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Steady laminar flow over a blunt cone at 5◦ angle of attack has been computed at
Mach number 6 and unit Reynolds number Re∗

∞ = 2.079 × 107 m−1. The flow condi-
tions are selected to match the flight test conducted by China Aerodynamics Research
and Development Center at an altitude of 16 km where windward-side boundary-layer
transition was detected. In order to understand the underlying transition mechanisms,
we perform local and global stability analyses, focusing on linear and nonlinear stability
characteristics of Mack-mode instability which prevails in the windward side. The global
instability spectrum contains two distinct types of modes: few isolated eigenmodes (branch
D) lying in the vicinity of the windward ray, and an arc branch (branch S) of eigenmodes
in the outboard region. D modes originate in branch S and are considerably more unstable
than S modes, potentially causing an indented transition front. Nonlinear development
of a single symmetric D mode that inherently contains broadband oblique components
will inevitably trigger the fundamental resonance without additional perturbations, once
the mode temperature amplitude exceeds 10% of the free-stream value; moreover, the
combination resonance is subordinate to the fundamental resonance as the latter always
occurs prior to the former. The antisymmetric D mode is less amplified than the symmetric
counterpart, yet it is still able to rapidly broaden the azimuthal wave-number spectrum
through triad interactions among oblique components. In either case, the global primary
mode is found to act as a catalyst to promote rapid amplifications of certain oblique
components that ultimately lead to streaky structures in the vicinity of the windward
ray. The streaks in turn are significantly unstable to low-frequency waves that are likely
responsible for the final breakdown.
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I. INTRODUCTION

Boundary-layer transition is of great importance in vehicle designs, but has not yet been fully
understood. Since the pioneering work of Lees and Lin [1], stability of compressible boundary
layers has been extensively studied. For flows at low and moderate Mach numbers, the first Mack
mode with a wave angle of around 60◦ is dominant. For hypersonic flows, the second Mack mode
(abbreviated as Mack mode hereafter) is generally more unstable [2]. Mack mode is dominated by
the planar component for two-dimensional boundary layers, while its oblique counterpart prevails in
three-dimensional configurations [3]. The circular-base cone exposed at a nonzero angles of attack
(AoA) to oncoming hypersonic flows is a frequently used model to understand three-dimensional
boundary-layer transition. In this configuration, the azimuthal pressure gradient drives the fluid from
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the windward ray towards the leeward ray where low-momentum fluid is lifted up forming large-
scale streamwise vortices. Of particular interest is the boundary-layer instability in the windward
side where main heating happens and therefore it is most critical for the performance of the high-
speed vehicle.

Stability characteristics of the windward boundary layer were addressed mostly via one-
dimensional linear stability theories (LST and PSE2D) [4–8]. The previous results confirm
coexistence of the crossflow instability and the Mack-mode instability. One-dimensional stability
methodology assumes that eigenfunctions of instability modes are uniform (two dimensional)
or periodic in the azimuthal direction, which is not strictly valid in the windward side since
the boundary layer varies azimuthally. Relaxing the azimuthal homogeneity assumption, Paredes
et al. [9] adopted the BiGlobal approach to analyze the windward boundary layer of a hypersonic
yawed sharp cone under a typical wind-tunnel condition (with a nearly adiabatic wall condition).
They found a planar Mack mode peaking on the windward ray and oblique Mack modes peaking
at a certain distance from the windward ray. Nevertheless, the windward boundary-layer instability
is still unclear regarding the global eigenvalue spectrum and the streamwise evolution of global
modes.

When the Mack-mode amplitude grows to exceed a certain threshold (say 1% of free-stream
velocity), nonlinear interactions set in. As a result, the mean flow is distorted, harmonics emerge,
and other types of disturbances may be heavily amplified owing to parametric instabilities. For
an axisymmetric cone boundary layer under typical hypersonic wind-tunnel conditions, K-type or
fundamental breakdown [10,11] is demonstrated to be one of the dominant transition paths (see,
for example, [12,13], and works of Fasel’s group [14] and references therein). In this path, a planar
Mack mode, a pair of oblique modes at the same frequency as the Mack mode, and a streamwise-
vortex mode compose a fundamental resonance, resulting in longitudinal streaks in the flow field.
Moreover, combination resonance of a planar Mack mode, an (a pair of) oblique mode(s) with
different but close frequencies as the planar mode, and the difference and sum modes nonlinearly
generated by the former two, is an important spectral-broadening mechanism complementing the
fundamental resonance. In both types of resonances, the planar Mack mode plays a catalytic role in
promoting secondary modes [13]. In contrast, secondary instability computations conducted by Li
et al. [15] for one time instant during the ascent phase of the HIFiRE-1 flight test indicate that the
subharmonic resonance comprising of a planar Mack mode and a pair of subharmonic oblique waves
(with half-frequency of the Mack mode) is stronger than the fundamental resonance. However, as far
as the authors are concerned, secondary instability mechanisms of Mack modes have until now only
been identified for axisymmetric configurations. Whether they are still active in an essentially three-
dimensional boundary layer especially under a flight condition and, if so, which one is dominant,
are still unknown.

Oblique breakdown initiated by a pair of oblique waves (first mode, second modes, or entropy
disturbances) with equal but opposite wave angles is another relevant nonlinear transition mech-
anism for axisymmetric conical boundary layers [16,17]. The primary oblique waves generate a
steady mode with twice the spanwise wave number as the primary oblique wave [18]. The steady
mode then undergoes a transient growth process [19] and a subsequent exponential growth stage,
eventually becoming the dominant component preceding the transition. In the presence of crossflow,
the boundary layer prefers to instability waves with either positive or negative wave angles but not
both (see, for example, [20]). As a consequence, oblique breakdown can hardly be triggered in
the crossflow regions of three-dimensional configurations. Nonetheless, it is interesting to assess
whether oblique breakdown is relevant in the vicinity of symmetry planes (windward or leeward ray)
where crossflow is expected to be week. Experimental investigations into the windward boundary-
layer transition have been undertaken by many investigators, focusing on the parametric variations
of the transition front (see [22] for a comprehensive summary). For most cases, transition first occurs
along the leeward ray, and last appears along the windward ray, forming a V-like transition front
(see also [23] for further details). In contrast, an indented (W-like) transition front was detected
during the reentry phase of HIFiRE-1 flight test, that is, the maximum transition Reynolds number
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FIG. 1. Qualitative comparison between the transition front measured in a ground test and that detected
in the HIFiRE-1 flight test for the HIFiRE-1 cone model at nonzero angle of attacks. Figure adapted from
Stanfield et al. [21].

occurs about 30◦ to 80◦ away from the windward ray at moderate AoAs [21] as illustrated in
Fig. 1. The hypersonic flight test of a cone model carried out by China Aerodynamics Research
and Development Center (CARDC) also showed that the windward boundary-layer transition
first occurs in the vicinity of the windward ray rather than in the outboard region [24]. Similar
observations were also documented in several ground tests (e.g., [25,26]). Since these ground tests
and the flight tests were all conducted at low wall-to-adiabatic wall temperature ratios (below 0.3),
it is natural to speculate that the cold wall conditions may promote the windward transition through
enhancing the Mack-mode instability.

Because of much thinner boundary-layer thicknesses in the windward side and thus substan-
tially higher Mack-mode instability frequencies (generally larger than 500 kHz) than those of
the axisymmetric conical configurations under the same flow condition, quantitative experimental
measurements are very difficult. Likewise, such a high frequency corresponds to an extremely
small streamwise scale that requires prohibitive mesh sizes in numerical simulations. The first
computational work regarding the windward transition triggered by Mack-mode waves comes from
Yang [27]. Considering a trajectory point of the flight test conducted by CARDC, Yang carried out
direct numerical simulations modeling the nonlinear development of single-frequency Mack-mode
waves excited by azimuthally uniform blowing and suction. They found that the Mack-mode waves
propagating downstream are eventually confined in the vicinity of the windward ray. Later, Yang
et al. [28] simulated the spatial evolution of a nonlinear wave packet initiated by a short-duration
pulse on the windward ray. The wave packet features quasi-two-dimensional Mack-mode waves and
the ensuing streaky structures, favoring the fundamental breakdown scenario. However, albeit with
a total of 1.55 × 1011 grid points in the simulation, the transitional flow field was still underresolved,
especially in the azimuthal direction.

An alternative approach to investigate the windward boundary-layer transition is to use the
nonlinear parabolized stability equations (NPSE). The line-marching NPSE (NPSE2D) developed
by Bertolotti et al. [29] track the nonlinear development of disturbances along a line and have been
successfully applied in many essentially two-dimensional configurations [30]. The plane-marching
counterpart (NPSE3D), accounting for the azimuthal inhomogeneity of the base flow, was shown
to adequately predict the nonlinear evolution of the global modes in trailing vortices and (two-
dimensional) boundary layers [31,32]. Furthermore, the ability of PSE to probe effects of each term
of disturbance equation in isolation or in a combined manner can yield tremendous physical insight
into the transition dynamics. For instance, one can easily isolate the energy transfer pertaining to
linear operators from that associated with nonlinear terms.

In this paper, we attempt to investigate the Mack-mode instability on the windward surface of a
hypersonic yawed cone at nominally the same flow condition as used in Yang [27] via NPSE as well
as other stability analysis tools. As aforementioned above, previous theoretical studies on such a
configuration mostly considered local linear stability characteristics; little is known about the global
instability behaviors and nonlinear instability mechanisms. The aim of this study is thus twofold:
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first to fully reveal linear stability characteristics of Mack mode from the global point of view, and
second to understand how the Mack mode breaks down in a truly three-dimensional boundary layer
under a typical flight condition. This paper is organized as follows. The adopted numerical setup
and stability theories are introduced in Sec. II; linear and nonlinear stability analyses are carried out
in Sec. III; and finally, a summary and conclusions are offered in Sec. IV.

II. NUMERICAL SETUP AND STABILITY THEORIES

The numerical simulation and stability analysis are based on the equations of ideal gas flow
written in dimensionless form as

∂ρ

∂t
+ ∇ · (ρV ) = 0, (1)

ρ

[
∂V
∂t

+ (V · ∇)V
]

= −∇P + 1
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3
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3
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)
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(3)

where V = (U,V,W ) is the velocity vector, I the identity tensor, ρ the density, P the pressure, T the
temperature, Ma the Mach number, Re the Reynolds number, Pr = 0.7 the Prandtl number, γ = 1.4
the specific-heat coefficient, κ the thermal conductivity, μ the first coefficient of viscosity. The
reference values of velocity and temperature are the corresponding values at the free stream with the
subscript (·)∞. The reference value for pressure is ρ∞U 2

∞. The equation of state is p = ρT/(γ M2).
The Stokes’s law has been assumed and the viscosity coefficient is estimated by Sutherland’s law

μ = T 3/2 1 + Cs

T + Cs
(4)

with Cs = 110.4 K/T ∗
∞ for air in standard conditions. The dimensional variables are denoted with

the superscript (·)∗.

A. Flow configuration

The model currently being studied is a 7◦ half-angle blunt cone at 5◦ angle of attack. The model
is 900 mm long and has a nose radius of 5 mm. Flow conditions correspond to a Mach 6 flow at
an altitude of 16.0 km, that is, unit Reynolds number Re∗

∞ = 2.079 × 107 m−1, free-stream static
temperature T ∗

∞ = 216 K, and total temperature T ∗
0 = 1786 K. A wall boundary condition of T ∗

w =
500 K is also imposed, leading to the wall temperature ratio T ∗

w/T ∗
0 = 0.28. This wall temperature is

representative as measured in flight tests of conic models [7,33]. Although the wall temperatures in
the vicinity of the nose tip region are expected to be considerably higher in realistic flights, adopting
a constant value is a good approximation to the surface temperature downstream of the nose [7,33].
Moreover, the wall-temperature differences in the nose region are shown to have little effects on
boundary-layer stability [15,34]. The detailed flow configuration can be found in Fig. 2. All flow
quantities are nondimensionalized using the arbitrarily prescribed reference length L∗ = 0.0537 mm
(the boundary-layer scale at X ∗ = 60 mm), the free-stream velocity, density, and temperature.

