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Accounting for surface temperature variations in Rayleigh-Bénard convection
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Turbulent Rayleigh-Bénard convection is often modeled with a constant surface tem-
perature. However, the surface temperature of many geophysical systems, such as lakes,
is coupled to the atmospheric forcing. In this paper, we account for this dynamic surface
temperature through an additional parameter β. Using an appropriately defined dynamical
Rayleigh number Ra�, we recover many of the results from the standard Rayleigh-Bénard
model. We hope that this paper will simplify the application of Rayleigh-Bénard theory in
geophysical contexts, such as lakes.
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I. INTRODUCTION

In its usual configuration, Rayleigh-Bénard convection results from sufficiently heating the
bottom and cooling the top of a fluid. In their experimental work [1], Bénard observed that the
surface water deflections from this convection formed hexagonal cells. In an attempt to model these
cells, Lord Rayleigh [2] then made the simplification that “the fluid is supposed to be bounded by
two infinite fixed planes [...], where also the temperatures are maintained constant.” Lord Rayleigh
noted that this was a simplification from “Bénard’s experiments, where, indeed, the [temperature]
conditions are different at the two boundaries.” In the years since that publication, Rayleigh-Bénard
convection has proven to be a complex dynamical system and remains a topic of intense academic
interest in fields ranging from astrophysics to oceanography [3].

In many geophysical systems, such as lakes and oceans, the water surface can be heated or cooled
from the surrounding environment. For example, the surface temperature of a lake depends on the
atmospheric temperature, surface radiation, and evaporation. During autumn, the lake surface cools,
which drives convection that will transport heat from within the lake to the water surface. That is, the
surface temperature depends on both the atmospheric forcing and the convection; it is not a constant
as is typically considered in Rayleigh-Bénard convection. However, we will show that this coupling
can be encapsulated by the Biot number, β, and that, with appropriately defined dynamic parameters,
the results of this modified setup are similar to those found in the standard Rayleigh-Bénard model.
Thus, we hope that this paper will simplify the application of Rayleigh-Bénard theory in geophysical
contexts, such as lakes.

Modifying the surface boundary conditions will change the linear stability of the Rayleigh-
Bénard model, which has been previously discussed in Sparrow et al. [4] and subsequently in
Foster [5]. The linear stability of the system is determined by the Rayleigh number (Ra0), which
characterizes the ratio of advective to diffusive transport. Sparrow et al. [4] demonstrated that
the critical Rayleigh number (Rac), the minimum Rayleigh number for instability, monotonically
increases as the upper boundary condition changed from an insulating condition (β = 0, Rac ≈ 720)
to an isothermal condition (β → ∞„ Rac ≈ 1800). Similarly changing the upper velocity boundary
condition from free slip to no slip resulted in a near uniform decrease in Rac (a decrease of ≈100,
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FIG. 1. A contour plot of the simulated value of nondimensional temperature � for Ra0 = 107, β = 8 at
time t = 1500. Superimposed is a cartoon of the mean temperature profile (�) between the fixed tank bottom
at � = 1 and the air temperature above.

see Fig. 1(a) in Sparrow et al. [4]). However, while the boundary conditions affect Rac, Foster [5]
demonstrated that the precise value of the thermal boundary condition has a weak effect on the time
to instability (t0) for the semi-infinite system. In this paper, we will focus on the nonlinear behavior
of the system after it becomes convectively unstable, both before and at thermal equilibrium.

Once started, convection enhances the effective thermal conductivity between the two boundaries
in the Rayleigh-Bénard system, which increases with Ra0. As a result, Chillá et al. [6] argue that, at
high Ra0, the finite thermal conductivity of the bounding plates used in laboratory experiments will
be unable to maintain a fixed temperature. That is, the true boundary temperature in laboratory
experiments depends upon the convection once the effective thermal conductivity of the fluid
increases beyond a certain value. Subsequently, Verzicco [7] and Brown et al. [8] demonstrated
that an empirical correction factor that depends on the conductivity ratio between the plates and
the fluid can account for the relative decrease in laboratory-measured heat transport at high Ra0.
Interestingly, Wittenberg [9] argue that where the finite conductivity of the plates is significant (as
is the case when Ra0 → ∞), the appropriate Ra0 is defined by the temperature difference across
the entire system, including the conductive plates. We will define Ra0 in a similar manner below.
While the methods and application of this paper are different from these laboratory setups, we
will similarly argue that the ratio β/Rap

0 (p is a constant defined below) determines if the surface
temperature is effectively fixed at a constant temperature, or if the convection significantly modifies
the surface temperature.

More recently, Clarté et al. [10] performed a set of three-dimensional convective simulations
of a semi-insulated rotating convective shell with a range of Biot numbers β. They argue that the
dynamic surface boundary condition can be replaced by a fixed flux condition when β is sufficiently
small or replaced by a fixed temperature condition when β is sufficiently large. In this paper, we
will extend their work by arguing that the ratio β/Rap

0 is the important parameter that determines
the surface boundary value.

