.

IV. APPLICATION TO TURBULENT CHANNEL FLOW

A. Numerical simulation

Databases of direct numerical simulation of turbulent channels were obtained with the pseu-
dospectral code Channelflow 2.0 [66]. Periodic boundary conditions are enforced in the streamwise
(x) and spanwise (z) directions and Chebyshev polynomials are used in the wall-normal direction
(y). Parameters are given in Table I and additional numerical details, including validation results, can
be found in Amaral et al. [24]. Mean flow profiles for the three Reynolds numbers and RMS profiles
at Reτ = 1000 are presented in Fig. 1. Results are presented using nondimensional quantities using
viscous (wall) scaling, denoted with a + superscript.

SPOD has been computed as a reference to which νt -resolvent analysis and FSLM will
be compared. They represent the most energetic structure for a given frequency-wave-number
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(a) Mean profiles for the three Reynolds numbers.
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FIG. 1. Mean and root-mean-square profiles. Gray areas indicate the spatial supports of W1 and W3.
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Supplementary Material [57] for W2 and W4).
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FIG. 2. Effect of the drift velocity.

combination, which can be meaningfully compared to most amplified responses of resolvent and
FSLM. Complementary numerical details are given in Supplemental Material [57].

Resolvent modes are known [19,61] to show large responses around the critical layer y+
c , i.e.,

where the phase speed c+ = λ+
x /λ+

t matches the mean flow U +(y+
c ). SPOD modes follow the

same trend, which is consistent with the fact that these modes are equivalent if the nonlinear term
behaves as a Gaussian white noise [67]. Two waves have been selected: one denoted W1 with
(λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100), typical of the streaks structures in the buffer layer chosen at the
lowest Reynolds number Reτ = 180, and one denoted W3 with (λ+

x , λ+
z , λ+

t ) ≈ (2000, 500, 100),
evolving within the logarithmic layer at the highest Reynolds number Reτ = 1000. In Supplemental
Material [57], numerical details are presented. Moreover, the robustness of the method is shown by
varying Reynolds number for W1, and two other waves (W2 and W4) are presented in order to vary
the wall distance of the wave spatial support. As in Tissot et al. [41] we consider modes that are odd
in u and w (and thus even in v) around the channel centerline. This has been performed by enforcing
symmetry in the operators Lα,βω, H, B̃.

The spatial supports of the waves W1 and W3 are reported in Fig. 1. In Fig. 2(a), the drift
velocity (in wall units) associated with W1 to W4 are displayed at Reτ = 1000. It shows that the
corrective drift − 1

2∂axy/∂y plays essentially a role in the buffer region. Since the variance tensor a
is defined based on RMS profiles in Eq. (14), the drift velocity accounts for the effective transport
induced by the wall-normal variations of 〈u′(y)v′(y)〉. In the buffer region, the magnitude of 〈u′v′〉
(with negative values) increases with the wall distance, and this inhomogeneity tends to induce a
positive streamwise transport velocity, which corresponds to the corrective drift term − 1

2∂axy/∂y.
This effective transport by the turbulent fluctuations is taken into account in the proposed linearized
model and does not appear explicitly in an eddy-viscosity model. This relevance of the drift velocity
in the buffer region is in line with the observations and modeling of Pinier et al. [50]. Additionally,
we can see that with our definition, the effect of drift velocity is more pronounced for waves evolving
at higher wall-normal distance due to larger decorrelation times τs. As a matter of fact, for such long
waves there is a more substantial contribution of the stochastic transport, which occurs with a longer
decorrelation time.

