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Stability of variable density rotating flows: Inviscid case and viscous
effects in the limit of large Reynolds numbers
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Linear stability of solid body rotating flows with axisymmetric density variations is
addressed analytically. Considering inviscid disturbances, a nontrivial dispersion relation
is obtained and it is shown that the instability is of Rayleigh-Taylor type in cylindrical
frame. The viscous correction is derived, in the limit of large Reynolds numbers and
large azimuthal wave numbers, allowing the determination of the most unstable mode.
Theoretical predictions are checked by comparing them to (spectrally accurate) computed
eigenvalues and direct numerical simulations.
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I. INTRODUCTION

Rotating and swirling flows of gas mixtures (i.e., variable density flows) are encountered in a
wide variety of industrial and geophysical flows. Rotating injectors and hurricanes are two examples
illustrating the special case of solid-body rotation [1]. Understanding the dynamics of these flows is
not only of fundamental interest but is also relevant for the development of control and optimization
strategies.

It is well known that solid body rotation of a homogeneous fluid is a marginally stable configura-
tion of Euler’s equations [2,3], while viscosity has only a stabilizing influence. Hence, the so-called
inertial waves have been experimentally observed only when the excitation source is sustained [4].
Considering three dimensional disturbances of a two-dimensional axisymetric basic configuration,
the flow exhibits an instability if the Rayleigh-discriminant � = 2V (dV/dr + V/r)/r is negative
somewhere in the flow [5] (r being the distance from rotation center and V (r) the azimuthal
velocity).

If density variations within the fluid are considered, an equivalent to the Brünt-Vaïssalla
frequency G is usually defined by G2 = −(�2r/ρ)dρ/dr (ρ being the density and � = V/r).
Leibovich [6] and Howard [7] have shown independently that the flow is stable to axisymmetric
disturbances if G2 < �, for both incompressible and compressible flows. For rotating flows with
axial jet, Leibovich and Stewartson [5] have been able to theoretically derive the discrete spectrum
of the instability near the point where the Doppler frequency kW + m� − ω admits an extremum
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(ω, k, m, W being the pulsation, axial wavenumber, azimuthal wavenumber, and axial velocity,
respectively). Subsequently, Eckhoff [8] derived a sufficient condition for instability using a WKB
expansion. Those results have been extended by Leblanc and Le Duc [9], who established a link
between the eigenfrequencies of [8] and [5]. Di Pierro and Abid [10] have proposed an asymptotic
expression for the eigenfrequency associated with rotating flow with axial jet, assuming large
wavenumbers.

Along with that, Gans [11] has shown that the flow is unstable with respect to any nonaxisymmet-
ric two-dimensional disturbances if G2 is slightly positive. Additionally, considering an equivalent
configuration, Sipp et al. [12] have shown through numerical experiments that G2 > 0 is a necessary
condition for such an instability. The authors argued that the underlying mechanism was associated
with a Rayleigh-Taylor instability.

More recently, Scase and Hill [13] investigated both theoretically and numerically the effect of
rotation on confined two liquid layers, with different density and viscosity, that form concentric
cylinders. Their axis of rotation is confused with central axes of these cylinders. The authors
have also discussed the effect of rotation of both miscible and immiscible fluids. For all flow
cases, the equilibrium state is associated with the two-layers initially separated by a sharp inter-
face. An Orr-Sommerfeld-like equation is derived which successfully reproduces direct numerical
simulations as long as the linear approximation is still valid. Especially, they have shown that the
system may be unstable when the inner fluid is denser than the outer one driven by the centrifugal
force. The instability takes the form of mushroom like perturbations in the nonlinear regime as
observed in the Rayleigh-Taylor configuration. Scase and Sengupta [14] extended these results to a
three dimensional configuration. They showed that the disturbances growth is essentially driven by
geometrical parameters in the absence of surface tension: domain aspect ratio and initial position
of the interface. While the above findings provide a good understanding of the amplification of
Rayleigh-Taylor-like instability in a centrifugally driven configuration, it does not discuss the case of
initial gas mixtures and spatially extended configuration in the radial direction. Finally, an equivalent
configuration of a cylindrical biphasic flow with uniform radial acceleration has been studied by
Zeng et al. [15]. They observed both two- and three-dimensional disturbances and, particularly, they
showed that the growth rate of the two-dimensional mode varies as ν1/3 (ν the kinematic viscosity),
while the three dimensional regime is very dependent of the viscosity ratio.