We present a model of convection between two fixed planes with a dynamic surface boundary
condition for temperature. This boundary condition will assume that the far-field atmospheric
conditions are fixed, with a dynamic thermal boundary layer near the water surface. We want to
answer the following key questions:

(1) What is the heat transfer rate at the water surface?
(2) What is the equilibrium surface water temperature?
(3) How quickly does the system reach equilibrium?
(4) How vigorous is the convection?
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In the following discussion, we will describe the problem setup (Sec. II), and the theoretical
framework to answer the questions above (Sec. III). The results of the 2D numerical simulations
will be discussed in Sec. IV before concluding in Sec. V.

II. PROBLEM SETUP

In analogy to a surface cooled lake, we model a body of water that is cooled by exposure to the
atmosphere through the top boundary. In this paper, we will fix the bottom temperature of the water
to a known value T̃z̃=0. Further, we consider the case where the water is shallow compared to its
width, which we will model as periodic. This is a very similar setup to the classic Rayleigh-Bénard
problem with one major modification: the surface temperature is coupled to the flux of heat through
the surface.

Figure 1 is a schematic of the nondimensionalized (see below) mean temperature profile (�) in
this configuration. The temperature is fixed at the bottom of the domain, which is warmer than the
atmosphere above. Due to the resultant convection, the temperature at the center of the water domain
is well mixed, with temperature boundary layers at the top and bottom boundaries. The surface water
temperature depends on how much heat is being transported upward by the convection.

A. Temperature boundary condition

The rate of change of the dimensional mean water temperature T̃ [K] in a volume V [m3] is
determined by the heat flux q [W m−2] through the boundaries A [m2]. That is,

d

dt̃

∫
V

ρ0cpT̃ dV =
∫

A
−q · n̂ dA′. (1)

Here, n̂ is the outward normal vector, ρ0 [kg m−3] is the reference density of water, and
cp [J kg−1K−1] is the specific heat capacity of water. As mentioned above, we fix the lower boundary
temperature (T̃z̃=0). The domain is horizontally periodic. The heat flux at the surface depends on the
driving environmental process.

In many natural systems, such as lakes and oceans, the surface heat loss is given by the sum of
sensible (conductive), radiative, and latent heat fluxes. In this paper, we omit any additional heat
inputs, such as precipitation, and we will ignore short-wave radiation as it is not strictly a boundary
effect. The surface heat flux is then computed as the sum of net long-wave radiation, sensible heat
flux, and evaporation, written

qsurf · n = −εwσSBT̃ 4
z̃=H̃ + εσSBT̃ 4

air − Kair(T̃z̃=H̃ − T̃air ) + qL. (2)

Here, σSB [W m−2K−4] is the Stefan-Boltzmann constant and T̃air is the atmospheric temperature.
The effective air heat transfer coefficient (Kair [W m−2K−1]), and the emissivity of the air (ε [−],
including reflection from the water surface) and water (εw [−]) are model parameters and need to be
computed. However, these parameters have been studied extensively in the literature (see Imboden
and Wüest [11] and elsewhere). Finally, the heat loss due to evaporation is denoted as qL [W m−2].

Hitchen and Wells [12] showed that in the absence of evaporation (qL = 0), the surface heat flux
(qsurf) can be linearized to the following:

qsurf · n = γ
(
T̃z̃=H̃ − T̃R

)
, (3)

where, in our notation,

γ = (
Kair + 4εwσSBT̃ 3

air

)
, T̃R = T̃air + σSB(ε − εw )T̃ 4

air(
Kair + 4εwσSBT̃ 3

air

) . (4)

Here, γ [W m−2K−1] is an effective heat transfer coefficient and T̃R is an effective reference tem-
perature. This approximation assumes that the surface water temperature T̃z̃=H̃ and the atmospheric
temperature T̃air are close (|T̃z̃=H̃ − T̃air| � T̃air, in Kelvin). This model can be similarly written to
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include the effects of evaporation, which modify γ and T̃R, but not the functional form of Eq. (3).
We do not include them here as they increase the complexity of the equations, but we refer the
interested reader to Leppäranta [13]. For the purposes of this paper, we will assume that γ and T̃R

are given.

B. Equations of motion

The difference between the reference temperature T̃R and the bottom temperature T̃z̃=0 can be
used to define a characteristic velocity U 2

0 = gHα(T̃z̃=0 − T̃R), where α is the assumed constant
thermal expansion coefficient, g is the acceleration due to gravity, and H is the water depth. We scale
length by H , velocity [u = (u,w)] by U0, pressure by ρ0U 2

0 , and time by the advective timescale
τ0 = H/U0. Temperature is similarly scaled as

� = T̃ − T̃R

T̃z̃=0 − T̃R
. (5)

Under this nondimensionalization, the equations of motion are

(
∂

∂t
+ u · ∇

)
u = −∇P + �k̂ +

√
Pr

Ra0
∇2u, (6)(

∂

∂t
+ u · ∇

)
� = 1√

Ra0 Pr
∇2�, (7)

