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We investigate the steady-state extensional rheology of a dilute suspension of spherical
particles in a dilute polymer solution modeled by the FENE-P constitutive relation. The
ensemble-averaged suspension stress uses a recent construct of Koch et al. [Phys. Rev.
Fluids 1, 013301 (2016)], based on perturbation for small polymer concentration and
the generalized reciprocal theorem, to determine the polymers’ influence on the particle
stresslet and the particles’ influence on the polymer stress. The extensional viscosity is
defined as half of the constant of proportionality between the deviatoric stress and the
imposed rate of strain tensor in uniaxial extensional flow. For a particle-free polymeric
fluid, the extensional viscosity (nondimensionalized by the solvent viscosity) is 1+μpoly,
where μpoly is the polymer contribution to the extensional viscosity. When a small volume
fraction, φ, of spheres is added to a polymeric fluid, we find that the stress is altered
by the Einstein viscosity of 2.5φ and two additional stress contributions: the polymer
influence on the stresslet and the particle-induced polymer stress (PIPS). At lower Deborah
numbers (defined as the product of extension rate and polymer relaxation time), De � 0.5,
the net interaction stress is positive, while it becomes negative at large De. Relative to
undisturbed flow, the presence of spheres in uniaxial extensional flow creates regions of
both larger and smaller local stretching. Below the coil-stretch transition, the polymers far
from the particles are in a coiled state, while they are stretched more than their undisturbed
state by large stretching regions around the particle. Due to their finite relaxation time,
they also form a wake of stretched polymers downstream of the particle. This leads to
a positive contribution to the suspension stress from both the stresslet (surface) and the
PIPS (stretched wake). Beyond the coil-stretch transition, polymers far from the particle
are highly stretched, but they collapse closer to the coiled state as they arrive at the
low stretching regions near the particle surface. Therefore, a negative PIPS results from
the regions of collapsed polymers. At sufficiently high Deborah numbers, De � 1.5, this
region is very thin, and it becomes thinner and more intense upon further increasing
De. For large maximum polymer extensibility, L, the particle-polymer contribution to the
suspension rheology is independent of L below the coil-stretch transition, whereas it scales
as L2 above the coil-stretch transition. When De � 0.6, the changes in extensional viscosity
from the stresslet and the PIPS are φμpoly and approximately −1.85φμpoly, respectively. At
large De, the polymer extensional viscosity, μpoly, is orders of magnitude larger than that
of Newtonian solvent. Hence, adding particles reduces the extensional viscosity of the
suspension as (2.5 − 0.85μpoly )φ < 0.
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I. INTRODUCTION

Particle-filled viscoelastic polymeric fluids are used in a variety of processes and products such
as drug delivery [1], paints, extrusion molding, fiber spinning [2–4], and hydraulic fracturing [5].
As the fluid enters a narrow pore during hydraulic fracturing or is pulled by the drawing mechanism
as it leaves the dye in fiber spinning, it undergoes a strong uniaxial extensional flow. Solid particles
are added to the polymeric fluid for various reasons. In hydraulic fracturing they act as proppants
during the fracturing of the rock, and in fiber spinning they impart further strength to the fiber.
Therefore, understanding the extensional rheology of suspensions of particles in polymeric liquids
is industrially relevant. It also leads to new and interesting physical mechanisms. An understanding
of these mechanisms can allow one to not only tune the operating conditions of an industrial process,
but also design new fluids for specific applications [6].

Due to recent mathematical and computational advances, the study of suspension rheology of
polymeric fluids is an active area of research [7]. Shear and extensional flow are some of the most
basic and predominant local flows in applications and laboratory experiments [8]. While shear
rheology of particle suspensions in viscoelastic fluids has been studied extensively, less attention
has been paid to their extensional rheology [7] despite the industrial importance mentioned above.
Computational and theoretical predictions [9,10] as well as experiments [11] reveal that dilute
polymeric solutions undergo strain hardening as the addition of polymers to the solvent increases
the extensional viscosity by orders of magnitude. In this paper we study the effect of particles on
extensional rheology of dilute polymeric liquids (low polymer concentration) as the addition of
particles is expected to have a large influence on the suspension even at modest volume fractions
[12–20]. At very small extension rates an increase in extensional stress upon addition of a small
volume fraction of particles to polymeric liquids is found [13,16,17] (see [7,15] for a review on these
asymptotic expansions in extension rate). In a recent numerical study, Jain et al. [14] investigate
the transient rheology of a dilute suspension of spheres in a concentrated polymeric solution at
moderate extension rates. In their study, a nonmonotonic effect of particle-polymer interaction
is observed at the highest extension rates explored as the imposed Hencky strain grows, but a
steady state is not achieved in all but the smallest extension rates. Our semianalytical study at low
polymer concentration aims to reveal the steady-state extensional rheology for a much wider range
of extension rates, while thoroughly investigating the underlying physical mechanisms.

The particle surface traction and the change in the polymer stress (compared to the particle-free
case) in the surrounding fluid leads to the stresslet and particle-induced polymer stress (PIPS) as
two additional stresses in particle suspensions of polymeric/viscoelastic fluids, together termed as
the particle-polymer interaction stress. The stress obtained from bulk rheological measurements of
a suspension of homogeneously distributed particles is the stress ensemble averaged over particle
configurations [15,21]. In dilute particle suspensions, this ensemble average can be expressed in
terms of the fields near an isolated particle [15]. Therefore, an investigation of the flow around an
isolated particle in a polymeric fluid facilitates characterization of the impact of particle-polymer
interaction on the rheology of dilute particle suspensions. In our study, we consider particles to be
large enough that the Brownian effects are negligible and the polymers see the polymer solution
as a continuum. See [15] for a brief discussion about how Brownian motion of the particles and
polymers, and the finite size of polymers may affect the particle-polymer interaction.

We will use the semianalytical methodology that Koch et al. [15] formulated and applied to
investigate the shear rheology of a dilute suspension of spheres in a dilute polymeric liquid. This
approach employs the method of ensemble-averaged equations [21], a regular perturbation for small
polymer concentration, c, and a generalized reciprocal theorem [22]. Ensemble averaging has been
used to correctly model the non-Newtonian effects in second-order fluids [16,23], third-order fluids
[13], and a fully computational study of dilute suspensions of spheres in shear flow of viscoelastic
fluids [20]. In contrast, volume-averaging methods [24,25] lead to nonconvergent integrals.

In a low-c polymeric fluid, the leading order velocity around the particle (i.e., the Newtonian
velocity field) affects the polymer configuration at leading order. The divergence of this polymer
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configuration forces the fluid velocity and pressure disturbance in the O(c) momentum equation.
The O(c) stresslet depends on the fluid velocity and pressure disturbance at O(c), which are
governed by the O(c) momentum and mass conservation equation. These O(c) partial differential
equations should be discretized using the techniques of traditional computational fluid dynamics
such as finite difference, finite volume, or finite element methods if the O(c) fluid velocity and
pressure disturbance are required. This will be computationally expensive and would restrict the
parameter regime that one can explore. As demonstrated by Koch et al. [15], a generalized reciprocal
theorem allows the O(c) stresslet to be obtained directly from the leading order polymer configu-
ration, thus circumventing the numerical evaluation of the O(c) momentum and mass conservation
equations. Furthermore, in the semianalytical technique, using the method of characteristics, the
coupled partial differential equations representing polymer constitutive equations are converted into
coupled ordinary differential equations with the streamlines of the leading order Newtonian velocity
field acting as the characteristics.

We find the low-c assumption allows us to extract novel physics of particle-polymer interaction
and our calculations of the polymer stress field capture all the major qualitative aspects seen in
the previous numerical study of Jain et al. [14] conducted at moderate c. They used a finite
volume method to numerically integrate the governing partial difference equations and volume
averaging to obtain the rheology of a dilute suspension. The limited size of the computational
domain and small Hencky strain allowed them to obtain a finite value of the particle-polymer
interaction stress from inappropriate volume averaging. In our semianalytical method we calculate
the characteristics/streamlines of Newtonian velocity field around a sphere once. A straightforward
numerical integration of the coupled ordinary differential equations representing the polymer
constitutive equation on these predetermined characteristics around a sphere allows us to span a
wide range of imposed extension rates, polymer relaxation times and maximum polymer extensions.
Numerical instability issues such as the so-called high Weissenberg number problem [26] do not
arise. The spatial resolution depends on the spacing of these characteristics that are inexpensive
to obtain. Hence we are able to obtain the polymer stress field at a much greater resolution
and a fraction of the computational cost as compared to traditional computational fluid dynamics
techniques such as that used in [14]. Furthermore, we obtain several analytical expressions related
to the contribution of particle-polymer interactions to the suspension rheology.

The study of polymeric fluids is an active area of research even without the particles. Various
constitutive equations have been developed over the years that aim to model their dynamics. Many of
these models faithfully mimic the polymer behavior in weak flows, i.e., when the largest eigenvalue
of the velocity gradient tensor is smaller than the relaxation rate of the polymer [27]. In the special
case of simple shear flow, this happens at all shear rates as the vorticity rotates the polymer away
from the principal strain axis before it can fully stretch [27]. In that case, modeling the polymer as a
Hookean spring with Brownian beads attached to its ends leads to the widely used, simple, Oldroyd
B model, which matches well the experimental observations of Boger fluids [28]. However, in a
strong flow such as uniaxial extension, beyond a critical extension rate, the Hookean dumbbell of
the Oldroyd-B model stretches indefinitely. A simple means of removing this unphysical feature
is to replace the Hookean spring with a nonlinear spring with a finite maximum extensibility [29],
leading to the finitely extensible nonlinear elastic (FENE) model.

Similar to the Oldroyd-B constitutive equation, the FENE model involves representing the stress
in terms of the configuration tensor, qq, where q is the end-to-end vector of the dumbbell. To
obtain a deterministic equation, qq is averaged over all possible polymer orientations. This leads
to a closure problem due to the terms arising from the nonlinear spring force. One of the most
successful methods to obtain closure is by using the averaged configuration to model the spring force
[8], i.e., 〈L2/[L2 − tr(qq)]〉polymer orientation is approximated as L2/[L2 − 〈tr(qq)〉polymer orientation] =
L2/(L2 − 〈||q||22〉polymer orientation), where L is the maximum polymer extensibility and the angle
brackets represent an average over polymer orientations. This is known as the Peterlin closure
[30], whose implementation yields the FENE-P model. Steady-state uniaxial extension is modeled
well by the FENE-P model [31]. During the transient phase of the uniaxial extension when the
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polymer stretch increases from its equilibrium state, the FENE-P constitutive equation is known
to overpredict the extension as compared to Brownian simulations of the FENE model [31–33].
Thus the steady state for the FENE-P model is achieved faster than that for the FENE model,
as the mean-squared extension obtained during the transient phase in the former is larger [31].
Additionally, for an extensional flow followed by relaxation, the FENE-P model does not predict
the hysteresis observed in the FENE model [34]. Several closure models have been proposed over
the years which better predict certain time-varying properties. These either involve higher-order
moments and hence extra equations for modeling the polymer stress [32,34], or, do not predict the
correct steady-state stress for high extension rates [33]. Closure modeling of the FENE dumbbell
model is a separate research avenue. For simplicity, we will consider the FENE-P model in the
rest of this study. It is a continuum constitutive equation derived from a simple molecular-level
model [8]. It matches the qualitative trends observed in extensional rheology experiments without
the particles, and since it is a dumbbell model it allows an interpretation of polymer stress in terms
of polymer stretch [11,35].

In suspensions with low particle volume fraction, φ, where the effect of particle-particle in-
teractions is negligible, capturing the interaction of polymers with a single particle reveals the
suspension rheology at O(φ) through the ensemble-averaging method mentioned earlier. Therefore,
we begin our investigation at the particle level, before studying the suspension rheology. Section II
introduces the governing equations in the fluid and the regular perturbation expansion in the polymer
concentration, c. We find the particle-polymer interaction is qualitatively dependent upon the state
of the polymers far from the particle. Hence, we review the polymer stress in a uniaxial extensional
flow without the particles, as predicted by the FENE-P model in Sec. III. The leading order velocity
field, i.e., the Newtonian velocity field around a sphere, drives the polymer configuration at the
leading order in a low-c polymer solution. Therefore, in order to build a basis for understanding the
changes in polymer configuration, presented in Sec. V, due to the presence of a spherical particle,
we describe the kinematics of the velocity field in Sec. IV. In Sec. VI we describe the formulation
for ensemble averaging and present the suspension rheology results. Finally, we summarize the
conclusions in Sec. VIII, where we also discuss the benefits and drawbacks of the FENE-P model
pertaining to our findings.

II. GOVERNING EQUATIONS

The equations governing mass and momentum conservation throughout the viscoelastic suspen-
sion of spheres in the inertia-less (zero Reynolds number) limit are

∇ · u = 0, ∇ · σ = 0, (1)

where u and σ are the velocity vector and the stress tensor fields. In the fluid region the stress at any
location is the sum of Newtonian solvent, τ, and polymer, �, stress,

σ = τ + � = −pδ + 2e + �, (2)

where p is the hydrodynamic pressure and e = (∇u + (∇u)T)/2 is the strain rate tensor at that
location. For a polymer with concentration, c, and maximum extensibility, L, the polymer stress,
�, and configuration, � (= 〈qq〉polymer orientation from Sec. I), tensors are modeled with the FENE-P
relations,

� = c

De
( f � − bδ), f = L2

L2 − tr(�)
, b = L2

L2 − tr(δ)
, (3)

∂�

∂t
+ u · ∇� = ∇uT · � + � · ∇u + 1

De
(bδ − f �), (4)

where De is the Deborah number of the imposed flow with extension rate, ε̇, and polymer relaxation
time, λ,

De = λε̇. (5)
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In the FENE-P constitutive relation and other dumbell models such as Oldroyd-B, FENE-CR and
Giesekus [8]

√
tr(�) represents the mean-squared polymer stretch. In the rest of the paper, steady

state is assumed,

∂�

∂t
= 0. (6)

We expand the stress, pressure, velocity, and polymer configuration using a regular perturbation in
the polymer concentration: σ = σ (0) + cσ (1) + O(c2), τ = τ (0) + cτ (1) + O(c2), p = p(0) + cp(1) +
O(c2), u = u(0) + cu(1) + O(c2), and � = �(0) + c�(1) + O(c2). Since the polymer stress, �, is
pre-multiplied with c in Eq. (3), the leading order fluid velocity and pressure fields satisfy the
Newtonian equations of motion. In a dilute suspension of spheres, to get the stress up to O(c) we
only need to compute the flow around an isolated sphere (Ref. [15] and Sec. VI). The leading order
velocity and pressure around a force- and torque-free unit sphere in an imposed extensional flow
(fluid velocity approaching extensional flow at large distances from the particle) is

u(0)
i =

{
Ei j r j + 5

2

(
1
r7 − 1

r5

)
E jkr jrkri − 1

r5 E jir j, r � 1,

0, r < 1,
(7)

p(0) = − 5

r5
E jkr jrk, r � 1, (8)

where

Ei j = δi1δ j1 − 1
2 (δi2δ j2 + δi3δ j3). (9)

Using this velocity field we solve Eq. (4) for the leading order configuration, �(0), and use Eq. (3)
to obtain the polymer stress, �, up to O(c),

� = c�(0) + O(c2), (10)

where

�(0) = 1

De
( f (0)�(0) − bδ), f (0) = L2

L2 − tr(�(0) )
. (11)

Similar to Koch et al. [15], we do so numerically using the method of characteristics, where the
characteristic curves are the streamlines of the steady-state velocity given by Eq. (7). For the FENE-
P equations, the calculation of polymer configuration in an extensional flow with constant strain
rate (ui = Ei j r j) is not trivial and we consider this next. Besides fully characterizing the stress
in the particle-less viscoelastic fluid up to O(c), this configuration is the initial condition for the
aforementioned method of characteristics.