The purpose of this paper is then to investigate certain aspects of Rayleigh-Taylor instability in
rotating flows and to extend previously mentioned studies. The studied configuration is a steady,
solid-body rotation and incompressible flow in the presence of a radial smooth density gradient.
Two results are obtained: (i) an analytical dispersion relation without any asymptotic consideration
in the inviscid case and (ii) a viscous correction in the limit of large Reynolds numbers. The present
study allows an extension of some conclusions in [10], which are limited to a large wavenumber
and inviscid analysis. This paper also extends the study of [12] which numerically deals with the
stability of inviscid Gaussian vortex with heavy cores. The present study corresponds to the case
of nonaxial flow W (r) = 0 of [10] and small density core length b → 0 of [12]. In particular, it is
shown that a sufficient condition for instability is G2 > 0 somewhere in the flow for any density
ratio, and that the viscous correction has a purely stabilizing effect, allowing the determination of
the most unstable mode. A very good agreement between the analytical dispersion relation and
(linear/nonlinear) numerical simulations is obtained.

The paper is organized as follows. In Sec. II, the problem formulation is stated with mathematical
and numerical considerations. Section III establishes the inviscid dispersion relation, and Sec. IV
deals with the viscous correction. Both are validated by comparison with computed eigenvalues in
these two sections. Finally, those results are compared with direct numerical simulations in Sec. V,
and the last section provides some physical discussion and concluding remarks.
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FIG. 1. Sketch of the basic flow.

II. PROBLEM FORMULATION

A. Governing equations

The incompressible, variable-density Navier-Stokes equations are considered, neglecting molec-
ular diffusion [16]:

∂u
∂t

= −(u ∇ )u − 1

ρ
∇P + μ

ρ
�u, (1)

∂ρ

∂t
= −u ∇ρ, (2)

∇ u = 0, (3)

with u the vector velocity field, ρ the density, and P the pressure. The dynamic viscosity μ is
assumed to be constant, which is representative of gaseous or liquid mixtures, and the surface
tension is neglected. We investigate a steady solid-body rotation base flow with rotation rate �

and an axisymmetric density profile, as seen in Fig. 1. By introducing R, the density core length, as
the length scale and �−1 as the time scale, one can define the Reynolds number Re = ρ∞�R2/μ

where ρ∞ is the density far from the rotating center. The velocity, pressure and density fields of the
base flow are expressed in polar coordinates (r, θ ) as U0(r) = �reθ , P0(r), and ρ0(r), respectively.
We consider two-dimensional disturbances of the form

(ur (x, t ), uθ (x, t ), ρ(x, t ), P(x, t ))T = (u(r), v(r), ρ(r), p(r))T exp(i(mθ − ωt )), (4)
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with m the azimuthal wavenumber and ω the unknown complex pulsation. Linearization of Eqs. (1),
(2), and (3) leads to the following eigensystem:

i

(
m� − ω + i

L
Reρ0

)
u − 2

(
� − im

Reρ0r2

)
v + 1

ρ0

dP

dr
− �2r

ρ0
ρ = 0,

2

(
� − im

Reρ0r2

)
u + i

(
m� − ω + i

L
Reρ0

)
v + im

rρ0
P = 0,

i(m� − ω)ρ + u
dρ0

dr
= 0,

1

r

dru

dr
+ im

r
v = 0, (5)

with L = d2

dr2 + 1
r

d
dr − m2+1

r2 .