∇ · u = 0. (8)

These equations contain two nondimensional parameters: the Rayleigh number (Ra0) and the
Prandtl number (Pr):

Ra0 = gα(T̃z̃=0 − T̃R)
H3

κν
, Pr = ν

κ
. (9)

Here, ν is the kinematic viscosity and κ is the thermal diffusivity.
We model the top and bottom boundaries as impermeable that are free slip (no tangential stress)

at the surface and no slip at the bottom. The boundary conditions are then written

∂u

∂z
= 0, w = 0,

∂�

∂z
= −β�, where β = γ H

ρ0cpκ
, z = 1, (10)

u = 0, w = 0, � = 1, z = 0. (11)

For simplicity, the initial condition was set to �(z) = 1. Note that the numerical solver instan-
taneously corrects the initial condition to match the boundary condition. We perform a series
of numerical simulations with different values of Ra0 and β. In all cases, we fix Pr = 9 as the
approximate value for heat in water (Pr ≈ 9.0 at 11.5 ◦C and atmospheric pressure at sea level).

C. Numerical methods

We solve the system of Eqs. (6)–(8) with Dedalus [14], using pseudospectral spatial derivatives
(Chebyshev polynomials in the vertical and Fourier modes in the horizontal) and a second-order
Runge-Kutta time-stepping scheme. Numerical convergence was verified with grid resolution stud-
ies and by ensuring that there were at least eight grid points within the top boundary layer.

In total, 44 numerical simulations were run (see Table I). The simulations were two-dimensional
and run for a sufficiently long time that the system reached a quasisteady state (final time was
selected with t/τ � 4 as defined below). The domain width was four times the depth in all cases.
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TABLE I. A table of the parameters associated with each experiment. The horizontal and vertical grid
resolution was Nx, Nz, respectively. The upper thermal boundary layer thickness was δtop, with NB grid points
resolving the boundary layer. The initial time of instability is t0 as defined as the time of minimum kinetic
energy K. The end time of each numerical run was tmax, which is at least �4τ , where τ = τε is used for ε < 5
and τ = τ∞ otherwise (both defined below). The estimated steady state values of Nu0, �1 and K0 are provided.
The standard deviation of the surface temperature σ (�1) is also provided. Finally, the Reynolds number (Re)
based upon the RMS velocity is given. The ‘Fixed’ cases have prescribed �z=1 = 0, i.e. the limit of β → ∞.
The horizontal dimension Lx = 4 in all cases.