III. POLYMER CONFIGURATION AND STRESS WITHOUT THE PARTICLES

In this paper we consider a homogeneous suspension of dilute particle concentration. Therefore,
the particle-particle interactions are negligible and each particle effectively experiences a region of
infinite expanse of polymeric fluid around itself before it observes the presence of another particle.
Therefore, relative to each particle, a far-field or undisturbed flow region exists at large distances
from the particle, where the flow approaches the one without the particles. For uniaxial extension it
is ui = Ei j r j , with Ei j given in Eq. (9). A homogeneous, steady-state polymer stress, �(0U ), due to
this flow is governed by

E · �(0U ) + �(0U ) · E + 1

De
(bδ − f (0U )�(0U ) ) = 0,

f (0U ) = L2

L2 − tr(�(0U ) )
, �(0U ) = 1

De
( f (0U )�(0U ) − bδ). (12)
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The undisturbed polymer configuration, �(0U ), is the result of the balance between the stretching
applied by constant strain rate, E, and the relaxation of the polymer (the term with coefficient 1/De),
in infinite time.

For steady-state planar extensional flow Becherer et al. [36] showed that to match boundary
conditions of a realistic experiment, a spatially varying configuration must be allowed. For an
Oldroyd-B fluid it is well known that this flow admits a singularity at De = 0.5, but it loses
smoothness at even smaller De [37]. The singularity is removed by using, for example, the Giesekus
model, but smoothness is still lost for De < 0.5 under certain conditions, thus leading to infinite
stress gradients [37]. Similar behavior is likely to occur for the undisturbed solution with spatial
inhomogeneity, for the uniaxial extensional flow modeled with the FENE-P equations.

As pointed out by Becherer et al. [36], there is a strongly stretched central region around the
extensional axis of the planar extensional flow. The configuration tensor is spatially homogeneous in
that region, which is the experimentally detected birefringence region [36]. For uniaxial extensional
flow of a dilute polymer solution, obtained via a filament stretching rheometer, this is expected to
occur away from the circular end plates [38]. At the end-plates, the no-slip/no-penetration condition
leads to inhomogeneity [38]. In the planar extensional flow described by Becherer et al. [36], the
spatially uniform central region is numerically observed only for large De; its extent increases with
L. However, in the filament stretching rheometer experiments, a long central region of uniform
diameter and spatially homogeneous flow is obtained by separating the circular plates, connected
by a liquid bridge of the fluid being tested, at a prescribed exponential rate [38].

For the strain tensor, E, given by Eq. (9), the components of the spatially homogeneous,
undisturbed configuration tensor, �(0U ), in the cylindrical coordinates (r, z, θ with z measured along
the extensional axis) follow the relations

�
(0U )
i j = 0, for i �= j and �(0U )

rr = �
(0U )
θθ . (13)

Therefore,

f (0U ) = 1

1 − (
2�

(0U )
rr + �

(0U )
zz

)
/L2

, (14)

and the equations for the components �(0U )
rr and �(0U )

zz are combined to yield

( f (0U ) )3 −
(

1 + De + 3

L2 − 3

)
( f (0U ) )2 +

(
De − 2De2 + 3De

L2 − 3

)
f (0U ) + 2De2 = 0. (15)

The three roots of this cubic polynomial are functions of the parameters De and L. We find all
three to be real for a range of parameters, but as we discuss next only one of the roots represents
a physically valid solution. For De � 1, the FENE-P equations are equivalent to the Oldroyd-B
constitutive model. Performing an expansion of FENE-P in the small parameter De leads to

f (0U ) = b + O(De2). (16)

For De � 0.5, polymers with large maximum extensibility, L, suddenly transition from the coiled
state [tr(�(0U ) ) � L2] to being almost fully stretched [tr(�(0U ) ) ≈ L2]. This is called the coil-stretch
transition and is well documented, both theoretically [9,27] and experimentally [10,39]. After the
coil-stretch transition (De � 0.5), the polymer is highly stretched in the extensional direction [36],

�(0U )
zz � �(0U )

rr , (17)

which leads to

f (0U ) = 2De, �(0U )
zz = L2

(
1 − 1

2De

)
, �(0U )

rr = �
(0U )
θθ = b

De
. (18)

For the range of L considered in the rest of this paper, L � 10, one of the roots is approximately
equal to −De for all De. This can be checked from Eq. (15) by assuming large L. A negative value of
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FIG. 1. The physical root of the cubic equation (15) for (a) L = 10 and (b) L = 100. Both panels share the
same legend.

f (0U ) is unphysical as it implies
√

tr(�(0U ) ) > L, i.e., polymer extension larger than L. The second
root is always less than one and f (0U ) < 1 implies (2�(0U )

rr + �(0U )
zz )/L2 < 0; this is unphysical

as well since 2�(0U )
rr + �(0U )

zz represents the mean-square polymer stretch. The only physical root,
which satisfies f (0U ) > 1, is shown in Fig. 1 for L = 10 and 100 along with the asymptotic limits
mentioned above in Eqs. (16) and (18). This root of the cubic equation (15) (bold black solid line)
closely follows the corresponding limits before and after the coil-stretch transition at De = 0.5. The
coil-stretch transition is evident at De = 0.5 for large L [Fig. 1(b)], where f (0U ) rapidly approaches
the asymptote corresponding to highly stretched polymers beyond De = 0.5. The nonlinear spring
force makes the transition more gradual for smaller L [Fig. 1(a)].

The deviatoric part of �(0U ) is

�̂
(0U ) = 	̂(0U )

zz E. (19)

	̂(0U )
zz for three different ranges of De is shown in Fig. 2. For De � 0.4 [Fig. 2(a)], a monotonic

increase of 	̂(0U )
zz with De reflects the increase in polymer stretch with the applied extension rate.

For large L, in this De regime, the polymers are stretched much less than L, e.g., for De = 0.4,
L = 50,

√
tr(�(0U ) ) = 2.52 � 50. Hence we observe an L independence of 	̂(0U )

zz for this regime,
especially for L � 20. This extends up to a value slightly less than De = 0.5 for a finite L � 50 (not
shown).

The polymer stress 	̂(0U )
zz in Figs. 2(b) and 2(c) is normalized with L2. The rapid increase in

	̂(0U )
zz /L2 with De around De = 0.5 is the aforementioned coil-stretch transition. For L � 50, and

FIG. 2. 	̂(0U )
zz for various L at (a) De < 0.4, (b) 0.4 < De < 0.6, and (c) De > 0.6. In (b) and (c) 	̂(0U )

zz

is normalized with L2, and all three panels share the same legend. An additional curve corresponding to the
approximate analytical solution, Eq. (20), is included in (c).
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FIG. 3. Local kinematic diagnostic fields: (a) velocity gradient second invariant, Q, and (b) fractional
change in the local Deborah number field, 
Delocal, due to a sphere in an imposed extensional flow.

0.5 � De < 0.6, 	̂(0U )
zz ∼ L2 as the stretch

√
tr(�(0U ) ) ∼ L. For De > 0.6 in Fig. 2(c), the L2 scaling

is valid for even lower L, as the curves for 10 � L � 500 are indistinguishable. Throughout the De
range shown, a monotonic increase in stress with De is due to the increasing polymer stretch. Using
the approximations mentioned in (17) and (18), after the coil-stretch transition,

	̂(0U )
zz = 4

3

(
1 − 1

2De

)
L2. (20)

As shown in Fig. 2(c), this agrees closely with the full solutions.

IV. KINEMATICS OF STEADY EXTENSIONAL FLOW AROUND A SPHERE

Insight into the kinematics of the flow around an isolated sphere provides an analogy between the
polymer configuration around the sphere [Eq. (7)] and the effect of the velocity on the fluid elements.
In this section, we discuss the kinematics using velocity gradient, strain rate and Cauchy-Green
strain tensors, before considering the forthcoming discussion about the polymer configuration in
the next section.

A. Local kinematics: Velocity gradient and strain rate tensor

Invariants of the velocity gradient and strain rate tensor have been extensively used to deduce the
topology and dynamics of fluid flows [40]. The second invariant of the characteristic equation for
the eigenvalues of the velocity gradient tensor of an incompressible flow with velocity, u is [40]

Q = 1
2 {tr[(∇u)]2 − tr[(∇u)2]} = − 1

2 tr[(∇u)2] = 1
2 (ωi jωi j − ei jei j ), (21)

where ω = [∇u − (∇u)T]/2 is the vorticity tensor and e = [∇u + (∇u)T]/2 is the strain rate tensor.
Q compares the rotation rate to the strain rate of the flow. A positive Q indicates the dominance of
enstrophy over strain, and a negative Q indicates a weaker rotation. For undisturbed extensional
flow with ∇u = E given by Eq. (9), Q = −3/4. Figure 3(a) shows the Q field for the extensional
flow disturbed by an isolated sphere. We observe a rotation-dominated region around 45◦ from the
extensional axis, and a rotation deficient (implied strain dominance) region around the extensional
axis. In the literature (such as [20]), regions of negative Q have been associated with high stretching
rates. While it is true that negative Q indicates regions where stretching exceeds rotation, it leads
to false negatives in identifying regions of high absolute stretching rate for the present flow as
discussed below.
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The dissipation rate e:e is a scalar estimate of the local rate of stretching experienced by an
infinitesimal fluid element in the underlying velocity field. In an undisturbed uniaxial extensional
flow e:e = 1.5. The Deborah number, De, of the imposed flow defined in Eq. (5) is based on the
imposed extension rate. Using the local e:e, we define a scalar field termed the fractional change
in the local Deborah number field, 
Delocal, around the sphere in an imposed uniaxial extensional
flow,


Delocal =
√

e:e
1.5

− 1. (22)

It is dimensionally consistent and is zero in the far-field extensional flow implying no change in
stretching by velocity gradients in the far field. Figure 3(b) shows 
Delocal due to a sphere. A

Delocal > 0 region has more local stretching and 
Delocal < 0 region has less stretching in the
presence of the particle. Compared to the Q field of Fig. 3(a), this gives a relatively direct insight
into the local stretching properties of the flow field around the sphere. It shows increased stretching
regions in specific locations: near the surface of the sphere around 45◦ from the extensional axis
(missed by the Q field) and at axial positions between about 1.2 and 2 along the extensional axis.
There is reduced stretching near the particle surface around the stagnation points on the extensional
and compressional axis. The region near the particle surface around 45◦ from the extensional
axis has a large positive Q, indicating a rotation-dominated region, but it also has increased local
stretching due to a larger local strain rate. It is a region of relatively large local shear rate, which
implies a high rotation rate but also a high strain rate. Both the Q and 
Delocal fields only provide
insight into the local stretching as they do not take account of the Lagrangian history.

B. Kinematics with Lagrangian history: Finite-time Lyapunov exponents

To characterize the stretching capability of the extensional flow around an isolated sphere
accounting for the Lagrangian history, we modify a tool from nonlinear dynamics, the finite-time
Lyapunov exponent (FTLE) [41]. The evolution of an infinitesimal fluid element denoted by a vector
ξ, evolves due to the linearized local flow as

ξ (t )i = ξ j (0)
∂xi(t ; x0)

∂x0, j
+ O(ξi(0)ξi(0)), (23)

where ∂xi(t ; x0)/∂x0, j is the deformation gradient of the flow map,

xi(t ; x0) = xi(0) +
∫ t

0
vi(x(τ ), τ ) dτ, (24)

that maps the initial position, xi(0) = x0,i, of a fluid particle to its later position xi at t . A measure
of the relative stretch in time t is

ξi(t )ξi(t )

ξ j (0)ξ j (0)
≈ ξk (0)ξi(0)Ct

0,ik (x0)

ξ j (0)ξ j (0)
, (25)

where

Ct
0,ik (x0) = ∂x j (t ; x0)

∂x0,i

∂x j (t ; x0)

∂x0,k
(26)

is the Cauchy-Green strain tensor. It is a symmetric, positive definite tensor, with at least one
eigenvalue less than 1 for an incompressible flow [41], in three dimensions,

Ct
0,ik (x0)η(l )

k = λ(l )η
(l )
i , det Ct

0,ik (x0) = λ(1)λ(2)λ(3) = 1,

0 < λ(1) � λ(2) � λ(3), 0 < λ(1) � 1 � λ(3). (27)
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The largest possible deformation starting with all possible orientations at the initial location xi(0) =
x0,i, is used to detect the stretching regions within the fluid [41],

max
ξ(0)

ξi(t )ξi(t )

ξi(0)ξ j (0)
≈ max

ξ(0)

ξk (0)ξi(0)Ct
0,ik (x0)

ξ j (0)ξ j (0)
= λ(3)(t ; x0). (28)

A field of λ(3)(x0) is used to construct a scalar field,

FTLE(t ; x0) = 1

2t
ln[λ(3)(t ; x0)]. (29)

Regions of high FTLE are associated with stretching regions (see [41] and references therein). The
FTLE field constructed using the maximum deformation of fluid elements following the negative of
the velocity field, i.e., backward in time, is known as the backward FTLE [41]. FTLE identifies the
locations that lead to maximum stretching (in forward or backward time); i.e., the elements starting
from the regions of high FTLE undergo relatively large stretching.