B. Base flow calculations

The well-tested parallel computational fluid dynamics software OPENCFD, developed by Li
et al. [35], was used for the base flow calculations. The computations employ a hybrid strategy
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FIG. 2. Sketch of the flow configuration, laboratory, and body-oriented coordinates, and the conventional
(indented) transition front [blue dashed (solid) line]. The velocity components in the laboratory coordinates
(U,V,W ) and in the body-oriented coordinates (Uξ ,Vη,Wζ ) are also shown.

similar to that used by Fasel’s group (see, for example, [36,37]) and by Li et al. [38] in studying
hypersonic boundary-layer transition problems. This strategy includes two steps. First, the entire
flow field is computed using the finite-volume algorithm with a second-order accurate scheme. The
grid size is Nξ × Nη × Nζ = 1000 × 401 × 181, where Nξ , Nη, Nζ are the number of grid points in
the streamwise, wall-normal, and azimuthal direction, respectively. Then, the calculated steady flow
serves as inlet conditions for the high-order finite-difference calculation which is performed for a
smaller computational domain downstream of the nose tip (X ∗ ∈ [45 900] mm). The inviscid fluxes
are computed by using a seventh-order upwind finite-difference scheme, while the viscous fluxes are
discretized using a sixth-order central-difference scheme. The time integration is performed using a
third-order Runge-Kutta scheme. The grid size is Nξ × Nη × Nζ = 600 × 400 × 500, with the grid
distribution being illustrated in Figs. 3(a) and 3(b). The grid points in the streamwise direction are
uniformly distributed before X ∗ = 650 mm, followed by a buffer region where the grid spacings
are gradually increased towards the outlet. In the wall-normal direction, the grid is stretched so
that sufficient (at least 100) points are within the boundary layer, and is furthermore aligned with
the leading-edge shock to diminish the numerical oscillations from the shock layer. Thanks to the
azimuthal symmetry, only half part of the flow field is simulated. The grid points are equally spaced
for the windward side, while a total of 200 points are put in φ ∈ [0, 45]◦ of the leeward side where
streamwise vortices are expected to be present. Compared with previous DNS studies [9,39], this
grid resolution is sufficient for the purpose of the base flow calculation. The overall character of
the base flow is illustrated in Fig. 3(c). The angle of attack produces spanwise pressure gradients,
which induce cross flow in the cone side and a liftup of the low-momentum boundary-layer fluid at
the leeward ray, generating a large-scale mushroom structure. Circumferential variation of stream-
wise, crossflow, and wall-normal velocity profiles at X ∗ = 400 mm is shown in Figs. 4(a)–4(c),
respectively. Away from the windward ray (φ = 180◦), the boundary-layer thickness increases
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FIG. 3. Sketch of the grid distribution for the finite-difference calculation and of the flow field: (a) X ∗-Y ∗

plane, (b) Z∗-Y ∗ plane. In (a) and (b), every fifth point in the streamwise direction and every fourth point
in other two directions are shown. (c) Contours of wall pressure (Pw) and axial velocity (U ) at several axial
locations from X ∗ = 45 mm to X ∗ = 650 mm, with surface streamlines.
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(a) (b)

(d)(c)

FIG. 4. Azimuthal variations (φ : 180◦ �→ 60◦) of the base flow profiles at X ∗ = 400 mm. (a) Streamwise
velocity Uξ ; (b) wall-normal velocity Vη; (c) crossflow velocity Wζ ; (d) self-similarity in the streamwise
direction for the streamwise velocity at the windward ray and the side line for 350 mm < X ∗ < 700 mm
with the similarity variable η̄ ≡ √

3/2 Re∗
∞/X ∗ ∫ η∗

0 ρ̄ dη∗ [40].

continuously, the wall-normal velocity profile turns from negative to positive when entering the
leeward side, and the peak crossflow velocity increases from 0 to beyond 15% free-stream velocity.
As shown in Fig. 4(d), the self-similarity of the streamwise velocity profiles within the boundary
layer is evident along the windward ray for X ∗ > 350 mm, like the observation by Li et al. [4] in
the investigation of HIFiRE-1 configuration, and is still visible in the side region. This implies that
the entropy layer effects are negligibly small in the region of interest which is far downstream of the
nose region.

C. Stability theories

Below we will give a brief introduction to the formulations of different theoretical tools utilized
in this study, as summarized in Table I. Owing to the complexity of this problem, i.e., the inherent
three dimensionality of this configuration and the potential nonlinearity that is completely unknown
yet, we attempt to march steadily from a local to global perspective and at the same time from

TABLE I. Theoretical tools utilized in this study. The computational cost generally increases from top to
bottom.

Tools Linear/nonlinear Local/global Roles

LST Linear Local Quickly assess the primary instabilities
NPSE2D Nonlinear Local Explore the potential
Floquet analysis Mode resonance mechanisms
BiGlobal Linear Global Reveal the linear global stability
LPSE3D features and the streak instabilities
NPSE3D Nonlinear Global Study the nonlinear development and

breakdown process of global modes
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linear to nonlinear instabilities. Therefore, multiple theoretical tools were utilized in this study.
Based on the laminar base flow obtained by the direct numerical simulation, we first employ LST to
sketch the primary instabilities in the windward side of the blunt cone in an intuitive way, then use
BiGlobal and PSE3D to study the linear global stability characteristics for representative frequencies
at several axial stations, determining the most dangerous modes that likely trigger the transition.
The nonlinear development of these dangerous modes and potential mode resonance mechanisms
are then investigated in detail via local (one-dimensional) nonlinear stability theories (NPSE2D and
Floquet theory) first, if possible, and then the global nonlinear analysis (NPSE3D). The rationale
is that the existing frameworks of nonlinear transition mechanisms [10,11,18] are almost entirely
established based on local approaches, and the local stability analysis results along a representative
ray initiated from the nose tip of the blunt cone are supposed to shed light on the nonlinear transition
mechanisms in such a truly three-dimensional configuration. Different theoretical methods focus on
different aspects of this problem and are coupled in some ways. For instance, BiGlobal provides
the initial profiles for the PSE3D marching. Moreover, comparison among results of different tools
is made when possible to achieve a comprehensive description of transition mechanisms and more
convincing conclusions.

1. LST

In the formulation of one-dimensional linear stability theory (LST), the boundary layer is
assumed to be parallel in the streamwise direction (i.e., the boundary-layer thickness does not
change) and uniform in the azimuthal direction. The flow field can thus be decomposed as

q(ξ, η, ζ , t ) = q̄ + q′ = q̄(η) + q̂(η) exp(iαξ − inφ − iωt ) + c.c., (5)

where q ≡ (U,V, P, T,W )tr , q̄ denotes the basic states, q′ the perturbations, q̂ the shape function of
the disturbances, c.c. the complex conjugate. (U,V,W ) is the velocity vector, P is the pressure, and
T is the temperature. The streamwise and azimuthal coordinates ξ and ζ only act as parameters
in the base flow profiles. α represents the streamwise wave number, with the imaginary part
giving the growth rate. n is an integer denoting the azimuthal wave number around the conic surface.
The local wave angle � is defined as � ≡ arctan[n/αr(ξ )], r(ξ ) the local radius of the cone.
ω is the angular frequency with the corresponding dimensional frequency denoted by f ∗. After
substituting the above decompositions into the Navier-Stokes equations, subtracting the basic states
and neglecting the nonparallel and nonlinear terms, one obtains a nonlinear eigenvalue problem
about α, which is iteratively solved with help of Malik’s compact finite-difference scheme [41].
Note that effects of the azimuthal curvature and body divergence have been considered in LST.

2. BiGlobal

From the global point of view, the base flow is not necessarily uniform in the azimuthal direction,
and the perturbations can be written in a form as

q′(ξ, η, ζ , t ) = q̂(η, ζ ) exp(iαξ − iωt ) + c.c., (6)

which also leads to a nonlinear eigenvalue problem. By introducing an auxiliary vector q̃ = [q̂; αq̂],
the nonlinear eigenvalue problem becomes a linear two-dimensional eigenvalue problem (BiGlobal)
as

Aq̃ = αBq̃. (7)

The entries of the matrix operators A and B can be found in Chen et al. [20]. The calculation domain
covers half the cone surface, i.e., φ ∈ [0, 180]◦ . Symmetry or antisymmetry boundary conditions
are implemented at the windward ray (φ = 180◦) according to the mode symmetry, while Dirichlet
boundary conditions are forced for all the variables except for pressure at wall and infinity as well
as at the leeward ray (φ = 0◦). A sixth- and an eighth-order FD-q scheme [42] are used to discretize
the azimuthal and wall-normal direction, respectively. The eigenvalues are then determined by using
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Arnoldi’s method. Unless otherwise stated, the BiGlobal modes are resolved by 601 points in the
azimuthal direction and 101 points in the wall-normal direction. In particular, the azimuthal grid is
stretched so that each wavelength in the core region of an investigated mode contains at least 20
points. Such a grid system proves to accurately capture the global modes, as shown in Appendix B.

3. NPSE2D and NPSE3D

In order to relax the parallel-flow assumption made by the theories above (LST and BiGlobal),
one can parabolize the stability equations by assuming the flow quantities to be “weakly varying” in
the streamwise direction. This modifies LST and BiGlobal equations to the line-marching parabo-
lized stability equations (PSE2D) and the plane-marching parabolized stability equations (PSE3D),
respectively.

In the formulation of PSE2D, the disturbance is decomposed into a rapidly varying wavelike part
and a slowly varying shape function as follows:

q′(ξ, η, ζ , t ) =
∑
m,n

q̂mn(ξ, η) exp

(
i
∫ ξ

0
αmndξ − inφ − iωmt

)
+ c.c., (8)

where ω0 is the primary frequency; q̂mn is the shape function for the Fourier mode (m, n); and
αmn and ωm are, respectively, the associated streamwise (complex) wave number and frequency.
The shape function is assumed to be a slowly varying function of the streamwise coordinate so
that its second derivative with respect to ξ is negligible. Substitute Eq. (8) into the Navier-Stokes
equations and subtract the mean-flow equation to obtain the governing equations for the shape
functions of each mode (m, n) as

Lmnq̂mn + Mmn
∂ q̂mn

∂ξ
= Fmn, (9)

where Lmn and Mmn are linear operators discretized by the same schemes as used in LST, and their
entries can be found in Zhu et al. [43]. Fmn are the nonlinear forcings contributed by other modes.
This system of equations is parabolic and thus requires boundary and initial conditions. The initial
conditions are provided by the LST results. The boundary conditions read as

Ûmn, V̂mn, T̂mn,Ŵmn = 0 at η = 0 and ∞, (10)

which correspond to no-slip and no-temperature-fluctuation boundary conditions at the wall, and
vanishing temperature and velocity disturbances as η → ∞. The boundary conditions for density
amplitude function are implicitly fulfilled by the continuity equation at the boundaries. However,
for the mean-flow distortion (0,0), the infinity condition for the wall-normal velocity is replaced by

∂V̂00

∂η
= 0 at η = ∞, (11)

which accounts for the boundary-layer growth. Equations (9) are marched forward using the first-
order Euler backward scheme. The Vigneron technique is used to avoid instabilities caused by the
residual ellipticity [18]. To avoid the ambiguity in the ξ dependence between q̂ and α, a normalized
condition is used:∫

η

T̄

γ M2ρ̄
ρ̂† ∂ρ̂

∂ξ
+ ρ̄

(
Û † ∂Û

∂ξ
+ V̂ † ∂V̂

∂ξ
+ Ŵ † ∂Ŵ

∂ξ

)
+ ρ̄T̂ †∂T̂ /∂ξ

γ (γ − 1)M2T̄
dη = 0, (12)

where the † symbol denotes the complex conjugate.
Similarly, in the PSE3D formulation, the infinitesimal perturbation takes the form [31]

q′(ξ, η, ζ , t ) =
∑

m

q̂m(ξ, η, ζ ) exp

(
i
∫

ξ

αm(ξ )dξ − iωmt

)
+ c.c., (13)
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where ∂2q̂m/∂ξ 2 	 1. The governing equations for each component read as

Lmq̂m + Mm
∂ q̂m

∂ξ
= Fm, (14)

where Lm and Mm are linear operators discretized by the same schemes as used in BiGlobal,
and their entries can be found in Chen et al. [20]. Fm denote the nonlinear terms contributed
by other components. With the initial profiles provided by BiGlobal, the streamwise evolution of
perturbations is adequately resolved using the first-order backward Euler method. Similar boundary
and normalized conditions with PSE2D are used. The NPSE3D code is verified against the NPSE2D
results for a two-dimensional configuration (see Appendix A).