Ra0 β Nx Nz δtop NB t0 ε tmax tmax/τ Nu0 �1 σ (�1) K0 Re

106 20 256 128 0.034 15 15.7 0.058 1700 4.8 6.3 0.9 0.02 1.1 × 10−3 15
106 21 256 128 0.030 14 11.7 0.115 1300 4.4 7.4 0.8 0.03 1.7 × 10−3 19
106 22 256 128 0.030 14 9.3 0.230 1100 4.4 8.4 0.7 0.04 2.8 × 10−3 24
106 23 256 128 0.028 14 7.1 0.460 1300 6.2 8.9 0.5 0.05 4.3 × 10−3 30
106 24 256 128 0.025 13 6.5 0.920 1200 6.8 9.4 0.4 0.05 6.1 × 10−3 36
106 25 256 128 0.026 13 4.5 1.841 1100 7.4 10.3 0.2 0.05 7.8 × 10−3 41
106 26 256 128 0.026 13 3.7 3.681 1100 8.8 10.2 0.1 0.04 9.1 × 10−3 44
106 27 256 128 0.024 13 3.6 7.362 1000 9.7 10.3 0.1 0.03 9.7 × 10−3 46
106 28 256 128 0.026 13 3.4 14.724 1000 9.7 10.3 0.0 0.02 10.0 × 10−3 47
106 29 256 128 0.026 13 3.4 29.448 1000 9.7 10.3 0.0 0.01 1.0 × 10−2 48
106 Fixed 256 128 0.025 13 2.7 ∞ 1000 9.7 10.5 0.0 0.00 1.1 × 10−2 48
107 20 256 128 0.025 13 18.4 0.028 3600 5.5 10.4 0.9 0.01 9.4 × 10−4 45
107 21 256 128 0.022 12 15.0 0.056 3000 5.5 11.9 0.9 0.02 1.7 × 10−3 61
107 22 256 128 0.019 11 10.8 0.113 2400 5.2 13.6 0.8 0.03 3.0 × 10−3 81
107 23 256 128 0.016 10 7.3 0.225 2000 5.2 15.3 0.7 0.04 4.8 × 10−3 103
107 24 256 128 0.016 10 6.2 0.451 1600 4.9 16.8 0.5 0.05 7.8 × 10−3 131
107 25 256 128 0.016 10 4.7 0.901 1600 5.8 17.8 0.4 0.06 1.1 × 10−2 156
107 26 512 128 0.014 10 3.7 1.803 1500 6.5 18.5 0.2 0.06 1.3 × 10−2 173
107 27 512 128 0.014 10 3.2 3.606 1450 7.5 19.0 0.1 0.04 1.6 × 10−2 186
107 28 512 128 0.013 9 2.9 7.212 1400 8.7 19.3 0.1 0.03 1.7 × 10−2 193
107 29 512 128 0.014 9 2.7 14.423 1450 9.0 19.2 0.0 0.02 1.7 × 10−2 196
107 Fixed 256 128 0.013 9 2.4 ∞ 1450 9.0 19.2 0.0 0.00 1.8 × 10−2 199
108 20 256 128 0.016 10 22.9 0.014 7000 5.8 17.3 0.9 0.01 9.1 × 10−4 142
108 21 256 128 0.013 9 15.9 0.028 5400 5.3 19.9 0.9 0.01 1.7 × 10−3 195
108 22 512 128 0.009 8 11.9 0.055 4800 5.6 22.4 0.8 0.02 2.9 × 10−3 254
108 23 512 256 0.006 13 7.9 0.110 4100 5.7 28.6 0.8 0.03 4.9 × 10−3 329
108 24 512 256 0.006 13 6.9 0.221 3300 5.5 32.2 0.7 0.04 8.1 × 10−3 423
108 25 512 256 0.006 12 4.9 0.442 2700 5.3 35.7 0.5 0.06 1.2 × 10−2 521
108 26 512 256 0.006 12 3.9 0.883 2300 5.4 38.7 0.4 0.06 1.7 × 10−2 610
108 27 512 256 0.006 12 2.9 1.766 2300 6.4 40.1 0.2 0.06 2.1 × 10−2 682
108 28 512 256 0.005 12 2.9 3.532 2100 7.0 41.5 0.1 0.05 2.4 × 10−2 736
108 29 512 256 0.006 12 2.9 7.064 2000 8.1 42.1 0.1 0.03 2.6 × 10−2 765
108 Fixed 512 256 0.006 13 1.9 ∞ 2000 8.1 42.4 0.0 0.00 2.8 × 10−2 795
109 20 512 256 0.006 13 23.9 0.007 14500 6.5 27.2 1.0 0.00 7.3 × 10−4 403
109 21 512 256 0.005 11 16.9 0.014 11900 6.3 36.5 0.9 0.01 1.4 × 10−3 550
109 22 512 256 0.004 11 12.9 0.027 9300 5.9 42.4 0.9 0.01 2.5 × 10−3 744
109 23 1024 256 0.004 11 9.9 0.054 7000 5.3 48.4 0.9 0.02 4.3 × 10−3 980
109 24 1024 256 0.004 10 6.9 0.108 6300 5.6 54.2 0.8 0.03 7.3 × 10−3 1273
109 25 1024 256 0.004 10 4.9 0.216 5000 5.3 60.0 0.7 0.04 1.1 × 10−2 1579
109 26 1024 256 0.004 10 3.9 0.432 3900 4.9 65.9 0.5 0.05 1.6 × 10−2 1897
109 27 1024 256 0.004 10 2.9 0.865 3000 4.5 71.0 0.4 0.05 2.2 × 10−2 2189
109 28 1024 256 0.004 10 2.9 1.730 2400 4.3 74.9 0.2 0.05 2.7 × 10−2 2441
109 29 1024 256 0.004 10 1.9 3.460 1900 4.0 77.6 0.1 0.04 3.1 × 10−2 2629
109 Fixed 1024 256 0.004 10 1.3 ∞ 1900 4.9 76.4 0.0 0.00 3.8 × 10−2 2915
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III. THEORY

The Nusselt number (Nu) is the ratio between the measured surface vertical heat flux (J) and the
purely diffusive heat flux. In our nondimensionalization, it is computed as

Nu = J

�
. (12)

The temperature difference, � = �z=0 − �z=1, between the upper and lower boundaries is typically
prescribed for classical Rayleigh-Bénard convection. For a fixed Prandtl number, we will show
below that Nu scales with the effective Rayleigh number Ra�,

Nu − 1 ∼ CRap
�, Ra� = Ra0�, (13)

where the effective Rayleigh number, Ra�, is defined by the dynamic temperature values at the
top and bottom boundaries. While debate persists concerning the ultimate limit of the value of p
[15], it is often shown to have a value of p ≈ 0.3 at moderate Rayleigh numbers (e.g., Niemela and
Sreenivasan [16] estimate that p ≈ 1

3 for Ra ≈ 1010 − 1012, Plumley and Julien [15] estimate that
p ≈ 0.322 for Ra ≈ 105 − 1015, Chillá et al. [6] estimate p ≈ 0.3 for Ra ≈ 109 − 1012).