For our purpose, it is more useful to identify the locations where the most stretched fluid elements
end up. To quantify this, we evaluate the maximum compression direction and rate in backward time.
To this end, we use the backward flow map,

x̃i(t ; x0) = xi(0) −
∫ t

0
vi(x̃(τ ), τ ) dτ, (30)

to construct the backward time deformation gradient and the corresponding backward Cauchy-
Green tensor at each location in the domain,

C̃t
0,ik (x0) = ∂ x̃ j (t ; x0)

∂x0,i

∂ x̃ j (t ; x0)

∂x0,k
. (31)

It has eigenvectors and eigenvalues, λ̃(l ), l ∈ [1, 3], satisfying

C̃t
0,ik (x0)η(l )

k = λ̃(l )η
(l )
i , det C̃t

0,ik (x0) = λ̃(1)λ̃(2)λ̃(3) = 1,

0 < λ̃(1) � λ̃(2) � λ̃(3), 0 < λ̃(1) � 1 � λ̃(3). (32)

The minimum eigenvalue of this backward time Cauchy-Green tensor, λ̃(1), is used to estimate the
maximum stretch of the fluid elements at the location x0, given they started as infinitesimal fluid
elements at the appropriate location (defined by the flow map), at a time t earlier. We define a
finite-time stretch field, FTS, as

FTS(t ; x0) = 1

2t
ln

(
1

λ̃(1)(t ; x0)

)
. (33)

The regions of large FTS(t ; x0) are the locations in the domain where a fluid element or nondiffusive
line of dye released time t ago is currently most stretched. For the undisturbed extensional flow,

FTLE(0U )(t ; x0) = FTS(0U )(t ; x0) = 1; ∀x0, t . (34)

Figure 4 shows the change in the FTLE field,


FTLE(t ; x0) = FTLE(t ; x0) − 1, (35)

and Fig. 5 shows the change in the FTS field,


FTS(t ; x0) = FTS(t ; x0) − 1, (36)

due to the particle for various t . The 
FTLE(t ; x0) and 
FTS(t ; x0) fields capture the effect of
the spherical particle on the stretching of the fluid elements or nondiffusing line of dye. Positive
values indicate more stretching and negative values indicate less stretching in the presence of the
particle. The topologies of the 
FTLE(t ; x0) and 
FTS(t ; x0) with t = 0.1 in Figs. 4(a) and 5(a) are
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FIG. 4. 
FTLE(t ; x0) due to the sphere in extensional flow for various t .

similar to the 
Delocal field shown in Fig. 3(b). This is because all three capture the instantaneous
(t = 0.1 � 1) stretching. The high-stretch regions indicated by 
FTLE shrink monotonically with
t (Fig. 4). For large t , 
FTLE indicates a region very close to the particle surface such that a line
of dye starting from there will be less stretched after time t in the presence of the particle. There
is a region just downstream of this less stretching region in which the starting elements will get
more stretched as they are advected along the extensional axis. However, the regions that possess
highly stretched elements of dye, released time t before, as indicated by positive 
FTS in Fig. 5
for t � 0.5 are qualitatively different. For t � 5, there is a wake of highly stretched elements along
the extensional axis which becomes thinner with t . There is a region of relatively less stretched
elements around either stagnation point for t = 0.1. With an increase in t , this region covers more

FIG. 5. 
FTS(t ; x0) due to the sphere in extensional flow for various t .
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of the particle surface and nearby region. It extends to lie over the highly stretched thin wake for
3 � t � 5. For even higher t , this region replaces the highly stretched wake, such that for t � 10
there is instead a wake of relatively unstretched elements around the extensional axis and also over
the entire particle surface. This wake of relatively less stretched elements for large t also becomes
thinner with t . At the end of the next section, we will show the analogy between the change in the
steady-state polymer stretch due to the particle and the 
FTS fields, indicating that polymers are
stretched by the velocity gradient field in a similar way as the Lagrangian stretching of a line of
fluid.

V. POLYMER CONFIGURATION AROUND AN ISOLATED SPHERE

Juxtaposition of the forthcoming discussion in this section and that from the study of Chilcott
and Rallison [42] and Yang and Shaqfeh [20] allows one to appreciate the different influence of
changes in local velocity gradients created by a sphere in three different types of imposed flows
on the steady-state polymer configuration. Chilcott and Rallison [42] studied the uniform flow of
a polymeric fluid past a rigid sphere. In their study, the polymers stretch just upstream of the front
stagnation point and collapse on the stagnation point. Then they undergo a series of relaxation
and stretching over the particle surface in response to the local velocity gradients. Beyond the rear
stagnation point, a wake of stretched polymers develops. In a simple shear flow, Yang and Shaqfeh
[20] find the polymers to be most stretched within the closed streamlines around the sphere.

In this section, we consider the change in polymer configuration, due to a spherical particle in
an extensional flow, relative to the undisturbed configuration described in Sec. III. We solve Eq. (4)
for � = �(0) based on u = u(0) from Eq. (7). First, we consider the polymer configuration at the
particle surface and along the extensional axis. Analytical progress is possible in both cases. Due to
the continuity of the solutions in space, these give an idea of the polymer configuration in the region
near the particle surface and the extensional axis. Then, we show the configuration change in the
rest of the region around the sphere.

A. Polymer stretch on the particle surface

At the surface of the sphere, represented by r = 1, θ ∈ [0, π ] and φ ∈ [0, 2π ], the flow is simple
shear. Sureshkumar et al. [43] provide a solution for the FENE-P equations in a simple shear flow
which allows us to obtain√

tr(�(0)|r=1)(θ ) =
√

3

F (θ )
+ 225De2

2F (θ )3
[cos(θ )2 − cos(θ )4], θ ∈ [0, π ], (37)

where

F (θ ) =
√

3H (θ )

2 sinh[k(θ )/3]
, H (θ ) =

√
2

De

L

∂uθ

∂r
, and, k(θ ) = sinh−1[1.5

√
3H (θ )]. (38)

The polymer stretch on the surface is only a function of the polar angle, θ , from the extensional
axis (θ = 0) due to axisymmetric flow and particle shape. The analytical results given by Eq. (37)
are shown along with the numerical results in Fig. 6. The numerical and analytical curves are
indistinguishable, which provides a first check for our numerical method. As mentioned earlier
in Sec. II we use the method of characteristics to solve Eq. (4). Since the velocity at the surface is
zero, this cannot be done at the surface, where the numerical solution is instead extrapolated from
the nearby nonstagnation streamlines. In general, the polymers are in the unstretched/equilibrium
configuration at the stagnation points on the extensional and compressional axis (� = δ), and the
stretch increases along the surface reaching a maximum at θ = π/4 from the extensional axis. This
complements the picture presented by 
Delocal [Fig. 3(b)], and the 
FTLE [Fig. 4(a)] and 
FTS
[Fig. 5(a)] fields for t = 0.1. As the polymer on the surface is not convected (zero velocity), it reacts
to the local strain rate. As shown in Fig. 6, at a given location on the surface, there is an increase in
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FIG. 6. Polymer stretch,
√

tr(�(0)|r=1), at the particle surface, r = 1, for various De at (a) L = 10 and
(b) L = 200 from the rear stagnation point on the extensional axis (θ = 0) to the front stagnation line (θ = π/2)
in the compressional plane. The

√
tr(�(0)|r=1) distribution is symmetric about θ = π/2 for θ ∈ [0, π ], and

here we show θ ∈ [0, π/2]. Dashed lines represent the analytical solution and the solid lines the solution from
numerical integration using the method of characteristics.

the stretch with extension rate (De). The effect of nonlinearity of the spring force, used to model the
polymer, is observed for the De = 3.0 and 5.0 curves for L = 10 [Fig. 6(a)], as increasing De from
3.0 to 5.0 leads to a smaller increase in polymer stretch than for L = 200 [Fig. 6(b)]. For L = 200,
at least up to De = 5, the maximum stretch on the surface is very small compared to L. Polymer
stretch on the surface for large L is further examined. The maximum surface stretch is at θ = π/4
[Eq. (37)],

max(
√

tr(�(0)|r=1)(θ )) =
√√√√ 3

F (π/4)

(
1 + 75De2

8F (π/4)2

)
. (39)

For L � De,

H (θ ) → 0, F (θ ) → 1, (40)

and we obtain

max(
√

tr(�(0)|r=1)(θ )) ≈
√

3 + 225De2

8
. (41)

For De = 10, this estimate leads to max (
√

tr(�(0)|r=1)(θ )) ≈ 53. Hence, for large L the stretch at
the surface of the sphere scales as De, and is very small compared to L for De � L.

B. Polymer configuration on the rear stagnation streamline

The mathematical analysis of the far-field polymer constitutive equations presented in this
section on the streamline coinciding with the extensional axis, or the rear stagnation streamline,
distinguishes two types of physical behavior of the polymers in the far field: at a given De and
L polymers may be stretching to recover the far-field/undisturbed configuration or they may be
relaxing from their highly stretched state to approach the undisturbed configuration. Far-field anal-
ysis on the extensional axis is relevant because the deviation of the polymer configuration from its
undisturbed state is expected to be most significant near the extensional axis. The numerical solution
on the extensional axis provides useful physical information throughout the stagnation streamline
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starting from the particle’s surface. The analytical and numerical solutions on the extensional axis
match in the far field.

The only nonzero components of the velocity and its gradients on the stagnation streamline on
the extensional axis (r = 0, z > 1), in the cylindrical coordinates (r, θ, z) are

uz = z + 1.5

z4
− 2.5

z2
,

∂uz

∂z
= −∂ur

∂r
= 1 − 6

z5
+ 5

z3
. (42)

Along the stagnation streamline, the streamwise velocity gradient ∂uz/∂z starts from zero at the
stagnation point, increases to a maximum value of about 1.7 at z = √

2 and then decreases to the
far-field value of 1. At low De, the polymers respond only to the local flow and the stretch of
the polymer follows a similar qualitative pattern as ∂uz/∂z. The equations governing the nonzero
components of the configuration tensor in cylindrical coordinates are

uz
d�zz

dz
= 2

∂u

∂z
�zz + 1

De
(b − f �zz ), uz

d�rr

dz
= −2

∂u

∂z
�rr + 1

De
(b − f �rr ), �θθ = �rr .

(43)
At the stagnation point, z = r = 1,

�rr = �θθ = �zz = 1, (44)

leading to f = b and zero polymer stress for all De and L, i.e., the polymer at the stagnation point
is in the equilibrium state due to the vanishing velocity gradient. A polymer traversing along this
stagnation streamline starts to stretch from the nearly unstretched state close to the stagnation point,
and must obtain the stretch value corresponding to the one without the particle as z → ∞. By
examining the behavior of the polymer along the streamline, in the far field, we can determine
whether this stretch is monotonic. Splitting the configuration into the undisturbed (�(0U )) and the
deviation from the undisturbed (�′) leads to the governing equations for the latter,

�zz = �′
zz + �(0U )

zz , �rr = �′
rr + �(0U )

rr , f = f ′ + f (0U ),

uz
d�′

zz

dz
= 2

∂u′
z

∂z
�(0U )

zz + 2
∂uz

∂z
�′

zz − 1

De

[
f ′�(0U )

zz + f (0U )�′
zz + f ′�′

zz

]
,

uz
d�′

rr

dz
= −∂u′

z

∂z
�(0U )

rr − ∂uz

∂z
�′

rr − 1

De

[
f ′�(0U )

rr + f (0U )�′
rr + f ′�′

rr

]
, (45)

where

∂u′
z

∂z
= − 6

z5
+ 5

z3
(46)

is the deviation of the streamwise velocity gradient from the far-field limit of 1. In the far field,

z � 1 → ∂uz

∂z
≈ 1, uz ≈ z,

∂u′
z

∂z
� 1. (47)

We do not know a priori the scaling of the different components of �′ with z in the far field (large z).
However, we assume that the far-field values of �′

zz and �′
rr = �′

θθ are smaller than their respective
undisturbed polymer configuration components,

�′
zz � �(0U )

zz , �′
rr � �(0U )

rr . (48)

This is a valid approximation because, in the far field, the total polymer configuration approaches
the undisturbed state. Thus, we linearize Eqs. (45) about the undisturbed values of the polymer
configuration components, velocity and velocity gradients, i.e., ignore the f ′�′

zz and f ′�′
rr terms

and assume �′
zz � �′

rr → tr(�′) ≈ �′
zz. The latter assumption is valid for all but very small De

since the polymers on the extensional axis are aligned along the axis, and we will see that the

033303-14



STEADY-STATE EXTENSIONAL RHEOLOGY OF A DILUTE …

solution confirms the expectation. We obtain

f = 1

1 − �zz/L2
= f (0U )

[
1 − f (0U )

L2
�′

zz

]−1

≈ f (0U ) +
(

f (0U )

L

)2

�′
zz + O

(
( f (0U ) )3

L4
�′2

zz

)
. (49)

Using this value of f = f (0U ) + f ′ and computer algebra to integrate the linearized equations for
�′

zz and �′
rr [ignoring f ′�′

zz and f ′�′
rr in corresponding equations from Eq. (45)] from an arbitrary

far-field location to z → ∞ we obtain

�′
zz = k1

zβ
+ 10�(0U )

zz

β − 3

1

z3
+ 12�(0U )

zz

5 − β

1

z5
, �′

rr = �′
θθ = k2

zγ
+ 5�(0U )

rr

3 − γ

1

z3
− 6�(0U )

rr

5 − γ

1

z5
, (50)

where

β = 1

De

{
( f (0U ) )2�(0U )

zz

L2
+ f (0U )

}
− 2, γ = 1

De

{
( f (0U ) )2�(0U )

zz

L2
+ f (0U )

}
+ 1, (51)

and k1 and k2 are constants to be obtained by matching these approximate solutions with the
numerical solutions at a point beyond which the far field is deemed to be applicable. The dominant
term in the z variation of �′

zz is either z−β or z−3 and in the variation of �′
rr (= �′

θθ ) is either
z−γ or z−3. On either side of the coil-stretch transition, f (0U ) can be approximated to a simple
expression. Equations (16) and (18) show that for De < 0.5, f (0U ) ≈ 1 and �(0U )

zz � L2, and for
De > 0.5, f (0U ) ≈ 2De and �(0U )

zz /L2 = 1 − 1/2De. Thus, from Eq. (51), γ � 3 for every De and
the z variation of the stretch depends on β. The result γ � 3,∀De > 0 is compatible with our
assumption that �′

zz � �′
rr → tr(�′) ≈ �′

zz. Also, using these estimates for f (0U ),

β ≈
{

1
De − 2 De < 0.5, L � 1,

4De − 2 De > 0.5.
(52)

When β > 3, the dominant term in �′
zz in the far field is z−3, and its coefficient in Eq. (50) is positive.

This implies a larger than undisturbed stretch in the far field. Hence, a nonmonotonic variation of
the stretch along the stagnation streamline is observed for these cases, as shown for De = 0.2 in
Fig. 7(a) and De = 3.0, 4.0 and 5.0 in Fig. 7(d). From Eq. (52), the condition β > 3 is satisfied
for De � 0.2 (strictly valid for L � 1) and De � 1.25. For De < 0.2, the undisturbed stretch is not
very high and the polymer relaxation time is very small, i.e., polymers react immediately to the local
strain rate, and the extra strain rate created by the particle along the stagnation streamline causes the
polymers to stretch more than the undisturbed value, before they contract to the latter as z → ∞.
For De > 1.25, although the undisturbed stretch is very high, the increased local extension rate is
enough to stretch the polymer more than the far-field value. The dominant variation for various De
regimes are

�′
zz ∼

⎧⎨
⎩

z2− 1
De 0.2 < De < 0.5,

z2−4De 0.5 < De < 1.25,

z−3 De < 0.2, De > 1.25.

(53)

For 0.2 < De < 1.25, the fully analytical approach cannot ascertain far-field growth or decay, since
the sign of the dominant term, k1 in Eq. (50), is determined by matching with the full numerical
solution.

The above analytical estimates are for the linearized (about undisturbed values of polymer
configuration, velocity, and velocity gradients) constitutive equations. They described the qualitative
features observed in the numerical results. Incorporating quadratic nonlinearities allow an almost
exact match with the numerical solution in the far field. While we do not show these unwieldy
analytical expressions, they are incorporated in the plots (dashed black curves) shown in Fig. 7. A
good match of these far-field analytical estimates and the actual numerical solution for a wide range
of De and L is observed in Fig. 7. The analytical result for very small and very large De mentioned
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FIG. 7. Polymer stretch along the extensional axis for: (a) small De, (b) De = 0.5, (c) De = 1.0, and
(d) large De. Stretch is normalized with L for (b)–(d).

above, i.e., an initial increase in the stretch which is larger than the undisturbed or far-field value, is
confirmed from Figs. 7(a) and 7(d).