B. Buffer layer

In the buffer layer, we present the results at Reτ = 180, and complementary results at Reτ = 550
and Reτ = 1000 are given in the Supplemental Material [57]. Figure 3(a) shows a velocity field
cross section of the SPOD for W1 (λ+

x = 1124, λ+
z = 102, λ+

t = 100). It shows a typical streaky
structure of u with streamwise vortices (rolls), which highlights the lift-up mechanism: In regions
of high streamwise velocity high-speed streak are emerging. They are associated with negative
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FIG. 3. Reconstructions of W1 at Reτ = 180. Colors are streamwise velocities, arrows are in-plane velocity
fields.

v components, which transport fluid with high streamwise velocity to a region with lower mean
flow; the opposite happens for low-speed streaks, which are associated with positive v components.
Predictions by ν-resolvent and νt -resolvent analysis are shown in Figs. 3(b) and 3(c), respectively.
We can see a relevant prediction, with an improvement when eddy viscosity is added. This is
consistent with Morra et al. [32]. Figure 3(d) shows the solution of the proposed stochastic model
but omitting the nonlinear forcing (SLM). It can be seen that the streaks are well predicted, but
the rolls are absent. However, taking into account wave-wave interactions by a nonlinear forcing
(FSLM) enables us to recover the rolls and to obtain accurate predictions. This can be explained by
the fact that stochastic transport models the effect of the incoherent part of the velocity field, thus
leading to good predictions of the u profiles. Since near-wall streamwise vortices are thought to arise
from a nonlinear interaction of coherent structures [5], a nonlinear forcing is mandatory to predict
them. Resolvent analysis with eddy viscosity leads to good predictions as it takes into account this
nonlinear forcing and incorporates eddy diffusion. These predictions are significantly enhanced by
the stochastic model since it explicitly modifies lift-up by incoherent turbulent motions through
three complementary terms: the transport by the noise, a diffusion tensor with nonzero off-diagonal
terms and a drift velocity active in the buffer region [41].

Profiles of power spectral density (PSD) of the three velocity components are shown in Fig. 4.
They confirm that streamwise velocity (u) profiles are similarly captured by νt -resolvent and by
SLM. The agreement of FSLM with SPOD data is significantly improved. Moreover, the streamwise
vortices signing on the (v, w) profiles are not captured by SLM but strongly intensified in FSLM.
The wall-normal velocity (v) is especially affected by the stochastic transport leading to the best
agreement with SPOD.

To demonstrate the robustness of the procedure, buffer layer modes at other Reynolds numbers
are shown in Supplemental Material [57]. Despite a slight overall deterioration of agreement
between all models and SPOD when the Reynolds number increases, the trend is maintained and
FSLM shows systematically a better agreement.

C. Logarithmic layer

We now select a wave named W3 evolving within the logarithmic layer by setting the phase speed
c+ = 18.1 associated with a critical level y+

c = 180. The wave-number (λ+
x = 2087, λ+

z = 522) has

033904-12



INPUT-OUTPUT ANALYSIS OF THE STOCHASTIC …

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 10 100

|Φ
u
|

y

ν
νt

(a) Streamwise velocity |û|2.
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FIG. 4. PSD velocity profiles of W1 at Reτ = 180.

been chosen in the energy peak (taken from Ref. [24]) of the premultiplied powerspectra of the
streamwise velocity. It can be extracted by SPOD, as shown in Fig. 5(a). The ν-resolvent analysis
[Fig. 5(b)] extracts typical critical layer modes, with a narrow spatial support located at the critical
layer, i.e., at the wall-normal position y+

c where the phase speed c+ matches the mean velocity.
Incorporating eddy viscosity [Fig. 5(c)] leads to wider spatial support, more similar to SPOD modes,
which is again consistent with previous studies [32]. However, there is room for improvements,
since SPOD modes show a structure that peaks further from the wall than what is predicted by
νt -resolvent. FSLM in Fig. 5(d) improves significantly this prediction with the streamwise velocity
structure further from the wall and a more accurate shape of the rolls.

Figure 6 showing the PSD profiles highlights quantitatively this improvement. Concerning the u
component, Fig. 6(a) shows that differently from the other models, the spatial support is very well
captured. As for the wall-normal v velocity, the shape of the profile is better predicted but with a
high relative amplitude. The spanwise w velocity is better captured as well.

The lower accuracy of νt -resolvent predictions can be understood by the fact that the effect
of the incoherent turbulent field on the wave is modelled only by a diffusive mechanism. On the
contrary, FSLM incorporates through stochastic transport some driving mechanisms induced by the
incoherent motions existing at the same scale. The success of FSLM suggests that in the logarithmic
region, where the turbulence is developed, taking into account the stochastic nature of the log-layer
structures is central to perform accurate predictions.