In the steady state, the horizontally averaged [(·) = 1
A

∫
∂V (·) dA′] temperature Eq. (7) simplifies

to

∂

∂z

(
1√

Ra0 Pr

∂

∂z
� − w�

)
= 0, (14)

where w is the vertical velocity. Integrating the above equation, we show that the Nusselt number
can be equivalently determined by the surface heat flux or the volume averaged vertical heat flux as

Nu = 1

�

∂

∂z
�

∣∣∣∣
z=1

=
√

Ra0 Pr

�
〈w�〉 + 1, (15)

where 〈(·)〉 = 1
V

∫
V (·) dV ). In the results presented below, we will numerically evaluate the Nusselt

number based upon the surface gradient. We will use these relationships below.

A. Diffusive solution

The simplest solution to Eqs. (6)–(8) with boundary conditions Eqs. (10) is the diffusive (non-
convecting) solution. That is, if we make the ansatz that

� = az + 1 ⇒ a = −β(a + 1), (16)

� = − β

β + 1
z + 1. (17)

Therefore, for the purely diffusive problem,

�z=1 = − β

β + 1
+ 1 ≈ 1

β
+ . . . , β → ∞. (18)

The surface temperature �z=1 decreases with increasing β. For large Ra0, convection increases the
vertical heat flux, resulting in a nonlinear temperature profile. Nonetheless, this diffusive solution
highlights the approximate functional dependence of the surface temperature on β.

IV. RESULTS

In all the simulations presented here, Ra0, β are sufficiently large that the system will become
convectively unstable. This convection increases the vertical transport of heat. After an initial
transient, both the average top temperature (�z=1) and mean domain temperature (〈�〉) decay
nearly exponentially to their equilibrium values [see Fig. 2(a)]. For the remainder of this paper,
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FIG. 2. (a) The time series of the mean top and mean domain temperatures. The red dashed line is an
exponential fit to the data. Note that these temperatures asymptote to statistically stationary values. (b) Mean
temperature profiles at the times identified by vertical lines in (a). The data in (a) and (b) are from Ra0 =
107, β = 23. (c) The Nusselt number as a function of Ra�. The lines denote the time evolution of Nu − 1 over
the convective period of the simulation, while the squares denote the equilibrium values. (d) The asymptotic
values of �1 as a function of Ra� and β. The standard deviation of the surface temperature at the end of the
simulation are included as vertical grey bars. The data agrees well with Eqs. (19) (solid black line).

we will denote the stationary value of the surface temperature as �1, which was computed from the
exponential fit [see the horizontal (black) dashed line in Fig. 2(a)].

After convection begins, the mean temperature profiles have a consistent structure; the center
of the domain is well mixed with sharp temperature gradients near the boundaries [see Fig. 2(b)].
The feedback between the convective heat flux and the boundary condition results in a gradual,
not instantaneous, decrease in �z=1 → �1. The upper and lower temperature gradients increase
accordingly. Note that the upper temperature boundary layer is typically thinner than the bottom
boundary layer due to the different boundary conditions, leading to a mean temperature that is less
than the mean of the boundary values 〈�〉 < �/2.

A. What is the heat transfer rate at the water surface?

As the surface temperature changes, so do the top and bottom temperature gradients, and,
correspondingly, Nu. At the onset of convection, Nu is higher than its asymptotic value (Nu0 =
limt→∞ Nu). That is, the value of Nu decreases over time, with Nu0 collapsing onto the curve
Eqs. (13), with C = 0.138 ± 0.007, p = 0.308 ± 0.003 [see Fig. 2(c)]. For the remainder of this
paper, we will select C = 0.14, p = 0.31 as the power-law coefficients for Nu.

We note that the observed power law is less than the optimal value for free-slip boundaries
(p ≈ 1

3 , see Ref. [17]), but greater than the simulated values with no-slip boundaries and fixed
aspect ratio (p ≈ 0.28, see Ref. [18]). The results of Clarté et al. [10] suggest that, in the absence of
rotation, p ≈ 0.29. The current simulations with a no-slip bottom boundary and a free-slip surface
are within the range of previously reported values.
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B. What is the equilibrium surface water temperature?

From the Nu scaling Eqs. (13) and the boundary condition Eqs. (10), we can write an implicit
equation for the top boundary temperature in the large Ra� limit:

CRap
0

β
∼ �1

(1 − �1)1+p , Ra� � 1. (19)

Noting that, here, the mean heat flux J ∼ CRap
0�

1+p. In the limit, J → 1, we recover the diffusive
solution Eq. (18).

We find good agreement between the measured values of �1 and Eqs. (19) with the estimated
Nu coefficients C, p [see Fig. 2(d)]. That is, the ratio β/Rap

0 is the fundamental parameter that de-
termines the equilibrium surface temperature. As discussed in the Introduction, it is only reasonable
to assume a fixed surface temperature when β � Rap

0.
For finite β, the surface temperature fluctuates. The standard deviation of surface temperature at

the end of the simulations (averaged in space and time) are denoted by the grey error bars in Fig. 2(d)
and are provided in Table I. For both large and small values of CRap

0/β, the surface temperature is
constrained and the temperature variations are minimal. Larger variations of ≈0.06 are consistently
found when CRap

0/β = O(1), and are primarily produced by the emergent convective circulation
cells (see Fig. 1). As the form of the surface temperature is different in three dimensions [19], we
do not pursue this further and will investigate the structure of the surface temperature distribution
in future work.