For De < 0.5, the undisturbed stretch is independent of L, and the different curves for the same
De in Fig. 7(a) must asymptote to the same value. However, along the stagnation streamline, closer
to the particle, the stretch at a given De is larger for larger L. This difference increases with De,
because the polymers start from the nearly unstretched state and the larger strain rate (than the
far-field value) on the stagnation streamline close to the particle allows the polymer with larger L
to be extended more. For 0.2 < De < 0.5, we are unable to analytically predict the extra stretch on
the stagnation streamline, but the numerical evidence suggests this to be the case for all L.

For the De � 0.5 plots in Figs. 7(b) to 7(d), the stretch along the streamline is scaled with L,
because the undisturbed stretch scales as L. For De � 3 in Fig. 7(d), the maximum stretch is reached
much earlier for smaller L due to the limited extensibility. For a particular L, there is an increase
in stretch with De (or imposed far-field extension rate) at any given location on the stagnation
streamline.

For the intermediate values of De = 0.5 and 1.0 in Figs. 7(b) and 7(c), the overshoot in the
stretch due to the local increase in strain rate along the stagnation streamline occurs only for small
L. For large L the undisturbed stretch (which scales as L) is very high. The slow variation of the
far-field stretch for De = 0.5 in Fig. 7(b) for large L matches the analytical prediction of Eq. (53).
This is strong evidence for the need to remove the linear part of the polymer stress before ensemble
averaging the stress. This will be further discussed in Sec. VI A.

The polymer stretch field in the case of a uniform flow past a sphere investigated by Chilcott and
Rallison [42] can be compared with that in a uniaxial extensional flow considered here. In a uniform
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flow, there are two stagnation points on the particle surface where the flow leaves or approaches the
surface perpendicularly. These are in the flow direction and may be termed separation points. In
a uniaxial extensional flow, there are two such separation points along the extensional axis and
a separation line in the compressional plane. The neighboring separation points are 180◦ apart in
uniform flow while they (on a plane including the extensional axis and passing through the center of
the sphere) are 90◦ apart in uniaxial extensional flow. Around the front/upstream stagnation point in
uniform flow, fluid undergoes a biaxial extension, and around the rear/downstream stagnation point
a uniaxial extensional flow. Thus, the polymers undergo a larger stretch around the rear stagnation
point than the front stagnation point. The polymer stretch is fore-aft symmetric in uniaxial exten-
sional flow. In both flows, the polymers are in their equilibrium/unstretched configurations at the
separation points/lines as all the velocity gradient components are zero. Along the rear stagnation
streamline in uniform flow, the polymers are first stretched and then advected far downstream of
the particle surface before they relax to their equilibrium configuration. This is similar to one type
of behavior observed for extensional flow, where an overshoot in polymer stretch occurs close to
the particle surface as a polymer translates along the extensional axis before the polymer relaxes
to its undisturbed (but nonequilibrium) configuration. The other scenario where the polymer stretch
monotonically increases along the rear stagnation streamline up to the highly stretched far-field
configuration is not found in the uniform flow as the undisturbed polymers are in equilibrium
configuration. Similar to the uniaxial extensional flow (Fig. 6), the polymer stretch along the particle
surface is finite between the unstretched state at two separation points of the uniform flow.

C. Polymer configuration in the fluid surrounding the sphere

From Sec. III, for large L, the undisturbed polymer stress, �̂
(0U )

, is independent of L for De �
0.5, and scales as L2 for De � 0.5. Starting from the FENE-P equations, we show that for L � 1
these scalings are valid for the polymer stress, �, in most of the fluid region, even in the presence of
the particle. Before the coil-stretch transition, ||�||max � L2, for L � 1, and an approximate form
for the FENE-P configuration Eq. (4) follows,

∂�

∂t
+ u · ∇� = ∇uT · � + � · ∇u + 1

De
(δ − �). (54)

This is equivalent to the Oldroyd-B equation. After the coil-stretch transition, using tr(�) � 1, for
L � 1 (b ≈ 1), the FENE-P configuration Eq. (4) is simplified to

∂�̃

∂t
+ u · ∇�̃ = ∇uT · �̃ + �̃ · ∇u − �̃

De[1 − tr(�̃)]
, (55)

where �̃ = �/L2. Thus for L � 1, we expect the dominant components of � to be independent
of L before the coil-stretch transition and scale with L2 after. Using f ≈ b ≈ 1 for De � 0.5, we
simplify � ≈ (� − δ)/De. On the other hand, using � − δ ≈ �, for De � 0.5, we can simplify
� ≈ (1/De)�/[1 − tr(�/L2)]. Hence, the polymer stress, �, also follows the L independent and
L2 scaling, below and above De = 0.5, respectively.

In certain regions very close to the sphere such as near the stagnation points on the extensional
and compressional axis, the polymers collapse to a nearly equilibrium state for every L and De, due
to the small velocity gradients and velocity (hence they spend enough time in these regions with
small velocity gradients to collapse). Therefore, in these collapsed regions, the approximate form
of the constitutive Eq. (55) for De � 0.5, and the L2 dependence of �, based on tr(�) � 1 is not
valid. However, the approximate form of Eq. (54) for De � 0.5, and the L independence of � is
valid everywhere for large L.

For small polymer concentration, c, assuming the polymer to be in the undisturbed configuration
far upstream of the sphere, we solve Eq. (4) under the steady-state assumption of Eq. (6) and velocity
u = u(0) from Eq. (7). It is solved along a dense set of streamlines around the sphere for a wide range
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FIG. 8. (a) The streamlines on which 
S is shown here (only streamlines 1 and 3) for De = 0.2 and 0.4
and various L in (b)–(e) and Fig. 9. Panels (b)–(e) share the same legend.

of De and L and the change in stretch due to the particle,


S =
√

tr(�(0) ) −
√

tr(�(0U ) ), (56)

is analyzed. We provided a first validation of the numerical calculations in Fig. 6, where the
numerically evaluated surface polymer stretch matches perfectly with that obtained analytically
from Eq. (37). Further validation for the numerical calculations is presented later in Table I in
Sec. VI, by comparing the rheological quantities at small De, to the ones availed theoretically
[13,16].

Figures 8 and 9 show 
S along three streamlines and Figs. 10 to 12 show the contours of 
S
in a region around the sphere. For De � 0.5, 
S is presented after normalizing with L. Figure 8(a)
shows the position of the three streamlines considered relative to the particle. Streamline 1 comes
close to the particle and traces it almost perfectly. Figure 8 shows that 
S is independent of L
for L � 50, along streamline 1 and 3. Compared to streamline 1, the magnitude of 
S is lower
for streamline 3, which is farther away from the sphere. The polymer stretch,

√
tr(�(0) ), is thus

independent of L, for L � 50, De � 0.5, in the whole region around the sphere.
For De = 0.6, 0.8 and 1.0, as presented in Fig. 9, we see an expected breakdown of the L2 scaling

of � along streamline 1 (Fig. 9 first row), after it approaches the sphere and polymers collapse close
to the equilibrium configuration. Along streamline 2 and 3 (Fig. 9 second and third rows), the L2

scaling is recovered for large L as the imposed extension rate (De) is increased. On streamline 3, the
L2 scaling is observed for De � 0.6 and L � 50. Recovery happens at even lower De and L (i.e., for
a wider parameter range) in the region outside streamline 3. The scaling is recovered for streamline
2, for L � 50 and De � 1.0. At a higher L = 100, De � 0.8 allows L2 scaling on streamline 2. The
region between the sphere and streamline 2 occupies a very small volume. Therefore, at large L,
for a value of De ∝ 1/L beyond the coil-stretch transition, the L2 scaling of the change in polymer
stretch by the particle, and hence the polymer stress, is valid almost everywhere around the sphere.
Even when the volume of the region where L2 scaling breaks down is not negligibly small, we will
find in Sec. VII that the contribution from these regions to the suspension rheology is small as the
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FIG. 9. Using the same legend as Fig. 8(b), 
S/L along the three streamlines indicated in Fig. 8(a) is
shown for different De = 0.6, 0.8, and 1.0 and various L.

extra stress in the suspension due to particle-polymer interaction still scales as L2 for lower De
values at a given L than indicated by the streamline analysis of polymer stretch discussed here.

The contours of 
S in a region around the particle are shown in Fig. 10 for three different L
at De = 0.1 and 0.4. The aforementioned L independence below the coil-stretch transition De is
confirmed as the contours in the plots in a given row are almost identical. A strong qualitative
similarity occurs between 
S for De = 0.1 [Figs. 10(a) to 10(c)], 
Delocal [Fig. 3(b)] and the

FTLE [Fig. 4(a)] and 
FTS fields [Fig. 5(a)] associated with t = 0.1. The three latter fields
provide a good qualitative assessment of the polymer stretch, because for De = 0.1 the polymer
responds only to the local strain rate. Figures 10(d) to 10(f) show a wake of highly stretched
polymers around the extensional axis for De = 0.4. The increase in wake’s intensity with De is
complemented by the analysis of the polymer stretch along the stagnation streamline for this regime
performed in Sec. V B [see Fig. 7(a)]. Additionally, there is a collapsed region at the rear stagnation
point and small highly stretched region on the surface, 45◦ from the extensional axis. The region
of highly stretched polymers around the extensional axis for De = 0.1 is elongated to a wake for
De = 0.4 due to the finite relaxation time of the polymers. These observations are complemented
by the earlier treatment of surface polymer stretch shown in Fig. 6.

The polymer stretch observed here for De below the coil-stretch transition point is mechanisti-
cally explained by considering the stretching effect of the velocity gradients, visualized through the

Delocal field of Fig. 3(b), on the polymers convecting past the sphere. As the coiled undisturbed
polymers arrive at positive 
Delocal regions [red in Fig. 3(b)] around 45◦ from extension axis at the
particle surface, they are stretched. These stretched polymers convect downstream, are collapsed
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FIG. 10. Contours of 
S for various L and De = 0.1 and 0.4. The parameters marked on each plot are
[De, L]. The color axis is the same for all plots in a given row and is indicated at the end. The most noticeable
feature is the wake of highly stretched polymers (red regions around the extensional axis).

by the low stretching region [blue on the particle surface near the x axis in Fig. 3(b)] but are again
stretched in a high stretching region around the extensional axis [red downstream of the particle
surface in Fig. 3(b)]. As De increases, the time taken for the polymers to relax to their undisturbed
state increases and hence a wake of stretched polymers forms that persists for longer downstream
distances from the particle at larger De within this De regime.

Before moving to the analysis of polymer stretch for De � 0.5, we briefly comment on the com-
parison of the polymer stretch around the sphere placed in a uniaxial extensional flow considered
here and that in a uniform or a simple shear flow considered previously by Chilcott and Rallison
[42] and Yang and Shaqfeh [20] respectively. Local kinematics of the velocity field in the region
just downstream of the sphere placed in a uniform flow is similar to that in a uniaxial extensional
flow. Therefore, as found by Chilcott and Rallison [42] for a uniform flow case, just downstream
of the particle, a large polymer stretch region exists. This is similar to that in a uniaxial extensional
flow at low De considered here. As we will see below, increasing De beyond a certain L dependent
value changes the qualitative nature of the polymer stretch field in the uniaxial extensional flow,
i.e., instead of a region of highly stretched polymers around the particle, there is rather a region of
polymer collapse as compared to undisturbed polymers. However, in uniform flow considered by
Chilcott and Rallison [42] the polymer stretch field remains qualitatively similar at all De as the
region of highly stretched polymers downstream of the particle becomes more intense and extends
farther downstream upon increasing De.

The topology of the streamlines around the sphere is drastically different for a simple shear
flow than for the uniaxial extensional flow. As a result, the polymer stretches differently in the
two flows. Unlike the uniaxial extensional flow described above, the simple shear flow induces
a region of closed streamlines around the particle. As shown by Yang and Shaqfeh [20], a large
polymer stretch region starts in the compressional quadrant of the imposed simple shear just inside
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FIG. 11. Contours of 
S/L for various L and De. The color axis is the same for all plots and is indicated at
the end of each row. The parameters marked on each plot are [De, L]. There is a region of collapsed/unstretched
polymers (blue regions) around the particle. It extends to form a wake for large L. At small L, there is a wake
of highly stretched polymers (red regions) similar to that for the De < 0.5 regime at all L. Similar contours of

S/L are observed up to De ≈ 1.25.

the separatrix between the open and closed streamline regions. This region extends downstream into
the extensional quadrant and goes through the separatrix. Increasing De increases the intensity and
downstream extent (perhaps due to the increasing polymer relaxation time) of the highly stretched
polymer region. Figure 11 shows contours of 
S/L for three different L at De = 0.5, 0.6, and
1.0. In all cases the polymers on the particle surface are collapsed (blue region) relative to the
undisturbed polymers. This collapse is related to the local extensional rate captured by 
Delocal in
Fig. 3(b). Unlike the low De case the undisturbed polymers far from the particle have undergone
a coil-stretch transition and are almost fully stretched near L. When these polymers from regions
upstream of the particle arrive close to the surface while convecting along the compressional axis
they first observe negative 
Delocal [blue region in Fig. 3(b) close to the particle on the y axis] near
the front stagnation point. In this region the velocity is small and the polymers spend a long time
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here to locally undergo a stretch-to-coil transition. The positive 
Delocal [red region on particle
surface in Fig. 3(b)] along the particle surface partially stretches them. This partial recovery can be
observed from surface stretch plots of Fig. 6. From this figure and Eq. (41) it can also be observed
that maximum surface stretch is much smaller than L. The polymers lose even this partial recovery
as their stretch reduces when they arrive near the rear stagnation point. Therefore, relative to the
undisturbed state polymers in the region close to the particle surface remain collapsed. They are
fully collapsed to their equilibrium state on both stagnation points where velocity and its gradients
are zero.

The effects of limited polymer extensibility, L, are clear for the cases in Fig. 11 as the L = 10
figures are qualitatively different from the larger L cases of 50 and 200 in the region around the
extensional axis. In this region we observe a wake of more stretched polymers for L = 10 only
(at all De). As the collapsed polymers near the particle surface convect along the extensional axis
they undergo a coil-stretch transition. While the undisturbed polymers are close to fully stretched
they can never be stretched at their maximum extensibility L [in Eq. (12) the polymer relaxation
term is inversely proportional to L2 − tr(�(0U ) ) where

√
tr(�(0U ) ) is the undisturbed polymer

stretch]. If the local extension rate is large enough there is a room for slightly more extension.
The local extension rate just downstream of the particle along the extensional axis is larger than
the undisturbed extension rate. This is evident from the positive 
Delocal in that region in Fig. 3(b).
Therefore, a wake of polymers that are more stretched than the undisturbed polymers forms along
the extensional axis for L = 10 as shown in Fig. 11. This wake reduces in intensity with De because
the undisturbed polymer stretch increases.

Within the De regime of Fig. 11 discussed above if L is large enough as exemplified by L = 50
and 200, the collapsed polymers in the region close to the particle surface have a large amount
of stretch to recover as they convect along the extensional axis. Therefore, the polymer stretch
remains upper bounded by the large undisturbed value. As L is increased at a given De collapsed
polymers near the particle surface must travel farther downstream to reach the far-field stretch and
hence we see a longer blue region around the extensional axis for L = 200 than for L = 50 at
De = 0.5 in Fig. 11. This also occurs for De = 0.6 and De = 1.0 at L = 50 and 200, but it is not
visible in Fig. 11 as the collapse is very intense over the spatial extent shown. The increase with L
of the downstream distance required to recover the polymer stretch can, however, be observed by
comparing the

√
tr(�(0) )/L curves along the extensional axis for different L at De = 1.0 in Fig. 7(c).