When neglecting the right-hand-side nonlinear terms, PSE reduce to linear equations. Hereafter,
the linear and nonlinear forms of PSE are referred to LPSE and NPSE, respectively.

4. Floquet analysis

In the context of one-dimensional stability analysis, Floquet theory is well known to be able
to adequately describe the behaviors of the secondary instabilities in the parametric-resonance
stage [10,13,44]. In the parametric-resonance stage, the base flow q̄p at one streamwise location is
the undisturbed laminar flow plus Mack mode, the mean flow distortion (MFD), and the harmonics
as

q̄p = q̄(η) + q̂Mack(η) exp(iαξ − iωt ) + q̂MFD(η) + harmonics + c.c. (15)

According to Floquet theory [10], the quasiperiodic base flow given by Eq, (15) can support three-
dimensional disturbances for a given azimuthal wave number n as follows:

q̂s = exp[γ ξ − inφ + σd (iαξ − iωt )]
∞∑

m=−∞
q̂m(η) exp[m(iαξ − iωt )] + c.c., (16)

where γ is the characteristic exponent with its real part denoting the growth rate; σd is a detuning
parameter that distinguishes the various types of secondary instabilities. The fundamental resonance
corresponds to σd = 0. The subharmonic resonance is associated with the case of σd = 0.5. For
0 < σd < 0.5, the secondary waves are called combination resonance modes (or detuned modes).
Since amplitude of q̂m generally decays rapidly with m, practical calculations usually need to retain
three terms in the solution as

q̂s = eγ ξ−inφ+σd (iαξ−iωt )(q̂−1(η)e−(iαξ−iωt ) + q̂0(η) + q̂1(η)eiαξ−iωt ) + c.c. (17)

In the fundamental resonance case (σd = 0), the first and third terms of Eq. (17) are referred to as
oblique fundamental modes, and the second term is the streamwise-vortex (or difference) mode.
In the combination resonance case (0 < σd < 0.5), these three terms are referred to as the side-
band, difference, and sum modes, respectively. For the sake of simplicity, we refer to the side-band,
difference, and sum modes as combination modes when they are discussed as a whole.

Substituting Eqs. (15) and (17) into the Navier-Stokes equations, neglecting the nonparallel
effects and the high-order terms of the disturbances, yield an eigenvalue problem of the form

H[q̂−1, q̂0, q̂1]tr = 0, (18)

where H is a function of the base flow and the wave parameters including the eigenvalues; tr stands
for the transpose. This equation along with the same boundary conditions as LST is solved using
the same numerical methods as for the LST problem.

The codes for the stability analyses above have been well verified against direct nu-
merical simulation (DNS) results and well validated by experimental results in previous
studies [13,20,45–47].
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(a) (b) (c)

(d) (e) (f )

FIG. 5. Contours of the constant amplification rate −αi from LST: (a)–(c) in the X ∗- f ∗ plane at the
windward ray (φ = 180◦) with various azimuthal wave numbers n; (d)–(f) in the n- f ∗ plane at X ∗ = 400 mm
for various azimuthal locations.

III. RESULTS AND DISCUSSIONS

A. Local primary instabilities

Before proceeding to multidimensional analyses, we first present LST results that provide us a
whole picture on the stability characteristics. Figures 5(a)–5(c) display the distribution of growth
rates of Mack mode in the X ∗- f ∗ plane at the windward ray. It can be seen that the Mack-mode
instability emerges in an extremely high-frequency region, whose peak frequency progressively
decreases from about 2 MHz at X ∗ ≈ 200 mm to about 1.2 MHz at X ∗ = 700 mm. Furthermore,
the Mack-mode instability is notably stabilized as the azimuthal wave number increases from 0
to 200, indicating that planar components are more unstable than the oblique ones. Figures 5(d)–
5(f) shows stability diagrams of high-frequency Mack modes and low-frequency crossflow modes
at various azimuthal locations of X ∗ = 400 mm. In the outboard region, the crossflow is present,
inducing crossflow instabilities. Away from the windward ray, the Mack-mode instability slowly
diminishes with peak frequencies decreasing, whereas the crossflow instability is slightly enhanced
as the crossflow velocity strengthens. In the presence of crossflow, the Mack-mode unstable region
becomes asymmetric with respect to the azimuthal wave number. Nevertheless, the most unstable
component remains essentially two dimensional. Since the Mack-mode instability is dominant in
the windward surface, we hereafter focus on it.

B. Global stability characteristics of Mack mode

Albeit neglecting the azimuthal inhomogeneity of base flow, the LST results above serve as a
good reference in searching the global unstable modes. Since the leading dimensions of the matrices
involved in (spatial) BiGlobal are several orders of magnitude larger than when solving LST [48],
it is nearly impossible to obtain global stability diagrams like Fig. 5. Rather, we attempt to inspect
the global stability characteristics of certain frequencies at several axial locations, and furthermore
to find the most unstable mode.
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(b)(a)

(c)

(d)

(e) (f ) (g)

FIG. 6. (a) Global eigenvalue spectra of the Mack-mode instability for frequency 1650 kHz at X ∗ =
400 mm, with real part of the normalized temperature eigenfunctions of first three leading D modes being
displayed in (b)–(d). (e)–(g) The spatial structures (including eight axial wavelengths) of three representative
S modes [marked by characters in (a)] are illustrated by isosurfaces of real part of normalized temperature
eigenfunction Re[T̂ (η, ζ ) exp(iαξ )], with value of 0.5.

1. Global eigenvalue spectrum and shape functions

A representative global eigenvalue spectrum is displayed in Fig. 6(a) for a frequency of 1650 kHz
at X ∗ = 400 mm. Contrary to the conventional one-dimensional spectrum (obtained by LST) where
usually at most one unstable mode exists, multiple unstable modes are present in the global spectrum
because of embodying the azimuthal dimension. Two distinguished branches of modes can be found:
one consists of few modes and the other is composed of a sequence of modes. For the sake of
convenience, we denote these two branches as branch D and branch S, respectively, and refer to
modes of branch D as D modes and modes of branch S as S modes. Furthermore, the symmetric
modes and antisymmetric modes in branch D are labeled as “mode V1, mode V2, . . . ” and “mode
A1, mode A2, . . . ,” respectively. Each symmetric mode appears to be paired with an antisymmetric
mode. For branch D, mode V1 has the largest growth rate, followed by mode A1, mode V2, and
mode A2. For branch S, the symmetric and antisymmetric modes are indistinguishable except
for those with phase velocities larger than 0.825 where small discrepancies are noticeable. The
closeness between the eigenvalues of symmetric and antisymmetric S modes originates in the fact
that these modes lie a certain distance away from the symmetry plane (as will be shown later),
and thereby are insensitive to the symmetry conditions. The shape functions of the three leading D
modes are visualized in Figs. 6(b)–6(d). It can be inferred that all the modes lie in the vicinity of the
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FIG. 7. Global eigenvalue spectra for (a) the frequency 1650 kHz at four axial stations (X ∗ = 276, 315,
400, and 439 mm) and (b) four frequencies ( f ∗ = 1200, 1400, 1560, and 1650 kHz) at X ∗ = 400 mm.

windward ray; from mode V1 to mode V2, the disturbance progressively extends into the outboard
region.

Since antisymmetric modes are less amplified and possess qualitatively the same stability char-
acteristics as symmetric ones, we hereafter focus on the symmetric modes unless otherwise stated.
The spatial structures of three representative S modes are visualized in Figs. 6(e)–6(g). Obviously,
S modes lie in the outboard region, and particularly, the most amplified S mode lies closest to
the windward ray than less amplified modes do. Moreover, all the S modes exhibit oblique wave
fronts that are inclined at positive wave angles with respect to the ξ direction. Note that a positive
wave angle corresponds to a positive azimuthal wave number n in LST. Hence, S modes in this
half-plane [φ ∈ (0, 180)◦] appear to contain positive-n components only. However, LST results
displayed in Fig. 5 indicate that positive-n and negative-n components are of equal importance for
the Mack-mode instability. This discrepancy points out the essential difference between the local
(LST) and global (BiGlobal) perspectives: while local modes at different azimuthal locations are
independent in LST, global perturbations are coupled across the entire cone surface. Consequently,
LST principally admits any azimuthal wave number, whereas only a particular subset of azimuthal
wave numbers are allowed in BiGlobal. It is also worth noting that the azimuthal position of the
mode S would move towards the windward ray with increasing frequency, due to the thinning of
boundary layer approaching the windward ray. Figure 7 displays how the global eigenvalue spectra
of the Mack-mode instability vary with the frequency and the axial station, respectively. One can
observe that D modes are present only for large axial stations at a fixed frequency or high frequencies
at a fixed axial station.

2. Relationship between D and S modes

In order to understand how the D and S modes are related, we examine the variation of D mode
with temporal and spatial parameters. Following [49], we introduce a nondimensional frequency
F ≡ 2π f ∗/(Re∗

∞U ∗
∞) (temporal parameter) and a local Reynolds number R ≡ (Re∗

∞X ∗)1/2 (spatial
parameter). Figure 7 shows that branch D is present only for sufficiently large F at a fixed R or
sufficiently large R at a fixed F . Therefore, we start at a large RF close to the neutral point of
the D mode, and trace the D mode as RF decreases until it is indistinguishable from the S modes.
Figures 8(a) and 8(b) show the distributions of the growth rates and phase velocities of mode V1 of
branch D, which include the following two computational cases:

Case 1: growth rates and phase velocities as a function of different frequencies F at a fixed
streamwise location of R = 2884 (X ∗ = 400 mm).

Case 2: growth rates and phase velocities as a function of different streamwise locations R at a
fixed frequency of F = 2.8 × 10−4 ( f ∗ = 1650 kHz).

The figure shows that the two cases have qualitatively similar curves when they are plotted
as functions of RF . The similarity between such two cases has also been observed by Ma and
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(a)

(b)
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(d)

(e)

(f )

FIG. 8. The distribution of the growth rates (a) and phase velocities (b) of the D mode (mode V1, filled
symbols) as a function of RF , either at different frequencies with a fixed location (case 1, R = 2884, X ∗ =
400 mm) or at different streamwise locations with a fixed frequency (case 2, F = 2.8 × 10−4, f ∗ = 1650 kHz).
The results are obtained by BiGlobal marching from right to left. Hollow symbols are mixed modes of branch
S which are the continuation of mode V1. (c)–(f) Temperature eigenfunctions of four successive frequencies
of case 1.

Zhong [49] in studying stability of a supersonic flat-plate boundary layer, and probably arises from
the self-similarity of the boundary layer.

Take case 1 for example. As RF decreases, mode V1 turns into a mixed S mode at RF ≈ 0.736.
Mixed S mode here means that the mode almost merges with branch S yet has noticeable fluctuations
in the vicinity of the windward ray. At RF ≈ 0.72, the normalized mode amplitude at the windward
ray has dropped below 0.2, and the mode can thus be viewed as a pure S mode. This conversion
process is clearly characterized by the variation of eigenfunctions with RF in Figs. 8(c)–8(f). Mode
in case 2 undergoes a similar process but with a smaller transition threshold of RF . Therefore, we
conclude that branch D originates in branch S.