C. How quickly does the system reach equilibrium?

The convection induced by surface cooling results in a rapid decrease in the mean water tempera-
ture [Fig. 2(a)], which eventually reaches a steady state. How long does it take to reach steady state?
Figure 3(a) is a plot of the temperature perturbation (1 − 〈�〉) normalized by its asymptotic value
as a function of time for all cases. We find a clear difference in the time to equilibrium between the
different cases.

As mentioned previously, the internal water temperature is nearly uniform, with strong gradients
at the boundaries [Fig. 2(b)]. Modelling this temperature profile as piecewise linear, the mean heat
Eq. (1) and boundary condition Eqs. (10) simplify to

d

dt
〈�〉 = 1√

Ra0 Pr

[(
�z=1 − 〈�〉

δtop

)
−

( 〈�〉 − �z=0

δbottom

)]
,

(
�z=1 − 〈�〉

δtop

)
= −β�z=1.

(20)

Here, δtop, δbottom are the top and bottom boundary layer thicknesses, and �z=0 = 1. We will attempt
to simplify the equation for 〈�〉 in the large Rayleigh number limit.

We begin by assuming that each boundary layer separately satisfies a Nusselt-Rayleigh number
relationship. That is, the upper and lower boundary layers satisfy

Nuu = 1

〈�〉 − �z=1

〈�〉 − �z=1

δtop
∼ C1(Ra0(〈�〉 − �z=1))p, (21)

Nul = 1

�z=0 − 〈�〉
�z=0 − 〈�〉

δbottom
∼ C2(Ra0(�z=0 − 〈�〉))p, Ra0 → ∞. (22)

As discussed in the Introduction, we expect C1 �= C2 due to the different upper and lower boundary
conditions. Rearranging, we can simplify Eq. (20) above to

φ
d

dt
〈�〉 = (1 − 〈�〉)1+p − ε�z=1, (〈�〉 − �z=1)1+p = ε

ζ
�z=1, (23)
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FIG. 3. (a) Plot of the normalized temperature perturbation as a function of time. (b) Plot of the scaled
temperature perturbation as a function of scaled time for ε � 1 with C2 = 0.24. (c) Scaled asymptotic value
of the temperature perturbations for all (nonfixed) cases as a function of ε. Only cases denoted by a square are
plotted in (b). (d) Plot of the temperature perturbation as a function of scaled time for ε → ∞ with 1/ζ = 0.6.
(e) Asymptotic value of the temperature perturbation for all (nonfixed) cases as a function of ε. The cases
plotted with a square are plotted in (d) in addition to the cases with �z=1 fixed at 0. (f) Plot of the normalized
temperature perturbation for all cases at finite ε with scaled time. The solution to Eq. (27) is included as a
dashed line in (b) and (f), while the solution to Eq. (30) is plotted as a dashed-dot line in (d). The timescales τε

and τ∞ are defined as in Eq. (31).

where we have defined the parameters

φ =
√

Ra0 Pr

C2Rap
0

, ε = β

C2Rap
0

, ζ = C1

C2
. (24)

We consider two extreme limits for ε. As discussed above, in the ε = 0 limit, the surface
boundary condition tends to an insulating boundary condition. Conversely, the ε → ∞ limit fixes
the surface temperature, which is more similar to the classic Rayleigh-Bénard problem. Investigating
these two limits, we will estimate the timescale to equilibrium that depends on φ, ε, and ζ .

1. Small ε � 1

As we increase Ra0 with fixed β, the parameter ε tends to 0. In fact, most of the simulations
performed in this paper have ε < 1. However, in the limit ε = 0, the insulating boundary condition
results in no temperature difference across the layer, and the Nusselt number relationships Eqs. (21)–
(22) are invalid. In this analysis, we assume that ε is small but sufficiently large that the system
remains convective.

We look for a perturbation series solution for 〈�〉 and �z=1. Scaling through, we determine a
solution in small ε as

〈�〉 = 1 − ε
1

1+p (xε,1 + εxε,2 + . . . ), �z=1 = 1 − ε
1

1+p (yε,1 + εyε,2 + . . . ), ε � 1. (25)
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For consistency, we further scale time as

t = φε
−p
1+p ξε. (26)

At first order, Eqs. (23) reduce for xε,1 to

dxε,1

dξε

= 1 − x1+p
ε,1 . (27)

We plot the numerical solution to Eq. (27) in Fig. 3(b) along with a subset of the numerical
simulations [indicated by the squares in Fig. 3(c)]. Here, we select C2 = 0.24 as an empirical
parameter without error bounds due to the low number of data points. Note that the choice of scale
for ε determines both the amplitude and timescale for xε,1. For the cases selected, the reduced
model Eq. (27) provides a reasonable approximation. Figure 3(c) plots the asymptotic value of xε,1

for each of the numerical simulations. While each different Ra0 case appears to plateau for ε � 1,
the asymptotic values of xε,1 are significantly lower for Ra0 = 106, 107, than for Ra0 = 108, 109.
We suggest that this change in amplitude may result from the corresponding Nu being closer to 1 in
those cases and therefore Eqs. (21)–(22) are perturbed. Nevertheless, Eq. (26) provides a reasonable
estimate for the equilibrium timescale for ε � 1 at large Ra0.