For De = 1.0 (and also De = 0.6) 
S/L plots for L = 50 and 200 in Fig. 11 are very similar to
each other. This indicates the L2 scaling of polymer configuration, �(0), in the fluid region even in
the presence of the particle for De > 0.5 and large L.

Increasing De at any fixed L in the moderate De regime shown in Fig. 11 increases the spatial
extent of collapse (blue region) since the increase in undisturbed polymer stretch at higher De is
more than the increase in local extension rate around the extensional axis downstream of the particle.
This increase in spatial extent can also be viewed as arising due to the increased relaxation time
or longer memory of the polymers of their once collapsed state. Therefore, polymers take longer
distances along the streamlines to recover from their undisturbed stretch upon increasing De within
this moderate De regime.

As already indicated, the features around the extensional axis discussed above are consistent with
the analysis of polymer conformation on the extensional axis made in Sec. V B. The far-field stretch
recovery at large L (increase in polymer stretch towards undisturbed value) and relaxation at small L
(reduction of polymer stretch towards its undisturbed value) along the extensional axis for De = 0.5
and 1.0 were shown in Figs. 7(b) and 7(c). In other words, on the extensional axis beyond a certain
distance downstream of the particle, polymers are stretched more than the undisturbed values for
small L, while they remain collapsed compared to the undisturbed polymers for large L at these
moderate De less than 1.25. Due to spatial continuity and smoothness of the polymer stretch, the
behavior of polymers on the extensional axis extends to a finite region off the axis, as we previously
observed (Fig. 11).
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FIG. 12. Contours of 
S/L for various L and De � 1.5. The parameters marked on each plot are [De, L].
The color axis for all the plots is the same and is shown with the last figure. Most of the particle influence
arises from a region of collapsed polymers near the particle surface (blue regions). The trends seen here extend
to higher De.

Figure 12 shows 
S/L for three different L and three different large De. Some of the features
in the plots in Fig. 12 at each L can be understood by viewing them as resulting from a further
increase in De from the moderate De values for that L in Fig. 11. Due to the same mechanism as
that discussed above for 0.5 � De � 1.0 polymers collapse in a region close to the particle surface
for all L and De shown in Fig. 12. According to this mechanism collapse occurs as fully stretched
undisturbed polymers undergo a local stretch-to-coil transition when they arrive in the negative

Delocal regions of Fig. 3(b) near the front stagnation point and remain collapsed until they leave
the negative 
Delocal regions around the rear stagnation point. As De or the imposed extension rate
is increased, the undisturbed polymer stretch increases and hence the intensity of the wake of highly
stretched polymers around the extensional axis for L = 10 is reduced starting from the De = 0.5
case of Fig. 11 and proceeding to the De = 5.0 case of Fig. 12. The manner in which the large De
regime represented in Fig. 12 differs from the moderate De regime of Fig. 11 is that for each L upon
increasing De the spatial extent of the collapse (blue regions) around the particle surface reduces
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in the former while it increases in the latter. We already discussed the reasons for the moderate De
behavior. In the large De regime, as the extension rate or De is increased to very large values the
collapsed polymers from the near surface region quickly recover to their undisturbed values. This
is evidenced by the increasing white and reducing blue region upon increasing De from 1.5 to 5.0
for a given L in Fig. 12. The collapse on the particle surface, however, becomes more intense as the
undisturbed stress (and hence stretch) increases with De for all De as shown in Fig. 2. For some
De values at the beginning of the large De regime stronger recovery from collapse overwhelms
the increase in undisturbed polymer stretch even for large L and there is a region of slightly more
polymer stretch. This is observed as a light red region in the De = 1.5 and 3 plots at L = 50 and 200
in Fig. 12. It is consistent with the analysis of the stagnation streamline in Sec. V B, where Fig. 7(d)
indicates that for De > 1.25, after a small distance from the particle, the polymer stretch increases
very slightly above the undisturbed value.

As discussed in this section, the effect of a sphere on the polymer stretch in a uniaxial extensional
flow is qualitatively different for small (a region of large polymer stretch downstream of the particle)
and large (a region of polymer collapse around the particle) De. However, as noted earlier for the
uniform and simple shear flow considered by Chilcott and Rallison [42] and Yang and Shaqfeh [20]
respectively, the polymer stretch does not change qualitatively with an increase in De. This occurs
because the undisturbed or far-field polymers stretch differently at small and large De in a uniaxial
extensional flow, whereas, in a uniform and a simple shear flow, the undisturbed polymers behave
similarly at all De. In a uniform flow, the undisturbed polymers remain in equilibrium (unstretched)
configuration for all De. In a simple shear flow considered by Yang and Shaqfeh [20], while the
undisturbed polymer stretch increases with De, it does not exhibit any drastic changes, such as a
coil-stretch transition observed in a uniaxial extensional flow at De = 0.5 (discussed in Sec. III).

1. Polymers stretch like lines of dye released at previous times

The 
S field at each of the De and L combinations shown in Figs. 10–12 can be qualitatively
matched to a 
FTS field from t = 0.1 to 50 shown in Fig. 5. This suggests that the particle changes
the steady-state polymer stretch (
S field), for a given De and L, and the stretch of a nondiffusive
line of dye released in the flow a certain time, t before, in a similar way. Considering L = 10, we find
that the changes in 
S observed by increasing De from 0.1 through 5 in Figs. 10–12 are similar
to the changes in 
FTS observed by increasing t from 0.1 through 5 in Fig. 5. For these values
of De and t the polymers/dye elements are stretched more than their undisturbed counterparts in
a region downstream of the particle and as De or t is increased the stretching region takes the
form of a wake that first intensifies with increasing De or t . Upon further increasing De or t , this
wake of stretched components becomes less intense, while a region of less stretched polymers/dye
elements develops around the particle. At larger L, exemplified by L = 200, changes in the 
S
field observed by increasing De from 0.1 through 1.5 in Figs. 10–12 are analogous to changes
in the 
FTS field observed by increasing t from 0.1 through 50 in Fig. 5. Polymers with larger
extensibility L remember a longer history of previous stretching and this is reflected in the larger
t values corresponding to a given Deborah number when L is larger. At L = 200, after the coil-
stretch transition at De � 0.5, a region of collapsed polymers forms around the particle. Similarly,
a significant region of less stretched dye-elements forms around the particle as observed in the

FTS field for t � 3 in Fig. 5. Upon increasing De, the region of collapsed polymers intensifies,
but becomes thinner, similar to the stretch of dye elements from t = 5 to 50 in the 
FTS field of
Fig. 5. Beyond De = 1.5, the polymer stretch (
S) is similar to the stretch of dye elements (
FTS)
with large t ≈ 50 in most of the volume around the sphere, except the extensional axis, which is
slightly positive for 
S and slightly negative for 
FTS. Performing a similar analysis of the 
FTS
and 
S field may lead to useful insights in other relevant flows of polymeric fluid around a sphere
such as those considered by Chilcott and Rallison [42] (uniform flow) and Yang and Shaqfeh [20]
(simple shear flow).
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FIG. 13. Change in polymer stretch from a local calculation: 
S for (a) De = 0.1 and (b) 0.4 and 
S/L
for (c) De = 0.8 and (d) 5.0. For all cases L = 200.

2. Nonlocal effects

A better match of 
S with the 
FTS field, than with the Q or 
Delocal field indicates the
importance of nonlocal effects on the polymer configuration that arise due to polymer convection.
In order to directly observe the nonlocal effect on the configuration from the FENE-P equation, we
calculate the configuration after ignoring the convection term, i.e., by solving the algebraic equation

∇uT · � + � · ∇u + 1

De
(bδ − f �) = 0. (57)

For L = 200, we show the 
S for De = 0.1 and 0.4 and 
S/L for De = 0.8 and 5.0 in Fig. 13.
The figure for De = 0.1 is very similar to the actual polymer stretch in Fig. 10(c) as at very low De
the nonlocal convective effects are negligible. However, at De = 0.4 ignoring the nonlocal effects
drastically changes the polymer stretch as observed by comparing Fig. 13(b) with Fig. 10(f). The
wake of highly stretched polymers in Fig. 13(b) is very intense as the polymers are “fixed” in place
in the high stretching region downstream of the particle. The wake is thicker for the nonconvecting
polymers in Fig. 13(b) than that of the polymers in Fig. 13(b) that are convected by the underlying
velocity field. The stretch of the nonconvecting polymer in Fig. 13(b) is kinematically explained by
the Q and 
Delocal fields of Fig. 3. Beyond the coil-stretch transition De, a nonconvecting polymer
collapses in the rotation-dominated region of positive Q as shown in Figs. 13(c) and 13(d). These are
not at all similar to the actual polymer stretch behavior described earlier. Therefore, when De is not
negligibly small, the nonlocal effects due to convection are very important in accurately determining
the polymer stretch.

VI. RHEOLOGY

In this section we consider the rheology of the suspension. First, we describe the method for
determining the mean stress. We then validate our simulations at low De with the theoretically
available results for a suspension in a second-order fluid. Finally, we present our results for finite
De.

A. Ensemble averaging formulation and generalized reciprocal theorem

At any location in the suspension the stress is

σ = −pδ + 2e + � + σE, (58)

where σE is the extra stress inside a particle which is zero in the fluid region so Eq. (58) reduces to
(2). As the isotropic part, tr(σ)/3, can be absorbed into the pressure, the deviatoric stress is most
relevant to the suspension rheology,

σ̂ = σ − 1
3 tr(σ) = 2e + �̂ + σ̂E. (59)
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To study the rheology of a dilute suspension of particles we use the ensemble averaging technique
[15,16]. The ensemble average (〈·〉) of the deviatoric stress in the suspension is

〈σ̂〉 = 2〈e〉 + 〈�̂〉 + nŜ, (60)

where

nŜ =
∫

|r−r1|�1
dr1〈σE〉1(r|r1)P(r1) (61)

is the particle stresslet [44] and P(r1) is the probability density of a particle being location at location
r1. For a quantity A, 〈A〉1(r|r1) represents the conditional ensemble average with one particle at r1

[15],

〈A〉1(r|r1) =
∫

dr2 . . . rN P(r2 . . . rN |r1)A, (62)

where P(r2 . . . rN |r1) is the conditional probability density function within a suspension of N
particles. The ensemble average of the rate of strain, 〈e〉 is the imposed rate of strain, E [Eq. (9)],
determined by the motion of the suspension boundaries. For a dilute suspension with well-separated
particles, the hydrodynamic interaction between the particles is negligible. The conditional average
stresses are then approximately the same as those around an isolated particle [15]. Hence, the
conditional averaging symbols are removed, and the ensemble average of the deviatoric part of
the stresslet [44] is

Ŝ(σ) = ∫
|r−r1|=1 dA

{
1
2 [nn · σ + n · σn] − 1

3δn · σ · n
}
. (63)

As we discuss later, unlike previous studies [24,25], 〈�〉 cannot be simply expressed as a volume
average of �, for the integral would diverge logarithmically. Similar to the other quantities (Sec. II),

a regular perturbation in c is used to expand the stresslet: Ŝ = Ŝ
(0) + cŜ

(1) + O(c2). The leading
order deviatoric stresslet is the stresslet due to a unit sphere in a Newtonian fluid, given by Einstein
[45],

Ŝ
(0) = Ŝ(τ (0) ) = 20π

3
E. (64)

For the calculation of an isolated particle in an infinite expanse of polymeric fluid to be useful for
evaluating dilute suspension rheology, the ensemble-averaged polymer stress, 〈�〉 (or its deviatoric
value 〈�̂〉), needs to be related to a volume integral involving stresses in the vicinity of the particle
under relevant assumptions. However, simplifying the ensemble average of the polymer stress
requires a careful treatment that is forthcoming. The ensemble-averaged deviatoric stress up to O(c)
is

〈σ̂〉 = 2(1 + 2.5φ)E + c(〈�̂(0)〉 + nŜ
(1)

), (65)

where φ = 4πn/3 is the particle volume fraction of unit spheres. The polymer stress, �(0), decays
as 1/r3 at large distances from a particle. Therefore, if the stress in the dilute suspension due to the
extra polymer stress in the presence of particle is approximated by the volume average of �(0) in
an infinite expanse of fluid, as in [24,25], a logarithmic divergence occurs. Hence, it is important
to carefully simplify the expression of ensemble averaging after identifying the source of the 1/r3

far-field scaling of �(0). This is described for the Oldroyd-B equations by Koch et al. [15]. Here we
repeat that derivation for the FENE-P equations.

The velocity field can be decomposed into the imposed velocity and a perturbation caused by the
particle,

u(0) = u′ + E · r, (66)

where E · r = 〈u〉. Decomposing the polymer configuration as the sum of undisturbed �(0U ), linear,
�(0L), and nonlinear, �(0N ) components and linearizing the steady-state FENE-P Eqs. (3), (4), and
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(6) leads to an equation for the linear polymer configuration that is forced by the perturbation in
velocity gradients about the undisturbed value,

〈u〉 · ∇�(0L) − ∇〈u〉T · �(0L) − �(0L) · ∇〈u〉 + 1

De

(
f (0U )�(0L) + tr(�(0L) )( f (0U ) )2

L2
�(0U )

)

= ∇u′T · �(0U ) + �(0U ) · ∇u′. (67)

The polymer stress is also decomposed into undisturbed, �(0U ), linear, �(0L), and nonlinear, �(0N ),
parts,

�(0) = �(0U ) + �(0L) + �(0N ), (68)

where �(0U ) is defined in Eq. (12),

�(0L) = 1

De

(
f (0U )�(0L) + tr(�(0L) )( f (0U ) )2

L2
�(0U )

)
, (69)

and �(0N ) is defined as the difference between the total polymer stress, defined in Eq. (3), and
the sum of undisturbed and linear polymer stresses. We solve Eq. (67) for �(0L) using the method
of characteristics, with the streamlines of the undisturbed velocity field, 〈u〉 = E · r, acting as the
characteristic curves and the far-field boundary condition,

�(0L) = 0, r → ∞. (70)

This solution combined with the solution for �(0) using the method of characteristics described
earlier in Sec. II is used to obtain the nonlinear polymer stress field, �(0N ).

By noting the 1/r3 far-field scaling of ∇u′, we identify that 1/r3 far-field scaling of �(0)

arises from �(0L). The ensemble averages of velocity and velocity gradients are their respective
undisturbed values. Therefore, the ensemble averages of their disturbance about the undisturbed
states are zero and the ensemble average of (67) is

〈u〉 · ∇〈�(0L)〉 − ∇〈u〉T · 〈�(0L)〉 − 〈�(0L)〉 · ∇〈u〉 + 1

De

(
f (0U )〈�(0L)〉 + tr(〈�(0L)〉)( f (0U ) )3

L2

)
=0.