Before proceeding further, it is of interest to compare the present results with researches on
similar configurations. Considering a sharp yawed cone under a wind-tunnel condition, Paredes
et al. [9] identified one planar Mack mode peaking at the windward ray and few oblique Mack modes
in the outboard region. The eigenfunction features suggest that these two types of Mack-mode
instabilities are analogous to branch D and branch S in this study, respectively. Nevertheless, the
peak growth rates and frequencies in Paredes’s case are much smaller, likely due to the difference
between the wall-temperature ratios of two studies. On the other hand, since the boundary-layer
flow in the vicinity of the windward ray is somewhat like the classical attachment-line flow, the
stability characteristics for these two flow configurations also bear some similarities. For example,
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TABLE II. BiGlobal modes serving as initial conditions of PSE3D.

Case C1 C2 C3 C4 C5 C6 C7 C8

Inlet locations X ∗ = 300 mm X ∗ = 303 mm X ∗ = 322 mm
Mode type Pure S mode Mixed S mode D mode

alternatively arranged symmetric and antisymmetric modes emerge in branch D, resembling the hi-
erarchy of the attachment-line modes [50–52]; and the predominance of the Mack-mode instability
has also been observed in the proximity of the attachment line [20,53]. Furthermore, because the
boundary-layer flow in the outboard region is featured by the crossflow, the branch S modes therein
closely resemble the oblique Mack modes identified in crossflow regions of the elliptic cone [53]
and of the lifting body [20]. The comparison above points out another distinction between the D
and S modes, that is, the former is in essence an attachment-line instability, whereas the latter is a
crossflow-dominated instability.

3. Linear spatial evolution of global mode

Below we utilize PSE3D to investigate the spatial development of Mack-mode waves, initiated
by various BiGlobal modes at frequency 1650 kHz as listed in Table II. Due to multiplicity of
modes, many routes are possible for a single frequency. In this paper, we consider three types of
initial modes, that is, pure S modes at X ∗ = 300 mm (C1–C6) labeled in Fig. 9(a) as C1 through
C6 with an increasing initial phase velocity, the most upstream mixed S mode (C7) and the most
upstream D mode (C8). The corresponding PSE3D results are displayed in Figs. 9(b)–9(d). The
PSE3D calculation terminates when the growth rate becomes negative. In all the cases, the phase
velocities decrease all the way to the outlet. The amplification rates for the first three cases, C1–C3,
also monotonically decay, resulting in a small integrated growth rate N ≡ ∫ −αidξ < 2. In case
C4, the disturbance is mildly enhanced, followed by a slightly destabilizing stage. Disturbances in
cases C5 and C6, on the other hand, both experience a notably promotion beyond X ∗ ≈ 370 mm.
The growth rates and phase velocities in cases C5 and C6 gradually approach the branch D modes
(modes V1 and V2) for X ∗ > 420 mm, implying that the S modes in these cases eventually develop
into D modes. Such a conversion process can be readily seen by the evolution of spatial structures
as shown in Figs. 10(b) and 10(c). For case C5, a noticeable shift of the spatial distribution from
the outboard region to the region close to the windward centerline is observed. Near the outlet,
two distinct regions exist; one peaks at the windward ray and the other lies a small distance away,
exhibiting a flow pattern formed by a mixture of modes V1 and V2. Case C6 undergoes a similar
modal structure transition as case C5 and, furthermore, the disturbance magnitude in the outboard
region gradually decreases to a negligibly small level relative to the center-line peak so that the
fluctuations are eventually dominated by mode V1. In comparison, disturbances in case C2 remain
in the outboard region, slightly moving towards the windward ray downstream due to the thickening
of the boundary layer. The largest N factor, slightly beyond 5, is reached by case C6. Tests (not
shown here) indicate that forcing disturbances at a more upstream station leads to qualitatively
similar results but with smaller peak N factors. By contrast, case C7 starts immediately downstream
of cases C1–C6, and yet the modal growth rate increases rapidly and reaches the same level as mode
V1 much earlier than in cases C5 and C6, thereby achieving a substantially larger N factor. This is
because the inlet mode in case C7 possesses significant fluctuations in the vicinity of the windward
ray that could efficiently excite mode V1. Although disturbance in case C8 immediately follows the
route of mode V1, the amplification region is shorter so that the maximum N factor of case C8 is
slightly smaller than that of case C7.

The above results indicate that initially seeding the most upstream mixed mode yields the largest
N factor. Forcing a pure S mode in a more upstream station or a D mode in a more downstream
station as an inlet mode leads to smaller N factors because of a longer transformation distance or
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FIG. 9. (a) Global eigenvalue spectrum for frequency 1650 kHz at X ∗ = 300 mm with six modes (as
marked by circles) separately serving as the inlet mode of PSE3D calculation cases C1–C6. Spatial evolu-
tion of the corresponding cases are displayed in terms of (b) phase velocity, (c) growth rate, (d) N factor
(N ≡ ∫ −αidξ ) as function of axial stations. The results of case C7 initiated by the most upstream mixed mode
and of case C8 initiated by the most upstream branch D mode are also shown for comparison, along with the
traces of modes V1 and V2 of branch D (filled symbols) and the mixed modes of branch S (hollow symbols)
obtained by BiGlobal.

a shorter integration path. The above results also qualitatively hold for other frequencies as well
as the antisymmetric modes. Therefore, by imposing the most upstream mixed mode in the inlet
of PSE3D, we obtain the most amplified N factors for various frequencies, as shown in Fig. 11.
With increasing frequency, the N-factor curve moves rearward, in accord with the growth of the
boundary-layer thickness, and reaches higher peak values. For comparison, we also display the
N-factor result of the antisymmetric mode of frequency 1650 kHz. Obviously, the antisymmetric
mode is less amplified than the symmetric counterpart.

The above results of spatial developments of global Mack-mode instabilities lead to an important
conclusion that the Mack mode itself is not dangerous in the outboard region, but can potentially
trigger the boundary-layer transition in the vicinity of the windward plane. This conclusion is also
partially supported by the DNS results by Yang [27] (see Appendix C). Therefore, the transition
front is expected to be indented and be restricted to the small region close to the windward ray as
observed in flight tests as well as some ground tests.

C. Nonlinear development of the Mack mode and resonance mechanisms

As shown above, the D modes are most amplified that might induce the boundary-layer transition.
In the following, we continue to explore weakly nonlinear mechanisms in the stage when a
symmetric or an antisymmetric D mode becomes large enough in amplitude. To begin, we inspect
the shape function that (except for the azimuthal velocity) can be represented by a series of cosine
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(a) (b) (c)

FIG. 10. Three typical types of spatial developments of Mack-mode waves illustrated by cases C2, C5, and
C6. (a) Case C2: perturbations are dominated by modes of branch S. (b) Case C5: perturbations are eventually
dominated by a mixture of modes V1 and V2 of branch D. (c) Case C6: perturbations are eventually dominated
by mode V1 of branch D. The spatial structures are visualized by isosurfaces of the real part of the normalized
temperature perturbation T̂r at the contour level of 0.2. Half of the cone surface (φ ∈ [90, 270]◦) is shown.
The windward center line is denoted by the dashed line. The zoomed-in views display details of the spatial
structures near the outlet and in the transitional regions. The bottom row of plots show the distribution of the
reduced temperature perturbation maxη[T̂ (ξ, η, φ)|]/ maxφ ( maxη[|T̂ (ξ, η, φ)|]) in the X ∗-φ plane.
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FIG. 11. Development of N factors of Mack-mode waves of various frequencies (labeled in plot) from
PSE3D initiated by the most upstream mixed mode of each frequency. The N-factor curve for the antisymmetric
case of frequency 1650 kHz is also displayed for comparison.
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(a)
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FIG. 12. Features of the (temperature) shape functions of leading symmetric D mode (V1) at X ∗ = 322 mm
(a), (c), (e) and of the leading antisymmetric D mode (A1) at X ∗ = 354 mm (b), (d), (f). (a), (b) The real part.
(c), (d) The spatial structures illustrated by isosurfaces of Re[T̂ (η, ζ ) exp(iαξ )], with value of 0.2. (e), (f) The
azimuthal wave-number spectrum. The mode frequency is set to 1650 kHz.

functions of the azimuthal angle,

q̂s(η, ζ ) = q̂0(η) +
∑
n �=0

q̂n(η) cos(nφ), φ ∈ [0, 2π ], (19)

for the symmetric mode, and by a series of sine functions of the azimuthal angle,

q̂a(η, ζ ) =
∑
n �=0

q̂n(η) sin(nφ), φ ∈ [0, 2π ], (20)

for the antisymmetric mode. q̂0(η) in (19) is equivalent to the planar Mack mode in the context of
the one-dimensional stability analysis. Further define the azimuthal wave-number spectrum of the
shape function K (n) as

K (n) ≡ max
η

|q̂n(η)|/ max
n

[max
η

|q̂n(η)|] ∈ [0, 1], (21)

to describe the relative importance of the cosine and sine components.
Figure 12 shows the real parts of the temperature shape functions, the reconstructed spatial

structures, and the corresponding azimuthal wave-number spectra for the leading symmetric D
mode (V1) of 1650 kHz and the leading antisymmetric D mode (A1) with the same frequency at
the axial locations where these modes just separate from branch S. Obviously, the symmetric mode
is dominated by the planar component associated with n = 0, whereas the antisymmetric mode is
dominated by the oblique components at n ≈ ±100. Also observe that modal structures gradually
bend backward as they extend into the outboard region, with opposite local wave angles on two
sides of the windward ray.
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FIG. 13. (a) Streamwise development of the maximum temperature disturbance amplitude from NPSE2D
results. The planar Mack-mode wave at frequency 1650 kHz is forced with an initial amplitude of 0.01%. The
dashed line denotes the linear case. Growth rates of the secondary-instability modes predicted by Floquet theory
as functions of the difference-mode frequency ( f ∗

d ) and the azimuthal wave number (n) at (b) X ∗ = 410 mm
and (c) X ∗ = 430 mm [marked by the dotted lines in (a)]. Only growth rates larger than 250 m−1 are displayed
to highlight the most unstable region.

Self-interactions of global modes yield harmonics and a stationary mode. The symmetry features
of these nonlinearly generated modes are obvious: those in the symmetric-mode case are symmetric
too; those in the antisymmetric-mode case divide into two groups, that is, the nonlinearly generated
modes with frequency of 2mF (m = 0, 1, 2, . . . ) are symmetric and those with frequency of (2m +
1)F are antisymmetric. Below we will separately examine the nonlinear developments of the leading
symmetric and antisymmetric modes, which are hereafter denoted as the symmetric-mode case and
the antisymmetric-mode case, respectively.

1. Nonlinear development of the leading symmetric D mode

The predominance of the planar component suggests that the nonlinear development of mode V1
can be represented, as a zeroth-order approximation, by the nonlinear evolution of a local planar
Mack mode at the same frequency. Figure 13(a) shows the amplitude development of the planar
Mack mode (primary mode) at frequency 1650 kHz, the mean flow distortion (MFD), and several
harmonics in the presence of self-interactions, obtained by NPSE2D marching along the windward
ray. Five harmonics are included in the calculation, and are sufficient to obtain converged results.
Unless otherwise stated, the primary mode is forced at X ∗ = 322 mm with an initial amplitude
(based on the temperature fluctuation) of 0.01%. The initial amplitude of the corresponding pressure
fluctuations (normalized by the static pressure) is below 0.05%, which is far below the pressure
fluctuation level (0.1%) in typical quiet wind tunnels [54]. It can be clearly seen that the primary
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mode departs from the linear case at X ∗ ≈ 400 mm, becoming saturated and eventually slowly
decaying for X ∗ > 430 mm.