B. Numerical resolution

The eigenvalues and eigenfunctions (u, v, ρ, p) are computed with spectral accuracy by using
Chebyshev polynomial expansions. The infinite domain r ∈ [−∞,∞] is mapped to the interval γ ∈
[−1, 1] containing the Gauss-Lobato points (γi = cos(iπ/(N − 1)), i = 0, . . . ,N − 1) using the
transformation r = tan(πγ /2). This transformation avoids the expression of a boundary condition
at r = 0, which depends on the disturbance symmetry. The number of modes N is even such that
the singular point r = 0 is avoided. In the following, the radial derivative operators of order n will
be denoted by Dn

r [17].
Since the equation associated with the pressure is independent of ω, system (5) is numerically

illconditioned. This leads to the computation of nonphysical oscillating modes [17]. To avoid the
occurrence of these spurious modes when solving the eigensystem, the pressure is eliminated from
(5) by taking the divergence of the momentum equations and using the inverse of an elliptic operator:

D =
[

m2

r2ρ0
−

(
Dr + 1

r

)
1

ρ0
Dr

]−1

. (6)

Now, the eigenvalue problem can be recast as:

A

⎛
⎝u

v

ρ

⎞
⎠ = iω

⎛
⎝u

v

ρ

⎞
⎠, (7)

with

A =

⎡
⎢⎢⎢⎣

im� − 1
Reρ0

L + 1
ρ0

DrDCu −2
(
� − im

Reρ0r2

)
+ 1

ρ0
DrDCv

−�2r
ρ0

+ 1
ρ0

DrDCρ

2
(
� − im

Reρ0r2

)
+ im

ρ0rDCu im� − 1
Reρ0

L + im
ρ0rDCv

im
ρ0rDCρ

dρ0

dr 0 im�

⎤
⎥⎥⎥⎦,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cu = (
Dr + 1

r

)(
im� − 1

Reρ0
L

)
+ 2 im

r

(
� − im

r2Reρ0

)
Cv = −2

(
Dr + 1

r

)(
� − im

r2Reρ0

)
+ im

r

(
im� − 1

Reρ0
L

)
Cρ = −(

Dr + 1
r

)
�2r
ρ0

,

and L = D2
r + (1/r)Dr − (m2 + 1)/r2. In addition to eliminating spurious modes, elimination of

the pressure improves operator conditioning and accelerates the computation of eigenvalues. The
last eigensystem (7) is solved using LAPACK routines.
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For numerical validation, the following basic density profile is used:

ρ0(r) = 1 + s − 1

2

(
1 − tanh

(
r − 1

e

))
, (8)

which mimics heavy (or light) vortex core with smooth density variations; e being the variation
length of density profile and s being the density ratio between the rotating center and the far field.

III. INVISCID INSTABILITY

In the limit of an infinite Reynolds number, the system (5) can be rewritten as a single equation of
the variable φ = ru, as

d2φ

dr2
+ 1

ρ0r

dρ0r

dr

dφ

dr
−

[
2m�

rρ0

dρ0

dr
+ m2

r2

(
1 + G2

2

)]
φ = 0, (9)

with

G2 = −�2r

ρ0

dρ0

dr
,  = m� − ω. (10)

Introducing ψ = √
rρ0φ, Eq. (9) becomes

d2ψ

dr2
+

[
ζ − 2m�

rρ0

dρ0

dr
− m2

r2

(
1 + G2

2

)]
ψ = 0, (11)

with

ζ =
[

1

2ρ0r

dρ0r

dr

]2

− 1

2ρ0r

d2ρ0r

dr2
. (12)

From (11), we assume that the unstable dynamics occurs at the location r∗, such that G2(r∗) is a
local extremum. Introducing, r̃ = r − r∗ and ψ̃ (r̃) = ψ (r), a second order Taylor expansion of (11)
gives

d2ψ̃

dr̃2
+ �(r̃)ψ̃ = 0, (13)

with

�(r̃) = ζ (r∗) − χ (r∗)

r∗2
+

(
dζ

dr
(r∗) + 2χ (r∗)

r∗3

)
r̃ +

(
d2ζ

dr2
(r∗) − 1

r∗2

d2χ

dr2
(r∗) − 6χ (r∗)

r∗4

)
r̃2

2
,

χ (r) = 2m
G2

�
+ m2

(
1 + G2

2

)
. (14)

Equation (13) is a parabolic cylinder equation. Assuming that ψ vanishes far from r∗, Eq. (13)
admits solutions in the form of Weber-Hermite polynomials ψ̃ (r̃) = Hn(αr̃ + β ) with

α =
√

2

(
3
χ (r∗)

r∗4
+ 1

2r∗2

d2χ

dr2
(r∗) − 1

2

d2ζ

dr2
(r∗)