2. Large ε → ∞
In the alternative limit, ε → ∞, the surface boundary condition is isothermal at �z=1 = 0. We

can then construct an asymptotic series for 〈�〉, �z=1 as

〈�〉 = 1 −
(

x∞,0 + 1

ε
x∞,1 + . . .

)
, �z=1 = 0 + 1

ε
y∞,1 + . . . , ε → ∞. (28)

Again, we use the timescale

t = φ

ζ
ξ∞. (29)

Scaling time by ζ defines a timescale that is more consistent with Eq. (26) as shown in Fig. 3
(i.e., more similar to an e-folding time). To leading order, the heat budget Eqs. (23) reduces to the
simplified equation

dx∞,0

dξ∞
= − 1

ζ
(x∞,0)1+p + (1 − x∞,0)1+p. (30)

In this large ε limit, the timescale and asymptotic value of x∞,0 are determined by ζ . We estimate
1/ζ ≈ 0.6. The solution to Eq. (30) is plotted in Fig. 3(d) along with a subset of the numerical
simulations [indicated by the squares in Fig. 3(e)]. Figure 3(d) also includes the cases with �z=1

fixed at 0. The equilibrium perturbation temperature (1 − 〈�〉0) decreases rapidly for ε < 5 as
shown in Fig. 3(e). Plotting the ε > 5 cases, the solution to Eq. (30) agrees well with the numerical
simulations in both amplitude and timescale.

3. Matching fits

In developing the asymptotic solutions, we have defined two timescales (τ ) that were given by

τ =
{
τε = φε

−p
1+p , ε � 1

τ∞ = φ/ζ , ε → ∞,
where ε = β

C2Rap
0

and φ =
√

Ra0 Pr

C2Rap
0

. (31)

We suggest that we may be able to match these two solutions as τ = φ(ε
−p
1+p + f (ε) 1

ζ
), where

f (ε) → 0 for ε � 0, and f (ε) → 1 as ε → ∞. Empirically, it appears that τ = φε
−p
1+p provides

a reasonable estimate for the timescale in all simulated cases at finite ε. Figure 3(f) is a plot of the
normalized temperature perturbation for all the numerical simulations with finite ε. Further, we find

033501-10



ACCOUNTING FOR SURFACE TEMPERATURE VARIATIONS …

FIG. 4. (a) The scaled kinetic energy as a function of Ra�. For this panel, lε is given by Eq. (34). The lines
denote the time evolution of K over the convective period of the simulation, while the squares denote the mean
steady-state value. (b) Computed lε versus Ra�.

that the asymptotic solution where ε � 1 [i.e., Eq. (27)] provides a reasonable approximation for
the shape of the mean temperature time series when normalized by their asymptotic values. Note
that, contrary to the original derivation, this includes the cases where ε > 1 (and finite). Based upon
this surprising result, we suggest that f (ε) remains small even at moderate values of ε.

D. How vigorous is the convection?

We now address our final question: How vigorous is the convection? We quantify this by looking
at the kinetic energy of the system (K = 1

2 u · u) in the quasisteady state. In that state, the K
equation reduces to a balance of the buoyant production to dissipation. We have previously discussed
the Nu scaling Eqs. (13), which we will use to scale 〈w�〉 as in Eq. (15). Additionally, we can use
the typical scaling for the viscous dissipation rate in terms of a turbulence length scale lε . Writing
these together, we have

〈w�〉 − ε = 0, 〈w�〉 ∼ CRap
0√

Ra0 Pr
�p+1, ε ≈ K 3

2

lε
, (32)

where ε = 2
√

Pr
Ra0

〈e : e〉 is the volume-averaged viscous dissipation rate based upon the rate of

strain tensor e = 1
2 (∇u + (∇u)T ). We then solve for K as a function of Ra0 and �:

K =
(

lε
CRap

0√
Ra0 Pr

�p+1

) 2
3

. (33)

To close this equation, we need to determine lε .
Figure 4(b) is a plot of lε , computed from the ratio of K and ε, as a function of Ra�. We find that

the data collapses well onto the curve:

lε = (5.3 ± 0.6) × 10−4Ra0.475±0.006
� . (34)

While there is some variation in the K around the predicted mean value, the scaling law Eq. (33)
provides a reasonable estimate for the equilibrium K in this system [see Fig. 4(a)]. Much of
the observed variance about the horizontal line found in Fig. 4(a) could be removed by using
a case specific value of lε , rather than using the general parametrization Eq. (34). However, the
case-specific value does not eliminate oscillations about the mean.
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The relative strength of the fluid inertia to viscosity can be quantified through a Reynolds number
Re. Using the predicted kinetic energy scaling, we can define the Reynolds number as