Subsequent Floquet analysis for the saturated flow field indicates that combination resonances
with nonzero difference frequencies (0 < f ∗

d < 200 kHz) and fundamental resonances (for f ∗
d = 0)

are active, and the latter are always stronger than the former. The amplification rates of secondary
instabilities at two presentative axial stations are visualized in Figs. 13(b) and 13(c). The secondary
instabilities at the second station appear much stronger than those at the upstream station, pre-
sumably owing to changes of the primary mode amplitude and the mode shape. Predominance
of the fundamental resonance is consistent with previous studies [13,36,55,56] on axisymmetric
configurations, and yet remarkable differences exist. While the maximum secondary-instability
amplification rates documented in previous studies are generally below 200 m−1 with the corre-
sponding azimuthal wave number generally smaller than 100, in the present case the growth rates
of secondary-instability modes can be as large as 1600 m−1, approximately 16 times larger than
those of the primary wave, with the peak azimuthal wave number around 600. As such, an abrupt
breakdown of the Mack-mode waves is expected once the secondary instability sets in. From the
global point of view, the global Mack mode inherently contains both planar and oblique components,
hence is expected to trigger secondary instabilities without additionally seeding three-dimensional
(3D) disturbances. To confirm this speculation, we further investigate the nonlinear evolution of the
global Mack mode via NPSE3D. Mode V1 of branch D with frequency of 1650 kHz serves as the
inlet condition of NPSE3D. The inlet location and initial amplitude are prescribed to be the same
as in the NPSE2D case (Fig. 13). The primary mode (denoted by 1F ) simultaneously generates a
stationary mode (0F ) and harmonics (mF, m > 1) through self-interactions. Only one harmonic is
considered in the calculation, which already leads to converged results as shown in Appendix B.
The computation domain covers an azimuthal region from φ = 168◦ to 180◦ and is resolved by 101
wall-normal points and 200 azimuthal points (of which 120 points are distributed in the range from
φ = 178◦ to 180◦). The domain size and grid resolution have been tested to ensure the convergence
of results (see Appendix B). Symmetric boundary conditions are utilized at the windward ray, while
Dirichlet boundary conditions are assumed at the outboard azimuthal boundary since the fluctuation
amplitudes are negligibly small there.

Figure 14(a) displays the downstream development of the primary mode and several nonlinearly
generated modes. It can be seen that these modes amplify at nearly constant growth rates until
X ∗ ≈ 400 mm where the stationary and primary mode amplitudes start to grow at higher growth
rates. At X ∗ ≈ 402 mm, the stationary mode amplitude surpasses the primary mode amplitude, and
the harmonic also begins to amplify much faster than before. The stationary and primary modes get
saturated at X ∗ ≈ 405 mm. Comparison with the NPSE2D results considering only self-interactions
indicates that the early stage of the nonlinear development of the global Mack mode is mainly
characterized by self-interactions of its planar component, while the late stage is featured by a
totally different instability mechanism.

The downstream development of the time-averaged skin friction coefficient along the windward
ray is shown in Fig. 14(b). The skin friction coefficient was calculated as

Cf = 2(μ̄∂Ūt/∂η)w
Re

, (22)

where Ūt denotes the streamwise velocity of the temporally averaged base flow. The skin friction
coefficient curve obtained from NPSE3D is compared with a turbulent boundary-layer correlation
from White [57]. It can be seen that the skin friction coefficient initially follows the laminar
curve up to X ∗ ≈ 400 mm, then rises steeply afterwards, and finally drops as the stationary mode
saturates. In comparison, the skin friction curve of NPSE2D results increases rather mildly. In order
to understand the instability mechanism of the rapid growth of the stationary mode in the late
stage, we further assess the amplitude evolutions of the azimuthal components of the primary and
stationary modes, as shown in Fig. 15. The most prominent feature is that some high-order azimuthal
components (n > 200) of both modes begin to amplify obviously faster beyond X ∗ ≈ 390 mm, a
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FIG. 14. (a) Nonlinear development of the maximum temperature disturbance amplitude obtained from
NPSE3D. The global D mode at frequency 1650 kHz is forced with an initial amplitude of 0.01%. Results of
the stationary mode and first harmonic are displayed. The NPSE2D results in Fig. 13 (dashed lines) are also
shown for comparison. (b) Development of the time-averaged skin friction coefficient along the windward ray,
together with the laminar curve (dotted line), turbulent curve (dashed-dotted line), and the NPSE2D case with
self-interactions only (dashed line).

signature of secondary instability. More specifically, the growth rates of components in the range of
200 < n < 800 are close to those of fundamental-resonance instabilities predicted by the Floquet
theory. These high-order azimuthal components progressively interact with low-order azimuthal
components, causing the rapid growth of global modes. Note that until the very late stage of the
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FIG. 15. Streamwise development of the maximum temperature disturbance amplitude for each of the
azimuthal components in a range of n ∈ (0,1800) with an increment of 54 for the primary mode (blue lines)
and the stationary mode (black lines). The planar component and the MFD are thickened. A zoomed-in plot
displays the late-stage amplitude evolution of the azimuthal components with 234 < n < 810, highlighting the
secondary-instability stage. The fundamental secondary-instability amplifications for n = 500 predicted by the
Floquet analysis are also included (red dashed line) for comparison.
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FIG. 16. Downstream evolution of the azimuthal wave-number spectra of the primary mode (a) and the
stationary mode (b) for six representative axial stations. The growth rate distributions at the fifth station (X ∗ =
404 mm) are shown in (c), together with the growth rate distribution predicted by the Floquet analysis (symbols)
for comparison.

calculation the growth rates of all the azimuthal components of the primary mode are still positive,
even though the oblique components with moderate and large azimuthal wave numbers (n > 200)
are stable according to LST (see Fig. 5). This is likely because of the azimuthal inhomogeneity
of the base flow which is neglected by LST but is fully considered by the global counterparts
(BiGlobal and PSE3D). As such, oblique components are coupled with the planar component, and
propagate downstream as a whole. In an attempt to provide a more convincing evidence on the
secondary instability, we display the azimuthal wave-number spectra defined in Eq. (21) for the
primary and stationary modes at several axial stations in Figures 16(a) and 16(b). It can be seen that
the spectrum of the primary mode is initially governed by the low-order components (n < 200) in
addition to a small secondary peak at n ≈ 700. The normalized spectrum remains nearly unchanged
until X ∗ = 398 mm where the secondary peak starts to amplify, expands rapidly, and shifts slightly
towards lower azimuthal wave numbers. At X ∗ = 404 mm, high-order harmonic peaks become
visible, and fill up rapidly in wave-number space. Likewise, the stationary mode initially exhibits
a primary peak at n = 0, which corresponds to the MFD, and a secondary peak at n ≈ 700, which
reflects the initial preference of the azimuthal wave number due to the self-interaction of the primary
mode. Beyond the second axial station, the secondary peak also strengthes rapidly, leading to a fast
spectral broadening.

The growth rate distributions of the primary and stationary modes with respect to the azimuthal
wave number are shown in Fig. 16(c) for X ∗ = 404 mm. One can observe that the growth rates of
these two modes nearly coincide for n > 300, where three distinct plateaus form. The first plateau
lies in the range of n ∈ (300, 800), while the other two plateaus, in the ranges of n ∈ (1000, 1400)
and n ∈ (1500, 2000), are apparently the harmonics of the former one. Recall that in the secondary-
instability stage, the secondary modes will amplify at identical rates [see Eq. (16)]. The closeness
between growth rates of the primary and stationary modes in the range of n > 300 is a strong
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FIG. 17. Real parts of the normalized temperature shape functions of the primary mode [the left column,
(a), (c), (e), (g)] and the stationary mode [the right column, (b), (d), (f), (h)] at four representative axial
locations. The critical layer of the Mack mode [yc, where U (yc ) = c, c the phase velocity of Mack mode]
is also displayed (dashed line).

evidence of the presence of the fundamental resonance. Moreover, the growth rates of the first
plateau match reasonably well with those from the Floquet analysis, confirming the ability of the
Floquet theory in adequately capturing the fundamental secondary instability of the symmetric
D mode. Figure 17 shows the real parts of the normalized temperature shape functions of the
primary and stationary modes at four representative axial locations. Initially, the stationary mode
concentrates in the critical layer where nonlinear effects are most prominent [58]. At the next
station, alternating high- and low-thermal regions manifest themselves in the near-wall region, and
rapidly take over the fluctuation distribution, forming high- and low-thermal streaks. The streak
amplitude decreases fast away from the windward ray, and the streak spacing is approximately 0.6◦
corresponding to an azimuthal wave number of around 600. The Mack mode begins to feel the
feedback effects of the stationary mode from the third station and, as a result, its modal structure
breaks down in the vicinity of the windward ray at the last station. The late-stage development
of three-dimensional flow structures reconstructed by the primary and stationary modes is shown
in Fig. 18. It can be seen that slightly bending spanwise rolls emerge and exhibit a significant
spreading in the azimuthal direction as the primary mode amplitude amplifies. Farther downstream,
noticeable azimuthal modulation appears in the vortical structures, inducing strong streamwise
vorticity with alternating signs and streaky structures in the velocity isosurface. Particularly along
the windward ray, a high-speed streak and a high-thermal streak (corresponding to a peak Stanton
number) develop. This flow pattern is reminiscent of what is observed for the 3D wave packet on a
flared cone at zero angle of attack [14].

According to the study by Hader and Fasel [59], the fundamental breakdown scenario in an
axisymmetric configuration is characterized by the initial appearance of “primary” streaks and the
subsequent emergence of “secondary” streaks prior to final breakdown to turbulence. Accordingly,
the skin friction coefficient first undergoes a significant rise caused by the primary streaks, then
drops off (because of attenuation of the primary streaks) and eventually steeply lifts up when
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(a)

(b)
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FIG. 18. Late-stage instantaneous flow pattern from NPSE3D calculations for the symmetric-mode case.
(a) Vortical structures visualized by the isosurface of Q criterion (Q = 0.1), along with isosurface of the axial
velocity (U = 0.2) colored by the normalized axis vorticity (ωx). (b) Zoomed-in image of the spatial structure
corresponding to the squared region in (a). (c) The normalized axial velocity in the cross section at the middle of
the region (X ∗ = 407 mm) in (b). (d) Normalized time-averaged Stanton number distribution in the azimuthal
direction.

the secondary streaks begin to appear. In analogy to their results, the theoretical calculations in
this study capture the primary-streak stage but miss the secondary-streak stage. Note that the
secondary-streak stage is featured by the rapid growth of broadband disturbances arising from
numerical or ambient noises in simulations or experiments. Whereas the fundamental resonance
only provides a spectral-broadening mechanism essentially in the azimuthal wave-number space,
two other mechanisms, namely, the combination resonance and the streak instability, are likely
important ingredients in filling up the spectrum in the frequency space.

The combination resonance likely occurs in the side-band interactions of the Mack-mode waves.
In this study, we separately force at the inlet of NPSE3D a side-band mode at various frequencies
(denoted by f ∗

s ) with an initial amplitude of 10−5, in addition to the primary mode with the
same conditions as the self-interaction case studied above. The primary mode and the side-band
mode simultaneously generate a difference mode at frequency ( f ∗

d = f ∗
p − f ∗

s ) and a sum mode
at frequency ( f ∗

p + f ∗
s ). Figures 19(a) and 19(c) show the amplitude evolutions of representative

modes in two side-band-interaction cases. One can observe that the fundamental resonance between
the primary mode and the stationary mode is always present, and is seemingly unaffected by the
side-band interactions. The sum mode starts with a much smaller amplitude but a notably larger
growth rate than the difference mode. Once the sum mode amplitude becomes comparable to the
difference mode amplitude, the difference mode begins to amplify remarkably faster than before,
exhibiting a turning point in the amplitude curve, and eventually promotes the side-band mode. This
rapid growth stage of the combination modes stops where the primary and stationary modes saturate.
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FIG. 19. Results of interactions between the primary mode (1650 kHz) and a side-band mode with different
frequencies: (a), (b) 1600 kHz, (c), (d) 1500 kHz. The modal amplitude evolutions are shown in the left column,
while growth rate distributions at X ∗ = 401 mm for the combination modes are displayed in the right column
along with the growth rate distribution for the stationary mode (dashed line) and the Floquet analysis results
(dots) for comparison.