)1/4

, β = 2

α3

(
dζ

dr
(r∗) + 2χ (r∗)

r∗3

)
, (15)

if and only if

− 1

α2

⎛
⎝χ (r∗)

r∗2
− ζ (r∗) +

( dζ

dr (r∗) + 2χ (r∗ )
r∗3

)2

2 d2ζ

dr2 (r∗) − 2 1
r∗2

d2χ

dr2 (r∗) − 12χ (r∗ )
r∗3

⎞
⎠ = n + 1

2
, (16)

where n is an integer. This inviscid dispersion relation corresponds to the case studied numerically
in [12] for small density distribution widths (defined as “b” in their paper). Note that it is not based
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FIG. 2. Inviscid dispersion relation Im(ω) versus azimuthal wavenumber m for density ratio s = 2 and
mass thickness e = 0.2 [Dotted: eigenvalue of system (7), line: root of dispersion relation (16), dashed:
Asymptotical solution (17)].

on the assumption of a weakly varying base flow [10] or large wavenumbers. In the limit of large
azimuthal wavenumbers, the following growth rate is obtained by expansion of (16) with respect to
m:

ωn = m� + G2

m�
+ i

(√
G2(r∗) + n + 1

2

m

√
− r∗2

2

d2G2

dr2
(r∗)

)
. (17)

Here, the expression (17) is identical to the one obtained in [10], except for the correction G2/m�

to the real part. Equation (16) has no explicit solution, and is numerically solved using the Muller’s
root finding algorithm [18].

Figure 2 compares the dispersion relation obtained using the full system (7) to the solution of
(16) and the asymptotic expression (17). A very good agreement is found: the solutions of system
(7) and equation (16) are almost undistinguishable, and the relative error is less than 10% if m � 6
when comparing the solutions of (7) and (17).

IV. ASYMPTOTIC VISCOUS INSTABILITY

The viscous case is considered here in the limit of large Reynolds numbers as well as large wave
numbers, such that 1 � m2 � Re. Hence, m2Re−1 is treated as a small parameter. In this limit, the
viscous operator behaves to leading order as

1

Re
L ≈ −m2

r2Re
. (18)

The differential system (5) can then be rewritten as a second order differential equation:

d2φ

dr2
+

[
1

ρ0r

dρ0r

dr
+ 1

 + iN
dN
dr

]
dφ

dr

−
[

2m(� − iM)

rρ0( + iN )

dρ0

dr
+ m2

r2

(
1 + G2

( + iN )

)
− 2im

r

1

 + iN
dM
dr

]
φ = 0, (19)

with

N = −m2

r2Re
, M = m

r2Re
. (20)

033901-6



STABILITY OF VARIABLE DENSITY ROTATING FLOWS: …

FIG. 3. Growth rate Im(ω) versus azimuthal wavenumber m for s = 10, e = 0.2, and Re = 1000 [Dotted:
eigenvalue of system (7), line: Asymptotical solution (22)].

Proceeding in the same way as in the previous section, one gets to leading order in m and m2/Re:

d2ψ

dr2
−

[
2mG2

r2�( + iN )
+ m2

r2

(
1 + G2

( + iN )

)]
ψ = 0, (21)

with ψ = √
ρ0r( + iN )φ. Here again, a parabolic cylinder equation is found, whose solutions are

Weber-Hermite polynomials associated with the following dispersion relation:

ωn = m� + G2(r∗)

�m
+ i

(√
G2(r∗) − n + 1/2

m

√
− r∗2

2

d2G2

dr2
(r∗) − m2

2Reρ0(r∗)r∗2

)
. (22)

Figure 3 shows the imaginary part of the eigenfrequencies obtained numerically in comparison with
the asymptotic solution (the real parts being indistinguishable). It appears that Eq. (22) is a good
approximation when 12 � m � 50 (the error is less than 2.5%); i.e., in the limit of large m and
m2Re−1 � O(1). Moreover, one can see that the maximum of the dispersion curve (see Fig. 3) is
correctly represented by this last approximation. This allows the identification of the most unstable
mode as well as the corresponding azimuthal wavenumber:

ωn,max = m� + G2(r∗)

�m
+ i

√
G2 − 3i

2

((
n + 1

2

)√− r∗2

2
d2G2

dr2 (r∗)

) 2
3

(r∗2ρ0(r∗)Re)
1
3

, (23)

mmax =
((

n + 1

2

)
Reρ0(r∗)r∗2

) 1
3
(

− r∗2

2

d2G2(r∗)

dr2

) 1
6

. (24)

A comparison between these approximations and numerical solutions is shown in Fig. 4. Very good
agreement is found for the most amplified mode ωn,max as well as for the selected azimuthal mode
mn,max.