In addition, profiles of SLM, i.e., neglecting the nonlinear forcing, are shown to produce poor
predictions. This suggests again that coherent nonlinear wave-wave interactions are crucial for self-
sustaining process for log-layer. It corroborates hypotheses in Flores and Jiménez [8] and Cossu
and Hwang [12] that a coherent large-scale self-sustaining process is in action for large log-layer
structures.
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FIG. 5. Reconstructions of W3 at Reτ = 1000.

Frequency-wave-number space has been swept, and colinearity metrics

θmodel
α,β,ω =

∣∣(�model
1,α,β,ω,�SPOD

1,α,β,ω

)∣∣∥∥�model
1,α,β,ω

∥∥∥∥�SPOD
1,α,β,ω

∥∥ , (18)

have been computed (metric used for instance in Ref. [68]). This metric is a normalized inner
product between the dominant SPOD mode �SPOD

1,α,β,ω and the mode issued from a given model
�model

1,α,β,ω. A value of 1 means exact collinearity between modes, while 0 happens when the modes

are orthogonal. Then, we compute the metric γα,β,ω = log(θFSLM
α,β,ω /θ

νt -resolvent
α,β,ω ), which represents

the improvement (γ > 0) or deterioration (γ < 0) of colinearity with SPOD compared to the
νt -resolvent model. Figure 7 shows the value of γα,β,ω at four critical layer positions as a function
of streamwise and spanwise wave numbers. We can see that in the buffer and logarithmic layer, a
wide range of streamwise elongated structures are improved with FSLM compared to νt -resolvent
analysis. The improvement is more pronounced further from the wall since agreement is more
difficult to obtain. Complementary maps of θmodel

α,β,ω are given in the Supplemental Material [57].
Isocontour of the premultiplied first SPOD eigenvalue αβλSPOD

1 are superimposed and show that
deterioration happens at scales where less energy is present. Finally, in Fig. 7(d) almost in the outer
region, we can see that FSLM provide slightly worse performances than νt -resolvent for large λx

and λz. We explain this discrepancy by the choice of decorrelation time τs, which is designed based
on inertial-range scalings (see Sec. III D). These maps prove a wide range of validity of the proposed
model.
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FIG. 6. PSD velocity profiles of W3 at Reτ = 1000.

D. Eigenspectrum

In Fig. 8, we compare the eigenvalues λFSLM of the FSLM model, i.e., the eigenvalues of S(n)

once the iterative procedure is converged, with the SPOD eigenvalues. It is performed for the two
examples W 1 at Reτ = 550 and W 3 at Reτ = 1000. As a reference, we show the spectrum of ν-
resolvent amplification energy gain (σ ν−resolvent )2, which constitutes the initial guess of the iterative
procedure. It can be seen that even if the initial guess has a spectrum with a decay that is too fast,
the iterative procedure succeeds to produce a rate of energy decay similar to SPOD. We recall that
these values have not been informed in the model, and it is only a consequence of the constraint
that the noise is decorrelated from the FSLM coherent structure. We recall that a noise based on
an expansion onto SPOD ensures consistency between the noise expressed in the Fourier domain
and the definition given to the stochastic diffusion using RMS profiles. The fact that we recover
a spectrum similar to SPOD suggests that the incoherent field spanned by suboptimal is relevant,
despite the relaxation of the strong consistency between SPOD and RMS profile. Moreover, the
moderate decay in the spectrum indicates that, after convergence, the incoherent part cannot be
neglected.

As an indication, we have also shown in Fig. 8 the energy gain spectrum of νt -resolvent analysis.
Consistently with the observations in Ref. [36], in the energetic scales of the buffer layer the energy
gain of suboptimal modes of νt -resolvent analysis decays as fast as in ν-resolvent analysis, with a
strongly low-rank behavior. However, in the log-layer, adding eddy-viscosity reduces this low-rank
behavior, and we can see in Fig. 8 that it rejoins the decay rate of SPOD. FSLM has a decay rate of
the spectrum close to SPOD in both cases.