As the frequency difference between the primary mode and the side-band mode is increased, the
turning point of the amplitude curve of the difference mode moves rearward, and the saturated
amplitude level of the combination modes is significantly decreased.

The growth rate distributions over the azimuthal components for the combination modes at X ∗ =
401 mm are displayed in the right column of Fig. 19. It can be seen that the growth rates are almost
coincident in the range of n ∈ (300, 800), indicating that these oblique components are actually
in resonance. Interestingly, the growth rates in this azimuthal wave-number range are as large as
those of the fundamental modes, and are insensitive to the frequency difference, contradicting what
the Floquet theory predicts. This observation suggests that the resonant growth of the combination
modes is not only ascribed to the planar component of the primary mode as in the Floquet theory,
but is also driven by the fundamental-resonance oblique components.

At last, we point out that the fundamental resonance is robust to the initial amplitude and the
mode frequency: it occurs once the primary mode temperature amplitude exceeds 10% of the free-
stream value, as shown in Appendix D.

2. Nonlinear development of the leading antisymmetric D mode

Although the antisymmetric D mode is much less amplified than the symmetric counterpart,
it can still play an important role in noisy environments. The absence of the planar component
suggests that the fundamental resonance is no longer relevant in the nonlinear development of this
mode. Moreover, the modal structure in either side consists mainly of oblique components with the
same sign, as evidenced in Fig. 12, so that oblique breakdown comprising of a pair of oblique waves
with equal but opposite wave angles is deemed inactive too. Therefore, whether this mode will lead
to the laminar flow breakdown needs to be explored further. Contrary to the symmetric counterpart,
the antisymmetric mode shape covers a wider azimuthal domain yet is less concentrated as indicated
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FIG. 20. (a) Nonlinear development of the maximum temperature disturbance amplitude of the leading
antisymmetric D mode at frequency 1650 kHz, together with results of the stationary mode and the first
harmonic. NPSE3D results adopting Dirichlet conditions for all variables at the windward ray are also shown
for the primary and stationary modes (dashed-dotted lines). Dashed line represents linear PSE3D results.
(b) Development of the maximum temperature disturbance amplitude for each of the azimuthal components
in a range of n ∈ (0,1200) with an increment of 36 for the primary mode (blue lines) and the stationary mode
(black lines). The thick lines stand for the dominant components of the primary mode (n = 108) and stationary
mode (MFD).

in Fig. 12(b), rendering the line-marching approach (NPSE2D) along a particular ray inappropriate.
Thus, we directly utilize NPSE3D to study the nonlinear development of the antisymmetric mode.

In this case, the inlet location is set to be at X ∗ = 353 mm close to the most upstream location
of the antisymmetric D mode at this frequency, and a larger initial amplitude (0.5%) is used to
accelerate the nonlinear process. The NPSE3D are solved with 200 azimuthal points nonuniformly
distributed within an azimuthal domain of φ ∈ (162, 180)◦ and 101 wall-normal points. The down-
stream developments of significantly amplified modes are displayed in Fig. 20(a). One can see that
once the primary mode amplitude exceeds 10%, just the same threshold of fundamental resonance,
the stationary mode starts to amplify substantially faster than before, and soon becomes a dominant
mode followed by a saturated state.

Amplitude evolutions for azimuthal components of the primary and stationary modes are vi-
sualized in Fig. 20(b). Exponential growth is observed for all the azimuthal components of the
primary mode in the early stage. In contrast, the azimuthal components of the stationary mode
initially experience a transient growth stage; subsequently, some azimuthal components enter into
an exponential stage with growth rates almost twice of the primary counterparts, while others follow
an irregular development path; beyond X ∗ > 380 mm, some high-order azimuthal components of
the stationary mode begin to amplify faster, further promoting high-order azimuthal components of
the primary mode. For X ∗ > 400 mm, all the components get saturated and are fully coupled. To
demonstrate how the energy is distributed in the azimuthal wave number at different downstream
locations, the amplitude spectra in the axial location wave-number (X ∗-n) space are provided in
Figs. 21(a) and 21(b) for the primary and stationary modes. The primary mode is dominated
by azimuthal components in the range of n ∈ (0, 180) (for ln[K (n)] > −3) up to X ∗ ≈ 390 mm,
beyond which the spectrum begins to fill up rapidly. The stationary mode also exhibits two distinct
development phases in the streamwise direction. In the early stage, energy of the stationary mode
mainly concentrates in the low azimuthal mode numbers (n < 120); additionally, a substantially
smaller peak at n ≈ 700 and its first harmonic at n ≈ 1400 are also visible in the spectrum. The
stationary mode enters into the late stage downstream of X ∗ ≈ 390 mm where components in the
vicinity of n ≈ 700 are strongly enhanced, manifesting as multiple peaks in the spectrum; these
peaks soon expand with almost constant spacings �n ≈ 72, covering almost the whole azimuthal
wave-number region, and are eventually replaced by a more uniform distribution towards the outlet.
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FIG. 21. Locally normalized amplitude spectra (in a logarithmic scale) in the X ∗-n plane for (a) the primary
mode, (b) the stationary mode, and (c) one of the main nonlinear forcing terms from the primary mode Nf ≡
maxη(ρ̄uu+). (d) Comparison of the normalized spectra of primary and stationary modes over the azimuthal
wave number at X ∗ = 400 mm, with three peaks labeled forming a potential resonant triad.

It is interesting to note that in either the symmetric-mode case (see Fig. 16) or the antisymmetric-
mode case, the rapid spectral broadening in the azimuthal wave number is initiated by an explosive
burst of components in the vicinity of n ≈ 700. Nevertheless, a qualitative difference between these
two cases is still present during the “explosive-growth” stage, that is, the former case features a
broadband rapidly growing components along with few harmonics, whereas the spectrum in the
latter case exhibits many sharp peaks. This difference suggests another nonlinear mechanism than
the fundamental resonance. A hint is given by Fig. 21(c) showing that the spectrum of one of
the main nonlinear forcing terms ρ̄uu+ (u the streamwise velocity disturbance from the primary
mode) in the streamwise momentum equation for the stationary mode is coincident with that of
the stationary mode. This observation implies that the appearance and growth of the multiple
peaks of the stationary mode are likely contributed by the interaction between different azimuthal
components of the primary mode, as

( f ∗ = 1650 kHz, n2) − ( f ∗ = 1650 kHz, n1) → ( f ∗ = 0, n2 − n1), (23)

where n1 and n2 stand for the azimuthal wave numbers of two primary azimuthal components. In
turn, the stationary component can also interact with one of the primary component to drive another
primary component as

( f ∗ = 0, n2 − n1) + ( f ∗ = 1650 kHz, n1) → ( f ∗ = 1650 kHz, n2). (24)

The existence of such a triad interaction is evidenced by Fig. 21(d), which shows that stationary
component (0,648) is very likely coupled with the dominant primary component (1650 kHz, 120)
and the other primary component (1650 kHz, 768). The spatial development of the flow structures
is shown in Fig. 22. The early-stage flow field is characterized by vortical structures at either side
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FIG. 22. Instantaneous flow pattern from NPSE3D calculations for the antisymmetric-mode case. (a) Vor-
tical structures visualized by the isosurface of Q criterion (Q = 0.1), along with isosurface of axial velocity
(U = 0.2) colored by normalized axis vorticity (ωx). (b) Zoomed-in image of the spatial structure correspond-
ing to the squared region in (a). (c) The normalized axial velocity in the cross section at the middle of the
region (X ∗ = 400 mm) in (b). (d) The normalized Stanton number distribution in the azimuthal direction.

of the windward ray that are inclined in the opposite direction with respect to that of the base flow.
Far downstream, the vortical structures close to the windward ray break up due to the emergence of
strong streamwise vorticities with alternating sign. Between the adjacent streamwise vorticities arise
the low- and high-speed thermal streaks. The appearance of the longitudinal structures is attributed
to the amplifying stationary mode. Since the streak structures lie a certain distance away from the
windward ray, it is interesting to examine whether the structures of either side of the windward
ray will interact with each other in nonlinear development of the antisymmetric mode. In order to
remedy such possibility of interactions, we adopt Dirichlet boundary conditions (i.e., all variables
vanish) at the windward ray, and recalculate the NPSE3D with nominally the same conditions. The
results are shown in Fig. 20(a). Obviously, the nonlinear development of the mode amplitude is
almost unaffected by the boundary conditions, indicating that the disturbances on either side appear
to evolve independently.

3. Energy transfer analysis

In an attempt to understand the underlying mechanisms of the rapid growth of the stationary
mode during the secondary-instability stage, we consider the total energy transfer equation for one
mode as

1

2

DE

Dt
= Le + Ne, (25)
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FIG. 23. Linear and nonlinear energy transfers for (a) the stationary mode and (b) the primary mode. The
growth rates are included for reference.

where E represents the total disturbance energy [60]

E = T̄

ρ̄γ M2
|ρ ′|2 + ρ̄(|U ′|2 + |V ′|2 + |W ′|2) + ρ̄|T ′|2

γ (γ − 1)M2T̄
; (26)

Le quantifies the energy exchanged per unit volume between the mode itself and the undisturbed
mean flow, as well as dilatation and viscous dissipation. Le is directly caused by linear terms
although nonlinear forces exert an indirect influence on the energy exchange through changing the
mode shapes or the disturbance amplitudes. Ne represents the energy variation caused by nonlinear
terms. The derivation of Eq. (25) can be found in Appendix E. Unlike the incompressible case (see,
for example, [61,62]) where Ne only consists of disturbance variables and is thus interpreted as the
energy exchange between disturbance modes, Ne here contains the mean-flow variables and as such
transfers energy from/to mean flow as well as other modes.

Equation (25) can be integrated over the cross-section plane � and divided by

� =
∫

ρ̄Ū

[
T̄

ρ̄2γ M2
|ρ̂|2 + |Û |2 + |V̂ |2 + |Ŵ |2 + |T̂ |2

γ (γ − 1)M2T̄

]
exp

(
−2

∫
αidξ

)
d� (27)

to give

−αi = L� + N�, (28)

where

L� =
∫

Led�/�, N� =
∫

Ned�/�. (29)

L� and N� represent the growth rates contributed by the linear and nonlinear terms, respectively.
Because results of the energy transfer analysis for the symmetric-mode case and the antisymmetric-
mode case turn out to be similar, we only present results for the symmetric-mode case here. The
streamwise development of the integrated linear and nonlinear energy transfers of the stationary
mode and the primary mode is plotted in Fig. 23. For the stationary mode, the nonlinear energy
transfer drops sharply in the beginning, whereas the linear energy transfer increases steeply from
a negative value to a small positive one. Such rapid changes in the energy transfers correspond
to the transient growth process of the stationary mode, as evidenced by the initial algebraiclike
growth in the amplitude evolution [see, for example, Fig. 14(a)]. Physically, the transient growth
is contributed primarily by the energy gain of the streamwise velocity perturbation via the liftup
effect induced by streamwise vorticity components comprising of transverse velocities [63,64].
The transient growth process can also be inferred from Fig. 24(a) showing that the ratio of the
transverse velocity magnitude to the streamwise one quickly decreases from 0.5 to about 0.1. As
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(a) (b)

FIG. 24. (a) Streamwise development of the ratio of the transverse velocity magnitude to the streamwise
velocity magnitude for the stationary mode. The rapid decrease of this ratio in the initial and final stages
(marked by the filled regions) suggests presence of the transient growth. Linear energy transfer distribution at
three presentative axial stations, i.e., (b) X ∗ = 322 mm (inlet), (c) X ∗ = 336 mm (end of the initial transient
stage), and (d) X ∗ = 404 mm (peak location of energy transfers), together with the streamwise velocity
disturbance isolines (solid lines denote positive values and dashed lines negative values).

a consequence, prominent azimuthal variations manifest themselves in the streamwise velocity
perturbation towards the end of the transient-growth stage [see Figs. 24(b) and 24(c).