(71)
The far-field boundary condition for 〈�(0L)〉 is zero from the ensemble average of Eq. (70). The
solution to Eq. (71) subject to zero boundary conditions yields the ensemble average of linear
polymer stress, 〈�(0L)〉 = 0 and hence,

〈�̂(0L)〉 = 0. (72)

Therefore, the volume average of the ensemble average of the deviatoric polymer stress is

〈�̂(0)〉 = �̂
(0U ) + 〈�̂(0N )〉. (73)

While the deviatoric polymer stress inside the particle vanishes, �̂
(0) = 0, the nonlinear stress �̂

(0N )

is finite and is obtained as

�̂
(0N ) = −�̂

(0U ) − �̂
(0L)

, r < 1. (74)

Thus, we have shown that the linearized polymer stress does not contribute to the ensemble
average stress. This observation implies that there is no need to integrate the slowly decaying
component �̂

(0L) ∼ 1/r3 in the far field that would have otherwise led to a nonconvergent integral
for the particle-induced polymer stress. The dilute particle assumption which allows one to remove
the conditional averaging and approximate the ensemble average of the polymer stress as the volume
integral of a quantity in an infinite fluid around an isolated particle is applied only to the nonlinear
polymer stress, �̂

(0N )
.
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The O(c) stresslet, Ŝ
(1)

, can be decomposed into the contribution due to the first-order perturba-

tion in the solvent stress, Ŝ
1τ

, and that due to the polymer stress, Ŝ
1�

, acting on the particle surface,
i.e.,

Ŝ
(1) = Ŝ

1τ + Ŝ
1�

, (75)

Ŝ
1τ = Ŝ(τ (1) ) =

∫
|r−r1|=1

dA

{
1

2
[nn · τ (1) + n · τ (1)n] − 1

3
δn · τ (1) · n

}
, (76)

Ŝ
1� = Ŝ(�(0) ) =

∫
|r−r1|=1

dA

{
1

2
[nn · �(0) + n · �(0)n] − 1

3
δn · �(0) · n

}
. (77)

Once the polymer configuration, �(0), is determined, Ŝ
1�

can be calculated. However, Ŝ(τ (1) ) =
Ŝ(τ(u(1) )) depends upon the O(c) velocity u(1). Via the O(c) momentum equation, u(1) is driven by
∇ · �(0). Thus, Ŝ(τ (1) ) indirectly depends on the polymer configuration, �(0).

Using a generalized reciprocal theorem and the divergence theorem, Koch et al. [15] provide

a mathematical framework to obtain Ŝ
1τ

directly from �(0) and �(0U ), thus avoiding the need to

numerically evaluate u(1) from the O(c) momentum conservation. An equivalent expression for Ŝ
1τ

to the one given in Koch et al. [15] is

Ŝ
1τ = −

∫
r=1

dA n · [�(0) − �(0U )] · v +
∫

r→∞
dA n · [�(0) − �(0U )] · v

−
∫

Vf

dV [�(0) − �(0U )] : ∇v, (78)

where v is the auxiliary velocity field used in the reciprocal theorem. The divergence-less Stokes
auxiliary velocity field, v, is chosen such that it undergoes extensional deformation at the particle
surface and decays to zero far from the particle [15]. Hence, its expression depends on the particle
shape and for a spherical particle,

v jkl = 5

2

(
1

r5
− 1

r7

)
r jrkrl + 1

2r5
(rkδ jl + rlδ jk ) +

(
1

2r5
− 5

6r3

)
r jδkl . (79)

The second term in Eq. (78) is zero because the integrand decays as r−5 when r → ∞ ([�(0) −
�(0U )] ∼ r−3 and v ∼ r−2). Therefore,

Ŝ
1τ = −

∫
r=1

dA n · [�(0) − �(0U )] · v −
∫

Vf

dV [�(0) − �(0U )] : ∇v. (80)

Thus, in Eq. (75) we have expressed the O(c) stresslet, Ŝ
(1)

, as the sum of Ŝ
1τ

and Ŝ
1�

which can be
computed from the O(1) polymer stress field using (80) and (77), respectively. This decomposition
is based on the physical origins of the stress (Newtonian solvent and polymeric stress).

Next, we will derive a second decomposition of the O(c) stresslet. We start with the observation
that for any tensor stress field, B we find

Ŝ(B) =
∫

r=1
dA n · B · v. (81)

Therefore, ∫
r=1

dA n · [�(0) − �(0U )] · v = Ŝ(�(0) ) − Ŝ(�(0U ) ) = Ŝ
1� − Ŝ

�0U
, (82)

and substituting Eq. (82) into (80) leads to

Ŝ
1τ = Ŝ

�0U − Ŝ
1� + Ŝ

1,volume
, (83)
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where

Ŝ
�0U = Ŝ(�(0U ) ), Ŝ

1,volume = −
∫

Vf

dV [�(0) − �(0U )] : ∇v. (84)

Here we can decomposition the O(c) stresslet as

Ŝ
(1) = Ŝ

�0U + Ŝ
1,volume

, (85)

where Ŝ
�0U

is the stresslet on a unit fluid in the far field, and Ŝ
1,volume

is the contribution due to
the difference between the actual and undisturbed polymer stress in the fluid volume around the
particle. We refer to the former as the undisturbed stresslet and the latter as the volumetric stresslet.

For a spherical volume the undisturbed stresslet, Ŝ
�0U

, is determined analytically as the following
function of �(0U ):

Ŝ
�0U = 4π

3
�̂

(0U ) = 4π

3
	̂(0U )

zz E. (86)

To summarize, the ensemble-averaged deviatoric stress for polymer concentration c and particle
volume fraction φ, is

〈σ̂〉 = (2 + 5φ)E + c�̂
(0U ) + cφ

3

4π
(Ŝ

(1) + �̂
PP

). (87)

The symmetry of the imposed uniaxial extensional flow is maintained in 〈σ̂〉, so that

〈σ̂〉 =
[

2 + 5φ + c	̂(0U )
zz + cφ

3

4π

(
Ŝ

(1)
zz + 	̂PP

zz

)]
E. (88)

The two possible decompositions of the interaction stresslet contribution Ŝ
(1)
zz are

Ŝ
(1)
zz = Ŝ

1τ

zz + Ŝ
1�

zz = Ŝ
�0U
zz + Ŝ

1,volume
zz , (89)

and the particle-induced polymer stress contribution is

	̂PP
zz =

∫
Vf +Vp

dV 	̂(0N )
zz . (90)

	̂PP
zz is further decomposed into the contribution from the fluid and particle volume,

	̂PP,fluid
zz =

∫
Vf

dV 	̂(0N )
zz , 	̂PP,particle

zz =
∫

Vp

dV 	̂(0N )
zz . (91)

We can define the extensional viscosity of the suspension from the various components of the
suspension stress discussed above. Equation (88) can be expressed as

〈σ̂〉 = 2μE, (92)

where

μ = 1 + 2.5φ + 0.5c	̂(0U )
zz + cφ

3

8π

(
Ŝ

(1)
zz + 	̂PP

zz

) = 1 + μpoly + μpart (93)

is the extensional viscosity of the suspension. The polymer contribution to the extensional viscosity
in a particle-free polymeric fluid is

μpoly = 0.5c	̂(0U )
zz , (94)

and that due to the presence of the particles is

μpart =
[

2.5 + c
3

8π

(
Ŝ

(1)
zz + 	̂PP

zz

)]
φ = 2.5φ + μintr. (95)
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FIG. 14. Stresslet due to the polymer stress, Ŝ
1�

zz , as a function of De.

Within μpart, 2.5φ is the Einstein [13] viscosity that arises due to the stress on the particle surface
in a Newtonian fluid and

μintr = 3

8π
cφ

(
Ŝ

(1)
zz + 	̂PP

zz

)
(96)

is the extensional viscosity due to the particle-polymer interaction stress. This completes the
mathematical formulation of the suspension rheology. In the remaining part of this subsection
we derive estimates for some quantities that will aid the forthcoming discussion of the results in
Sec. VII.

1. Estimates of some of the components of the interaction stresslet

The estimates and discussion of this section will aid in our forthcoming discussion of the

interaction stresslet, Ŝ
(1)
zz , and its subcomponents. Substituting Eq. (20) into (86) we obtain an

analytical estimate the expression for the undisturbed stresslet or the stresslet on a unit fluid in

the far field, Ŝ
�0U
zz , in the De > 0.5 regime,

Ŝ
�0U
zz ≈ 16π

9

(
1 − 1

2De

)
L2 = 4π

3
	̂(0U )

zz , De > 0.5. (97)

Ŝ
1�

zz depends only upon the configuration tensor at the surface of the sphere, �(0)|r=1, and is analyt-
ically determined once �(0)|r=1 is known. This can be obtained using the solution of Sureshkumar
et al. [43]. For L � De, using the simplification mentioned in Eq. (40), the stresslet contribution
from the polymer stress is approximately

Ŝ
1�

zz ≈ 4π. (98)

For example, for L ≈ 100, the simplification of Eq. (40) and hence Ŝ
1�

zz in (98) is valid only for

De � 3, as shown in Fig. 14. At high De the magnitude of Ŝ
1�

zz decreases, but remains positive. In

Sec. VII, we will find that whenever Ŝ
1�

zz contributes significantly to the fluid rheology (De < 0.5),
Eq. (98) remains a good estimate.

B. Validation

The particle-polymer interaction contributions for very small De can be compared with the the-
oretical results for second-order fluid suspensions from Koch and Subramanian [16] and Einarsson
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TABLE I. Comparison of various stress components at small De (0.001 � De � 0.005) and large L = 500,

evaluated numerically and theoretically. Theoretical values of Ŝ
(1)
zz and 	̂PP

zz are mentioned in [13]. Further

decomposition into Ŝ
1τ

zz , Ŝ
1�

zz , 	̂PP,fluid
zz , and 	̂PP,particle

zz are provided in [16].

Interaction stress component Theoretical Numerical

Ŝ
1�

zz 4π + O(De2) ≈ 12.57 + O(De2) 12.56 − 0.002De

Ŝ
1τ

zz 8π/3 + 50π/21De ≈ 8.38 + 7.48De 8.38 + 7.49De
	̂PP,fluid

zz 44π/21De ≈ 6.58De 0.00 + 6.76De
	̂PP,particle

zz 8π/3De ≈ 8.38De 0.00 + 8.54De

et al. [13]. As De approaches zero both the Oldroyd-B and FENE-P constitutive relations can
be used to model a second-order fluid via an asymptotic expansion in De. The expressions for
second-order fluid properties of a FENE-P fluid in the small De limit are long and unwieldy, but
differ from those for an Oldroyd-B fluid only by O(1/L2). Therefore, in this subsection, we invoke
an L � 1 assumption in the FENE-P equations and use the properties of an Oldroyd-B fluid in the
second-order fluid limit from Koch and Subramanian [16] to compare with our numerical estimates.

At small De, apart from a boundary layer thickness of O(De) [15] near the particle surface, the
nonlinear component of the stress within the particle is constant,

�̂
(0N ) ≈ 2DeE, De � 1., (99)

This result is obtained by expanding Eq. (67) in De (with L � 1) and using Eqs. (68) and (69) in the
limit of small De. The contribution to the particle-induced polymer stress arising from the particle
region is

	̂PP,particle
zz ≈ 8π

3
De. (100)

In our simulations for 0.001 < De < 0.005 with L = 500, we find 2DeE � �̂
(0N ) � 2.04DeE

within the particle (apart from a thin boundary layer close to the particle surface).
The comparison between the numerical and the analytical stress components at small De and

L = 500 is shown in Table I. As mentioned in Sec. VI A, Ŝ
1�

zz is obtained analytically for any De
and L, using computer algebra, but the value reported in Table I is obtained numerically, using the
method of characteristics. The errors in the values presented are generally low. The most erroneous

terms are the ones requiring volume integrals in their computation, i.e., Ŝ
1τ

zz and 	̂PP
zz . We also present

the comparison of our large L results (where L = 100 and 200 are shown in addition to L = 500) at
small De � 0.1 with second-order [15] and third-order [13] fluid results in Fig. 15. The quadratic

increase of the interaction stress (Ŝ
(1)
zz + 	̂PP

zz ) in Fig. 15(a) and its components, i.e., the particle

induced polymer stress (	̂PP
zz or PIPS) in Fig. 15(b) and the interaction stresslet (Ŝ

(1)
zz ) in Fig. 15(c)

with De at small De matches well with the third-order fluid results of Einarsson et al. [13] up to
De ≈ 0.05. Beyond this value the magnitude of stresses in the FENE-P fluid is more than that in the
third-order fluid.

VII. RESULTS AND DISCUSSION

We begin with a summary of the overall effect of particle-polymer interactions on the suspension
rheology. Figure 16 shows the variation of the extensional component of the total deviatoric particle-

polymer interaction stress, Ŝ
(1)
zz + 	̂PP

zz , for three different De regimes: De � 0.4, 0.4 � De � 0.6,
and De � 0.6 that cover the entire De range and six L in the range 10 � L � 500. Since the coil-
stretch transition is expected to influence the latter two De regimes, the stresses in these regimes are
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FIG. 15. Validation of our methodology for large polymer extensibility, L = 100, 200, and 500. The total
interaction stress (a) and its decomposition into the particle-induced polymer stress (	̂PP

zz or PIPS) in (b), and

the interaction stresslet (Ŝ
(1)
zz ) in (c) are compared with results for a second-order [15] and third-order [13]

fluid at low De. These graphs are shown for a larger De range (beyond the validity of lower order fluids) in
Figs. 16(a), 17(a), and 17(d). All three plots share the same legend as (a).

plotted after normalizing with L2. From Eq. (96), the extensional viscosity due to this interaction,
μintr, is simply 3cφ/8 times the interaction stress displayed in Fig. 16. In the plot for De � 0.4 in
Fig. 16(a) we also show the theoretical curves of second- [13,16] and third-order [13] Oldroyd-B
fluids, which both underpredict the magnitude of interaction stress when De � 0.1. From Fig. 16(a)
we find that the interaction stress is positive and increases with De for De � 0.4. In this regime,
the total change in the extensional viscosity due to adding particles [μpart from Eq. (95)] is positive
and is larger than that in a Newtonian fluid. Interestingly, upon further increase in De, within the
0.4 � De � 0.6 regime of Fig. 16(b) the interaction stress stops increasing with De and instead
starts to decrease. The overall particle-polymer interaction stress changes from positive to negative
around De = 0.52, for high L values. For L = 10 and 20, it happens later and more gradually.
Therefore, depending upon L, there is a De slightly greater than 0.5 beyond which the extensional
viscosity due to the particles, μpart from Eq. (95), is reduced by the particle-polymer interaction
in contrast to the enhancement by the same mechanism at lower De. Further increase in De leads
to more negative particle-polymer interaction stress as shown in Fig. 16(b) and for De � 0.6 in
Fig. 16(c) (with a large magnitude as the values in the corresponding figure are normalized with L2).
We will later show that there are combinations of c and De such that the net extensional viscosity
due to the particles, μpart from Eq. (95) is negative or in other words adding particles leads to a
reduction in suspension stress. The positive interaction stress at smaller De is due to the wake of
highly stretched polymers shown in Fig. 10 and the negative interaction stress at larger De is due to

FIG. 16. Total particle-polymer interaction stress, Ŝ
(1)
zz + 	̂PP

zz , in a dilute suspension of spheres
in a dilute polymeric liquid at six different L in 10 � L � 500 for (a) De < 0.4, (b) 0.4 < De < 0.6, and
(c) De > 0.6. All panels share the legend shown in (a). The stresses in (b) and (c) are scaled with L2 in view
of the coil-stretch transition at De = 0.5. In the small De � 0.4 regime of (a) the interaction stresses for a
second-order fluid from [13,16] and a third-order fluid from [13] are also shown.
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FIG. 17. Decomposition of the total particle polymer interaction stress into the particle induced polymer

stress (	̂PP
zz or PIPS) in (a)–(c) and the interaction stresslet (Ŝ

(1)
zz ) in (d)–(f) for six different L in 10 � L � 500

for De � 0.4 (a), (d), 0.4 < De < 0.6 (b), (e), and De � 0.6 (c), (f). For the latter two De regimes the stresses
are scaled with L2. All panels share the legend shown in (a). In (c) and (f) for the large De � 0.6 regime,
the approximate fits −10.35[1 − 1/(2De)] [= −7.76	̂(0U )

zz /L2 from Eq. (20)] and 16π/9[1 − 1/(2De)]
[= 4π/3	̂(0U )

zz /L2 from Eq. (20)] are also shown.

the region of collapsed polymers shown in Figs. 11 and 12. To justify this claim and understand finer
features of the suspension rheology in Fig. 16 we consider the decompositions of the components

of interaction stress Ŝ
(1)
zz + 	̂PP

zz while revisiting the discussion and figures of Sec. V in light of the
rheological observations.