V. NONLINEAR INSTABILITY

To analyze the instability dynamics towards the non linear stage, the variable density Navier-
Stokes equations (1), (2), and (3) are solved numerically using the method presented in [19]. Here is
a brief review. The spatial discretization is based on a two-dimensional Fourier expansion, with peri-
odic boundary conditions. Time integration is performed using a second order Runge-Kutta scheme,

033901-7



C. JACQUES et al.

FIG. 4. Numerical and asymptotical growth rate Im(ωn,max) versus mmax for the most unstable mode for
e = 0.2. Left: Re = 104 and s = 2, 3, 4, 5, 6, 7, 8, 9, 10. Right: s = 8 and Re = 102, 103, 104, 105, 106

[Dotted: eigenvalue of system (7), line: Asymptotical solution (23) and (24)].

while the pressure is computed using a fixed point method to ensure the incompressibility constraint.
The time step is chosen as 10−2 in order to satisfy stability criterion, and the computational domain
is a square of size 6π×6π discretized with 512×512 grid points. The initial density profile (8) is
used. The velocity initial condition is a Lamb-Oseen-like vortex: �(Uθeθ ) = −∇×(�LO(r)ez ), with
�LO(r) = � exp(−r2/a2) the vorticity and a = 5. The latter velocity field is then compatible with
periodic boundary conditions [20]. A plot of the initial distribution is shown in Fig. 5 (top left). Note
that the dynamics within the vortex core (r � 0.3a) is close to a solid body rotation. In the case of
constant density, the Lamb-Oseen vortex does not satisfy the instability conditions of Leibovich &
Stewartson [5]. Its linear stability has been proven numerically by [21]. Finally, the flow is initially
disturbed with a random noise of amplitude O(10−3).

The disturbance amplitudes Am of each mode m are extracted from the Fourier expansion ρ̂m(r, t )
of the density field ρ(r, θ, t ) interpolated from the Cartesian grid (x, y), and are defined as

Am(t ) =
√∫ R

0
|ρ̂m(r, t )|2rdr. (25)

Figure 5 shows a contour plot of the density field at times t ≈ 3.7, 5.5, and 7.4 for Re = 1000
and s = 2. At the earliest times, many azimuthal modes are growing (Fig. 5, top right), while the
azimuthal mode m ≈ 17 emerges a little later on (Fig. 5, bottom left). This last mode is the most
unstable, which is predicted by the asymptotic expression mmax (24).

Figure 6 shows the amplitude of the m = 17 mode versus time and the asymptotic prediction
exp(−iωn,maxt ) [see Eqs. (23) and (24)]; Im(ωn,max) ≈ 1.04 with the considered parameters for
this mode. After a transient time, one can see that the exponential growth is well represented by
the asymptotic theory. For t ≈ 7, Fig. 5 (bottom right) shows that the instability reaches a nonlinear
stage where modal interactions can no longer be neglected. The study of these nonlinear interactions
is left for future work. A last simulation where e/R = O(1) has been performed, with the basic flow

ρ0(r) = 1 + (s − 1) exp(−r2). (26)

The comparison between direct numerical simulation and prediction of (23) is shown in Fig. 7. Once
again, a very good agreement is found.