As a caveat, we recall that the comparison is made with a specific eddy viscosity model, which
has been adjusted in Del Álamo and Jiménez [69] to match the numerical mean flow at Reτ = 2000.
It may be highlighted that this eddy viscosity is not necessarily optimal for all Reynolds numbers.
Moreover, the eddy viscosity designed to match the mean flow is also not necessarily optimal to
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FIG. 7. Metric γα,β,ω = log(θFSLM/θνt -res ) of improvement (>0) or deterioration (<0) of collinearity be-
tween FSLM and SPOD compared to νt -resolvent analysis as a function of λx, λz for various critical layer
positions. Isocontours are the premultiplied value of the first SPOD αβλSPOD

1 .

predict a coherent structure at a given wave number–frequency couple. There are, indeed, some
indications in the literature that the eddy viscosity should be dependent on the wave number [36,38].
On the other hand, the FSLM incorporates as well a given amount of data, but no optimization
procedure to match data. A fully consistent comparison is not obvious, and we keep in mind that
some amount of improvement could be obtained as well in νt -resolvent analysis by optimizing an
eddy viscosity parameter. The goal is here more to highlight the benefit of stochastic modeling under
location uncertanty than putting models in competition.

V. MODELLING RECOMMENDATIONS

The proposed formalism brings some modeling tools which address some limitations of the
resolvent analysis framework. The nonlinear term, assumed to act as an additive Gaussian white

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6 7 8 9

λ
λ

0 λ
0

ν σ2

νt σ2

(a) W1 at Reτ = 550.

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9

λ
λ

0 λ
0

ν σ2

νt σ2

(b) W3 at Reτ = 1000.

FIG. 8. Comparison of the eigenvalues. SPOD eigenvalues λSPOD, ν-resolvent amplification energy gain
(σ ν−resolvent )2 and FSLM spectrum λFSLM (eigenvalues of S(n) once converged). The spectra have been normal-
ized by the first SPOD eigenvalue.
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noise in resolvent analysis, is constrained in SLM to be issued from a transport mechanism. This can
be interpreted in the resolvent framework as playing the role of coloring the additive forcing term.
Actually, it is more than this, since it takes explicitly into account inhomogeneity and anisotropy of
the turbulent fluctuations. Besides, as explored for instance in Gupta et al. [38], there is often—on
the basis for instance of the fluctuation dissipation theorem—the requirement to model a random
term which brings energy to the system and a diffusion term which dissipates it. The stochastic
framework under location uncertainty provides by construction an energy balance between these
two mechanisms. For all these reasons, despite its more complex structure, stochastic modeling
under location uncertainty may be relevant in flow configurations where resolvent analysis requires
finer modeling.

In channel flows, ν-resolvent is accurate only close to the wall for elongated structures (see the
Supplemental Material [57] for an overview of the metric θα,βγ ). Adding eddy viscosity becomes
necessary at higher wall-normal locations. In general flow configurations, we do not have system-
atically a model of eddy viscosity. In such a case a Reynolds-averaged Navier-Stokes (RANS)
calculation, which requires a closure as well, allows us to obtain eddy diffusion, as performed for
instance in Pickering et al. [70]. In the proposed formalism, the stochastic diffusion is deduced
from some knowledge of the small-scale statistics, expressed conveniently in terms of velocity
fluctuations.

In the present paper, we add the contribution of time-coherent nonlinear interactions. In flows
where the main effect lies in small-scale turbulence, the forcing term may be unnecessary. Dedicated
studies should be performed to answer this question. However, the nonlinear forcing term appears
to be important when nonlinearities arise from interactions between time-coherent structures, such
as in wall-bounded flows.

SLM and FSLM are characterized by a modeling degree of freedom through the choice of the
parameters (ū, σ, a, τs). We note in particular the role of τs, which may be sensitive since it controls
the amplitude of the stochastic diffusion. These parameters can be determined based on data or
some physical scalings. The proposed strategy in Sec. III D is not universal but aims at minimizing
the data requirement. Another possible strategy, which is currently being pursued by our group, is
to obtain these parameters without data but only based on a RANS calculation. This can provide the
mean flow and also the decorrelation time through the typical time of turbulence dissipation. The
tensor σ can be expanded onto resolvent suboptimal modes, as in the present study.