In Sec. V C, for large L, we discussed the L independence and L2 scaling of the polymer
configuration (and hence polymer stress) for small and De respectively. For large L � 50, the total
interaction stress is also independent of L in the regime De � 0.4 [Fig. 16(a)] and scales as L2 in
the regime De � 0.6 [Fig. 16(c)]. The validity of the L2 scaling justifies the claim in Sec. V C, that
the contribution of the region to suspension rheology where L2 scaling in the change in polymer
stretch due to the particle and hence the polymer stress breaks down is very small. We have also
confirmed by numerical integration over this volume near the extensional axis that its contributions
are too small to affect the scaling of the averaged quantities. Various components of the interaction
stress discussed in the rest of this section also follow the L independent (for De � 0.4) and L2 (for
De � 0.6) scalings below and above the coil-stretch transition respectively.

The primary decomposition of the interaction stress into the interaction stresslet, Ŝ
(1)
zz , and the

particle induced polymer stress, 	̂PP
zz or the PIPS, is shown in Fig. 17. We find that the interaction

stresslet, Ŝ
(1)
zz , shown in Figs. 17(d) to 17(f) is positive, increases monotonically with De and

undergoes a rapid increase near the coil-stretch transition point at De = 0.5. Qualitatively the
interaction stresslet behaves similar to the undisturbed polymer stress shown in Fig. 2 within
and across the De regimes. We will later note that the interaction stresslet is proportional to the
undisturbed stress in certain De regimes.

But first we discuss the PIPS because the nonmonotonic variation of the interaction stress with
De arises from PIPS as shown in Figs. 17(a) to 17(c). Compare the subfigures corresponding to each
PIPS for De regime in Figs. 17 and the total interaction stress in Fig. 16 to observe the qualitative
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FIG. 18. Further decomposition of the particle induced polymer stress, 	̂PP
zz or PIPS, into the contribution

from the fluid region, 	̂PP,fluid
zz (a)–(c), and the particle region 	̂PP,particle

zz (d), (e), for six different L in 10 �
L � 500 for De � 0.4 (a), (d), 0.4 < De < 0.6 (b), (e), and De � 0.6 (c), (f). For the latter two De regimes
the stresses are scaled with L2. All panels share the legend shown in (a). Similar to Fig. 17(c) individual
components of PIPS (normalized with L2) also follow a scaling with De indicated on (c) and (f).

similarity. Further decomposition of the PIPS into the contribution from the fluid, 	̂PP,fluid
zz , and the

particle, 	̂
PP,particle
zz , region in Fig. 18 indicates the observed qualitative trend in the total interaction

stress (Fig. 16) and the PIPS [Figs. 17(a) to 17(c)] arises from the PIPS in the fluid region (	̂PP,fluid
zz ).

The PIPS from the particle region also behaves nonmonotonically but in a different fashion to the net
PIPS or interaction stress around De = 0.5. The particle PIPS or 	̂

PP,particle
zz is positive at all De, and

undergoes a coil-stretch transition at De = 0.5. But it decays in magnitude with De for De � 0.8
towards small values at large De.

The fluid PIPS or 	̂PP,fluid
zz is directly related to the behavior of polymers in the fluid region

around the particle. In particular the change in polymer configuration from the far-field value is
important. In the De � 0.4 regime, the fluid PIPS is positive due to the wake of highly stretched
polymers downstream of the particle, represented by the red regions in the 
S/L plots of Fig. 10.
As discussed in Sec. V C, this wake is a consequence of stretching of the polymers, that are coiled
far upstream of the particle, by the high stretching region (large velocity gradients) around the
extensional axis. At larger De = λε̇ [Eq. (5)] within this regime, the larger imposed extension rate,
ε̇, causes the wake to become more intense as discussed in Sec. V C. Therefore, the fluid PIPS
or 	̂PP,fluid

zz in Fig. 18(a) increases with De for De � 0.4. The intensification of the wake of highly
stretched polymers (red region) is accompanied by the appearance of a region of collapsed polymers
(blue region) that first appears at De ≈ 0.4 as shown in Fig. 10. As De is further increased, the
region of collapsed polymers overwhelms the highly stretched polymer wake as shown in the plots
of Fig. 11. This occurs because the far-field polymers get highly stretched upon increasing De,
and when they arrive close to the particle, low stretching (small velocity and its gradients) regions
around the particle surface, i.e., near the stagnation points on the compressional and extensional
axis, collapse them to a coiled state: making them undergo a stretch-to-coil transition. This manifests
as a rapid decrease in the fluid PIPS to negative values starting at 0.45 � De � 0.5 in Fig. 18(b).
Upon further increase in De, the far-field polymers become more stretched. On the particle surface,
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FIG. 19. Decomposition 1 of the interaction stresslet Ŝ
(1)
zz into the contribution due to the O(c) perturbation

in the solvent stress, Ŝ
1τ

zz (a)–(c), and the polymeric stress, Ŝ
1�

zz (d), (e), for six different L in 10 � L � 500 for
De � 0.4 (a), (d), 0.4 < De < 0.6 (b), (e), and De � 0.6 (c), (f). For the latter two De regimes the stresses are
scaled with L2. All panels share the legend shown in (a).

for large L and De > 0.5, the polymers collapse to an almost equilibrium configuration as shown
in Fig. 6(b) where the surface polymer stretch,

√
tr(�(0)|r=1) is small compared with L. Figure 12

shows that the thin collapsed layer around the particle surface becomes thinner as De is increased,
while the intensity of collapse increases as discussed in Sec. V C and evidenced by the increasingly
negative fluid PIPS with De in Fig. 18(c). For moderate De, De � 1, the collapsed region is near the
particle surface and the neighboring region around 45◦ from the extensional axis (L = 10 plots of
Fig. 11). In this De regime, at L � 50 the collapsed region extends downstream of the particle into
a wake of unstretched polymers (L = 50 and 100 plots of Fig. 11). Therefore, increasing L leads to
a slightly more negative contribution from fluid PIPS in Fig. 18(c) [also in Fig. 18(b) for larger De].
For larger De, De � 1.5, the negative contribution mainly arises from the collapsed polymers near
the particle (Fig. 12). Hence, a very small volume contributes to a very large change in the stresses
for De � 1.5.

As mentioned earlier, the interaction stresslet, Ŝ
1
zz, follows the qualitative behavior of the undis-

turbed polymer stress. This can be observed by comparing subplots of Figs. 2 and Figs. 17(d) to 17(f)
for each De regime. We discussed two possible decompositions of the stresslet in Sec. VI A. One is
the usual decomposition into the stresslet (such as used by [15,16]) arising from different sources

of stress: Ŝ
1
zz = Ŝ

1�

zz + Ŝ
1τ

zz . The stresslet arising from the polymeric and the O(c) solvent stress

on the particle’s surface are Ŝ
1�

zz and Ŝ
1τ

zz respectively. This decomposition is shown in Fig. 19. In
Sec. VI A 1 [see Eq. (98) and Fig. 14] we showed that the polymeric stresslet remains approximately
constant at 4π at low to moderate. [This can also be observed from Figs. 19(d) and 19(e).] At larger

De, the magnitude of the polymeric stresslet reduces and Ŝ
1τ

zz (solvent stresslet) is the dominant
component. Throughout the De range shown, the solvent stresslet qualitatively explains the behavior
of the total interaction stresslet [compare Figs. 19(a) to 19(c) with Figs. 17(d) to 17(f) to see this

qualitative similarity]. In the De > 0.6 regime Ŝ
1τ

zz fully captures Ŝ
1
zz as they are both equal to

16π/9[1 − 1/(2De)] = 4π/3	̂0U
zz /L2 [the reason for this scaling is indicated by Eq. (101)]. The

magnitude of the L2 scaled polymeric stresslet in the large De regime is small because in this regime
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FIG. 20. Decomposition 2 of the interaction stresslet Ŝ
(1)
zz into the contribution due to the undisturbed

stresslet, Ŝ
�0U
zz (a)–(c), and the volumetric stresslet, Ŝ

1,volume
zz (d), (e), for six different L in 10 � L � 500 for

De � 0.4 (a), (d), 0.4 < De < 0.6 (b), (e), and De � 0.6 (c), (f). For the latter two De regimes the stresses are
scaled with L2. All panels share the legend shown in (a).

the polymers around the surface are almost collapsed relative to their undisturbed configuration.
This is shown by the (blue) region of collapsed polymers around the particle surface in Figs. 11

and 12. Understanding the variation of Ŝ
1τ

zz with De in Figs. 19(a) to 19(c) in terms of the behavior
of polymers around or at the particle surface is not straightforward. This is because the polymer
configuration and solvent stress τ (1) are indirectly coupled through the momentum equation. Since

Ŝ
1
zz is dominated by Ŝ

1τ

zz at large De, the first decomposition is not able to provide physical insight
into the variation of the interaction stresslet.

Therefore, we turn to the second stresslet decomposition into the undisturbed (Ŝ
�0U
zz ) and

volumetric (Ŝ
1,volume
zz ) stresslet shown in Fig. 20. The variation of the undisturbed stresslet, Ŝ

�0U
zz ,

with De explains the qualitative variation of the total interaction stresslet. This can be checked by
comparing Figs. 20(a) to 20(c) with Figs. 17(d) to 17(f). The undisturbed stresslet is the stresslet on
a unit sphere in the far field. It is directly proportional to the undisturbed polymer stress (	̂(0U )

zz ) as

also shown in Eq. (86). In the De � 0.6 regime Ŝ
�0U
zz = 4π/3	̂(0U )

zz as also shown by a good match
between numerical and analytical estimate in Fig. 20(c).

To understand why the undisturbed stresslet fully explains the interaction stresslet at large De we

describe why the volumetric stresslet (Ŝ
1,volume
zz ) is small. The integrand of the volumetric stresslet

is proportional to the difference in polymer stress from its undisturbed value in the fluid region
around the particle [Eq. (84)]. The volumetric stresslet is positive in the De � 0.4 regime due to
the wake of highly stretched polymers. However, its magnitude decreases with De in Fig. 20(d)
within the De � 0.4 regime due to the appearance of a (blue) region of collapsed polymers around
the particle surface as De is increased in Fig. 10. The collapse of polymers is relative to the far-
field or undisturbed polymers. Therefore, the collapse becomes more intense near the undisturbed
coil-stretch transition, 0.4 � De � 0.6, as the highly stretched undisturbed polymers relax to a near
equilibrium state in the low stretching (low velocity and its gradients) region around the particle
surface. This is shown as the blue region in various plots of Fig. 11. The volumetric stresslet
therefore undergoes a stretch-to-coil transition at De ≈ 0.5 in Fig. 20(e). In the De � 0.6 regime the
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volumetric stresslet in Fig. 20(f) is negative and increases in magnitude up to De ≈ 0.8. This occurs
because the region of collapsed polymers becomes more intense as De is increased within these
values (Fig. 11). Upon further increase in De the region of collapsed polymers is concentrated closer
to the particle surface (Figs. 11 and 12) and the volumetric stresslet starts becoming less negative in
Fig. 20(f). The volumetric stresslet becomes slightly positive for a small range of De around 2 due to
the small region of stretched polymers around the extensional axis (light red region in De = 1.5 and
3 plots of Fig. 12). At large De, the polymer stretch (Fig. 12) and hence the polymer stress is similar
to the undisturbed values everywhere, except in a thin layer near the surface of the sphere, where
the polymers collapse to a near-equilibrium configuration (Fig. 12). Thus, the volumetric stresslet
also vanishes at large De in Fig. 20(f) and the undisturbed stresslet [Fig. 20(c)] fully captures the
interaction stresslet [Fig. 17(f)].

We found an expression for the variation of the undisturbed stresslet in the large De regime
in Eq. (97). Based on the above discussion of the components of the interaction stresslet, we can
conclude that

Ŝ
(1)
zz ≈ Ŝ

1τ

zz ≈ Ŝ
�0U
zz = 4π

3
	̂(0U )

zz , De > 0.5. (101)

The analytical estimate, Ŝ
�0U
zz = 16π/9[1 − 1/(2De)]L2 from Eq. (97) fits well with the numerical

solutions, as shown in Figs. 17(f), 19(c), and 20(c). Additionally, we observe

	̂PP
zz ≈ −10.35

(
1 − 1

2De

)
L2 = −7.76	̂(0U )

zz , De � 0.6, (102)

as shown in Figs. 17(c). Combining the expressions of Eqs. (101) and (102) we find the particles’
contribution to extensional viscosity, from Eq. (95), in the large De regime to be

μpart = (2.5 − 0.85μpoly)φ, De � 0.6, (103)

where μpoly is the extensional viscosity due to polymers and is given in Eq. (94).
From Fig. 2(c) or Eq. (20), if L ∼ O(100), 	̂(0U )

zz ∼ O(104) in the large De regime. Therefore,
2.5 − 0.85μpoly can become negative even at c ∼ O(10−4). For a polymer with L = 100, a polymer
concentration as small as 0.0009 for De = 1 and 0.0006 for De = 2 allows the net extensional
viscosity due to the particles, μpart, to be negative. Hence, adding particles to a low-c polymeric
fluid reduces its extensional viscosity for De � 0.6, or in other words allows it to be stretched more
easily if either the relaxation time of the polymers or the imposed extension rate is large. Within
this regime, the reduction in the extensional viscosity increases with c, De and φ. Therefore, for a
high throughput industrial process involving a large extension rate of a low-c polymeric fluid, such
as fiber spinning or extrusion molding, adding a small concentration of spherical particles can be
beneficial in reducing the operating cost as the stress required to be overcome can be reduced. If
they remain valid as μpart → −(1 + μpoly), the low-c estimates discussed here predict a breaking
point of the suspension as the suspension viscosity becomes zero. Thus, to ensure a mechanically
stable material, the extensional viscosity of the suspension must remain positive in applications.