VI. DISCUSSION AND CONCLUSION

The paper presents a linear temporal stability analysis of an axisymmetric, variable-density,
uniformly rotating flow evolving under the incompressibility constraint. The problem solutions are
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FIG. 5. Direct numerical simulation of the variable density rotating flow with s = 2 and Re = 1000. Initial
radial distribution (top left), Iso-contours of density field at time t ≈ 3.7 (top right), t ≈ 5.5 (bottom left), and
t ≈ 7.4 (bottom right). x and y here are the Cartesian coordinates.

validated by comparison to spectrally accurate numerical methods. In the inviscid case, which is
considered first, the problem is governed by a second order differential equation. It is shown that
the instability dynamics is characterized by an analog to the Brünt-Vaïssalla frequency G(r) [with
G2(r) = (−�2r/ρ0)dρ0/dr]. It is also shown that disturbances reach a maximum near the location
where G2(r) admits an extremum. A nontrivial dispersion relation is obtained. However, in the
limit of large azimuthal wavenumbers, an approximation of eigenfrequency can be analytically
obtained. It can be seen that an instability can occur if and only if G2 > 0 (i.e., if dρ0/dr < 0).
In that sense, it completes results given by Scase and Hill [13] restricted to the sharp initial density
profile case and confined within a given radial distance from the rotating center. One deduces that the
instability is triggered when the local centrifugal acceleration (ac = �2rer) and the reduced density
gradient [∇̄ρ = (∇ρ0)/ρ0] are in opposite directions. This shows that the resulting instability is a
cylindrical Rayleigh-Taylor one, the disturbance growth rate being proportional to the maximum of√

−ac ∇̄ρ. This is very similar to the classical planar Rayleigh-Taylor growth rate
√

gkAt (g, k, and
At being the gravitational acceleration, the wavenumber, and the Atwood number, respectively).
When comparing the expression of the eigenfrequencies at large m for solid-body rotation to the
asymptotic result of [10] obtained assuming weakly-varying velocity profiles, it appears that the
instability growth rates are the same up to order 1/m. The only difference being that a change is
observed in the the real frequency of order 1/m. In the inviscid case, all modes are unstable and
the instability growth rate is an increasing function of the azimuthal wavenumber approaching the
asymptotic value

√
G2 for large m. Hence, no mode selection is observed. To correctly represent
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FIG. 6. Amplitude of the azimuthal mode m = 17 versus time, for Re = 1000 and s = 2 and the asymptotic
prediction (23) and (24).

the mode selection, viscous effects have been studied in the limit of large Reynolds numbers as
well as large m. The resulting dynamics equation is very similar to the inviscid one and viscosity
appears as a purely stabilizing effect. Indeed, the real frequency is not affected by the viscous drag
while the growth rate varies as −m2/(ρ0Re). Once again, this is remarkably similar to the planar
Rayleigh-Taylor viscous correction proportional to −k2/(ρmRe) (ρm being an average density).
Thus, the resulting instability exhibits competitive mechanisms between the inviscid Rayleigh-
Taylor instability and to viscous damping. The most unstable mode has a growth rate varying as
Re−1/3, while the corresponding azimuthal wavenumber grows as Re1/3. The latter scaling is very
similar to the planar Rayleigh-Taylor instability for which the growth rate varies as Re−1/3, while
the corresponding longitudinal wavenumber grows as Re2/3.

Considering three-dimensional disturbances for the same base flow (i.e., a columnar vortex), one
notes that the dynamics equation remains the same when considering the modified wavenumber
l2 = m2 + k2r2, where k is the axial wavenumber. In particular, in the limit of large wavenum-
bers l → ∞ and large Reynolds numbers, Eq. (19) remains invariant by substituting m with l .
Hence, the same instability characteristics are obtained. Such three-dimensional disturbances are
helical Rayleigh-Taylor instabilities. Such disturbances have been observed by Zeng et al. [15] for

FIG. 7. Left: dispersion relation of base flow (26). Right: Amplitude of the azimuthal mode m = 10 versus
time, for Re = 1000 and s = 2 and the asymptotic prediction (23) and (24), for base flow (26).
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biphasic radially accelerated flows. Finally, these results have been validated using nonlinear direct
numerical simulations where the instability is triggered by superimposing random noise of small
amplitude onto the base flow. The most unstable mode observed in these simulations is in very
good agreement with asymptotic theory. In the later times of the simulation, while nonlinearities
appear, a strong modal interaction leads to the formation of mushroom-shaped disturbances, which
are characteristics of a Rayleigh-Taylor instability. The resulting flow pattern is very similar to the
one observed by Scase and Hill [13] in confined configuration.
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