VI. CONCLUSION

In this paper we have proposed a stochastic modeling strategy of coherent structures in turbulent
channel flows. By adding a stochastic nonlinear forcing term, we obtain a refinement of the model
proposed in Tissot et al. [41]. This forced model aims at improving consistency with the physical
processes involved in these flows while maintaining the mathematical assumptions of the stochastic
formulation. We used this model to explore the prediction abilities in the buffer and logarithmic
layers in channels with friction Reynolds number equal to 180, 550, and 1000.

A central ingredient is the incorporation of a nonlinear forcing representing coherent wave-
wave interactions, which are essential in the self-sustaining processes of wall-bounded turbulence
to generate streamwise vortices for large-scale structures in the logarithmic layer. In the model
predictions, such forcing is central in the buffer layer, consistently with the Hamilton-Kim-Waleffe
scenario [5]. Moreover, we have shown that it is also central for large-scale structures in the
logarithmic layer, which is in line with a large body of evidence in the literature supporting that
self-sustaining processes are in action in the logarithmic layer. In addition, the model predicts a
significant effect of incoherent turbulence on large log-layer structures, showing that it is crucial to
model this effect in order to obtain good predictions. The model that we propose takes into account
stochastic transport by this incoherent velocity field leading to an improvement compared to the
state-of-the-art νt -resolvent analysis. The present model requires a knowledge of the statistics of the
turbulent field, and there are some possible open directions concerning its specification.
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The modeling ingredients act on several physical mechanisms. First, the stochastic diffusion
induced by incoherent velocity field, unlike an eddy viscosity, has the shape of a full tensor with in
particular 〈u′v′〉 off-diagonal components, which are defined consistently with the RMS profiles. A
mean drift velocity takes into account the turbophoresis effect (effective transport from high to low
turbulence regions), which is active in the buffer layer. A stochastic term representing the lift-up
induced by the random incoherent velocity field is explicitly taken into account.

In addition, we have brought technical improvements by ensuring the decorrelation of the
incoherent component with the solution through an iterative procedure, and we have proposed an
efficient computation of FSLM by reformulating it as a singular value decomposition problem. With
these effects taken into account in the model, we obtained an agreement between model predictions
and turbulent fluctuations at various wall-normal positions.

In summary, the proposed model incorporates features of resolvent analysis, via the forcing
resulting from nonlinear wave-wave interactions, to the stochastic formalism introduced in our
previous work [41], combining hence the benefits of the two approaches. The stochastic framework
can be seen as a refined model of incoherent turbulence on large-scale structures, which not only
includes the standard additional diffusion present in eddy-viscosity models [70,71] but also involves
all aspects of stochastic transport at the lengthscale of interest. The study shows that FSLM seems
to carry advantageous features for reduced-order modeling of coherent structures in turbulent flows.
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[40] A. Zare, T. T. Georgiou, and M. R. Jovanović, Stochastic dynamical modeling of turbulent flows, Annu.

Rev. Control Robot. Auton. Syst. 3, 195 (2020).
[41] G. Tissot, A. V. G. Cavalieri, and E. Mémin, Stochastic linear modes in a turbulent channel flow, J. Fluid

Mech. 912, A51 (2021).

033904-19

https://doi.org/10.1017/S0022112005004295
https://doi.org/10.1017/S002211201000176X
https://doi.org/10.1017/jfm.2016.546
https://doi.org/10.1017/jfm.2019.747
https://doi.org/10.1017/jfm.2020.435
https://doi.org/10.1017/jfm.2019.854
https://doi.org/10.1017/jfm.2021.764
http://arxiv.org/abs/arXiv:2102.03839
https://doi.org/10.1017/jfm.2019.112
https://doi.org/10.1016/j.ijheatfluidflow.2020.108662
https://doi.org/10.1017/jfm.2016.331
https://doi.org/10.1017/S0022112072000679
https://doi.org/10.1017/S0022112010003629
https://doi.org/10.1017/jfm.2019.196
https://doi.org/10.1088/1742-6596/1522/1/012006
https://doi.org/10.1017/jfm.2020.802
https://doi.org/10.1017/jfm.2020.929
http://arxiv.org/abs/arXiv:2205.11216
https://doi.org/10.1017/jfm.2020.918
https://doi.org/10.1017/jfm.2021.671
https://doi.org/10.1017/jfm.2016.682
https://doi.org/10.1146/annurev-control-053018-023843
https://doi.org/10.1017/jfm.2020.1168