In the downstream region, the nonlinear energy transfer is still dominant and varies slowly, while
the linear energy transfer remains at a small, yet positive, value. For X ∗ > 395 mm, the linear energy
transfer starts to rise steeply, surpassing the nonlinear energy transfer and peaking at X ∗ ≈ 404 mm;
on the other hand, the nonlinear energy transfer first decreases, then slightly increases before
decaying again. Such an appreciable enhancement of the linear energy transfer is attributed to
the secondary instability, and is involved in the formation process of the streaks where the liftup
mechanism may again have played an important role as inferred from Figs. 24(a) and 24(d).
The results clearly show that the secondary-instability growth of the stationary mode is sustained
primarily by the linear energy transfer, that is, the primary mode acts as a catalyst, allowing the mean
flow to transfer energy to the stationary mode. For the primary mode, the linear energy transfer is
always dominant while the nonlinear energy transfer is inactive preceding the secondary-instability
stage, as illustrated in Fig. 23(b). Slightly downstream of the secondary-instability onset of the
stationary mode, both the linear and nonlinear energy transfers first undergo a rapid growth, also
peaking at X ∗ = 404 mm, then quickly drop and oscillate around the zero value. Contrary to the
stationary mode whose components in the azimuthal wave-number space are basically amplifying
in the secondary-instability stage, the primary mode components with low azimuthal wave numbers
are decaying as inferred from Fig. 15 so that the energy transfers during the secondary-instability
stage are not as prominently amplified as those of the stationary mode. As shown above, the linear
energy transfer plays a significant role in the secondary-instability stage, and thus necessitates a
further assessment. Following the work of Chen et al. [13,65], the linear energy transfer can be
conveniently divided into four parts as

Le = P + � + V + C. (30)

The production reads as

P = −Real

⎡
⎢⎢⎢⎣ρ̄U ′

ξ

†u′
j

∂Ūξ

∂x j︸ ︷︷ ︸
PU

+ ρ̄

γ (γ − 1)M2T̄
T ′†u′

i

∂T̄

∂xi︸ ︷︷ ︸
PT

+ T̄

γ M2ρ̄
ρ ′†u′

i

∂ρ̄

∂xi︸ ︷︷ ︸
Pρ

⎤
⎥⎥⎥⎦,

ui ≡ [Uξ ,Vη,Wζ ], xi ≡ [ξ, η, ζ ] (31)
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FIG. 25. Linear energy budget for (a) the stationary mode and (b) the primary mode. The dashed line
represents the production term pertaining to the wall-normal shear of the streamwise velocity.

representing the energy transfer from the mean flow to the disturbance. Note that the production
contains three parts, i.e., the Reynolds stress work (PU ), the energy transfer owing to the tempera-
ture gradient (PT ), and the energy transfer owing to the density gradient (Pρ). � = −u′†

i
∂P′
∂xi

+ c.c.
denotes the pressure diffusion and dilatation, V (too lengthy to be shown here) is the energy transfer
associated with the viscous terms, and C represents the remainder terms.

The contribution of each of these terms to the growth rates of the stationary and primary modes is
displayed as a function of axial locations in Fig. 25. Obviously, the production term associated with
the wall-normal shear of the streamwise velocity −ρ̄U ′

ξ
†V ′

η∂Ūξ /∂η is predominant for both modes,
substantially larger than the production from the temperature and density gradients. This indicates
that the disturbance energy mainly comes from the wall-normal shear of the mean flow extracted by
the Reynolds stress. In contrast, the linear energy transfers pertaining to the pressure and viscous
terms are always negative, indicating the disturbance energy loss.

D. Streak instabilities in the late nonlinear stage

Finally, we attempt to describe, approximately, the stability characteristics of the late-stage flow
field. In the late stage of the nonlinear development of either the symmetric- or antisymmetric-mode
case, the amplitude of the stationary mode, changing slowly, is nearly one order of magnitude larger
than that of the primary mode as inferred from Figs. 14 and 20. Therefore, we can reasonably neglect
the unsteady modes and formulate a quasi-steady-streak stability problem that is solved by the
BiGlobal approach. Significantly unstable modes of the streaky structures in the symmetric-mode
case and the antisymmetric-mode case are shown in Fig. 26. For the symmetric-mode case, mode 1
is dominant with a peak frequency at 150 kHz and almost exclusively resides in the double-streak
structure of the base flow. In analogy with the streak instability with spanwise periodicity [45,66],
mode 1 can be viewed as a subharmonic sinuous mode. Similarly, streaks in the antisymmetric-mode
case support several unstable modes in the frequency range of (50,300) kHz and the most unstable
mode is also analogous to a subharmonic sinuous mode. Tests (not shown here) indicate that the
streak instabilities in both cases are slightly stabilized further downstream due to the slow attenu-
ation of streaks, but the peak frequencies do not change much so that the integrated amplification
rates are still considerable.

IV. CONCLUDING REMARKS

A comprehensive study is presented of the Mack-mode instability on the windward face of a hy-
personic yawed blunt cone at a flight condition, focusing on global linear instability characteristics

033903-30



GLOBAL STABILITY ANALYSES OF MACK MODE ON THE …

0

0.2

0.4

150

178 179 180

200

100

50 100 150 200

f *(kHz)

g
ro

w
th

 r
at

e 
(m

  
)

-1
(a)

(c)

-1

0

1
 Tr ^

mode 1

mode 2

0 50 100 150 200 250 300
50

100

150

200

250(b)

f* (kHz)

mode 1

mode 2

mode 3

(d)

176 177 178 179 180
0

0.2

0.4

symmetric-mode case antisymmetric-mode case

FIG. 26. Stability characteristics for the streak structure in the symmetric-mode case at X ∗ = 407 mm (a),
(c) and for the streak structure in the antisymmetric-mode case at X ∗ = 400 mm (b), (d). (a), (b) Growth rates
as a function of frequency, with the most amplified frequency being marked by circles. (c), (d) Real parts of
the normalized temperature shape function of the most unstable mode of each case. The base flow depicted by
the axial velocity is shown for reference (dashed lines).

and nonlinear instability mechanisms. The important findings are summarized in Fig. 27, sketching
the potential windward transition scenario.

A. Linear instability mechanisms

The high-frequency (MHz) Mack-mode instability and low-frequency (<100 kHz) crossflow
instability are present in the windward side, of which the former dominates. The global eigen-
value spectrum of the Mack-mode instability reveals the coexistence of two distinct branches of
modes: branch S is composed of a sequence of wave-packet modes lying in a certain distance
away from the windward ray, resembling the oblique Mack-mode instabilities identified in other
crossflow-dominated configurations [20,53]; branch D, splitting from branch S and analogous to
the attachment-line instability, consists of few discrete modes concentrating in the vicinity of the
windward ray. The integrated growth rates of the D modes are sufficiently large to potentially
trigger the transition. The S modes are less amplified and unlikely trigger the transition in their
occupying region, but they probably excite the D modes when propagating downstream. In other
words, Mack-mode transition will first occur in the vicinity of the windward ray, in accord with the
indented transition front observed in the flight test [24].

B. Weakly nonlinear transition mechanisms

Nonlinear instability of the finite-amplitude leading symmetric D mode is studied with a com-
bination of one-dimensional approaches (NPSE2D and Floquet analysis) as well as the global
approach (NPSE3D). It is demonstrated that a single global Mack mode could break down by
itself through fundamental resonances before saturating. This differs in nature from axisymmetric
configurations where a single Mack mode can not principally break down without seeding any
additional disturbances. This is because the global Mack mode inherently contains fundamental
oblique components with a wide range of azimuthal wave numbers, and thereby simultaneously
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FIG. 27. Sketch of the relevant windward transition scenario identified in this study for an inclined blunt
cone at a flight condition.

generates stationary components. The fundamental oblique and stationary components with certain
azimuthal wave numbers will subsequently be largely promoted due to the fundamental resonance.
The resulting flow pattern features streaky structures in the vicinity of the windward ray, much
akin to that of a nonlinear Mack-mode wave packet in an axisymmetric flared-cone boundary
layer [14]. The dominant azimuthal wave number is around 600, which is substantially higher than
the prevailing azimuthal wave numbers (40 < n < 150) of the fundamental resonance in axisym-
metric configurations studied before [13,59,67]. Nevertheless, the wave angle � f of the strongest
fundamental secondary wave in this study is around 32◦, which is still in the range of the dominant
wave angles, i.e., 30◦ < � f < 50◦, documented in the previous studies. This indicates that the wave
angle is a more universal feature that characterizes the fundamental resonance than the azimuthal
wave number. Interestingly, the maximum secondary-instability growth rates are found to be as large
as 1600 m−1, almost 10 times larger than those reported by the previous studies for axisymmetric
configurations (see, for example, [12,13,36]). As a result, the Mack-mode wave is deemed to break
down immediately at onset of secondary instability. Furthermore, the combination resonance, likely
arising from side-band interactions between Mack modes with different frequencies, is shown to be
inevitably accompanied by and dominated by the fundamental resonance in the global context.

Nonlinear development of the leading antisymmetric D mode is also investigated via NPSE3D.
This mode manifests as a pair of nearly straight structures inclined at opposite directions at two
sides of the windward ray. The fundamental resonance is inactive due to absence of the planar
component, yet interactions between components of different azimuthal wave numbers can still
yield a rapid spectral-broadening process in the azimuthal wave-number space. Coincidentally,
the most amplified azimuthal wave numbers in the early nonlinear stage are close to those of the
fundamental resonance in the symmetric-mode case. The underlying mechanism of the preferential
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wave numbers needs a further exploration. In the late stage, streaky structures also emerge and
dominate the flow field.

Energy transfer analysis shows that the global Mack mode acts like a catalyst, remarkably
enhancing the ability of the stationary mode to extract energy from the mean flow. Such an energy
transfer, where the liftup effect presumably plays an important role, is responsible for the amplifica-
tion of the stationary mode, giving birth to streaks. The catalytic role played by the primary mode in
the parametric-instability stage has been frequently documented in two-dimensional cases [10,58],
and is confirmed by this study in a truly three-dimensional configuration.

The streak instability in the late stage of both the symmetric- and antisymmetric-mode cases is
analyzed by BiGlobal. The results indicate that low-frequency (<300 kHz) disturbances of subhar-
monic sinuous type are highly unstable and are likely responsible for the final breakdown. Since the
symmetric D mode is more unstable than the antisymmetric counterpart, fundamental breakdown is
the most relevant transition scenario in the vicinity of the windward ray. Nevertheless, the transition
scenario initiated by the antisymmetric mode is still of great significance as it is a representative of
those in the crossflow region far away from the symmetry planes where global modes (Mack modes
or crossflow modes), disregarding the symmetry characteristic, exhibit qualitatively the same modal
structures as the antisymmetric D mode. Moreover, oblique breakdown is not observed for both
cases because on either side of the windward ray, the mode consists exclusively of components with
wave angles of the same sign, prohibiting interactions between components with opposite wave
angles.

At last, it is helpful to discuss the sensitivity of the main findings to the initial conditions since
the initial phases of different modes are random in space and time in natural transition. Our results
indicate that the transition scenario featured by the fundamental resonance and the ensuing streak
breakdown is robust to variations of the frequency and initial amplitude of the dominating wave
(Appendix D), and also holds true in the presence of side-band interactions between two modes
with arbitrarily initial phases (Sec. III C 2) or even more complicated interactions as studied by
Yang. [28] on the evolution of a nonlinear wave packet. Nevertheless, some quantitative properties
such as the breakdown location and the dominating spacings of the streaks are expected to change
with varying initial conditions.