Re = ŨrmsH

ν
=

√
2Ra0

Pr

(
lε

CRap
0√

Ra0 Pr
�p+1

) 1
3

. (35)

In the present paper, we did not vary the Prandtl number and we do not know how lε changes with
Pr. Nevertheless, our kinetic energy scaling suggests that Re ≈ Prq Ra0.60

0 �0.44 for some constant q
for large Ra0. Ignoring the Prandlt number dependence, the experimental work by Lam et al. [20]
and Niemela and Sreenivasan [16] suggest that Re ∼ Ra0.4

0 . The results from nonlinear numerical
simulations by Clarté et al. [10] in a spherical shell with a similar boundary condition appear to scale
Re ∼ Ra0.5

0 . However, the present results are more consistent with the optimal numerical predictions

by Wen et al. [17] with Re ∼ Ra
2
3
0 . We are unsure of the cause of this discrepancy, but one possibility

is the two-dimensional nature of the present simulations. Future work will investigate the cause of
this difference between studies.

V. CONCLUSIONS

Aquatic systems are coupled to their atmospheric forcing. We have extended the Rayleigh-
Bénard problem to include this dynamic coupling. In particular, this coupling results in an extra
parameter β, a scaled effective thermal conductivity that incorporates the effect of long-wave radia-
tion, sensible heat loss, and evaporative heat loss. This model reduces to the typical Rayleigh-Bénard
setup in the limit of β → ∞. This extension to the dominant theory provides a relatively simple
model to translate the results of Rayleigh-Bénard theory to environmental systems, such as lakes.

By defining an effective Rayleigh number, Ra� = Ra0(1 − �z=1), we have answered our four
motivating questions:

(1) The surface heat transport is quantified through the Nusselt number Nu, which we have
shown to scale as

Nu0 − 1 ∼ CRap
�, where C = 0.138 ± 0.007, p = 0.308 ± 0.003. (36)

(2) The equilibrium surface temperature (�1) is an implicit function of Ra0 and β, with

CRap
0

β
≈ �1

(1 − �1)1+p . (37)

(3) The system rapidly cools to its equilibrium value on an approximate timescale of

τ =
{
φε

−p
1+p , ε � 1

φ/ζ , ε → ∞,
where ε = β

C2Rap
0

and φ =
√

Ra0 Pr

C2Rap
0

. (38)

We estimate C2 ≈ 0.24 and 1/ζ ≈ 0.6.
(4) The kinetic energy of the induced convection scales as

K =
(

lε
CRap

0√
Ra0 Pr

�p+1

) 2
3

, where lε = (5.3 ± 0.6) × 10−4 Ra0.475±0.006
� . (39)

While we have answered the questions put forth in this paper, there remain many open questions
that have not been addressed. In particular, the present simulations are two-dimensional. While
outside the scope of this current paper, future work will investigate how three-dimensional effects
modify the present conclusions. Of particular interest would be the surface temperature variations
due to the convection. While the surface temperature variations observed in this study were limited
[see Fig. 2(d)], it would be interesting to study these variations in three-dimensional simulations that
will likely have smaller scale structures at the water surface. In addition, the present model assumes
that the atmospheric conditions were not varying. For forcing processes that change over a period
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much shorter than the equilibrium timescale τ , there may be some interplay between the various
timescales of interest.

We also note that there appears to be weak curvature in Nu as a function of β. Busse and Riahi
[19] highlighted that, near the critical Rayleigh number, the structure of the flow is modified by
the finite value of β. Later, Ishiwatari et al. [21] showed that two-dimensional cells have different
preferred wavelengths in the two extreme cases of fixed temperature and fixed flux. This has
been further detailed by Clarté et al. [10] in nonlinear simulations of spherical shells. A detailed
investigation of how the change in flow structure affects the curvature of Nu as a function of Ra0

and β is an interesting avenue for future research.
We conclude by providing an estimate for the value of β and Ra0 in real lakes. Leppäranta [13]

provides an estimate for γ ≈ 20 [W m−2K−1] for lakes in Southern Finland. If we assume that
the entire lake is well mixed to a depth of 10 m with an atmospheric reference temperature of
T̃R = 283 [K] and bottom water temperature of T̃z̃=0 = 285 [K] (e.g., in September), we estimate
that β ≈ 350 (≈ 28.5) and Ra0 = O(1013). These ballpark estimates are higher, but in a comparable
range to those considered here. While outside the scope of this present paper, future research would
verify the current scaling laws in three dimensions for these higher values of β and Ra0.

This paper discusses an extension to the usual Rayleigh-Bénard configuration that accounts
for common surface-cooling processes. Our hope is that this paper will encourage a more direct
comparison between Rayleigh-Bénard theory and field measurements in lakes and oceans.
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