TISSOT, CAVALIERI, AND MÉMIN

[42] E. Mémin, Fluid flow dynamics under location uncertainty, Geophys. Astrophys. Fluid Dyn. 108, 119
(2014).

[43] P. Chandramouli, D. Heitz, S. Laizet, and E. Mémin, Coarse large-eddy simulations in a transitional wake
flow with flow models under location uncertainty, Comput. Fluids 168, 170 (2018).

[44] V. Resseguier, E. Mémin, and B. Chapron, Geophysical flows under location uncertainty, Part I: Random
transport and general models, Geophys. Astrophys. Fluid Dyn. 111, 149 (2017).

[45] V. Resseguier, E. Mémin, and B. Chapron, Geophysical flows under location uncertainty, Part II Quasi-
geostrophy and efficient ensemble spreading, Geophys. Astrophys. Fluid Dyn. 111, 177 (2017).

[46] V. Resseguier, E. Mémin, and B. Chapron, Geophysical flows under location uncertainty, Part III: SQG
and frontal dynamics under strong turbulence conditions, Geophys. Astrophys. Fluid Dyn. 111, 209
(2017).

[47] B. Chapron, P. Dérian, E. Mémin, and V. Resseguier, Large scale flows under location uncertainty: a
consistent stochastic framework, Q. J. R. Meteorol. Soc. 144, 251 (2018).

[48] W. Bauer, P. Chandramouli, B. Chapron, L. Li, and E. Mémin, Deciphering the role of small-scale
inhomogeneity on geophysical flow structuration: A stochastic approach, J. Phys. Oceanogr. 50, 983
(2020).

[49] W. Bauer, P. Chandramouli, L. Li, and E. Mémin, Stochastic representation of mesoscale eddy effects in
coarse-resolution barotropic models, Ocean Modell. 151, 101646 (2020).

[50] B. Pinier, E. Mémin, S. Laizet, and R. Lewandowski, A stochastic flow approach to model the mean
velocity profile of wall-bounded flows, Phys. Rev. E 99, 063101 (2019).

[51] Y. Yang and E. Mémin, High-resolution data assimilation through stochastic subgrid tensor and parameter
estimation from 4DEnVar, Tellus A 69, 1308772 (2017).

[52] Y. Yang and E. Mémin, Estimation of physical parameters under location uncertainty using an Ensemble2-
Expectation-Maximization algorithm, Q. J. R. Meteorol. Soc. 145, 418 (2019).

[53] P. Chandramouli, E. Mémin, and D. Heitz, 4D large scale variational data assimilation of a turbulent flow
with a dynamics error model, J. Comput. Phys. 412, 109446 (2020).

[54] V. Resseguier, E. Mémin, D. Heitz, and B. Chapron, Stochastic modelling and diffusion modes for proper
orthogonal decomposition models and small-scale flow analysis, J. Fluid Mech. 826, 888 (2017).

[55] V. Resseguier, A. M. Picard, E. Mémin, and B. Chapron, Quantifying truncation-related uncertainties in
unsteady fluid dynamics reduced order models, SIAM/ASA J. Uncert. Quantif. 9, 1152 (2021).