C. Future work

In order to verify the theoretical results above (and further investigate the transition process) by
direct numerical simulations, we need to conduct a DNS with an extremely large number of grid
points in the streamwise direction (to capture the Mack-mode wave and its harmonics) as well as
in the azimuthal direction (to capture the streak structures with rather small spacings), which is,
however, beyond our current ability. Nevertheless, preliminary comparison (Appendix C) of the
DNS results [27] and the present theoretical results shows a promising agreement. Work in this
direction is under way.

ACKNOWLEDGMENTS

The authors acknowledge financial support from National Natural Science Foundation of
China through Grants No. 92052301 and No. 12002354, projects pjd20190159 and pjd20190154
supported by CARDC Fundamental and Frontier Technology Research Fund and the National
Numerical Wind-tunnel Project (NNW). We thank Dr. Q. Yang at CARDC for fruitful discussions
and P. Yang for providing the DNS data for comparison. The anonymous referees are also thanked
for their useful comments.

APPENDIX A: VERIFICATION OF NPSE3D

Two types of modal interactions listed in Table III were separately calculated by NPSE2D
and NPSE3D for a hypersonic flat-plate boundary layer. Case K corresponds to the fundamental-
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TABLE III. Initially seeded modes of NPSE for a flat-plate boundary layer under flow conditions of Mach
6, T ∗

∞ = 48.8 K, and the stagnation wall condition. The initial amplitude is measured in terms of the peak
temperature fluctuation.

Case Planar mode Oblique mode Frequency Spanwise wave number
and initial amplitude and initial amplitude (F ×106) (β)

K (1,0), 1% (1,1), 0.1% 111 0.05
O (1,1), 1% 111 0.05

breakdown-type interaction, while case O is associated with the oblique breakdown. For NPSE3D,
the spanwise length of the computational domain is 2π/β, corresponding to a single wavelength of
the primary oblique mode. The spanwise direction is discretized by 20 Fourier collocation points.
The results are presented in Fig. 28. Obviously, results from two methodologies almost coincide for
both cases, hence verifying the NPSE3D code.

APPENDIX B: GRID CONVERGENCE FOR GLOBAL STABILITY ANALYSIS

For the purpose of examining the grid convergence of the BiGlobal results for Mack-mode
instabilities, calculations of eigenvalue spectra were performed with three grid resolutions in
both azimuthal and wall-normal directions, and the results are compared in Fig. 29. Given that
continuous-type global modes in three-dimensional boundary layers are very sensitive to the
azimuthal resolutions [20,53], the results are deemed converged for 600 azimuthal grid points in the
sense that the peak growth rates, peak phase velocity, and the spectrum pattern remain unchanged.
In contrast, the global modes are relatively insensitive to the wall-normal resolution, and the results
with 101 wall-normal grid points are already satisfying. Next, we examine the grid convergence of
NPSE3D by comparing the amplitude evolutions of test cases in Table IV. Note that the grids in the
azimuthal direction of all cases are stretched so that at least 50 points are put within [178◦, 180◦].
The results are displayed in Fig. 30, showing a good convergence even for the coarsest grid. The
fundamental resonance and the subsequent saturation state are observed for all the cases, albeit
slight movements of onset locations of the fundamental resonance.

APPENDIX C: COMPARISON WITH DNS RESULTS BY YANG

Yang [27] carried out direct numerical simulations to investigate the nonlinear development of a
single-frequency Mack-mode wave for the same flow configuration as in this study. Below we will
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FIG. 28. Comparison of NPSE2D and NPSE3D results for the amplitude evolution of representative modes
in case K (a) and case O (b) with conditions being summarized in Table III.
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FIG. 29. Convergence test of BiGlobal for global modes with frequency of 1560 kHz at X ∗ = 400 mm:
(a) grid convergence in the azimuthal direction, (b) grid convergence in the wall-normal direction.

briefly introduce some important DNS results and make a comparison with the present theoretical
results where possible.

In the DNS, the fluctuations were introduced by the azimuthally uniform unsteady blowing and
suction as

vbs = Av sin[(X ∗ − X ∗
1 )/(X ∗

2 − X ∗
1 )]3 cos(2π f ∗t∗), (C1)

where Av is the amplitude of the wall-normal velocity equal to 0.1% U ∗
∞, X ∗

1 = 280 mm, X ∗
2 =

282 mm, and f ∗ = 1750 kHz. The grid resolution is Nξ × Nζ × Nη = 8100 (axial direction) ×
240 (azimuthal direction) × 380 (wall-normal direction), amounting to a total of 0.74 × 1011 grid
points. In the range of interest X ∗ ∈ (250, 550) mm, the axial grid distribution is uniform and
denser than the upstream and downstream regions, ensuring approximately 18 points for each axial
wavelength of the Mack-mode wave at frequency 1750 kHz. Most of the azimuthal grid points are
uniformly distributed in the windward side [φ ∈ (90, 270)◦] so that the azimuthal spacing between
adjacent points is approximately 1◦. Seventh-order weighted essentially nonoscillatory (WENO)
finite-difference scheme and sixth-order central difference scheme were utilized for discretizing
the convective and viscous terms, respectively. Figure 31 presents the normalized temperature root
mean square (rms) at four successive stations. Although planar perturbations were excited through
the blowing and suction, the temperature rms at the first station already exhibits a prominent
concentration on the windward ray. Further downstream, the outboard disturbance continues to
weaken compared to that in the vicinity of the windward ray so that the temperature rms at the third
station appears to be restricted within about ±3◦ with respect to the windward ray. This is consistent
with the global analysis results of this study that perturbations in the proximity of the windward
line will eventually prevail. At the last station, additional rms peaks emerge at the two sides of
the primary one, which is possibly attributed to the growth of broad-band disturbances as will be
shown later. The above results indicate that the spatial development of Mack-mode instability in
the windward side is dominated by the branch D mode at least up to the late stage. This is further
evidenced by Fig. 32, which displays the amplitude developments of the wall pressure disturbances
along the windward ray separately extracted from the primary frequency (1750 kHz) and all the

TABLE IV. Convergence test of NPSE3D for the symmetric-mode case.

Case 1 2 3 4 5 6 7

Nζ 200 200 200 100 250 300 150
Nη 100 100 100 100 150 100 100
Modes included 2 3 4 2 2 3 2
Azimuthal domain 168◦–180◦ 168◦–180◦ 168◦–180◦ 168◦–180◦ 162◦–180◦ 168◦–180◦ 150◦–180◦
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FIG. 30. Convergence test of NPSE3D for cases listed in Table IV. Only the first three modes in each case
are displayed.

frequencies. It can be seen that the disturbance amplitude undergoes an exponential growth, peaks
at approximately X ∗ = 375 mm and subsequently decays. For comparison, we further performed
LPSE3D and NPSE3D calculations initiated by the branch D mode at frequency 1750 kHz. In
NPSE3D, the initial amplitude is prescribed to be the same as the DNS results at X ∗ = 300 mm.
Obviously, the LPSE3D results adequately capture the exponential-growth stage, while the NPSE3D
results faithfully predict the saturation and decay phases. The peak temperature disturbance ampli-
tude of the primary frequency estimated from NPSE3D results is about 6%, much smaller than the
fundamental resonance threshold (10%) given by the theoretical results above, hence the primary
disturbance is unlikely to trigger the laminar boundary-layer breakdown. This is supported by the
DNS results that the fundamental disturbance amplitude decay all the way to the initial amplitude
level. Interestingly, DNS results show that disturbances from other frequencies, possibly originating
in numerical noise, manifest and dominate the flow field downstream of X ∗ > 440 mm.

(a)

(c)

(b)

(d)

FIG. 31. Distribution of the normalized root-mean-square (rms) of the temperature disturbance in the cross
sections of selected axial stations, obtained from the first DNS case. (a) X ∗ = 300 mm, (b) X ∗ = 325 mm,
(c) X ∗ = 350 mm, (d) X ∗ = 425 mm. Reproduced from [27], Fig. 4.4.

033903-36



GLOBAL STABILITY ANALYSES OF MACK MODE ON THE …

300 350 400 450 500 550
10 -4

10 -3

10 -2

10 -1

10 0

X* (mm)

|P
’| w

total disturbance

 disturbance of 1750 kHz

LPESE3D
NPESE3D

FIG. 32. Downstream development of the pressure disturbance amplitude of 1750 kHz (blue solid line)
and the total disturbance amplitude (dotted line) extracted at the wall along the windward ray from the first
DNS case. The pressure disturbance is normalized by the free-stream pressure. Reproduced from Yang [27],
Fig. 4.3. The LPSE3D results (black solid line) and the NPSE3D results (red dashed line) with the same initial
amplitude calculated by this study are also displayed for comparison.

APPENDIX D: PARAMETRIC EFFECTS ON THE NONLINEAR DEVELOPMENT
OF THE D MODE

In this Appendix, we examine whether the fundamental resonance is robust under various condi-
tions. Figure 33(a) compares the amplitude evolutions in cases with different initial amplitudes.
It can be seen that the fundamental resonance manifests itself for cases whenever the primary
mode amplitude exceeds about 10% for the temperature disturbance (3.7% for the mass-flow
disturbance or 0.8% for the pressure disturbance). Increasing the initial amplitude leads to the
forward movement of the onset of the fundamental resonance as well as the saturation location,
but does not change the growth rates (estimated by the slope of the amplitude curve). Figure 33(b)
displays the frequency effects on the fundamental resonance. Each frequency features a different
initial amplitude in order to separate the curves for better visual clarity. Again, the fundamental
resonance is visible for all the three primary frequencies once the primary mode amplitude exceeds
about 10%. Moreover, the growth rates of the stationary mode in the fundamental-resonance stage
seem to slightly decrease with increasing frequency.
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FIG. 33. Parametric effects on the fundamental resonance. (a) Effects of initial amplitudes (A0) of the
primary mode. (b) Effects of the frequency ( f ∗

p ) of the primary mode. The thick green line denotes the amplitude
threshold (10%).
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APPENDIX E: ENERGY TRANSFER

An energy balance equation can be derived by considering the perturbation equations (14). The
streamwise momentum equation for one mode (with frequency mF ) can be expressed as

ρ̄
DU ′

ξ

Dt
= −Luq′ + Nu, (E1)

where Lu denotes the linear operator; Nu quantifies the nonlinear forcing; D/Dt ≡ ∂/∂t + Ūξ ∂/∂ξ .
The subscript (m) has been omitted for simplicity. Multiply Eq. (E1) by U ′

ξ
† (the complex conjugate

of U ′
ξ ), multiply the complex conjugate of Eq. (E1) by U ′

ξ , and then add these two equations to get

ρ̄
D|U ′

ξ |2
Dt

≡ −2αiρ̄Ūξ |Ûξ |2 exp

(
−2

∫
αidξ

)
= −U ′

ξ

†Luq′ + U ′
ξ

†Nu + c.c., (E2)

where the PSE3D assumption (13) has been adopted. By applying similar operations to the momen-
tum equations in other two directions, the continuity equation and the energy equation, we obtain
the total disturbance energy transport equation

1

2
ρ̄

DE

Dt
≡ − αiρ̄|Ūξ |

(
|Ûξ |2 + |V̂η|2 + |Ŵζ |2 + T̄

ρ̄2γ M2
|ρ̂|2 + |T̂ |2

γ (γ − 1)M2T̄

)

× exp

(
−2

∫
αidξ

)
= Le + Ne, (E3)

where

Le ≡ − 1
2 (U ′

ξ

†Luq′ + V ′
η

†Lvq′ + W ′
ζ

†Lwq′ + ρ ′†Lcq′ + T ′†LT q′ + c.c.) (E4)

and

Ne ≡ 1
2 (U ′

ξ

†Nuq′ + V ′
η

†Nvq′ + W ′
ζ

†Nwq′ + ρ ′†Ncq′ + T ′†NT q′ + c.c.). (E5)
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