The breakup prediction allows us to conjecture the effect of particles in a viscoelastic jet/thread.
Through experiments and theoretical analysis, Clasen et al. [46] found that in the long time limit
during extension, the diameter of a viscoelastic thread with a large polymer relaxation time (De) and
small polymer concentration, thins at an exponential rate. Therefore, making a viscoelastic thread
persist longer than a Newtonian thread that breaks when its aspect ratio becomes larger than the
Plateau-Rayleigh stability limit. From our current findings, we conjecture that spherical particles
or impurities in a viscoelastic jet might accelerate the breakup due to a reduction in extensional
viscosity.

In this section and Sec. V, we have highlighted the particle-polymer interaction mechanism
responsible for both the increase and reduction in suspension stress in the small and the large
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De regime, respectively. Our calculations predict that this interaction stress can be comparable
to or even larger than the imposed stress and the Newtonian stresslet. In the regular perturbation
expansion mentioned in Sec. II, the smallness of the polymer stress relative to the Newtonian stress
is an implicit assumption. Therefore, future numerical simulations conducted at large c can allow
us to test the quantitative validity of our predictions.

VIII. CONCLUSION

Our aim in this study has been to find the first effects of particle-polymer interactions on the
extensional rheology of a dilute suspension of spheres in a dilute polymer solution. We find that
when the polymer relaxation time and the imposed extension rate are small, the interaction leads to
an increase in the extensional viscosity as compared to particle-free polymeric fluid. Interestingly,
the particle-polymer interaction lowers the extensional viscosity of the suspension if the product of
the polymer relaxation time and the imposed extension rate is large.

We characterize the O(c) (polymer concentration) behavior of the interaction between a spherical
particle and a dilute polymer solution in a Newtonian solvent, in an imposed extensional flow. The
FENE-P constitutive equation is used to model the polymer stress, as it captures the qualitative
trends observed in rheology experiments of particle-free viscoelastic fluids [11]. In the small-c limit,
the leading order polymer configuration is driven by the Newtonian velocity field around the sphere,
and the divergence of the polymer configuration induces an O(c) perturbation to the fluid velocity
and pressure. The leading order polymer configuration around a sphere in an extensional flow is
evaluated using the method of characteristics from the analytically known Newtonian velocity field
around a sphere, thus making the method semianalytical. This method was first demonstrated on
the flow around a sphere in a simple shear flow of an Oldroyd-B fluid by Koch et al. [15]. In a
dilute particle suspension particle-particle interactions are negligible and the O(φ) (particle volume
fraction) stress due to particle-polymer interactions within the suspension is that between an isolated
particle and polymers in an infinite expanse of polymeric fluid. Therefore, using ensemble averaging
[15,16], we use the polymeric field around an isolated particle in an infinite expanse of fluid to
calculate these stresses.

The particle-polymer interaction stress consists of the particle-induced polymer stress (PIPS) and
the stresslet. The stresslet is the stress due to surface traction on the particles and PIPS is the extra
fluid stress due to the disturbance in polymer configuration by the presence of particles. Therefore,
particle-polymer interaction is a two-way interaction. The stresslet is the symmetric part of the
first moment of the force on the particle surface [44] and in a polymeric fluid has previously [15]
been decomposed into the stresslet due to the polymer and the solvent stress at the particle surface.
At O(c), the latter is also created by the polymer, albeit indirectly. Using a generalized reciprocal
theorem and the divergence theorem, Koch et al. [15] provide a mathematical framework to obtain
the O(c) solvent stresslet directly from the leading order polymer configuration. Further analysis
of that derivation allows us to propose another decomposition, interpretable in terms of just the
polymer stress around the particle. According to this, the total stresslet is a sum of the stresslet on a
fluid volume equivalent to the particle in the far field, and a volumetric contribution due to the extra
polymer stress in the presence of the particle. The first part of this decomposition is analytically
evaluated from the undisturbed (particle-free) polymer stress.

Previously in [24,25] the stress equivalent to PIPS has been approximated as a volume average
of the polymer stress instead of an ensemble average. Ensemble averaging is the suitable method
because in an experiment, the stress in a homogeneous particle suspension is an average over
the ensemble of all possible particle configurations. Mathematically, volume averaging leads to
divergent integrals as shown by Koch et al. [15] for an Oldroyd-B fluid and in this paper for
the FENE-P model. The polymer stress contribution that leads to divergent integrals scales as
1/r3 at large distances, r, from the particle. This contribution is part of the linear perturbation
to the polymer stress due to fluid velocity perturbations caused by the particle. The governing
equation for this linear polymer configuration is obtained by linearizing the relevant polymer
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constitutive equation about the undisturbed values for fluid velocity and polymer configuration
(Sec. VI A). It is shown in Sec. VI A (also [15]) that although its slow decay leads to a divergent
integral in volume averaging, the ensemble average of this linear polymer stress is zero. Therefore,
to obtain convergent integrals and evaluate PIPS from the calculation of the polymer stress field
around a single particle, the linear polymer stress is removed from the total polymer stress before
the ensemble average is approximated in terms of a volume integral around an isolated particle by
invoking the diluteness of particle concentration in the suspension.

In the absence of the particles, polymers undergo a coil-stretch transition at a Deborah number
of De = 0.5, above which the polymers stretch close to their maximum extensibility, L. The
polymer stress for De < 0.5 is independent of L, and for De > 0.5 it scales as L2 (Fig. 2). We
find the contribution from the particle-polymer interaction to respect the same scalings for L � 50
[Figs. 16(a)–16(c)].

At small De (De � 0.52), the particle-polymer interaction is positive and increases with De
[Figs. 16(a) and 16(b)]. Contributions from both the stresslet [Fig. 17(d)] and the PIPS [Fig. 17(a)]
are positive and significant. As De is increased beyond this, the major stresslet contributions remain
positive and keep increasing with De [Figs. 17(e) and 17(f)].

At large De [Fig. 19(c) and 19(f)], the total stresslet is almost entirely from the solvent stress
at the particle surface in terms of the original decomposition [15], or from the stresslet on a fluid
volume equivalent to the particle in the far field in terms of the new decomposition as the volumetric
contribution of the extra stress vanishes [Figs. 20(c) and 20(f)]. The increase in the stresslet when
viewed through the second decomposition is explained by the increase in the undisturbed polymer
stress with De (Fig. 2).

However, the PIPS becomes increasingly negative with increasing De, after De � 0.5
[Figs. 17(b) and 17(c)], and it has the dominant impact on the suspension rheology at large De.
For L � 50, the overall particle-polymer interaction stress goes to zero at De ≈ 0.55 and becomes
increasingly negative as De is increased above this value [Fig. 16(b)]. At smaller L, the crossover
from positive to negative particle-polymer interaction stress occurs at a larger value of the Deborah
number. The extensional viscosity is half of the constant of proportionality between the deviatoric
stress and the applied rate of strain tensor [Eq. (92)]. While at small De adding particles leads to
an increase in the extensional viscosity of the suspension due to their interaction with the polymers,
at large De particles and polymer interact to reduce the suspension’s extensional viscosity. This
is likely to have a large impact on the industrial processes mentioned in Sec. I and suggests the
possibility of designing a fluid suspension with a desired range of extensional viscosities for a
particular application.

The increasing value of the PIPS with De at small De is due to the wake of extra stretched
polymers along the extensional axis of the individual particles that becomes intensified as the De
increases (Fig. 10). This occurs because the high extension rate regions due to the presence of parti-
cles stretch the undisturbed polymers near the particle surface. The polymers remain stretched in the
wake downstream of the particle due to their finite relaxation time. For De > 0.5, the undisturbed
polymer stress is large, but the polymers contract in a region around the particle. This region is in
the form of a wake of unstretched polymers and also covers the particle surface for moderate De,
0.5 � De � 1.25 (Fig. 11). Highly stretched undisturbed polymers beyond the coil-stretch transition
collapse due to small velocity gradients in the low-speed region around the incoming stagnation line
on the particle. The polymers are then stretched as they convect downstream and ultimately recover
to their large undisturbed stretch values. A deficit of polymer stress occurs in this recovery region.
For even larger De, De � 1.5, the large negative contribution to the particle-induced polymer stress
arises only from a very thin region of collapsed polyners near the particle surface (Fig. 12). The
thickness of this region reduces with De as the recovery is faster at larger extension rate (De). Using
tools from nonlinear dynamics, in Sec. IV B, to analyze kinematics of the velocity field we describe,
in Sec. V C, the qualitative analogy between the effect of a sphere in changing the steady-state
polymer stretch and changing the transient stretch of a line of dye released in the flow, a finite

033303-39



ARJUN SHARMA AND DONALD L. KOCH

time ago. Through this analogy, it is found that polymers with larger maximum extensibility have
conformations resulting from longer Lagrangian stretching histories.

Anna and McKinley [11] showed that the FENE-P equations qualitatively capture the transient
behavior of viscoelastic fluids with dilute polymer concentration (without particles) observed ex-
perimentally. The fluid in their experiments was presheared orthogonal or parallel to the extensional
axis of the subsequent uniaxial extensional flow. During the extensional flow of particle-filled
polymeric fluids, a polymer molecule traveling around the particle experiences simple shear close
the particle, followed by extension along the extensional axis. Thus, we expect our results to
qualitatively match the extensional rheology experiments of dilute suspension of spherical particles
in viscoelastic fluids with small polymer concentration.

Currently, there are no published experimental studies of the steady-state extensional rheology
of dilute particle suspension in dilute polymeric fluids with which we can systematically and quan-
titatively compare our theoretical and numerical predictions. There are, however, some preliminary
results on transient rheology available from experiments described in Refs. [47–51] conducted using
a filament stretching extensional rheometer [38]. These experiments involved a polymeric fluid
constituting of 0.025 wt% of narrow polydispersity high molecular weight polystyrene (polymer)
in oligomeric styrene oil (Newtonian solvent), yielding a Boger fluid [52]. From the experimentally
measured ratio of the polymer contribution to the zero-shear-rate viscosity to the solvent viscosity,
the polymer concentration is 0.09. Thus, we can qualitatively apply our low-c theory. In the
experiments performed at large De from about 5 to 15, adding 3.5% volume fraction of 6 µm
diameter poly(methyl methacrylate) spherical particles leads to a reduction in extensional viscosity
at large times. However, steady state is not achieved in any of the experiments and hence further
experiments are required to fully confirm our findings. Nevertheless, this is in qualitative alignment
with our large De steady-state predictions.

As outlined in Sec. I, the FENE-P model overpredicts the polymer stretch during the transient
phase of a uniaxial extensional flow when compared with Brownian simulations of the unaveraged
FENE model. Furthermore, by comparing Brownian simulations of a polymer molecule modeled
as a freely jointed chain of beads and rods with Brownian simulations of a FENE dumbbell,
Doyle et al. [53] found that the two models predict similar transient behavior during the coil-
stretch transition in a steady extensional flow. However, when the FENE dumbell or the bead
and rod chain is fully extended after the coil-stretch transition, the FENE model predicts a higher
extensional viscosity. Since the FENE model captures only the Brownian stress and the bead-rod
chain experiences both viscous and Brownian stresses [53] the discrepancy between the two models
beyond the coil-stretch transition could be due to the limiting of the chain’s stretch by the viscous
stress. Neither the unaveraged FENE, the bead and rod, nor the FENE-P model yields precise
quantitative predictions. The qualitative features of our findings (made using the FENE-P model)
hinge around the coil-stretch transition of polymers and hence we expect our findings to match
those from future experiments at least qualitatively. The experimental evidence suggests that the
FENE-P model strain hardens slower, due to modeling of the polymer as a single spring instead of
multiple modes in the more realistic scenario [35]. Slower strain hardening indicates slower transient
stretching of the FENE-P polymer as compared to experiments. Ignoring the effect of viscous
stresses on the limiting of the polymer stretch, the absence of viscous stresses in FENE-P polymers
implies a smaller polymeric stress for a given polymer configuration in the FENE-P polymers than
in experiments.

Based on the preceding discussion of the relationship between FENE-P predictions and exper-
imental or more complete physical modeling of polymers in transient extensional flow, we can
anticipate a number of ways in which future experiments that probe the steady extensional rheology
of particle-filled dilute polymer solutions may differ from the present predictions. Compared to
our findings, we expect polymers in an experiment to stretch along a streamline faster and have a
larger stress for a given configuration/polymer stretch. Therefore, we hypothesize that the wake of
highly stretched polymers in the low De � 0.52 regime will be more intense. This would cause the
positive particle-polymer interaction contribution at these De to be larger in the future experiments.
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In the large De � 0.55 regime, we expect the region of collapsed polymers around the particle to be
thinner as the polymers in the experiments may stretch faster to recover the stretch deficit relative
to the undisturbed state. However, due to the larger stress for a given polymer stretch we expect the
undisturbed stress in the experiments at large De to be larger. Thus making the stress deficit due
to the presence of particles more intense in the collapsed region. Therefore, if the viscous stress of
the polymer in an experiment is negligible, the negative particle-polymer interaction stress at large
De � 0.55 would be of a smaller magnitude, due to a thinner collapsed region, than we report here.
However, if the rate of polymer stretch in the experiments is comparable to the FENE-P model but
the viscous stresses in the polymer are significant we expect the experimental interaction stress at
large De to be even more negative.

Although the present study considered a dilute suspension in which particle-particle interactions
were neglected, it is of interest to speculate as to the possible importance of particle interactions.
It is useful to note that for both extensional flow and simple shear flow, which was studied by
Koch et al. [15], both the PIPS and the interaction stresslet contribute to the stress at small De
while the PIPS is the dominant form of the interaction stress at large De. It is reasonable to expect
particle-particle interaction to influence the wake of highly stretched polymers in the low De regime
thereby modifying the particle-polymer interaction stress. However, the particle’s influence on the
polymer stretch is confined to a small region near the particle in the large De regime, so that
particle interactions may not influence the PIPS and the polymer-particle interaction stress at
moderate particle volume fractions. A similar hypothesis was made and subsequently justified by
Jain and Shaqfeh [54] for shear rheology of a suspension of spheres in a viscoelastic fluid by
comparing numerical results from immersed boundary simulations with multiple particles with
the isolated particle simulations. They observed that particle-particle interaction affects only the
per-particle interaction stresslet and not the per-particle PIPS, which, as observed by Jain and
Shaqfeh [54] and also Koch et al. [15] is the dominant component of the interaction stress in shear
rheology at large De.

A possible extension of this work is to consider a temporally evolving flow such as startup
uniaxial extensional flow [similar to [14], but over a wider parameter regime to obtain analytical
rheological expressions such as Eqs. (97) and (102)]. It would also be of interest to consider more
complex time-varying flows such as a period of simple shear followed by uniaxial extension (similar
to [11], but with particles). This will allow a more faithful modeling of scenarios in hydraulic
fracturing or extrusion molding, where the particle-filled viscoelastic fluid undergoes a series of
linear flows for a finite time. Also, replacing the spherical particles with ellipsoids could lead to
interesting results. In a uniaxial extensional flow, a prolate ellipsoid aligns its major axis with the
extensional direction [55]. This could have implications for the thickness and extent of the region of
stretched or unstretched polymers in the fluid surrounding the particles, and hence the rheology of
the suspension. Taking the limit of highly eccentric prolate ellipsoids, suspensions of fibers can be
studied and slender body theory [56] is likely to be a useful technique to obtain analytical insights.
Recent experiments [57] provide a source of validation for such a study. This direction of work
may allow extensional rheology of a suspension in a viscoelastic fluid to be tuned by changing the
particle shape, which is an attractive proposition for many applications.
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