[56] M. Reeks, The transport of discrete particles in inhomogeneous turbulence, J. Aerosol Sci. 14, 729 (1983).
[57] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.8.033904 for

complementary results and numerical details.
[58] A. Towne, O. T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship

to dynamic mode decomposition and resolvent analysis, J. Fluid Mech. 847, 821 (2018).
[59] E. Yim, P. Meliga, and F. Gallaire, Self-consistent triple decomposition of the turbulent flow over a

backward-facing step under finite amplitude harmonic forcing, Proc. R. Soc. A. 475, 20190018 (2019).
[60] P. E. Plotter, Stochastic Integration and Differential Equation, Stochastic Modeling and Applied Proba-

bility, Vol. 21 (Springer-Verlag, Berlin, 2005).
[61] R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon, Model-based scaling of the streamwise energy

density in high-Reynolds-number turbulent channels, J. Fluid Mech. 734, 275 (2013).
[62] J. H. M. Ribeiro, C.-A. Yeh, and K. Taira, Randomized resolvent analysis, Phys. Rev. Fluids 5, 033902

(2020).
[63] E. Martini, D. Rodríguez, A. Towne, and A. V. G. Cavalieri, Efficient computation of global resolvent

modes, J. Fluid Mech. 919, A3 (2021).
[64] J. Jiménez, Near-wall turbulence, Phys. Fluids 25, 101302 (2013).
[65] S. Kadri Harouna and E. Mémin, Stochastic representation of the Reynolds transport theorem: revisiting

large-scale modeling, Comput. Fluids 156, 456 (2017).
[66] J. F. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, H. Schrobsdorff, M. Farano, A. F. Yesil, S. S.

Schütz, M. Culpo, and T. M. Schneider, 2019 Channelflow 2.0. Available at: https://www.channelflow.ch/.
[67] A. V. G. Cavalieri, P. Jordan, and L. Lesshafft, Wave-packet models for jet dynamics and sound radiation,

Appl. Mech. Rev. 71, 020802 (2019).

033904-20

https://doi.org/10.1080/03091929.2013.836190
https://doi.org/10.1016/j.compfluid.2018.04.001
https://doi.org/10.1080/03091929.2017.1310210
https://doi.org/10.1080/03091929.2017.1312101
https://doi.org/10.1080/03091929.2017.1312102
https://doi.org/10.1002/qj.3198
https://doi.org/10.1175/JPO-D-19-0164.1
https://doi.org/10.1016/j.ocemod.2020.101646
https://doi.org/10.1103/PhysRevE.99.063101
https://doi.org/10.1080/16000870.2017.1308772
https://doi.org/10.1002/qj.3438
https://doi.org/10.1016/j.jcp.2020.109446
https://doi.org/10.1017/jfm.2017.467
https://doi.org/10.1137/19M1354819
https://doi.org/10.1016/0021-8502(83)90055-1
http://link.aps.org/supplemental/10.1103/PhysRevFluids.8.033904
https://doi.org/10.1017/jfm.2018.283
https://doi.org/10.1098/rspa.2019.0018
https://doi.org/10.1017/jfm.2013.457
https://doi.org/10.1103/PhysRevFluids.5.033902
https://doi.org/10.1017/jfm.2021.364
https://doi.org/10.1063/1.4824988
https://doi.org/10.1016/j.compfluid.2017.08.017
https://www.channelflow.ch/
https://doi.org/10.1115/1.4042736


INPUT-OUTPUT ANALYSIS OF THE STOCHASTIC …

[68] A. V. G. Cavalieri, D. Rodríguez, P. Jordan, T. Colonius, and Y. Gervais, Wavepackets in the velocity field
of turbulent jets, J. Fluid Mech. 730, 559 (2013).

[69] J. C. Del Álamo and J. Jiménez, Linear energy amplification in turbulent channels, J. Fluid Mech. 559,
205 (2006).

[70] E. Pickering, G. Rigas, O. T. Schmidt, D. Sipp, and T. Colonius, Optimal eddy viscosity for resolvent-
based models of coherent structures in turbulent jets, J. Fluid Mech. 917, A29 (2021).

[71] C. Cossu, G. Pujals, and S. Depardon, Optimal transient growth and very large–scale structures in
turbulent boundary layers, J. Fluid Mech. 619, 79 (2009).

033904-21

https://doi.org/10.1017/jfm.2013.346
https://doi.org/10.1017/S0022112006000607
https://doi.org/10.1017/jfm.2021.232
https://doi.org/10.1017/S0022112008004370

